几何图形(提高)知识讲解
4.1几何图形教学(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“几何图形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“4.1几何图形”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过周围物体的形状?”比如,我们的桌子是矩形,书本是长方形,篮球是圆形等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索几何图形的奥秘。
在实践活动中,我发现学生们在分组讨论时表现得相当积极,但有些小组在解决问题时思路不够开阔。我应该在小组讨论时更多地给予引导,提出一些具有启发性的问题,帮助他们拓展思维,找到解决问题的多种方法。
此外,我还注意到,在学生小组讨论环节,有些学生比较内向,不太愿意表达自己的观点。今后,我应该鼓励这些学生多发言,让他们感受到课堂是一个安全、自由的表达空间,每个人都可以分享自己的想法。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解几何图形的基本概念。几何图形是由点、线、面组成的图形,如三角形、四边形、圆等。它们在日常生活中无处不在,了解它们有助于我们更好地理解世界。
2.案例分析:接下来,我们来看一个具体的案例。通过分析教室中的物体,了解各种几何图形在实际中的应用,以及它们如何帮助我们解决问题。
五、教学反思
在今天的几何图形教学中,我发现学生们对于几何图形的分类和特点掌握得还不错,但在实际应用上,尤其是计算面积和周长时,有些学生显得有些吃力。我意识到,可能是因为我在教学中过于注重理论,而忽略了与实际生活的联系。
直线、射线、线段(提高)知识讲解
【总结升华】在解答没有给出图形的问题时,一定要审题,要全面 考虑所有可能的情况,即当我们面临的数学问题无法确定是哪种情形
时,就要分类讨论.
举一反三:
【变式】 (武汉武昌区期末联考)如图所示,数轴上线段AB=2(单位长度),CD= 4(单位长度),点A在数轴上表示的数是-10,点C在数轴上表示的数是16.若线段 AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速 度向左匀速运动.
【总结升华】在表示线段和直线时,两个大写字母的顺序可以颠 倒.然而,在叙述线段的延长线的时候,表示线段的两个大写字 母的顺序就不能颠倒了,因为线段向一方延伸后就形成了射线(延
长部分已不再是线段本身了),而表示射线的两个大写字母的顺序
是不能颠倒的,只能用第一个字母表示射线的端点,第二个字母 表示射线方向上的任一点.
关系: (1)点在直线上,如图3所示,点A在直线m上,也可以说:直线m经过点A. (2)点在直线外,如
要点二、线段 1.概念:直线上两点和它们之间的部分叫做线段. 2.表示方法: (1)线段可用表示它两个端点的两个大写英文字母来表示,如图所示,记作 :线段AB或线段BA. (2)线段也可用一个小写英文字母来表示,如图5所示,记作:线段a.
[
②当点B在点C的右边时, 6t-8+2t=2 , t=4(秒) 答:当t等于2秒或4秒时,BC=8(单位长度)
(2) 由(1)知:当t=2(秒)时,B点坐标为:-8+6t=﹣8+6×2=4(单位长度) 当t=4(秒)时,B点坐标为:-8+6t=﹣8+6×4=16(单位长度)
所以答案为:4或16
(3) 存在,若存在,则有:BD=AP+3PC,设运动时间为t(秒),则: 1°当t=3时,点B与点C重合,点P在线段AB上,O<PC≤2且BD=CD=4, AP+3PC=AB+2PC=2+2PC 所以:2+2PC=4,解得:PC=1 ∴此时, PD=5 2°当 3 t
小学数学几何图形知识点解析
(小学数学几何图形知识点解析)一、引言在小学数学教育中,几何图形是一个重要的知识点,它涉及到形状、大小、位置关系等基本概念,对于培养学生的空间观念和思维能力具有重要的作用。
本文将从多个角度解析小学数学几何图形的知识点,帮助教师更好地指导学生学习,同时提高学生的数学素养。
二、知识点解析1.认识基本几何图形在小学阶段,学生需要认识一些基本的几何图形,如长方形、正方形、三角形、圆形等。
这些基本图形的形状、大小、位置关系等概念是学习其他几何知识的基础。
在教学中,教师可以通过实物展示、图片展示、模型演示等方式,帮助学生形成直观的认识。
2.测量几何图形的相关概念测量几何图形的相关概念包括长度、宽度、高度、周长、面积等。
这些概念是几何学的基础,也是学生需要掌握的基本技能。
在教学中,教师可以引导学生使用测量工具(如直尺、卷尺、量角器等)进行实际测量,培养学生的动手能力和观察能力。
3.几何图形的基本性质几何图形的基本性质包括对称性、平移性、旋转性等。
这些性质是理解其他几何知识的基础,也是培养学生空间观念和思维能力的重要内容。
在教学中,教师可以引导学生通过观察、比较、分析等方法,发现不同几何图形的性质,提高学生的观察能力和分析能力。
4.几何图形的位置关系几何图形的位置关系包括平行的性质、垂直的性质、三角形的高和底等。
这些概念是解决实际问题的基础,也是培养学生空间观念和空间想象能力的重要途径。
在教学中,教师可以引导学生通过观察、实践等方法,理解不同位置关系的特点,提高学生的空间想象能力和解决问题的能力。
三、教学方法与策略1.实物展示法:通过展示实物或模型,让学生直观地认识几何图形的基本形状和性质。
2.实践操作法:引导学生通过实际操作(如测量、折叠、剪切等)来理解和掌握几何图形的相关概念和性质。
3.问题引导法:教师可以通过提出一系列问题,引导学生逐步理解和掌握几何图形的相关概念和性质。
4.小组合作法:鼓励学生以小组形式进行合作学习和探究,通过交流和讨论来加深对几何图形的理解和掌握。
保定市第一中学七年级数学上册第四单元《几何图形初步》-解答题专项知识点复习(培优提高)
一、解答题1.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF .解析:【分析】根据题意和图形可以求得线段EB 、BC 、CF 的长,从而可以得到线段EF 的长.【详解】∵E ,F 分别是线段AB ,CD 的中点,∴AB=2EB=2AE ,CD=2CF=2FD ,∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4,∴AC+2CF=6,解得,CF=1,同理可得:EB=1,∴BC=2,∴EF=EB+BC+CF=1+2+1=4.【点睛】此题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2.如图所示,∠AOB =35°,∠BOC =50°,∠COD =22°,OE 平分∠AOD ,求∠BOE 的度数.解析:5°【解析】【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得∠AOE =12∠AOD ,进而得到答案.【详解】∵∠AOB =35°,∠BOC =50°,∠COD =22°,∴∠AOD =35°+50°+22°=107°.∵OE 平分∠AOD ,∴∠AOE =12∠AOD =12×107°=53.5°,∴∠BOE =∠AOE -∠AOB =53.5°-35°=18.5°.【点睛】本题考查了角平分线的性质,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.3.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
其中,上面正方体的下底面的四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1.(1)当只有两个正方体放在一起时,这两个正方体露在外面的面积和是;(2)当这些正方体露在外面的面积和超过8时,那么正方体的个数至少是多少?(3)按此规律下去,这些正方体露在外面的面积会不会一直增大?如果会,请说明理由;如果不会,请求出不会超过哪个数值?(提示:所有正方体侧面面积加上所有正方体上面露出的面积之和,就是需求的面积,从简单入手,归纳规律.)解析:(1)7;(2)4个;(3)不会,理由见解析【分析】(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(2)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n]×4<1+2×4=9,即按此规律堆下去,总面积最大不会超过9.【详解】解:(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(3)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,∴这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n]×4<1+2×4=9,∴按此规律堆下去,总面积最大不会超过9.【点睛】此题考查了立体图形的表面积问题.解决本题的关键是得到上下正方体的一个面积之间的关系,从而即可得出依次排列的正方体的一个面的面积,这里还要注意把最下面的正方体看做是5个面之外,上面的正方体都是露出了4个面.解决本题的关键是得到上下正方体的一个面积之间的关系.4.(1)如图,AC=DB,请你写出图中另外两条相等的线段.(2)在一直道边植树8棵,若相邻两树之间距离均为1.5m,则首尾两颗大树之间的距离是_____.解析:(1)AB=CD;(2)10.5m.【分析】(1)根据等式的性质即可得出结论;(2)8棵树之间共有7段距离,从而计算即可.【详解】(1)因为AC=BD,∴AC-BC=DB-BC,即AB=CD.(2)设首尾之间的距离为x,由8棵树之间共有7段间隔,可得x=7×1.5=10.5(m).故答案为:10.5m.【点睛】本题考查了等式的性质及线段的计算,属于基础题,明白8棵树之间的间隔是关键.5.如图,一个五棱柱的盒子(有盖),有一只蚂蚁在A处发现一只虫子在D处,立刻赶去捕捉,你知道它怎样去的吗?请在图中画出它的爬行路线,如果虫子正沿着DI方向爬行,蚂蚁预想在点I处将它捕捉,应沿着什么方向?请在图中画出它的爬行路线.解析:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.【分析】根据两点之间线段最短,结合图形得出蚂蚁爬行的路线.【详解】解:第一问:如图沿线段AD 爬行;第二问取线段E J 的中点M ,连结AM 和MI ,此路线为蚂蚁爬行的路线.理由都是:两点之间线段最短.【点睛】本题考查了几何体的展开图与两点之间线段最短,利用展开图的性质得出答案是解题的关键.6.百羊问题 甲赶群羊逐草茂,乙牵肥羊一只随其后,戏问甲及一百否?甲云所说无差谬.若得原有一群凑,再添一半小一半,得你一只来方凑,玄机奥妙谁猜透?请列出方程.(说明:“小一半”是指一半的一半,即四分之一)解析:x +x +12x +14x +1=100. 【分析】 根据“再有这么一群,再加半群,又加四分之一群,再把你的一只凑进来,才满100只”这一等量关系列出方程即可.【详解】设羊群原有羊x 只,根据题意可列出方程:x +x +12x +14x +1=100. 【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程.7.如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.解析:(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【分析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则∠COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可; (3)分别用∠COE 及∠AOD 的式子表达∠COD ,进行列式即可.【详解】解:(1)∵90DOE ∠=︒,70AOC ∠=︒∴907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)∵OC 平分AOE ∠,70AOC ∠=︒,∴70COE AOC ∠=∠=︒,∵90DOE ∠=︒,∴907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)∵90COD DOE COE COE =∠-∠=︒-∠∠,70COD AOC AOD AOD =∠-∠=︒-∠∠∴9070COE AOD ︒-∠=︒-∠∴20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【点睛】本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.8.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线.[知识运用] (1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线. 解析:(1)40︒,16α;(2)①存在,当20t =秒或25秒时,∠COD 的度数是20︒;②当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可;②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.【详解】(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α; (2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能: 若在相遇之前,则1805320t t --=,∴20t =;若在相遇之后,则5318020t t +-=,∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°;②相遇之前:(i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠, 即()13180532t t t =--, ∴907t =; (ii )如图2,OC 是OD 的伴随线时, 则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后: (iii )如图3,OD 是OC 的伴随线时, 则12COD AOD ∠=∠, 即()153********t t t +-=-, ∴1807t =; (iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠, 即()118053t 5t 1802t -=+-, ∴30t =;所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【点睛】 本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.9.(1)已知一个角的补角比它的余角的3倍多10︒,求这个角的度数.(2)已知α∠的余角是β∠的补角的13,并且32βα∠=∠,试求a β∠+∠的度数. 解析:(1)50°;(2)150°【分析】 (1)设这个角为α,则补角为(180°-α),余角为(90°-α),再由补角比它的余角的3倍多10°,可得方程,解出即可;(2)根据互余和互补的定义,结合已知条件列出方程组,解方程组得到答案.【详解】(1)设这个角为α,根据题意,得18039010()a α︒-=︒-+︒.解得:50α=︒.答:这个角的度数为50︒.(2)根据题意,得190(180)3αβ︒︒-∠=⨯-∠且32βα∠=∠, ∴60α∠=︒,90β∠=︒.∴ 150αβ∠+∠≡︒.【点睛】本题考查的是余角和补角的概念,掌握若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补是解题的关键.10.如图,A 、B 、C 三点在一条直线上,根据图形填空:(1)AC = + + ;(2)AB =AC ﹣ ;(3)DB+BC = ﹣AD(4)若AC =8cm ,D 是线段AC 中点,B 是线段DC 中点,求线段AB 的长.解析:(1)AD ,DB ,BC ;(2)BC ;(3)AC ;(4)6cm .【分析】(1)根据图形直观的得到线段之间的关系;(2)根据图形直观的得到线段之间的关系;(3)根据图形直观的得到各线段之间的关系;(4)AD 和CD 的长度相等并且都等于AC 的一半,DB 的长度为CD 长度的一半即为AC 长度的四分之一.AB 的长度等于AD 加上DB ,从而可求出AB 的长度.【详解】(1)AC =AD+DB+BC故答案为:AD ,DB ,BC ;(2)AB =AC ﹣BC ;故答案为:BC ;(3)DB+BC =DC=AC ﹣AD故答案为:AC ;(4)∵D 是AC 的中点,AC =8时,AD =DC =4B 是DC 的中点,∴DB =2∴AB =AD+DB=4+2,=6(cm ).【点睛】本题重点是根据题干中的图形得出各线段之间的关系,在第四问中考查了线段中点的性质.线段的中点将线段分成两个长度相等的线段.11.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.解析:(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;②点P Q 、相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A B 、两点之间运动时;②当点P 运动到点B 的左侧时, 分别列式求解即可.【详解】(1)14-,85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时:11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=; ②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.12.如图,在数轴上有A ,B 两点,点A 在点B 的左侧.已知点B 对应的数为2,点A 对应的数为a .(1)若a =﹣1,则线段AB 的长为 ;(2)若点C 到原点的距离为3,且在点A 的左侧,BC ﹣AC =4,求a 的值.解析:(1)3;(2)﹣2【分析】(1)根据点A 、B 表示的数利用两点间的距离公式即可求出AB 的长度;(2)设点C 表示的数为c ,则|c|=3,即c =±3,根据BC ﹣AC =4列方程即可得到结论.【详解】(1)AB =2﹣a =2﹣(﹣1)=3,故答案为:3;(2)∵点C 到原点的距离为3,∴设点C 表示的数为c ,则|c|=3,即c =±3,∵点A 在点B 的左侧,点C 在点A 的左侧,且点B 表示的数为2,∴点C 表示的数为﹣3,∵BC ﹣AC =4,∴2﹣(﹣3)﹣[a ﹣(﹣3)]=4,解得a =﹣2.【点睛】本题主要考查数轴上两点之间的距离,解此题的关键在于熟练掌握其知识点.13.如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点.(1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.解析:(1)7.5;(2)12a,理由见解析;(3)能,MN=12b,画图和理由见解析【分析】(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN 即可求出MN的长度即可.(2)据题意画出图形,利用MN=MC+CN即可得出答案.(3)据题意画出图形,利用MN=MC-NC即可得出答案.【详解】解:(1)点M、N分别是AC、BC的中点,∴CM=12AC=4.5cm,CN=12BC=3cm,∴MN=CM+CN=4.5+3=7.5cm.所以线段MN的长为7.5cm.(2)MN的长度等于12 a,根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC)=12a;(3)MN的长度等于12 b,根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC)=12b.【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.14.如图所示,长度为12cm的线段AB的中点为点M,点C将线段MB分成:1:2MC CB=,求线段AC的长度.解析:8cm【解析】【分析】设MC=xcm,由MC:CB=1:2得到CB=2xcm,则MB=3x,根据M点是线段AB的中点,AB=12cm,得到AM=MB12=AB12=⨯12=3x,可求出x的值,又AC=AM+MC=4x,即可得到AC 的长.【详解】设MC =xcm ,则CB =2xcm ,∴MB =3x .∵M 点是线段AB 的中点,AB =12cm ,∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC ,∴AC =3x +x =4x =4×2=8(cm ).故线段AC 的长度为8㎝.【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.15.如图,一个点从数轴上的原点开始,先向左移动2cm 到达A 点,再向左移动3cm 到达B 点,然后向右移动9cm 到达C 点.(1)用1个单位长度表示1cm ,请你在数轴上表示出A ,B , C 三点的位置;(2)把点C 到点A 的距离记为CA ,则CA=______cm.(3)若点B 以每秒2cm 的速度向左移动,同时A .C 点分别以每秒1cm 、4cm 的速度向右移动.设移动时间为t 秒,试探索:CA−AB 的值是否会随着t 的变化而改变?请说明理由. 解析:(1)数轴见解析;(2)6;(3)CA−AB 的值不会随着t 的变化而改变,理由见解析;【分析】(1)在数轴上表示出A ,B ,C 的位置即可;(2)求出CA 的长即可;(3)不变,理由如下:当移动时间为t 秒时,表示出A ,B ,C 表示的数,求出CA-AB 的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm ,(3)不变,理由如下:当移动时间为t 秒时,点A. B. C 分别表示的数为−2+t 、−5−2t 、4+4t ,则CA=(4+4t)−(−2+t)=6+3t ,AB=(−2+t)−(−5−2t)=3+3t ,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB的值不会随着t的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 16.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?解析:(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.17.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
几何图形知识点总结(含例题)
几何图形知识点总结1.立体图形与平面图形(1)对于一个物体,如果我们不考虑它的颜色、材料和重量等,而只考虑它的_________(如方的、圆的)、_________(如长度、面积、体积)和_________(如平行、垂直、相交),所得到的图形就称为_________.如:我们学习过的长(正)方体、圆柱(锥)体、长(正)方形、圆、三角形、四边形等都是几何图形.(2)立体图形:各部分不都在同一平面内的图形,叫做_________.长方体、正方体、圆柱、圆锥、球等都是立体图形,棱柱、棱锥也是常见的立体图形.(3)平面图形:各部分都在同一平面内的图形,叫做_________.长方形、正方形、三角形、四边形、圆等都是平面图形.(4)立体图形与平面图形是两类不同的几何图形,但它们是互相联系的.任何一个立体图形图形是由一个或几个平面图形围成的.2.点、线、面、体(1)体:长方体、圆柱体、球、圆锥等都是_________.几何体也简称体.(2)面:包围着体的是面.面分为_________和_________两种.如下图的圆锥体有2个面,一个是平面,另一个是曲面.如下图的六棱柱有8个面,它们都是平面.如下图的圆柱有3个面,2个是平面,另一个是曲面.(3)线:面与面相交的地方形成线.线分为_________和_________两种.如圆锥体的两个面相交形成曲线.(4)点:线与线相交形成_________.点动成线,线动成面,面动成体.(5)正方体展开图,共11种图形.K知识参考答案:1.(1)形状,大小,位置,几何图形(2)立体图形(3)平面图形2.(1)几何体(2)平面,曲面(3)直线,曲线(4)点一、立体图形与平面图形1.立体图形有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,这样的几何图形叫做立体图形.从不同的方向观察立体图形:从前往后看,得到的是主视图;从左往右看,得到的是左视图;从上往下看,得到的是俯视图.2.平面图形有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平内,这样的几何图形叫做平面图形.【例1】如图,下列图形全部属于柱体的是A.B.C.D.【答案】C二、点、线、面、体1.体:长方体、圆柱体、球、圆锥等都是几何体.几何体也简称体.2.面:包围着体的是面.面分为平面和曲面两种.3.线:面与面相交的地方形成线.线分为直线和曲线两种.4.点:线与线相交形成点.【例2】如图所示的平面图形绕直线l旋转一周,可以得到的立体图形是A.B.C.D.【答案】C【名师点睛】(1)体与体相交成面,面与面相交成线,线与线相交成点.(2)从运动的观点来看点动成线,线动成面,面动成体.点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.(3)从几何的观点来看点是组成图形的基本元素,线、面、体都是点的集合.(4)长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体简称体.(5)面有平面和曲面之分,如长方体由6个平面组成,球由一个曲面组成.。
初中几何图形知识点整理
初中几何图形知识点整理几何学是数学的一个重要分支,主要研究平面和立体图形的形状、大小、位置等性质。
初中几何图形是初中数学的一个重要组成部分,包括平面图形和立体图形,学习初中几何图形是建立数学思维能力并掌握数学基础知识的必要环节。
本文将从初中几何图形知识点的整理入手,着重讲解平面图形和立体图形的相关知识,以帮助学生加深对初中几何图形的理解和掌握。
一、平面图形1、点、线、面、角的基本概念(1)点:指的是没有长度、面积和体积的基本图形,是几何图形的最基本单位。
(2)线:是由无数个点在同一直线上连接而成的图形,具有长度但没有宽度和厚度。
(3)面:指的是由多个线段连接起来形成的平面图形,具有长度和宽度但没有厚度。
(4)角:是由两条射线在同一平面内公共端点所形成的图形,通常用角度来衡量,度数为0°-360°。
2、几何中心的基本概念(1)重心:是平面图形的重心,表示平面图形所有点的质量中心或物理中心,在任一方向上都可看作是平衡点。
(2)外心:是平面图形的外接圆心,指的是可以包含几何图形任意一点的圆心。
(3)内心:是平面图形的内切圆心,指的是几何图形内部可以切割几何图形的圆心。
(4)垂心:是平面图形上某一点到直线的垂线的交点,称为垂足。
3、平面图形的性质:(1)正方形的性质:正方形的各个边长相等,对角线相等,四个角为直角,对角线互相平分。
(2)三角形的性质:三角形的内角和为180°,等边三角形的三边相等,等腰三角形的两边相等,直角三角形的两直角边的平方和等于斜边的平方。
(3)矩形的性质:矩形的对边相等,对角线相等,四个角均为直角。
(4)菱形的性质:菱形的对角线互相垂直,对角线相等,对边平行且相等,具有轴对称性。
(5)梯形的性质:梯形的上下底的长度不同,但平行。
对角线互相垂直,斜边中点连线与上下底中点连线相等。
二、立体图形1、长方体的性质(1)长方体是由六个矩形构成的立体图形,其面积为底面积×高。
等腰三角形性质定理 (提高) 知识讲解
等腰三角形性质定理(提高)责编:杜少波【学习目标】1. 了解等腰三角形的有关概念, 掌握等腰三角形的轴对称性2.利用轴对称变换推导等腰三角形的性质,并加深对轴对称变换的认识.3. 掌握等腰三角形的下列性质:等腰三角形的两个底角相等;等腰三角形三线合一.4. 会利用等腰三角形的性质进行简单的推理、判断、计算和作图.【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三角形.3.等腰三角形的对称性(1)等腰三角形是轴对称图形(2)∠B=∠C(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰直角三角形的两个底角相等,且都等于45°,等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.(2)用尺规作图时,画图的痕迹一定要保留,这些痕迹一般是画的轻一些,能看清就可以了,题目中要求作的图要画成实线,最后一定要点题,即“xxx即为所求”.(3) 等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a a2.【高清课堂:389301 等腰三角形的性质及判定,知识要点】要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.推论:等边三角形的各个内角都等于60°.性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形的性质的作用证明两条线段或两个角相等的一个重要依据.3.尺规作图:已知底边和底边上的高已知线段a,h(如图)用直尺和圆规作等腰三角形ABC,使底边BC=a,BC边上的高线为h.作法:1.作线段BC=a.2.作线段BC的垂直平分线l,交BC与点D.3.在直线l上截取DA=h,连接AB,AC.△ABC就是所求作的等腰三角形.【典型例题】类型一、等腰三角形中的分类讨论【高清课堂:389301 等腰三角形的性质及判定:例2(1)】1、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( ).A.60° B.120° C.60°或150° D.60°或120°【答案】D;【解析】由等腰三角形的性质与三角形的内角和定理可知,等腰三角形的顶角可以是锐角、直角、钝角,然而题目没说是什么三角形,所以分类讨论,画出图形再作答.(1)顶角为锐角如图①,按题意顶角的度数为60°;(2)顶角为直角,一腰上的高是另一腰,夹角为0°不符合题意; (3)顶角为钝角如图②,则顶角度数为120°,故此题应选D .【总结升华】此题主要考查了等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是忽视了顶角为120°这种情况,把三角形简单的认为是锐角三角形. 举一反三:【高清课堂:389301 等腰三角形的性质及判定:例2(2)】【变式1】已知等腰三角形的周长为13,一边长为3,求其余各边. 【答案】解:(1)3为腰长时,则另一腰长也为3,底边长=13-3-3=7; (2)3为底边长时,则两个腰长的和=13-3=10,则一腰长11052=⨯=. 这样得两组:①3,3,7 ②5,5,3.而由构成三角形的条件:两边之和大于第三边可知:3+3<7,故不能组成三角形,应舍去.∴ 等腰三角形的周长为13,一边长为3,其余各边长为5,5.【变式2】等腰三角形有一个外角是100°,这个等腰三角形的底角是 . 【答案】50°或80°.解:①若100°的外角是此等腰三角形的顶角的邻角, 则此顶角为:180°﹣100°=80°, 则其底角为:(180°﹣80°)÷2=50°;②若100°的外角是此等腰三角形的底角的邻角, 则此底角为:180°﹣100°=80°;故这个等腰三角形的底角为:50°或80°. 故答案为:50°或80°. 类型二、等腰三角形的操作题2、(2016•顺义一模)我们把过三角形的一个顶点,且能将这个三角形分割成两个等腰三角形的线段称为该三角形的“等腰线段”.例如:如右图,Rt △ABC ,取AB 边的中点D ,线段CD 就是△ABC 的等腰线段.(1)请分别画出下列三角形的等腰线段;C A(2)例如,在△EFG中,∠G=2∠F,若△EFG有等腰线段,请直接写出∠F的度数的取值范围.【思路点拨】(1)利用三角形的等腰线段的定义画图;(2)分类讨论等腰线段,从而求得∠F的度数.【答案与解析】解:(1)三角形的等腰线段如图所示,(2)设∠F=x,则∠G=2x,如图2,线段EM是等腰线段,∵△EMG是等腰三角形,∴EM=EG,ME=MF,∴∠F=∠MEF=x,∠EMG=∠G=2x,∴2x<90°,∴x<45°;如图3,GN为等腰线段,∴NF=NG,GN=GE,∴∠F=∠NGF=x,∠E=∠ENG,∴∠EGN=x,∠ENG=2x,∴∠E=2x,∴x+2x+2x=180°,∴x=36°,∴∠F的度数的取值范围为0°<x≤45°.【总结升华】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.也考查了等腰三角形的性质.举一反三:【变式】直角三角形纸片ABC中,∠ACB=90°,AC≤BC,如图,将纸片沿某条直线折叠,使点A落在直角边BC上,记落点为D,设折痕与AB、AC边分别交于点E、F,探究:如果折叠后的△CDF与△BDE均为等腰三角形,那么纸片中的∠B的度数是多少?写出你的计算过程,并画出符合条件的折叠后的图形.【答案】解:若△CDF是等腰三角形,则一定是等腰直角三角形.设∠B为x度∠1=45°,∠2=∠A=90°-x①当BD=BE时∠3=1802x︒-,45°+90°-x+1802x︒-=180°,x=30° .②经计算ED=EB不成立.③当DE=DB时∠3=180°-2x45°+90°-x+180°-2x=180°,x=45°.综上所述,∠B=30°或45°.类型三、等腰三角形性质的综合应用3、如图,在△ABC中,AD是BC 边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F.求证:AF=EF.【思路点拨】根据点D是BC的中点,延长AD到点H,得到△ADC≌△HDB,利用全等三角形的对应角相等,对应边相等进行等量代换,得到△AEF中的两个角相等,然后用等角对等边证明AE=EF.【答案与解析】证明:延长AD到H使DH=AD,连接BH.∵AD 是BC 边上的中线, ∴BD =CD在△ADC 和△HDB 中,BD D BDH CDA AD HD C ⎧⎪∠∠⎨⎪⎩===, ∴△ADC ≌△HDB , ∴∠1=∠H ,BH =AC ∵BE =AC , ∴BE =BH , ∴∠3=∠H , ∴∠1=∠3 又∵∠2=∠3, ∴∠1=∠2, ∴AF =EF【总结升华】证明不在同一个三角形的两条线段相等,而它们所在的三角形不全等,可以利用辅助线将它们转移到同一个三角形中,然后通过等腰三角形来证明. 举一反三:【变式】如图,已知AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE =EF .求证:AC =BF .【答案】证明:延长AD 至点G ,使DG =AD ,连接BG..,,,().AD BD CD ACD GBD AD DG ADC GDB CD BD ACD GBD SAS ==⎧⎪∠=∠⎨⎪=⎩∵为中线,∴在△和△中,∴△≌△A BCDE FG,.,.,..BG AC G CAD AE EF CAD AFE BFD AFE G BFD BF BG AC =∠=∠=∠=∠∠=∠∠=∠==∴∵∴又∵∴∴4、如图,AC =BC ,∠ACB =90°,∠A 的平分线AD 交BC 于点D ,过点B 作BE ⊥AD 于点E.求证:BE=12AD.【答案与解析】证明:如图,延长BE 、AC 交于点F.∵∠1=∠2,AE =AE ,∠AEB =∠AEF =90°, ∴△AEB ≌△AEF (ASA ).∴BE =FE =12BF. ∵∠3=90°-∠F =∠2,BC =AC, ∴Rt △BCF ≌Rt △ACD (ASA ) ∴BF =AD ,BE =12AD. 【总结升华】在几何解题的过程中,当遇到角分线或线段垂线时常考虑使用翻折变换,可保留原有图形的性质,且使原来分散的条件相对集中,以利于问题的解决. 举一反三:【变式】如图1,在△ABC 中,AB=AC ,点D 是BC 的中点,点E 在AD 上. (1)求证:BE=CE ;(2)如图2,若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为F ,∠BAC=45°,原题设其它条件不变.求证:△AEF ≌△BCF .【答案】证明:(1)∵AB=AC ,D 是BC 的中点,∴∠BAE=∠EAC ,在△ABE 和△ACE 中,AB AC BAE EAC AE AE ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△ACE (SAS ),∴BE=CE ;(2)∵∠BAC=45°,BF ⊥AF , ∴△ABF 为等腰直角三角形, ∴AF=BF ,∵AB=AC ,点D 是BC 的中点, ∴AD ⊥BC ,∴∠EAF+∠C=90°, ∵BF ⊥AC ,∴∠CBF+∠C=90°, ∴∠EAF=∠CBF ,在△AEF 和△BCF 中,90EAF CBF AF BFAFEBFC ∠∠⎧⎪⎨⎪∠∠︒⎩====∴△AEF ≌△BCF (ASA ).5、如图,△ABC 是等边三角形,D 是AB 边上的一点,以CD 为边作等边三角形CDE ,使点E 、A 在直线DC 的同侧,连接AE . 求证:AE ∥BC .【思路点拨】根据等边三角形性质推出BC=AC ,CD=CE ,∠ABC=∠BCA=∠ECD=60°,求出∠BCD=∠ACE ,根据SAS 证△ACE ≌△BCD ,推出∠EAC=∠DBC=∠ACB ,根据平行线的判定推出即可. 【答案与解析】证明:∵△ABC 和△DEC 是等边三角形,∴BC=AC ,CD=CE ,∠ABC=∠BCA=∠ECD=60°, ∴∠BCA-∠DCA=∠ECD-∠DCA , 即∠BCD=∠ACE ,∵在△ACE 和△BCD 中AC BC ACE BCD CD CE ⎧⎪∠∠⎨⎪⎩===, ∴△ACE ≌△BCD (SAS ), ∴∠EAC=∠B=60°=∠ACB , ∴AE ∥BC .【思路点拨】本题考查了等边三角形性质,全等三角形的判定和性质,平行线的判定,关键是求出△ACE ≌△BCD ,主要考查学生的推理能力.。
几何图形初步讲解
初中精品数学精选精讲学科:数学任课教师:授课时间: 年月日4。
直线、射线、线段区别:直线没有距离.射线也没有距离。
因为直线没有端点,射线只有一个端点,可以无限延长.5。
尺规作图;几何里把限定用直尺和圆规来画图,称为尺规作图,最基本最常用的尺规作图,称基本作图6.线段的中点:把一条线段分成两条相等的线段的点,叫做线段的中点。
3、角1。
定义:由两条有公共端点的射线组成的几何对象。
这两条射线叫做角的边,它们的公共端点叫做角的顶点。
注意:角的两条边是射线,所以角的大小与边的长短无关。
2。
角的表示::(1)用三个大写字母表示,这种表示方法表示角时顶点字母必须写在中间;(2)用一个大写字母表示,这种表示方法表示角时必须分清楚表示的是哪个角;(3)用数字或希腊字母表示。
3。
角的度量:度量仪器:量角器度量单位:度、分、秒1°=60′1′=60〃1周角等于360度。
1平角等于180度。
4。
角的比较与运算:(1)角的比较:量角器直接量出,比较大小;把它们叠合在一起比较大小。
(2)角的平分线:静态:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
动态:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
5.角平分线的定理:在角平分线上的点到这个角的两边的距离相等。
角平分线的逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上。
6。
余角,补角(1)余角概念:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
(2)补角概念:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角(3)余角的性质:同角的余角相等.比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。
比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。
2020年小升初数学专题复习训练—拓展与提高:几何图形(1)(知识点总结+同步测试) 通用版
点评:此题解答的关键在于找出三角形 ABC 边的中点,进而解决问题.
五.等积变形(位移、割补)
【知识点归纳】 等积变形的主要方法是: 1.三角形内等底等高的三角形
2.平行线内等底等高的三角形 3.公共部分的传递性 4.极值原理(变与不变) 【命题方向】
例 1:求如图的体积.(π取 3.14)
解:小路面积为:(20+14)×2-2×2=64(平方米), 答:小路的占地面积 64 平方米. 点评:利用等积变形、平移知识把曲折的小路拉直,就变成规则的图形包括三部分竖的长方形, 横的长方形和重叠的小正方形,进而解答.
同步测试
一.选择题(共 10 小题) 1.数一数,图中共有( )条线段.
A.1
A.不公平 5.如图中,一共有线段(
B.公平 )条.
C.无法判断
A.5
B.7
C.8
D.9
6.如图,一个正方形被分成甲和乙两部分,两部分的周长相比,甲的周长(
)乙的周长.
A.大于
B.等于
C.小于
7.一只小蚂蚁沿着甲、乙两图分别行走一周(如图),它行走的路线( )
A.一样长
B.甲长
C.乙长
D.不确定
8.有一些长 3 厘米,宽 1 厘米的长方形纸片,至少需要( )张这样的纸片才能拼成一个正方形.
B.2
C.3
2.把一张平行四边形卡片剪一刀分成两个图形,下面几种情况中不可能出现的是( )
A.两个三角形
B.两个平行四边形
C.两个梯形
D.一个平行四边形与一个梯形
3.如图中,甲、乙两部分的周长相比( )
A.一样长
B.甲图长
C.乙图长
D.无法判断
几何图形初步基础知识详解
(2) 不同的立体图形可展成不同的平面图形; 同一个立体图形, 沿不同的棱剪开, 也可得到 不同的平面图. 要点四、点、线、面、体
( 2)也可以用一个小写英文字母表示,如图
2 所示,可以表示为直线 l .
3.基本性质: 经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线. 要点诠释:
直线的特征:( 1)直线没有长短,向两方无限延伸.
( 2)直线没有粗细.
( 3)两点确定一条直线.
( 4)两条直线相交有唯一一个交点.
线段最短.
4. 基本性质: 两点的所有连线中,线段最短.简记为:两点之间,
如图 6 所示,在 A ,B 两点所连的线中,线段 AB 的长度是最短的.
图6 要点诠释: (1)线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.
(2)连接两点间的线段的长度,叫做这两点的距离.
(3)线段的比较:
线段 BA .
(2)线段也可用一个小写英文字母来表示,如图
5 所示,记作:线段 a.
AB 或
3. “作一条线段等于已知线段”的两种方法: 法一:用圆规作一条线段等于已知线段. 例如:下图所示, 用圆规在射线 AC 上截取 AB = a.
法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线
段 a 的长度,再画一条等于这个长度的线段.
几何图形初步
一、几何图形 二、直线、射线、线段 三、角 四、《几何图形初步》全章复习与巩固
目录
17《三角形》全章复习与巩固—知识讲解(提高)
17《三角形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.【典型例题】类型一、三角形的三边关系1.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有 ( ).A .6个B .5个C .4个D .3个【答案】D【解析】x 的取值范围:511x <<,又x 为偶数,所以x 的值可以是6, 8, 10,故x 的值有3个.【总结升华】不要忽略“x 为偶数”这一条件.举一反三:【变式】三角形的三边长为2,x-3,4,且都为整数,则共能组成 个不同的三角形.当x 为 时,所组成的三角形周长最大.【答案】三;8 (由三角形两边之和大于第三边,两边之差小于第三边,有4-2<x-3<4+2,解得5<x<9,因为x 为整数,故x 可取6,7,8;当x=8时,组成的三角形周长最大为11).2.如图,O 是△ABC 内一点,连接OB 和OC .(1)你能说明OB+OC <AB+AC 的理由吗?(2)若AB =5,AC =6,BC =7,你能写出OB+OC 的取值范围吗?【答案与解析】解:(1)如图,延长BO 交AC 于点E ,根据三角形的三边关系可以得到,在△ABE 中,AB+AE >BE ;在△EOC 中,OE+EC >OC ,两不等式相加,得AB+AE+OE+EC >BE+OC .由图可知,AE+EC =AC ,BE =OB+OE .所以AB+AC+OE >OB+OC+OE ,即OB+OC <AB+AC .(2)因为OB+OC >BC ,所以OB+OC >7.【总结升华】充分利用三角形三边关系的性质进行解题.类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少?【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论.【答案与解析】解:分两种情况讨论:(1)当△ABC为锐角三角形时,如图所示,在△ABD中,∵BD是AC边上的高(已知),∴∠ADB=90°(垂直定义).又∵∠ABD=30°(已知),∴∠A=180°-∠ADB-∠ABD=180°-90°-30°=60°.又∵∠A+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=120°,又∵∠ABC=∠C,∴∠C=60°.(2)当△ABC为钝角三角形时,如图所示.在直角△ABD中,∵∠ABD=30°(已知),所以∠BAD=60°.∴∠BAC=120°.又∵∠BAC+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=60°.∴∠C=30°.综上,∠C的度数为60°或30°.【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者必须具备根据条件作出图形的能力;要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节.举一反三:【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。
知识讲解_椭圆的简单性质_提高
椭圆的简单性质【要点梳理】要点一:椭圆的简单几何性质我们根据椭圆22221x y a b+=(0)a b >>和它的图象(如图)来研究椭圆的简单几何性质.1. 对称性对于椭圆标准方程22221x y a b +=,把x 换成―x ,或把y 换成―y ,或把x 、y 同时换成―x 、―y ,方程都不变,所以椭圆22221x y a b +=是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心.2. 范围椭圆上所有的点都位于直线x =±a 和y=±b 所围成的矩形内,所以椭圆上点的坐标满足|x |≤a ,|y |≤b . 3. 顶点①椭圆的对称轴与椭圆的交点称为椭圆的顶点.②椭圆22221x y a b +=(a >b >0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A 1(―a ,0),A 2(a ,0),B 1(0,―b ),B 2(0,b ).③线段A 1A 2,B 1B 2分别叫做椭圆的长轴和短轴,|A 1A 2|=2a ,|B 1B 2|=2b .a 和b 分别叫做椭圆的长半轴长和短半轴长.4. 离心率①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作22c ce a a==. ②因为a >c >0,所以e 的取值范围是0<e <1.e 越接近1,则c 就越接近a ,从而22b a c =-越小,因此椭圆越扁;反之,e 越接近于0,c 就越接近0,从而b 越接近于a ,这时椭圆就越接近于圆.当且仅当a =b 时,c =0,这时两个焦点重合,图形变为圆,方程为x 2+y 2=a 2.要点诠释:椭圆22221x y a b+=的图象中线段的几何特征(如下图):(1)122PF PF a +=,1212||||||||PF PF e PM PM ==,2122||||a PM PM c+=; (2)12BF BF a ==,12OF OF c ==,2221A B A B a b ==+; (3)1122A F A F a c ==-,1221A F A F a c ==+,1a c PF a c -≤≤+; 要点二:椭圆标准方程中的三个量a 、b 、c 的几何意义椭圆标准方程中,a 、b 、c 三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的,分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:a >b >0,a >c >0,且a 2=b 2+c 2.可借助下图帮助记忆:a 、b 、c 恰构成一个直角三角形的三条边,其中a 是斜边,b 、c 为两条直角边.和a 、b 、c 有关的椭圆问题常与与焦点三角形12PF F ∆有关,这样的问题考虑到用椭圆的定义及余弦定理(或勾股定理)、三角形面积公式121211sin 2PF F S PF PF F PF ∆=⋅∠相结合的方法进行计算与解题,将有关线段1PF 、2PF 、12F F ,有关角12F PF ∠(1212F PF F BF ∠≤∠)结合起来,建立12PF PF +、12PF PF ⋅之间的关系.要点三:椭圆两个标准方程几何性质的比较 标准方程22221(0)x y a b a b +=>> 22221(0)x y a b b a+=>> 图形性质焦点 1(,0)F c -,2(,0)F c 1(0,)F c -,2(0,)F c 焦距2212||2()F F c c a b ==-2212||2()F F c c a b ==-范围 ||x a ≤,||y b ≤ ||x b ≤,||y a ≤对称性 关于x 轴、y 轴和原点对称顶点 (,0)a ±,(0,)b ±(0,)a ±,(,0)b ±轴长轴长=2a ,短轴长=2b要点诠释:椭圆22221x y a b +=,22221y x a b+=(a >b >0)的相同点为形状、大小都相同,参数间的关系都有a >b>0和(01)ce e a=<<,a 2=b 2+c 2;不同点为两种椭圆的位置不同,它们的焦点坐标也不相同;椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看x 2、y 2的分母的大小,哪个分母大,焦点就在哪个坐标轴上.要点四:直线与椭圆的位置关系 平面内点与椭圆的位置关系椭圆将平面分成三部分:椭圆上、椭圆内、椭圆外,因此,平面上的点与椭圆的位置关系有三种,任给一点M (x ,y ),若点M (x ,y )在椭圆上,则有22221x y a b +=(0)a b >>;若点M (x ,y )在椭圆内,则有22221x y a b +<(0)a b >>;若点M (x ,y )在椭圆外,则有22221x y a b +>(0)a b >>.直线与椭圆的位置关系将直线的方程y kx b =+与椭圆的方程22221x y a b +=(0)a b >>联立成方程组,消元转化为关于x 或y 的一元二次方程,其判别式为Δ.①Δ>0⇔直线和椭圆相交⇔直线和椭圆有两个交点(或两个公共点); ②Δ=0⇔直线和椭圆相切⇔直线和椭圆有一个切点(或一个公共点); ③Δ<0⇔直线和椭圆相离⇔直线和椭圆无公共点. 直线与椭圆的相交弦设直线y kx b =+交椭圆22221x y a b+=(0)a b >>于点111222(,),(,),P x y P x y 两点,则12||PP 12|x x -同理可得1212|||(0)PP y y k =-≠ 这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:12||x x -=,12||y y -【典型例题】类型一:椭圆的简单几何性质例1. 已知椭圆的对称轴为坐标轴,O 为坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且2cos 3OFA ∠=,求椭圆的方程. 【解析】椭圆的长轴长为6,2cos 3OFA ∠=,所以点A 不是长轴的顶点,是短轴的顶点,所以|OF |=c ,||3AF a ===,233c =,所以c =2,b 2=32-22=5, 故椭圆的方程为22195x y +=或22159x y +=.【思路点拨】灵活运用椭圆的几何性质:①a 2=b 2+c 2;②长轴长2a ,短轴长2b ,进行求参数的值或求椭圆的方程.举一反三:【变式1】求椭圆16x 2+25y 2=400的长轴和短轴的长、离心率、焦点和顶点的坐标.【答案】长轴长210a =,短轴长28b =,离心率35e =,焦点12(3,0)(3,0)F F -,顶点是1(5,0)A -,2(5,0)A ,1(0,4)B -,2(0,4)B .【变式2】长轴长等于20,离心率等于35,求椭圆的标准方程.【答案】22110064x y +=或22110064y x +=类型二:求椭圆的离心率或离心率的取值范围例2.(1 (2)已知椭圆的一个焦点到长轴两端点的距离分别为10和4,求其离心率.【解析】(1)由题意得()()a c a c +-∶,即11e e +=-,解得5e =- (2)由题意得104a c a c +=⎧⎨-=⎩,解得73a c =⎧⎨=⎩,故离心率37c e a ==.【思路点拨】(1)椭圆的离心率是椭圆几何性质的一个重要参数,求椭圆离心率的关键是由条件寻求a 、c 满足的关系式.(2)椭圆的离心率c b e a a ==,所以构造a 、b 、c 三者中任意两个的关系,均可求出椭圆离心率,而a 、b 、c 三者中任意两个的关系,可以通过几何图形直观观察,可构造方程或不等式得到三者关系.(3)求椭圆的离心率通常有两种方法:①若给定椭圆的方程,则根据焦点位置确定a 2、b 2,求出a 、c 的值,利用公式ce a=直接求解; ②若椭圆的方程未知,则根据条件建立a 、b 、c 、e 满足的关系式,化为关于a 、c 的齐次方程,再将方程两边同除以a 的最高次幂,得到e 的方程,解方程求得e .举一反三:【变式1】椭圆的一个顶点与两焦点构成等边三角形,则此椭圆的离心率是( )11..52A B C D 【答案】D【变式2】椭圆22221x y a b +=上一点到两焦点的距离分别为12d d 、,焦距为2c ,若122d c d 、、成等差数列,则椭圆的离心率为_____【答案】12例3. 设M 为椭圆22221(0)x y a b a b +=>>上一点,F 1、F 2为椭圆的焦点,若∠MF 1F 2=75°,∠MF 2F 1=15°,求椭圆的离心率.【解析】在△MF 1F 2中,由正弦定理得12122112||||2sin sin sin MF MF cF MF MF F MF F ==∠∠∠, 即12||||2sin90sin15sin75MF MF c==︒︒︒∴2|1||2|2sin90sin15sin75sin15sin75c MF MF a+==︒︒+︒︒+︒,∴1sin15sin 75c e a ===︒+︒ 【思路点拨】本题利用了椭圆的定义、正弦定理、等比定理、三角变换等多种知识,求出离心率e . 举一反三:【变式1】以椭圆两焦点为直径的圆交椭圆于四个不同点,顺次连结这四个点和两个焦点,恰好围成一个正六边形,则这个椭圆的离心率等于____.1【变式2】已知椭圆22221(0,0)x y a b a b +=>>的左焦点为F ,右顶点A ,上顶点为B ,若BF ⊥BA ,则称其为“优美椭圆”,那么“优美椭圆”的离心率为________.【解析】根据题意,|AB 2|=a 2+b 2,|BF |=a ,|AF |=a +c ,所以在Rt △ABF 中,有(a +c )2=a 2+b 2+a 2,化简得c 2+ac ―a 2=0,等式两边同除以a 2,得e 2+e ―1=0,解得e = 又∵0<e <1,∴e =例4.已知椭圆22221(0)x y a b a b +=>>,F 1,F 2是两个焦点,若椭圆上存在一点P ,使1223F PF π∠=,求其离心率e 的取值范围.【解析】△F 1PF 2中,已知1223F PF π∠=,|F 1F 2|=2c ,|PF 1|+|PF 2|=2a , 由余弦定理:4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cO s120° ① 又|PF 1|+|PF 2|=2a ②联立① ②得4c 2=4a 2-|PF 1||PF 2|,∴2212||||44PF PF a c =-2222222122||||()443402a PF PF a a c a a c ≤=⇒-≤⇒-≤1c e a ⇒≥≤< 【思路点拨】求离心率或离心率的范围,通常构造关于a ,b ,c 的齐次式,从而构造出关于e 的方程或不等式.举一反三:【变式】已知椭圆22221(0)x y a b a b +=>>,以a ,b ,c 为系数的关于x 的方程20ax bx c ++=无实根,求其离心率e 的取值范围.【答案】由已知,240b ac ∆=-<,所以22()40a c ac --<,即2240c ac a +->,不等式两边同除2a 可得2410e e +->,解不等式得2e <或2e . 由椭圆的离心率(0,1)e ∈,所以所求椭圆离心率2,1)e ∈. 类型三:直线与椭圆的位置关系例6. 已知椭圆2212x y +=,求过点1122P ⎛⎫⎪⎝⎭,且被P 平分的弦所在的直线方程.【解析】解法一:设所求直线的斜率为k ,则直线方程为1122y k x ⎛⎫-=- ⎪⎝⎭.代入椭圆方程,并整理得 ()()2222131222022k x kk x k k +--+-+=.由韦达定理得21222212k kx x k -+=+.∵P 是弦中点,∴121x x +=.故得12k =-.所以所求直线方程为2430x y +-=.解法二:设过1122P ⎛⎫⎪⎝⎭,的直线与椭圆交于()11A x y ,、()22B x y ,,则由题意得221122221212121211.x y x y x x y y ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪+=⎩①②③④,,, ①-②得2222121202x x y y -+-=. ⑤将③、④代入⑤得121212y y x x -=--,即直线的斜率为12-.所求直线方程为2430x y +-=.【思路点拨】(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.举一反三:【变式1】已知点P(4,2)是直线l被椭圆221369x y+=所截得线段的中点,求直线l的方程.【答案】x+2y-8=0【变式2】若直线1()y kx k R=+∈与椭圆2215x ym+=恒有公共点,求实数m的取值范围.【答案】15m m≥≠且。
13、直线与圆的方程的应用(提高)知识讲解.docx
1 3 、直线与圆的方程的应用 ( 提高 )直线与圆的方程的应用(提高 )学习目标1.能利用直线与圆的方程解决有关的几何问题;2.能利用直线与圆的方程解决有关的实际问题;3.进一步体会、感悟坐标法在解决有关问题时的作用.要点梳理要点一、用直线与圆的方程解决实际问题的步骤1.从实际问题中提炼几何图形;2.建立直角坐标系,用坐标和方程表示问题中的几何元素,将平面问题转化为代数问题;3.通过代数运算,解决代数问题;4.将结果“翻译”成几何结论并作答.要点二、用坐标方法解决几何问题的“三步曲”用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆;然后对坐标和方程进行代数运算;最后再把代数运算结果“翻译”成相应的几何结论 . 这就是用坐标法解决平面几何问题的“三步曲”.第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论.要点诠释:坐标法的实质就是借助于点的坐标,运用解析工具( 即有关公式 ) 将平面图形的若干性质翻译成若干数量关系 . 在这里,代数是工具、是方法,这是笛卡儿解析几何的精髓所在 .要点三、用坐标法解决几何问题时应注意以下几点1.建立直角坐标系时不能随便,应在利于解题的原则下建立适当的直角坐标系;2.在实际问题中,有些量具有一定的条件,转化成代数问题时要注意范围;3.最后要把代数结果转化成几何结论.典型例题类型一:直线与圆的方程的实际应用1.有一种大型商品, A、B 两地均有出售且价格相同,某地居民从两地之一购得商品运回来,每公里的运费 A 地是 B 地的两倍,若 A、B 两地相距 10 公里,顾客选择 A 地或 B 地购买这种商品的运费和价格的总费用较低,那么不同地点的居民应如何选择购买此商品的地点?【答案】圆 C 内的居民应在 A 地购物.同理可推得圆 C 外的居民应在 B 地购物.圆C 上的居民可随意选择 A 、B 两地之一购物.【解析】以直线 AB 为 x 轴,线段 AB 的垂直平分线为y 轴,建立直角坐标系,如下图所示.设 A (― 5, 0),则 B( 5, 0).在坐标平面内任取一点P( x,y),设从 A 地运货到 P 地的运费为 2a 元/ km,则从 B 地运货到 P 地的运费为a元/ km.若P 地居民选择在 A 地购买此商品,则,整理得.即点 P 在圆的内部.也就是说,圆 C 内的居民应在 A 地购物.同理可推得圆 C 外的居民应在 B 地购物.圆C 上的居民可随意选择 A 、B 两地之一购物.【总结升华】利用直线与圆的方程解决实际问题的程序是:( 1)认真审题,明确题意;(2)建立直角坐标系,用坐标表示点,用方程表示曲线,从而在实际问题中建立直线与圆的方程的模型;(3)利用直线与圆的方程的有关知识求解问题;(4)把代数结果还原为对实际问题的解释.在实际问题中,遇到直线与圆的问题,利用坐标法比用平面几何及纯三角的方法解决有时要简捷些,其关键在于建立适当的直角坐标系.建立适当的直角坐标系应遵循三点:(1)若曲线是轴对称图形,则可选它的对称轴为坐标轴;( 2)常选特殊点作为直角坐标系的原点;(3)尽量使已知点位于坐标轴上.建立适当的直角坐标系,会简化运算过程.要想学会建立适当的直角坐标系,必须靠平时经验的积累.【变式 1】如图是某圆拱桥的一孔圆拱的示意图.该圆拱跨度 AB=20m ,拱高OP=4m,在建造时每隔4m 需要用一个支柱支撑,求支柱的长度(精确到0.01m).【答案】 3.86m【解析】建立坐标系如图所示 .圆心的坐标是 (0,b ),圆的半径是r,那么圆的方程是:因为 P(0,4)、B(10,0)都在圆上,所以解得,.所以圆的方程为把代入圆的方程得,所以,即支柱的高度约为 3.86m.【变式 2】某市气象台测得今年第三号台风中心在其正东300 km 处,以 40km/h 的速度向西偏北30°方向移动.据测定,距台风中心250 km 的圆形区域内部都将受到台风影响,请你推算该市受台风影响的起始时间与持续时间.(精确到分钟 )【答案】 90 分钟10 h【解析】利用坐标法来求解 .如图,不妨先建立直角坐标系xOy,其中圆 A 的半径为250km,过 B(300, 0)作倾斜角为 150°的直线交圆于点 C、D,则该市受台风影响的起始与终结时间分别为 C 开始至 D 结束,然后利用圆的有关知识进行求解 .以该市所在位置 A 为原点,正东方向为x 轴的正方向建立直角坐标系,开始时台风中心在B(300,0)处,台风中心沿倾斜角为150°方向的直线移动,其轨迹方程为 y=(x-300)(x ≤300).该市受台风影响时,台风中心在圆x2+y2=2502内,设射线与圆交于C、D,则 CA=AD=250 ,∴台风中心到达 C 点时,开始影响该市,中心移至 D 点时,影响结束,作AH ⊥CD 于 H,则AH=AB ·sin30°=150,HB=,CH=HD==200,∴BC=-200,则该市受台风影响的起始时间t1=≈1.5(h),即约 90 分钟后台风影响该市,台风影响的持续时间t2==10(h)即台风对该市的影响持续时间为10 h.【总结升华】应用问题首先要搞清题意,最好是画图分析,运用坐标法求解,首先要建立适当的坐标系,设出点的坐标.还要搞清里面叙述的术语的含义.构造圆的方程进行解题 (如求函数的最值问题 )时,必须充分联想其几何意义,也就是由数思形 .如方程 y=1+表示以(0,1)为圆心,1为半径的上半圆,表示原点与曲线 f(x , y)=0 上动点连线的斜率 .类型二:直线与圆的方程在平面几何中的应用2.AB为圆的定直径, CD为直径,自 D 作 AB的垂线 DE,延长 ED到 P 使|PD|=|AB| ,求证:直线 CP必过一定点【答案】直线 CP 过定点( 0,― r)【解析】建立适当的直角坐标系,得到直线CP 的方程,然后探讨其过定点,此时要联想证明曲线过定点的方法.证明:以线段 AB 所在的直线为 x 轴,以 AB 中点为原点,建立直角坐标系,如下图.设圆的方程为x2+y2=r2,直径 AB 位于 x 轴上,动直径为CD.令C(x0,y0),则D(―x 0,―y0),∴P(― x0,― y0― 2r).∴直线 CP 的方程为.即(y0+r)x ―(y+r)x 0=0.∴直线 CP 过直线: x=0, y+r=0 的交点( 0,― r),即直线 CP 过定点( 0,― r).【总结升华】利用直线与方程解决平面几何问题时,要充分利用圆的方程、直线和圆的位置关系、圆与圆的位置关系等有关知识,正确使用坐标方法,使实际问题转化为代数问题,然后通过代数运算解决代数问题,最后解释代数运算结果的实际含义.【变式】如图,在圆O 上任取 C 点为圆心,作一圆与圆O 的直径 AB 相切于D,圆 C 与圆 D 交于 E、 F,求证: EF 平分 CD.证明:令圆 O 方程为 x2+y2=1.①EF 与 CD 相交于 H,令 C( x, y ),则可得圆 C 的方程1122222(x-x 1)+(y -y1)=y1,即 x+y-2x1x-2y1 y+x1=0.②2①-②得 2x1x+2y1y-1-x1=0.③③式就是直线 EF 的方程,设 CD 的中点为 H',其坐标为,将 H'代入③式,得.即 H'在 EF 上,∴ EF 平分 CD.类型三:直线与圆的方程在代数中的应用3.已知实数 x、y 满足 x2+y2+4x+3=0,求的最大值与最小值.【答案】【解析】如图所示,设 M ( x, y),则点 M 在圆 O:(x+2)2+y2=1 上.令 Q( 1, 2),则设,即kx― y― k+2=0.过 Q 作圆 O1的两条切线 QA 、QB,则直线 QM 夹在两切线 QA 、QB 之间,∴k AQ≤k QM≤k QB.又由 O1到直线 kx―y―k+2=0 的距离为 1,得,即.∴的最大值为,最小值为.【总结升华】本例中利用图形的形象直观性,使代数问题得以简捷地解决,如何由“数”联想到“形”呢?关键是抓住“数”中的某些结构特征,联想到解析几何中的某些方程、公式,从而挖掘出“数”的几何意义,实现“数”向“形”的转化.本例中由方程联想得到圆,由等联想到斜率公式.由此可知,利用直线与圆的方程解决代数问题的关键是由某些代数式的结构特征联想其几何意义,然后利用直线与圆的方程及解析几何的有关知识并结合图形的形象直观性来分析解决问题,也就是数形结合思想方法的灵活运用.涉及与圆有关的最值问题,可借助图形性质利用数形结合求解,一般地:( 1)形如形式的最值问题,可转化为动直线斜率的最值问题;(2)形如 t=ax+by 形式的最值问题,可转化为动直线截距的最值问题;(3)形如d=(x-a)2+(y- b)2形式的最值问题,可转化为到定点P(a,b)距离的平方的最值问题.【变式】设函数和,已知当x∈[-4,0]时,恒有,求实数 a 的取值范围.答案与解析【答案】【解析】因为,所以,即,分别画出和的草图,利用数形结合法,当直线与半圆相切时取到最大值,由圆心到直线的距离为 2,求出,即得答案.类型四:直线与圆的方程的综合应用4.设圆满足:(1)截 y 轴所得的弦长为 2;(2)被 x 轴分成两段圆弧,其弧长的比为3∶1.在满足条件( 1)、( 2)的所有圆中,求圆心到直线:x―2y=0 的距离最小的圆的方程.【答案】 (x―1)2+(y― 1)2=2 或(x+1)2+(y+1) 2=2【解析】满足题设中两个条件的圆有无数个,但所求的圆须满足圆心到直线的距离最小.这样须通过求最小值的方法找出符合题意的圆的圆心坐标.设圆心为 P( a,b),半径为 r,则 P 点到 x 轴、 y 轴的距离分别是 |b|和|a|.由题设知:圆 P 截 y 轴所得劣弧对的圆心角为90°,故圆P 截 x 轴所得弦长为∴r2=2b2.又圆 P 截 y 轴所得的弦长为2,∴r2=a2+1,从而 2b2― a2=1.又∵ P( a, b)到直线 x― 2y=0 的距离为,∴5d2=|a―2b|2=a2+4b2―4ab=2(a―b)2+2b2―a2=2(a―b)2 +1≥1,当且仅当 a=b 时取等号,此时.由,得或,∴ r2=2.故所求的圆的方程为 (x―1)2+(y― 1)2=2 或(x+1) 2+(y+1)2=2.【总结升华】解决直线与圆的综合问题,一方面,我们要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题,通过代数的计算,使问题得到解决;另一方面由于直线与圆和平面几何联系得十分紧密(其中直线与三角形、四边形紧密相连),因此我们要勤动手,准确地作出图形,并充分挖掘几何图形中所隐含的条件(性质),利用几何知识使问题得到较简捷的解决.本题若用代数方法求解,其计算量大得多,不信自己试试看.在解决有关直线与圆的综合问题时,经常需要引进一些参数(用字母表示相关量),但不一定要解出每一个几何量,而是利用有关方程消去某些参数,从而得到所要的几何量的方程,解此方程即可.这种解题方法就是“设而不求”(设出了但没有求出它)的思想方法.“设而不求”是解析几何中的一种重要的思想方法.【变式】已知圆 x2+y2+x― 6y+m=0 与直线 x+2y― 3=0 相交于 P、Q 两点,点O 为坐标原点,若OP⊥OQ,求 m 的值.【答案】 3【解析】由得代入,化简得:5y2-20y+12+m=0, y1+y6=4,设的坐标分别为,,由可得:===0解得:析【答案与解析】1.【答案】 B【解析】圆心C(2,3),,∴切线长.2.【答案】 B【解析】如图所示,以 A 地为原点,正东方向为 x 轴正方向建立直角坐标系,则 A(0,0),B (40, 0).设台风的移动方向是射OC,则射线 OC的方程是y=x( x≥ 0),以B 为圆心, 30 为半径长的圆与射线 OC交于 M和 N两点,则当台风中心在线段 MN上移动时, B 城市处于危险区内.点 B 到直线 OC的距离是,则有(千米),因此 B 城市处于危险区内的时间为(小时)故选 B.3.【答案】 D【解析】直线 AB的方程是,,则当△ ABC面积取最大值时,边 AB上的高即点 C 到直线 AB的距离 d 取最大值.又圆心M( 1, 0),半径 r=1 ,点M到直线的距离是,由圆的几何性质得 d 的最大值是,所以△ ABC面积的最大值是.故选D.4.【答案】 C【解析】结合圆的几何性质,得圆心 C 到直线的距离 d 满足1<d<3.所以.解得- 17< k<- 7 或3< k< 13.故选C.5.【答案】 B5,圆心到点(3,5)的距离为【解析】圆心坐标是( 3,4),半径是1,根据题意最短弦BD和最长弦(即圆的直径) AC垂直,故最短弦的长为,所以四边形 ABCD的面积为.6.【答案】 B【解析】因为两条切线x―y=0 与 x―y―4=0 平行,故它们之间的距离即为圆的直径,所以,所以.设圆心坐标为P( a,― a),则点 P 到两条切线的距离都等于半径,所以,,解得a=1,故圆心为(1,―1),所以圆的标准方程为 (x ― 1) 2+(y+1) 2=2,故选 B.7.【答案】 B【解析】设点( x,y)与圆 C1的圆心(― 1, 1)关于直线 x―y―1=0对称,则,解得,从而可知圆 C2的圆心为( 2,― 2),又知其半径为 1,故所求圆 C2的方程为 (x ― 2) 2+(y+2) 2 =1.8.【答案】 B【解析】因为三角形的三边长分别为 3、4、5,所以该三角形是直角三角形,其图为如图所示的 Rt△ ABC.圆O是△ ABC的内切圆,可计算得其半径为 1,过 O点作三条直线 EF、GH、MN,分别与△ ABC三边平行此三条直线将△ ABC分割成 6 个部分.记半径为 1 的圆 O1的圆心到三条边 AB、 BC、CA 的距离分别为 d1、d2、 d3.而圆心 O1在这 6个区域时,有(Ⅰ)(最多 4 个公共点);(Ⅱ)(最多 2 个公共点);(Ⅲ)(最多 2 个公共点);(Ⅳ)(最多4个公共点).而圆心 O1在线段 EF、GH、MN上时,最多有 4 个公共点,故选B.9.【答案】 (x+1) 2+y2=2【解析】根据题意可知圆心坐标是(―1,0),圆的半径等于,22故所求的圆的方程是 (x+1) +y =2.【解析】设所求直线方程为 y=kx,即 kx ―y=0.由于直线 kx―y=0 被圆截得的弦长等于 2,圆的半径是 1,由此得圆心到直线距离等于,即圆心位于直线kx ―y=0 上,于是有 k―2=0,即 k=2,因此所求直线方程为2x―y=0.11.【答案】 8【解析】依题意,可设圆心坐标为(a, a)、圆半径为 r ,其中 r=a >0,因此圆方程是 (x ― a) 2+(y ― a) 2=a2由圆过点( 4,1)得 (4 ―a) 2+(1 ―a) 2 =a2,即 a2―10a+17=0,则该方程的两根分别是圆心 C1, C2的横坐标,.12.【答案】― 1x 2+(y ―1) 2 =1【解析】由题可知,又 k1k PQ=― 1 k1=―1,圆关于直线对称,找到圆心( 2,3)的对称点( 0,1),又圆的半径不变,易得x2 +(y ―1) 2=1.13.【答案】 x2+y2― 6x+2y―6=0【解析】设经过两圆交点的圆系方程为x2+y2―4x― 6+(x 2+y2―4y―6)=0 (≠― 1),即,∴圆心坐标为.又∵圆心在直线 x―y―4=0 上,∴,即,∴所求圆的方程为 x2 +y2― 6x+2y―6=0.14.【答案】( 1)1.7 h 后观测站受到影响,影响时间是 3.7h (2) M 城4.2 h 后受到影响 ,影响时间是 3.7h【解析】(1)设风暴中心到 C 处 A 开始受到影响,到 D 处 A 结束影响,由题意有AC=360,AB=450,∠ ABC=45°,设 BC=x,则.即,故.∴,故 149.76 ÷90≈1.7 ,即约 1.7 h后观测站受到影响,影响时间是( h) .(2)而 MA∥BC,∴ M城比 A 气象观测站迟(h)受到影响,故M城 4.2 h 后受到影响,影响的时间是 3.7 h .15.【答案】( 1)最大值为,最小值为(2)最大值为 51 ,最小值为 11(3)最大值为,最小值为【解析】方程 x2 +y2―6x―6y+14=0,变形为 (x ―3) 2+(y ―3) 2=4.(1)表示圆上的点P与原点连线的斜率,显然PO与圆相切时,斜率最大或最小.设切线方程为 y=kx,即 kx―y=0,由圆心 C( 3, 3)到切线的距离等于半径长 2,可得,解得,所以,的最大值为,最小值为.(2)x2+y2+2x+3=(x+1) 2+y2 +2,它表示圆上的点 P 到 E(― 1, 0)的距离的平方再加 2,所以,当点 P 与点 E 的距离最大或最小时,所求式子就取最大值或最小值,显然点 P 与点 E 距离的最大值为|CE|+2 ,点 P 与点 E 距离的最小值为 |CE| ―2,又,所以 x2+y2+2x+3 的最大值为 (5+2) 2+2=51,最小值为 (5 ―2) 2 +2=11.(3)设 x+y=b,则 b 表示动直线 y=―x+b 与圆 (x ― 3) 2+(y ―3) 2 =4 相切时, b 取最大值或最小值圆心 C( 3, 3)到切线 x+y=b 的距离等于圆的半径长2,则,即,解得,所以 x+y 的最大值为,最小值为.。
七年级数学上册 第四章 《几何图形初步》知识讲解
《几何图形初步》全章知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法; 3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形. 【知识网络】【要点梳理】要点一、多姿多彩的图形 1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:主(正)视图---------从正面看 几何体的三视图 (左、右)视图-----从左(右)边看 俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
知识讲解_空间几何体的结构_提高(1)
空间几何体的结构【学习目标】1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球的结构特征;2.认识由柱、锥、台、球组成的几何组合体的结构特征;3.能用上述结构特征描绘现实生活中简单物体的结构.【要点梳理】【高清课堂:空间几何体的结构394899 棱柱的结构特征】要点一:棱柱的结构特征1、定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.在棱柱中,两个相互平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱.侧面与底的公共顶点叫做棱柱的顶点.棱柱中不在同一平面上的两个顶点的连线叫做棱柱的对角线.过不相邻的两条侧棱所形成的面叫做棱柱的对角面.2、棱柱的分类:底面是三角形、四边形、五边形、……的棱柱分别叫做三棱柱、四棱柱、五棱柱……3、棱柱的表示方法:①用表示底面的各顶点的字母表示棱柱,如下图,四棱柱、五棱柱、六棱柱可分别表示为1111ABCD A B C D -、11111ABCDE A B C D E -、111111ABCDEF A B C D E F -;②用棱柱的对角线表示棱柱,如上图,四棱柱可以表示为棱柱1A C 或棱柱1D B 等;五棱柱可表示为棱柱1AC 、棱柱1AD 等;六棱柱可表示为棱柱1AC 、棱柱1AD 、棱柱1AE 等.4、棱柱的性质:棱柱的侧棱相互平行.要点诠释:有两个面互相平行,其余各个面都是平行四边形,这些面围成的几何体不一定是棱柱.如下图所示的几何体满足“有两个面互相平行,其余各个面都是平行四边形”这一条件,但它不是棱柱.判定一个几何体是否是棱柱时,除了看它是否满足:“有两个面互相平行,其余各个面都是平行四边形”这两个条件外,还要看其余平行四边形中“每两个相邻的四边形的公共边都互相平行”即“侧棱互相平行”这一条件,不具备这一条件的几何体不是棱柱. 【高清课堂:空间几何体的结构394899 棱锥的结构特征】要点二:棱锥的结构特征1、定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形面叫做棱锥的底面.有公共顶点的各个三角形叫做棱锥的侧面.各侧面的公共顶点叫做棱锥的顶点.相邻侧面的公共边叫做棱锥的侧棱;2、棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥 ……;3、棱锥的表示方法:用表示顶点和底面的字母表示,如四棱锥S ABCD .要点诠释:棱锥有两个本质特征:(1)有一个面是多边形;(2)其余各面是有一个公共顶点的三角形,二者缺一不可.【高清课堂:空间几何体的结构394899 旋转体的结构特征】要点三:圆柱的结构特征1、定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱.旋转轴叫做圆柱的轴.垂直于轴的边旋转而成的曲面叫做圆柱的底面.平行于轴的边旋转而成的曲面叫做圆柱的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆柱的母线.2、圆柱的表示方法:用表示它的轴的字母表示,如圆柱/OO要点诠释:(1)用一个平行于圆柱底面的平面截圆柱,截面是一个与底面全等的圆面.(2)经过圆柱的轴的截面是一个矩形,其两条邻边分别是圆柱的母线和底面直径,经过圆柱的轴的截面通常叫做轴截面.(3)圆柱的任何一条母线都平行于圆柱的轴.要点四:圆锥的结构特征1、定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥.旋转轴叫做圆锥的轴.垂直于轴的边旋转而成的曲面叫做圆锥的底面.不垂直于轴的边旋转而成的曲面叫做圆锥的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆锥的母线.2、圆锥的表示方法:用表示它的轴的字母表示,如圆锥SO .要点诠释:(1)用一个平行于圆锥底面的平面去截圆锥,截面是一个比底面小的圆面.(2)经过圆锥的轴的截面是一个等腰三角形,其底边是圆锥底面的直径,两腰是圆锥侧面的两条母线. SS D DC C B B A A ECB A S(3)圆锥底面圆周上任意一点与圆锥顶点的连线都是圆锥侧面的母线.【高清课堂:空间几何体的结构394899 棱台的结构特征】要点五:棱台和圆台的结构特征1、定义:用一个平行于棱锥(圆锥)底面的平面去截棱锥(圆锥),底面和截面之间的部分叫做棱台(圆台);原棱锥(圆锥)的底面和截面分别叫做棱台(圆台)的下底面和上底面;原棱锥(圆锥)的侧面被截去后剩余的曲面叫做棱台(圆台)的侧面;原棱锥的侧棱被平面截去后剩余的部分叫做棱台的侧棱;原圆锥的母线被平面截去后剩余的部分叫做圆台的母线;棱台的侧面与底面的公共顶点叫做棱台的顶点;圆台可以看做由直角梯形绕直角边旋转而成,因此旋转的轴叫做圆台的轴.2、棱台的表示方法:用各顶点表示,如四棱台1111ABCD A B C D -;3、圆台的表示方法:用表示轴的字母表示,如圆台OO ';要点诠释:(1)棱台必须是由棱锥用平行于底面的平面截得的几何体.所以,棱台可还原为棱锥,即延长棱台的所有侧棱,它们必相交于同一点.(2)棱台的上、下底面是相似的多边形,它们的面积之比等于截去的小棱锥的高与原棱锥的高之比的平方.(3)圆台可以看做由圆锥截得,也可以看做是由直角梯形绕其直角边旋转而成.(4)圆台的上、下底面的面积比等于截去的小圆锥的高与原圆锥的高之比的平方.要点六:球的结构特征1、定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.半圆的半径叫做球的半径.半圆的圆心叫做球心.半圆的直径叫做球的直径.2、球的表示方法:用表示球心的字母表示,如球O.要点诠释:(1)用一个平面去截一个球,截面是一个圆面.如果截面经过球心,则截面圆的半径等于球的半径;如果截面不经过球心,则截面圆的半径小于球的半径.(2)若半径为R 的球的一个截面圆半径为r ,球心与截面圆的圆心的距离为d ,则有22d R r =-.要点七:特殊的棱柱、棱锥、棱台特殊的棱柱:侧棱不垂直于底面的棱柱称为斜棱柱;垂直于底面的棱柱称为直棱柱;底面是正多边形的直棱柱是正棱柱;底面是矩形的直棱柱叫做长方体;棱长都相等的长方体叫做正方体;特殊的棱锥:如果棱锥的底面是正多边形,且各侧面是全等的等腰三角形,那么这样的棱锥称为正棱锥;侧棱长等于底面边长的正三棱锥又称为正四面体;特殊的棱台:由正棱锥截得的棱台叫做正棱台;注:简单几何体的分类如下表:要点八:简单组合体的结构特征1、组合体的基本形式:①由简单几何体拼接而成的简单组合体;②由简单几何体截去或挖去一部分而成的几何体;2、常见的组合体有三种:①多面体与多面体的组合;②多面体与旋转体的组合;③旋转体与旋转体的组合.①多面体与多面体的组合体由两个或两个以上的多面体组成的几何体称为多面体与多面体的组合体.如下图(1)是一个四棱柱与一个三棱柱的组合体;如图(2)是一个四棱柱与一个四棱锥的组合体;如图(3)是一个三棱柱与一个三棱台的组合体.②多面体与旋转体的组合体由一个多面体与一个旋转体组合而成的几何体称为多面体与旋转体的组合体如图(1)是一个三棱柱与一个圆柱组合而成的;如图(2)是一个圆锥与一个四棱柱组合而成的;而图(3)是一个球与一个三棱锥组合而成的.③旋转体与旋转体的组合体由两个或两个以上的旋转体组合而成的几何体称为旋转体与旋转体的组合体.如图(1)是由一个球体和一个圆柱体组合而成的;如图(2)是由一个圆台和两个圆柱组合而成的;如图(3)是由一个圆台、一个圆柱和一个圆锥组合而成的.要点九:几何体中的计算问题几何体的有关计算中要注意下列方法与技巧:(1)在正棱锥中,要掌握正棱锥的高、侧面、等腰三角形中的斜高及高与侧棱所构成的两个直角三角形,有关证明及运算往往与两者相关.(2)正四棱台中要掌握其对角面与侧面两个等腰梯形中关于上、下底及梯形高的计算,有关问题往往要转化到这两个等腰梯形中.另外要能够将正四棱台、正三棱台中的高与其斜高、侧棱在合适的平面图形中联系起来.(3)研究圆柱、圆锥、圆台等问题的主要方法是研究它们的轴截面,这是因为在轴截面中,易找到所需有关元素之间的位置、数量关系.(4)圆柱、圆锥、圆台的侧面展开是把立体几何问题转化为平面几何问题处理的重要手段之一.(5)圆台问题有时需要还原为圆锥问题来解决.(6)关于球的问题中的计算,常作球的一个大圆,化“球”为“圆”,应用平面几何的有关知识解决;关于球与多面体的切接问题,要恰当地选取截面,化“空间”为平面.【经典例题】类型一:简单几何体的结构特征例1.判断下列说法是否正确.(1)棱柱的各个侧面都是平行四边形;(2)一个n(n≥3)棱柱共有2n个顶点;(3)棱柱的两个底面是全等的多边形;(4)如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形.【答案】(1)(2)(3)正确,(4)不正确.【解析】(1)由棱柱的定义可知,棱柱的各侧棱互相平行,同一个侧面内两条底边也互相平行,所以各侧面都是平行四边形.(2)一个n棱柱的底面是一个n边形,因此每个底面都有n个项点,两个底面的顶点数之和即为棱柱的顶点数,即2n个.(3)因为棱柱同一个侧面内的两条底边平行且相等,所以棱柱的两个底面的对应边平行且相等,故棱柱的两个底面全等.(4)如果棱柱有一个侧面是矩形,只能保证侧棱垂直于该侧面的底边,但其余侧面的侧棱与相应底边不一定垂直,因此其余侧面不一定是矩形.故(1)(2)(3)正确,(4)不正确.【总结升华】解决这类与棱柱、棱锥、棱台有关的命题真假判定的问题,其关键在于准确把握它们的结构特征,也就是要以棱柱、棱锥、棱台概念的本质内涵为依据,以具体实物和图形为模型来进行判定.举一反三:【变式1】如下图中所示几何体中是棱柱有()A .1B .2个C .3个D .4个【答案】C例2.有下面五个命题:(1)侧面都是全等的等腰三角形的棱锥是正棱锥;(2)侧棱都相等的棱锥是正棱锥;(3)底面是正方形的棱锥是正四棱锥;(4)正四面体就是正四棱锥;(5)顶点在底面上的射影既是底面多边形的内心,又是底面多边形的外心的棱锥必是正棱锥. 其中正确命题的个数是( ).A .1个B .2个C .3个D .4个【答案】A【解析】本题主要考查正棱锥的概念,关键看是否满足定义中的两个条件.命题(1)中的“各侧面都是全等的等腰三角形”并不能保证底面是正多边形,也不能保证顶点在底面上的射影是底面的中心,故不是正棱锥,如下图(1)中的三棱锥S-ABC ,可令SA=SB=BC=Ac=3,SC=AB=1,则此三棱锥的各侧面都是全等的等腰三角形,但它不是正三棱锥;命题(2)中的“侧棱都相等”并不能保证底面是正多边形,如下图(2)中的三棱锥P-DEF ,可令PD=PE=PF=1,2DE DF ==,EF=1,三条侧棱都相等,但它不是正三棱锥;命题(3)中的“底面是正方形的棱锥”,其顶点在底面上的射影不一定是底面的中心,如下图(3),从正方体中截取一个四棱锥D 1-ABCD ,底面是正方形,但它不是正四棱锥;命题(4)中的“正四面体”是正三棱锥.三棱锥中共有4个面,所以三棱锥也叫四面体.四个面都是全等的正三角形的正三棱锥也叫正四面体;命题(5)中的“顶点在底面上的射影既是底面多边形的内心,又是外心”,说明了底面是一个正多边形,符合正棱锥的定义.举一反三:【变式1】如果一个面是多边形,其余各面都是三角形的几何体一定是棱锥.这种说法是否正确?如果正确说明理由;如果不正确,举出反例.【答案】不正确【解析】如图所示的几何体由两个底面相等的四棱锥组合而成,它有一个面是四边形,其余各面都是三角形,但是该几何体不是棱锥.例3.判断下图所示的几何体是不是台体?为什么?【解析】 三个图都不是台体.(1)AA 1,DD 1交于一点,而BB 1,CC 1交于另一点,此图不能还原成锥体,故不是台体:(2)中面ABCD 与面A 1B 1C 1D 1不平行,故也不是台体;(3)中应⊙O 与⊙O 1不平行,故也不是台体.【总结升华】判断一个几何体是否为台体,必须紧扣台体的两个本质特征:(1)由锥体截得的;(2)截面平行于锥体的底面.即棱台的两底面平行,且侧棱必须相交于同一点;圆台的两底面平行,且两底面圆心的连线与两底面垂直.举一反三:【变式1】判断如下图所示的几何体是不是台体?为什么?【答案】①②③都不是台体.【解析】因为①和③都不是由棱锥所截得的,故①③都不是台体;虽然②是由棱锥所截,但截面不和底面平行,故不是台体.只有用平行于锥体底面的平面去截锥体,底面与截面之间的部分才是台体.④是一个台体,因为它是用平行于圆锥SO 底面的平面截圆锥SO 而得的.类型二:几何体中的基本计算例4.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.【答案】14 cm ,142cm ,7 cm 和21 cm .【解析】圆台的轴截面如图所示,设圆台上、下底面半径分别为x cm 和3x cm ,延长1AA 交1OO 的延长线于点S .在Rt △SOA 中,∠ASO =45°,则∠SAO =45°.∴SO =AO =3x cm ,12OO x cm =.∴1(62)23922x x x +⋅=,解得x =7,∴圆台的高114OO cm =,母线长12142l OO cm ==,底面半径分别为7 cm 和21 cm . 【总结升华】对于这类旋转体的有关计算问题,其关键在于作出它们的轴截面(即过旋转铀的截面),再把它们转化为平面几何问题即可.举一反三:【变式1】已知圆台的上、下底面积之比为1:9,圆台的高为10,求截得圆台的圆锥的高.【答案】15【解析】设圆锥的高为h ,上、下底半径为,r R .则1013r h R h -==,解得15h =.类型三、简单几何体的组合体例5.(1)一个正方体内接于一个球,过球心作一截面,如下图所示,则截面可能的图形是()A.①③B.②④C.①②③D.②③④(2)如右图所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切,求两球半径之和.【答案】(1)C;(2)332-.【解析】(1)当截面平行于正方体的一个侧面时得③,当截面过正方体的体对角线时得②,当截面不平行于任何侧面也不过对角线时得①,但无论如何都不能截出④.(2)此题的关键在于作截面.球不可能与边AB、CD相切,一个球在正方体内,一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面,得如右图所示的截面图.球心O1和O2在AC上,过O1、O2分别作AD、BC的垂线交于E、F两点.设小球半径为r,大球半径为R.则由AB=1,3AC=,得13AO r=,23CO R=,∴3()3r R r R+++=.∴333231R r-+==+.【总结升华】作适当的截面是解决球与其他几何体形成的组合体问题的关键.举一反三:【变式1】圆锥底面半径为1cm,高为2cm,其中有一个内接正方体,求这个内接正方体的棱长.【答案】22【解析】过圆锥的顶点S和正方体底面的一条对角线CD作圆锥的截面,得圆锥的轴截面SEF,正方体对角面11CDD C,如图所示.设正方体棱长为x,则111,2CC x C D x==.作SO⊥EF于O,则2SO=,OE=1,∵△ECC1∽△EOS,∴11CC ECSO EO=,即21212x-=.∴ 2()2x cm =,即内接正方体棱长为2.2cm 【总结升华】此题也可以利用△SCD ∽△SEF 而求.两个几何体相接、相切的问题,关键在于发现一些截面之间的图形关系.常常是通过分析几个轴截面组合的平面图形中的一些相似,利用相似比列出方程而求.注意截面图形中各线段长度的计算.类型四、简单几何体的表面展开与折叠问题例6.长方体ABCD-A 1B 1C 1D 1(如图)中,AB=3,BC=4,A 1A=5,现有一甲壳虫从A 出发沿长方体表面爬行到C .来获取食物,试画出它的最短爬行路线,并求其路程的最小值.【答案】74 【解析】 把长方体的部分面展开,如右图所示.对甲、乙、丙三种展开图利用勾股定理可得AC 1的长分别为90、74、80,由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB 1A 1内由A 到E ,再在长方形BCC 1B 1内由E 到C 1,也可以先在长方形AA 1D 1D 内由A 到F ,再在长方形DCC 1D 1内到F 到C 1,其最短路程为74.【总结升华】在几何体表面求最短路径问题,就是要“化折为直”,因此需要把几何体表面展开,本题注意要分三种情况讨论.举一反三:【变式1】如图,在底面半径为1,高为2的圆柱上A 点处有一只蚂蚁,它要围绕圆柱由A 点爬到B 点,问蚂蚁爬行的最短距离是多少?【答案】221π+ 【解析】把圆柱的侧面沿AB 剪开,然后展开成为平面图形——矩形,如图所示,连接AB ′,则AB ′即为蚂蚁爬行的最短距离.∵ 2AB AB '==,AA '为底面圆的周长,且212AA ππ'=⨯=,∴ 22224(2)21AB A B AA ππ''''=+=+=+, 即蚂蚁爬行的最短距离为221π+.例7.根据下图所给的平面图形,画出立体图形.【解析】 将各平面图形折起后形成的空间图形如下图所示.【总结升华】平面图形的折叠问题实质上是多面体的表面展开问题的逆向问题(即逆向过程).这两类问题都是立体几何中的基本问题,我们必须熟练掌握折叠与展开这两个基本功,并能准确地画出折叠和展开前后的平面图形和立体图形,找到这两个图形之间的构成关系.举一反三:【变式1】(2016春 吉林期末)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A .(1)(2)B .(2)(3)C .(3)(4)D .(1)(4)【答案】B【解析】(1)图还原后,①⑤对面,②④对面,③⑥对面;(2)图还原后,①④对面,②⑤对面,③⑥对面;(3)图还原后,①④对面,②⑤对面,③⑥对面;(4)图还原后,①⑥对面,②⑤对面,③④对面;综上,可得还原成正方体后,其中两个完全一样的是(2)(3),故选:B .。
(完整版)几何图形初步知识点
几何图形初步知识点归纳1.几何图形1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。
2、立体图形:这些几何图形的各部分不都在同一个平面内。
3、平面图形:这些几何图形的各部分都在同一个平面内。
4、虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
立体图形中某些部分是平面图形。
5、三视图:从左面看,从正面看,从上面看6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的展开图。
7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;⑵点无大小,线、面有曲直;⑶几何图形都是由点、线、面、体组成的;⑷点动成线,线动成面,面动成体;⑸点:是组成几何图形的基本元素。
练习:1、下列叙述正确的有 ( )(1)棱柱的底面不一定是四边形;(2)棱锥的侧面都是三角形;(3)柱体都是多面体;(4)锥体一定不是多面体A.1个B.2个C.3个D.4个2、若一个多面体的顶点数20,面数为12,则棱数为 ( )A.28B.32C.30D.263、在世界地图上,一个城市可以看作 ( )A.一个点B.一条直线C.一个面D.一个几何体4、直线AB 上有一点C ,直线AB 外有一点D ,则A 、B 、C 、D 四点能确定的直线有( )A.3条B.4条C.1条或4条D.4条或6条5、C 为线段AB 延长线上的一点,且AC=AB ,则BC 为AB 的 ( )23A.B.C. D. 323121236、如图中是正方体的展开图的有( )个A 、2个B 、3个D 1、底面是三角形的棱柱有 个面, 个顶点, 条棱。
2、手电筒发出的光给我们的形象是 。
3、下列说法中:①直线是射线长度的2倍;②线段AB 是直线AB 的一部分;③延长射线OA 到B 。
正确的序号是 。
aA B4、已知:线段AC和BC在同一直线上,如果AC=10㎝,BC=6㎝,D为AC的中点,E为BC的中点,则DE= 。
浙教版初中数学七年级上册《图形的初步认识》全章复习与巩固(提高)知识讲解
《图形的初步认识》全章复习与巩固(提高)知识讲解【学习目标】1. 经历从现实世界抽象几何图形的过程,能说出常见的几何体和平面图形;2.掌握直线、射线、线段、角这些基本图形的概念、表示方法、性质、及画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题.【知识网络】【要点梳理】要点一、几何图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.几何体的构成元素几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、线段、射线、直线1.直线,射线与线段的区别与联系2. 基本事实(1)直线:两点确定一条直线. (2)线段:两点之间线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB =a,如下图:4.线段的比较与运算(1)线段的比较:①度量法;②叠合法;③估算法.(2)线段的和与差:如下图,有AB+BC =AC ,或AC =a+b ;AD =AB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==.要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M,N,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====. PN要点三、角1.角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义.②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. 2.角的分类3.角的度量1周角=360°,1平角=180°,1°=60′,1′=60″. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同. ②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.4.角的比较与运算(1)角的比较方法: ①度量法;②叠合法;③估算法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.5.余角、补角(1)定义:若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. 若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (2)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”.6.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小. (2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.【典型例题】类型一、几何图形1.对于棱柱体而言,不同的棱柱体由不同的面构成:三棱柱由2个底面,3个侧面,共5个面构成;四棱柱由2个底面,4个侧面,共6个面构成;五棱柱由2个底面,5个侧面,共7个面构成;六棱柱由2个底面,6个侧面,共8个面构成;(1)根据以上规律判断,十二棱柱共有多少个面?(2)若某个棱柱由24个面构成,那么这个棱柱是什么棱柱?(3)棱柱底面多边形的边数为n,则侧面的个数为多少?棱柱共有多少个面?(4)底面多边形边数为n的棱柱,其顶点个数为多少个?有多少条棱?【答案与解析】解:(1)十二棱柱由2个底面,12个侧面,共14个面构成.(2)这个棱柱有24个面,由于底面有2个,故其侧面共有22个,从而这个棱柱是二十二棱柱.(3)棱柱底面多边形的边数与侧面的个数是相等的,即底面多边形的边数为n,则侧面的个数也为n,棱柱的面数为(n+2).(4)底面多边形的边数为n的棱柱,其顶点个数为2n个,共有3n条棱.【总结升华】根据立体图形的特点,从特殊到一般,寻找规律.举一反三:【变式】如图把一个圆绕虚线旋转一周,得到的几何体是()A. B. C. D.【答案】B类型二、线段和角的概念或性质2.下列判断错误的有( )①延长射线OA;②直线比射线长,射线比线段长;③如果线段PA=PB,则点P是线段AB的中点;④连接两点间的线段,叫做两点间的距离.A.0个B.2个C.3个D.4个【答案】D【解析】①由于射线向一方无限延伸,因此,不能延长射线;②由于直线向两方无限延伸,射线向一方无限延伸,因此它们都是不能度量的,所以它们不存在相等或不相等的关系,而线段是可以度量的,可以比较线段的长短;③线段PA=PB,只有当点P在线段AB上时,才是线段AB的中点,否则就不是;④两点间的距离是表示大小的量,而线段是图形,二者的本质属性不同.【总结升华】本题考查的是基本概念,要抓住概念间的本质区别.举一反三:【变式】下列说法正确的个数有( )①若∠1+∠2+∠3=90°,则∠1,∠2,∠3互余.②互补的两个角一定是一个锐角和一个钝角.③因为钝角没有余角,所以,只有当角为锐角时,“一个角的补角比这个角的余角大”这个说法才正确.A.0个B.1个C.2个D.3个【答案】B 提示:③正确3. (安徽芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7等于().A.330°B.315°C.310°D.320°【答案】B【解析】通过网格的特征首先确定∠4=45°.由图形可知:∠l与∠7互余,∠2与∠6互余,∠3与∠5互余,所以∠l+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+90°+45°=315°.【总结升华】互余的两个角只与数量有关,而与位置无关.举一反三:【变式】如图所示,AB和CD都是直线,∠AOE=90°,∠3=∠FOD,∠1=27°20′,求∠2,∠3.【答案】解:因为∠AOE =90°,所以∠2=90°-∠1=90°-27°20′=62°40′. 又∠AOD =180°-∠1=152°40′,∠3=∠FOD .所以∠3=12∠AOD =76°20′. 答:∠2为62°40′,∠3为76°20′.4. 如图所示,时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合.【答案与解析】解:设时针转过的度数为x °时,与分针第一次重合,依题意有: 12x =90+x 解得9011x =答:时针转过9011⎛⎫⎪⎝⎭°时,与分针第一次重合. 【总结升华】在相同时间里,分针转过的度数是时针的12倍,此外此问题可以转化为追及问题来解决. 举一反三:【变式】125°÷4= °= ° ′ 【答案】31.25,31、15类型三、利用数学思想方法解决有关线段或角的计算 1.方程的思想方法5. 如图所示,B 、C 是线段AD 上的两点,且32CD AB =,AC =35cm ,BD =44cm ,求线段AD 的长.【答案与解析】解:设AB =x cm ,则3cm 2CD x =(35)cm BC x =-或3(44)cm 2x -于是列方程,得335442x x -=-解得:x =18,即AB =18(cm ) 所以BC =35-x =35-18=17(cm )33182722CD x ==⨯=(cm ) 所以AD =AB+BC+CD =18+17+27=62(cm )【总结升华】根据题中的线段关系,巧设未知数,列方程求解. 2.分类的思想方法6. 同一直线上有A 、B 、C 、D 四点,已知AD =59DB ,AC =95CB ,且CD =4cm ,求AB 的长.【思路点拨】先根据题意画出图形,再从图上直观的看出各线段的关系及大小. 【答案与解析】 解:利用条件中的AD =59DB ,AC =95CB ,设DB =9x ,CB =5y , 则AD =5x ,AC =9y ,分类讨论:(1)当点D ,C 均在线段AB 上时,如图所示:∵ AB =AD+DB =14x ,AB =AC+CB =14y ,∴ x =y∵ CD =AC -AD =9y -5x =4x =4,∴ x =1,∴ AB =14x =14(cm ). (2)当点D ,C 均不在线段AB 上时,如图所示:方法同上,解得87AB =(cm ).(3)如图所示,当点D 在线段AB 上而点C 不在线段AB 上时,方法同上,解得11253AB =(cm ).(4)如图所示,当点C 在线段AB 上而点D 不在线段AB 上时,方法同上,解得11253AB =(cm ).综上可得:AB的长为14cm,87cm,11253cm.【总结升华】解决没有图形的题目时,一要注意满足条件下的图形的多样性;二要注意解决的方法,注意方程法在解决图形问题中的应用. 在正确答案中,(3)与(4)的答案虽然相同,但作为图形上的差别应了解.。
【精品】小学数学几何精讲精析专题2 平面图形-类型2 三角形
【精品】小学数学几何精讲精析专题2 平面图形-类型2三角形专题2 平面图形类型2 三角形【知识讲解】1.三角形的特征(1)由三条线段围成的封闭图形。
(2)三角形的内角和是180度。
(3)三角形具有稳定性。
(4)三角形有三条高。
2. 三角形的三边关系任意两边之和大于第三边,任意两边之差小于第三边。
3. 三角形的分类锐角三角形:三个角都小于90度(都是锐角)按角分直角三角形:有一个角等于90度(一个直角,两个锐角)三钝角三角形:有一个角大于90度(一个钝角,两个锐角)角等边三角形:三条边全相等(三个角也相等,都是60度)形按边分等腰三角形:只有两条边相等(两个底角相等)不等边三角形:三条边都不相等4.三角形的面积公式三角形的面积=底×高÷2【典例精讲】看图计算下列各角的度数。
【答案】15°;55°.【解析】因为三角形的内角和是180°,知道两个角的度数求另一个角的度数,用180度分别减去知道的两个角的度数即可。
解:180°﹣40°﹣125°=140°﹣125°=15°180°﹣90°﹣35°=90°﹣35°=55°【点评】知道三角形内角和为180度,是解答此题的关键。
【巩固练习】一、选择题1.小猴要给一块地围上篱笆,你认为()的围法更牢固些。
2.下面三组小棒,不能围成三角形的是()3.画△ABC中AB边上的高,下列画法中正确的是()。
4.只看三角形的一个角,()判断出它是什么三角形。
A. 能B. 不能C. 不一定能D. 肯定不能5.不管是什么三角形,至少有()个锐角。
A.1 B.2 C.36.把一个三角形纸片剪成两个小三角形,每个小三角形的内角和()180度。
A.大于 B.小于 C.等于7.下面三组线段能围成三角形的是()。
A. 0.5cm,1cm,1.8cmB. 1dm,ldm,ldmC. 2cm,2cm,4cm8.三角形中最小的一个角是50°,按角分类这是一个()三角形。
几何图形 知识讲解
几何图形知识讲解【学习目标】1.理解几何图形的概念,并能对具体图形进行识别或判断;2. 理解点线面体之间的关系,掌握怎样由平面图形旋转得到几何体,能够借助平面图形剖析常见几何体的形成过程.【要点梳理】要点一、几何图形1.定义:把从实物中抽象出的各种图形统称为几何图形.要点诠释:几何图形是从实物中抽象得到的,只注重物体的形状、大小、位置,而不注重它的其它属性,如重量,颜色等.2.分类:几何图形包括立体图形和平面图形(1)立体图形:图形的各部分不都在同一平面内,这样的图形叫做立体图形,如长方体,圆柱,圆锥,球等.(2)平面图形:有些几何图形(如线段、角、三角形、圆等)的各部分都在同一平面内,这样的图形叫做平面图形.要点诠释:(1)常见的立体图形有两种分类方法:(2) 常见的平面图形有圆和多边形,其中多边形是由线段所围成的封闭图形,生活中常见的多边形有三角形、四边形、五边形、六边形等.(3)立体图形和平面图形是两类不同的几何图形,它们既有区别又有联系.要点二、点、线、面、体长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系. 此外,从运动的观点看:点动成线,线动成面,面动成体.要点诠释:(1)几何图形是由点、线、面、体组成的.其中点是最基本的图形.(2)平面没有边界.【典型例题】类型一、几何图形1.如图所示,请写出下列立体图形的名称.【思路点拨】可以联系生活中常见的图形及基本空间想象能力,描述各种几何体的名称.【答案与解析】解:(1)五棱柱;(2)圆锥;(3)四棱柱或长方体;(4)圆柱;(5)四棱锥.【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).举一反三:【变式】如图所示,下列各标志图形主要由哪些简单的几何图形组成?【答案】(1)由圆组成;(2)长方形和正方形;(3)菱形(或四边形);(4)由圆和圆弧组成(或由一个圆和两个小半圆组成).2.将图中的几何体进行分类,并说明理由.【思路点拨】首先要确定分类标准,可以按组成几何体的面的平或曲来划分,也可以按柱、锥、球来划分.【答案与解析】解:若按形状划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面.若按构成划分:(1)(2)(4)(7)是一类,是柱体;(5)(6)是一类,即锥体;(3)是球体.【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).类型二、点、线、面、体3.分别指出下列几何体各有多少个面?面与面相交形成的线各有多少条?线与线相交形成的点各有多少个? 如图所示.【答案与解析】解:(1)4个面,6条线,4个顶点;(2)6个面,12条线,8个顶点;(3) 9个面,16条线,9个顶点.【总结升华】(1)数几何体中的点、线、面数时,要按一定顺序数,做到不重不漏.(2)一般地,n棱柱有(n+2)个面(其中2为两个底面),n棱锥有(n+1)个面(其中1为一个底面).举一反三:提示:每截去一个顶点就会多出1个面,2个顶点和3条棱,那么得到的新的几何体就应该有6+8=14个面,8+8×2=24个顶点,12+8×3=36条棱.4.如图所示的平面图形绕轴旋转一周,可以得出下面相对应的立体图形,把有对应关系的平面图形与立体图形连接起来.【答案与解析】【总结升华】“面动成体”,要充分发挥空间想象能力判断立体图形的形状.举一反三:【变式】如图把一个圆绕虚线旋转一周,得到的几何体是().A. B. C. D. 【答案】B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何图形(提高)知识讲解
要点三、简单立体图形的展开图
有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.
要点诠释:
(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.
(2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.
要点四、点、线、面、体
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系. 此外,从运动的观点看:点动成线,线动成面,面动成体. 【典型例题】
类型一、几何图形
1.将图中的几何体进行分类,并说明理由.
【思路点拨】首先要确定分类标准,可以按组成几何体的面是平面或曲面来划分,也可以按柱、锥、球来划分.
【答案与解析】
解:若按形状划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面.
若按构成划分:(1)(2)(4)(7)是一类,是柱体;(5)(6)是一类,即锥体;(3)是球体.
【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).类型二、从不同方向看
2.有一个正方体,在它的各个面上分别标有1,2,3,4,5,6.甲、乙、丙三名同学从三个不同的角度去观察此正方体,观察结果如图所示,问这个正方体各组对面上的数字分别是几?
【答案与解析】
解:由图(1)(2)可知,1号面与2、3、4、6相邻,所以与1号面相对的面是5号面;由图(2)(3)可知,3号面与1、2、4、5相邻,所以与3号面相对的面是6号面;由图(1)(3)可知,4号面与1、3、5、6相邻,所以与4号面相对的是2号面.
所以,1号面与5号面相对,2号面与4号面相对,3号面与6号面相对.
【总结升华】找各面之间的相对位置关系.
举一反三:
【变式】(南宁)如图所示的几何体中,主视图与左视图不相同的几何体是( ).
【答案】D
提示:圆锥的主视图与左视图为相同的三角形;圆柱的主视图与左视图为相同的矩形;球的主视图与左视图为相同的圆,正三棱柱的主视图和左
视图为不相同的两个矩形,故选D.
3. (内江)由一些大小相同的小正方
体搭成的几何体的俯视图如右图所示,
其正方形中的数字表示该位置上的小正
方体的个数,那么该几何体的主视图是()
A. B. C. D.
【答案】B
【解析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是1,2,3个正方形.
【总结升华】本题考查了对几何体三种视图的空间想象能力,注意找到该几何体的主视图中每列小正方体最多的个数.
举一反三:
【高清课堂:多姿多彩的图形397362大显身手】【变式1】用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体只有一种吗?它最少需要多少个小立方块?最多需要多少个小立方块?
【答案】几何体的形状不唯一,
最少需要小方块的个数:3222110++++=, 最多需要小方块的个数: 3323116⨯+⨯+=.
【变式2】下图是从正面、左面、上面看由若干个小积木搭成的几何体得到的图,那么这个几何体中小积木共有多少个
?
【答案】这个几何体中小积木共有6个. 类型三、展开图
4.右下图是一个正方体的表面展开图,则这个正方体是( )
主
俯
【答案】D
【解析】最直接的方法是做一个如图所示的正方体的表面展开图,然后再折叠后进行对照即可.也可用排除法,观察正方体的表面展开图,可发现分成4块的面中的4个小正方形中有3块的颜色是阴影,这就可排除A,再想象折叠的图形,可知正方体被分成4块的面的对面应是阴影,这就可排除B 、C,所以选D.
【总结升华】培养空间想想能力的方法有两种,一是通过动手操作来解决;二是通过想象进行确定.正方体沿着棱展开,把各种展开图分类,可以总结为如下11种情况.
举一反三:
【变式】宜黄素有“华南虎之乡”的美誉.将“华南虎之乡美”六个字填写在一个正方体的六个面上,其平面展开图如图所示,那么在该正方体中,和“虎”相对的字是________.
【答案】“美”.
类型四、点、线、面、体
5.(浙江宁波)18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:
(1)根据上面多面体模型,完成表格中的空格:
你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_______ _;
(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是________;
(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱.设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x+y的值.
【思路点拨】根据四面体、长方体、正八面体,正十二面体的顶点数、面数和棱数,总结出顶点数(v)、面数(F)、棱数(E)之间存在的关系式,再用这个关系式解答后面的问题.
【答案与解析】
解:(1)6, 6, V+F-E =2;
(2)20;
(3)这个多面体的面数为x+y ,棱数为24
336
2⨯=条,
根据V+F-E =2可得24+(x+y)-36=2, ∴ x+y =14.
【总结升华】欧拉公式:V (顶点数)+F (面数)-E (棱数)=2
6. (曲靖)将如右图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是( )
A .主视图相同
B .左视图相同
C .俯视图相同
D .三种视图都不相同
【答案】D 【解析】首先考虑三角形和长方形旋转后所得几何体的形状,然后再根据两种几何体的三视图做
出判断.
【总结升华】“面动成体”,要充分发挥空间想象能力判断立体图形的形状.
举一反三:
【变式】如图把一个圆绕虚线旋转一周,
得到的几何体是()
A. B. C. D.
【答案】B。