解三角不等式,复合函数单调区间练习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角不等式

(1)cos x ≥

[2,2],66k k k Z ππππ-+∈

(2)cos x ≤

11[2,2],66k k k Z ππππ++

(3)sin x ≥

2[2,2],33k k k Z ππππ++

(4)sin 2

x ≤

4[2,2],33k k k Z ππππ-+∈

(5)tan x ≥ [,),32k k k Z π

π

ππ++∈

(6)tan x ≤ (,],23

k k k Z ππ

ππ-+∈ 求定义域

(1)()f x = {|222,}2

x k x k x k k Z π

ππππ≤<+=+∈或

(2)()f x = {|22}2

x k x k k Z π

ππ≤<+

(3)()lg(cos )f x x = {|22,}26x k x k k Z ππππ-<≤+∈

(4) ()lg(sin )f x x = {|22,}3x k x k k Z ππππ+≤<+∈

(5) ()f x =

53{|22,}42x k x k k Z ππππ+<<+∈

(6)()f x =

43(2,2)(2,2),3232k k k k k Z ππππππππ++⋃+

+∈

(7) lg(tan ()x f x =

73(2,2)(2,2),3262k k k k k Z ππππππππ++⋃++∈

(8) ()f x =

(,),42

k k k Z π

π

ππ+

+∈

(9) ()f x =

33(2,2)(2,2),3242k k k k k Z ππππππππ++⋃+

+∈

(10) lg(tan ()x f x = 73(2,2)(2,2),3262k k k k k Z ππππππππ++⋃++∈

求单调区间

(1)()lg(sin )f x x =

增:(2,2],2

k k k Z π

ππ+∈ 减:[2,2),2

k k k Z π

πππ+

+∈

(2)12

()log (sin )f x x =

增:[2,2),2k k k Z π

πππ+

+∈ 减:(2,2],2

k k k Z π

ππ+∈

(3)()lg(sin 2)f x x =

增:(,],4

k k k Z π

ππ+

∈ 减:[,),42

k k k Z π

π

ππ+

+∈ (4)12

()log (sin 2)f x x =

增:[,),42k k k Z π

πππ+

+∈ 减:(,],4

k k k Z π

ππ+∈

(5)()lg(cos )f x x =

增:(2,2],2k k k Z πππ-

∈ 减:[2,2),2

k k k Z π

ππ+∈ (6) 12

()log (cos )f x x =

增:[2,2),2

k k k Z π

ππ+∈ 减:(2,2],2

k k k Z π

ππ-

(7) ()lg(tan )f x x =

增:(,),2

k k k Z π

ππ+

∈ 无减区间

相关文档
最新文档