4各种排序方法C#窗体实验报告

合集下载

C语言--常见排序算法

C语言--常见排序算法
25 1 i k
49
2 j 49
08
0
25* 3 49 25
16 4
21
5
08
25
25*
16
21
i k 49
j 25* 25
08
25
25*
16
21
算法实例:
1.1.5 选择排序
49 2
08 0
25 1 i
25* 3
16 4 k
21 5 j 21 16
k 指示当前序列中最小者
算法实现:
08 5 temp
16 21 25 25* 49 08 0 1 2 3 4 5
算法实现:
1.1.3 直接插入排序
void InsertSort (int r[ ], int n ) { // 假设关键字为整型,放在向量r[]中 int i, j, temp; for (i = 1;i< n;i++ ) { temp = r[i]; for(j = i;j>0;j- -) {//从后向前顺序比较,并依次后移 if ( temp < r[j-1] ) r[j] = r[j-1]; else break; } r[j] = temp; } }
输入n 个数给a[1] 到 a[n]
for j=1 to n-1
for i=1 to n-j
真 a[i]>a[i+1]
a[i]a[i+1]
输出a[1] 到 a[n]
main() { int a[11],i,j,t; printf("Input 10 numbers:\n"); for(i=1;i<11;i++) scanf("%d",&a[i]); printf("\n"); 假 for(j=1;j<=9;j++) for(i=1;i<=10-j;i++) if(a[i]>a[i+1]) {t=a[i]; a[i]=a[i+1]; a[i+1]=t;} printf("The sorted numbers:\n"); for(i=1;i<11;i++) printf("%d ",a[i]); }

c语言中排序的各种方法解析

c语言中排序的各种方法解析

c语言中排序的各种方法解析一、引言在计算机编程中,排序是一个重要的操作,它按照一定的顺序排列数据元素,使得数据元素按照从小到大的顺序排列。

在C语言中,有多种方法可以实现排序,包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。

这些排序算法都有各自的优缺点,适合不同的应用场景。

二、冒泡排序冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。

遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

算法步骤:1. 比较相邻的元素。

如果第一个比第二个大(升序),就交换它们两个。

2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。

这步做完后,最后的元素会是最大的数。

3. 针对所有的元素重复以上的步骤,除了最后一个。

4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

三、选择排序选择排序是一种简单直观的排序算法。

它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。

算法步骤:1. 在未排序序列中找到最小元素,存放到排序序列的起始位置。

2. 再从剩余未排序元素中继续寻找最小元素,然后放到已排序序列的末尾。

3. 以此类推,直到所有元素均排序完毕。

四、插入排序插入排序的工作方式是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

插入排序在实现上通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

五、快速排序快速排序使用了分治的原则,它在每一层划分都比前面方法有所改进和精进,当切分到两边的子序列长度都大于某个值时,或者一个大于一个小于这个值时再进行交换的操作来结束此层的递归过程。

这层的结果又成为下一层的两个子数组来处理,最后就得到递归式的最终结果。

使用C语言实现12种排序方法

使用C语言实现12种排序方法

使⽤C语⾔实现12种排序⽅法⽬录1.冒泡排序2.插⼊排序3.折半插⼊排序4.希尔排序5.选择排序6.鸡尾酒排序7.堆排序8.快速排序9.归并排序10.计数排序11.桶排序12.基数排序1.冒泡排序思路:⽐较相邻的两个数字,如果前⼀个数字⼤,那么就交换两个数字,直到有序。

时间复杂度O(n^2),稳定性:这是⼀种稳定的算法。

代码实现:void bubble_sort(int arr[],size_t len){size_t i,j;for(i=0;i<len;i++){bool hasSwap = false; //优化,判断数组是否已经有序,如果有序可以提前退出循环for(j=1;j<len-i;j++){ //这⾥j<len-i是因为最后⾯的肯定都是最⼤的,不需要多进⾏⽐较if(arr[j-1]>arr[j]){ //如果前⼀个⽐后⼀个⼤swap(&arr[j-1],&arr[j]); //交换两个数据hasSwap = true;}}if(!hasSwap){break;}}}2.插⼊排序思路:把⼀个数字插⼊⼀个有序的序列中,使之仍然保持有序,如对于需要我们进⾏排序的数组,我们可以使它的前i个数字有序,然后再插⼊i+1个数字,插⼊到合适的位置使之仍然保持有序,直到所有的数字有序。

时间复杂度:O(n^2) 稳定性:稳定的算法代码实现:void insert_sort(int arr[],int len){int i,j;for(i=1;i<len;i++){int key = arr[i]; //记录当前需要插⼊的数据for(j= i-1;i>=0&&arr[j]>key;j--){ //找到插⼊的位置arr[j+1] = arr[j]; //把需要插⼊的元素后⾯的元素往后移}arr[j+1] = key; //插⼊该元素}}3.折半插⼊排序思路:本质上是插⼊排序,但是通过半分查找法找到插⼊的位置,让效率稍微快⼀点。

C语言八大排序算法

C语言八大排序算法

C语⾔⼋⼤排序算法C语⾔⼋⼤排序算法,附动图和详细代码解释!来源:C语⾔与程序设计、⽵⾬听闲等⼀前⾔如果说各种编程语⾔是程序员的招式,那么数据结构和算法就相当于程序员的内功。

想写出精炼、优秀的代码,不通过不断的锤炼,是很难做到的。

⼆⼋⼤排序算法排序算法作为数据结构的重要部分,系统地学习⼀下是很有必要的。

1、排序的概念排序是计算机内经常进⾏的⼀种操作,其⽬的是将⼀组“⽆序”的记录序列调整为“有序”的记录序列。

排序分为内部排序和外部排序。

若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。

反之,若参加排序的记录数量很⼤,整个序列的排序过程不可能在内存中完成,则称此类排序问题为外部排序。

2、排序分类⼋⼤排序算法均属于内部排序。

如果按照策略来分类,⼤致可分为:交换排序、插⼊排序、选择排序、归并排序和基数排序。

如下图所⽰:3、算法分析1.插⼊排序*直接插⼊排序*希尔排序2.选择排序*简单选择排序*堆排序3.交换排序*冒泡排序*快速排序4.归并排序5.基数排序不稳定排序:简单选择排序,快速排序,希尔排序,堆排序稳定排序:冒泡排序,直接插⼊排序,归并排序,奇数排序1、插⼊排序将第⼀个和第⼆个元素排好序,然后将第3个元素插⼊到已经排好序的元素中,依次类推(插⼊排序最好的情况就是数组已经有序了)因为插⼊排序每次只能操作⼀个元素,效率低。

元素个数N,取奇数k=N/2,将下标差值为k的数分为⼀组(⼀组元素个数看总元素个数决定),在组内构成有序序列,再取k=k/2,将下标差值为k的数分为⼀组,构成有序序列,直到k=1,然后再进⾏直接插⼊排序。

3、简单选择排序选出最⼩的数和第⼀个数交换,再在剩余的数中⼜选择最⼩的和第⼆个数交换,依次类推4、堆排序以升序排序为例,利⽤⼩根堆的性质(堆顶元素最⼩)不断输出最⼩元素,直到堆中没有元素1.构建⼩根堆2.输出堆顶元素3.将堆低元素放⼀个到堆顶,再重新构造成⼩根堆,再输出堆顶元素,以此类推5、冒泡排序改进1:如果某次冒泡不存在数据交换,则说明已经排序好了,可以直接退出排序改进2:头尾进⾏冒泡,每次把最⼤的沉底,最⼩的浮上去,两边往中间靠16、快速排序选择⼀个基准元素,⽐基准元素⼩的放基准元素的前⾯,⽐基准元素⼤的放基准元素的后⾯,这种动作叫分区,每次分区都把⼀个数列分成了两部分,每次分区都使得⼀个数字有序,然后将基准元素前⾯部分和后⾯部分继续分区,⼀直分区直到分区的区间中只有⼀个元素的时候,⼀个元素的序列肯定是有序的嘛,所以最后⼀个升序的序列就完成啦。

c语言默认的排序算法

c语言默认的排序算法

c语言默认的排序算法C语言默认的排序算法在计算机科学中,排序算法是一种将一组数据按照特定顺序进行排列的方法。

排序算法是程序设计中非常重要的基础算法之一,也是入门级别的经典算法之一。

C语言作为一种广泛应用的编程语言,自带了一种默认的排序算法,即库函数中提供的qsort()函数。

qsort()函数是C语言中用于排序的库函数,其原型如下:```cvoid qsort(void *base, size_t num, size_t size, int (*compar)(const void *, const void *));```参数解释:- base:指向要排序的数组的第一个元素的指针。

- num:数组中的元素个数。

- size:每个元素的大小,以字节为单位。

- compar:用于比较两个元素的函数指针。

使用qsort()函数进行排序的步骤如下:1. 定义一个待排序的数组。

2. 定义一个比较函数,用于指定排序的规则。

4. 输出排序后的结果。

下面通过一个示例来演示使用C语言默认的排序算法qsort()函数进行排序的过程。

```c#include <stdio.h>#include <stdlib.h>// 比较函数,用于指定排序规则(升序)int compare(const void *a, const void *b) {return (*(int*)a - *(int*)b);}int main() {int arr[] = {9, 5, 7, 2, 4, 1, 8, 3, 6};int n = sizeof(arr) / sizeof(arr[0]);printf("排序前的数组:");for (int i = 0; i < n; i++) {printf("%d ", arr[i]);}printf("\n");qsort(arr, n, sizeof(int), compare);printf("排序后的数组:");for (int i = 0; i < n; i++) {printf("%d ", arr[i]);}printf("\n");return 0;}```运行结果:```排序前的数组:9 5 7 2 4 1 8 3 6排序后的数组:1 2 3 4 5 6 7 8 9```在以上示例中,首先定义了一个待排序的数组arr,然后定义了一个比较函数compare,该函数用于指定排序的规则,这里使用的是升序排序。

c语言排序方法

c语言排序方法

c语言排序方法C语言是一种高效的编程语言,其基础算法和数据结构内容是必备的知识。

排序算法是其中一种重要的基础算法,是C语言程序开发中常用的一种技能,可以帮助我们对数据进行有序处理,更好地解决问题。

在C语言中,排序算法分为内部排序和外部排序。

内部排序是指将需要排序的数据都放在内存中进行排序,主要适用于数据量较小的情况。

而外部排序则是指需要对大数据集进行排序,需要借助外部存储器进行排序。

在此我们主要讨论内部排序算法。

内部排序可以分为以下几类:1. 插入排序插入排序包括直接插入排序、希尔排序等。

直接插入排序是将一个记录插入到有序表中形成一个新的有序表;而希尔排序是通过缩小元素间的间隔,并对每个子序列分别进行插入排序来完成整个排序过程。

插入排序方法简单,适用于小数组或部分有序的数组,是稳定排序方法。

2. 选择排序选择排序包括简单选择排序、堆排序等。

简单选择排序是通过不断的在剩余元素中找到最小元素,并将其放在已排好序的数组末尾进行排序,是不稳定排序方法;而堆排序则是通过将待排序数组看作一个完全二叉树,不断将根节点放到其正确位置上进行排序,是不稳定排序方法。

3. 交换排序交换排序包括冒泡排序、快速排序等。

冒泡排序是通过不断比较相邻的两个数,将较小(或较大)数向前(或向后)交换,在每一次外循环中确定一个元素的位置的排序方法,是稳定排序方法;而快速排序则是通过不断地将待排序数组分成两部分,分别进行递归排序,再将两部分合并成一个有序的数组,是不稳定排序方法。

4. 合并排序合并排序是将待排序数组分成若干个子数组,将每个子数组排好序,再将排好序的子数组合并成最终有序的数组。

合并排序是稳定排序方法,主要优化点在于合并有序数组的过程中需要有额外的空间存放有序的数据。

在实际开发中,我们需要选择适合当前情况的排序方法,优化算法的实现,提高算法的效率。

另外,在使用排序算法的过程中,我们还需要注意以下几点:1. 数据量的大小决定了排序算法的选择。

排序算法实验报告

排序算法实验报告

数据结构实验报告八种排序算法实验报告一、实验内容编写关于八种排序算法的C语言程序,要求包含直接插入排序、希尔排序、简单项选择择排序、堆排序、冒泡排序、快速排序、归并排序和基数排序。

二、实验步骤各种内部排序算法的比较:1.八种排序算法的复杂度分析〔时间与空间〕。

2.八种排序算法的C语言编程实现。

3.八种排序算法的比较,包括比较次数、移动次数。

三、稳定性,时间复杂度和空间复杂度分析比较时间复杂度函数的情况:时间复杂度函数O(n)的增长情况所以对n较大的排序记录。

一般的选择都是时间复杂度为O(nlog2n)的排序方法。

时间复杂度来说:(1)平方阶(O(n2))排序各类简单排序:直接插入、直接选择和冒泡排序;(2)线性对数阶(O(nlog2n))排序快速排序、堆排序和归并排序;(3)O(n1+§))排序,§是介于0和1之间的常数。

希尔排序(4)线性阶(O(n))排序基数排序,此外还有桶、箱排序。

说明:当原表有序或基本有序时,直接插入排序和冒泡排序将大大减少比较次数和移动记录的次数,时间复杂度可降至O〔n〕;而快速排序则相反,当原表基本有序时,将蜕化为冒泡排序,时间复杂度提高为O〔n2〕;原表是否有序,对简单项选择择排序、堆排序、归并排序和基数排序的时间复杂度影响不大。

稳定性:排序算法的稳定性:假设待排序的序列中,存在多个具有相同关键字的记录,经过排序,这些记录的相对次序保持不变,则称该算法是稳定的;假设经排序后,记录的相对次序发生了改变,则称该算法是不稳定的。

稳定性的好处:排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。

基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。

另外,如果排序算法稳定,可以防止多余的比较;稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序四、设计细节排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

C语言常用的入门算法

C语言常用的入门算法

C语言常用的入门算法C语言是一门广泛应用于计算机科学和软件开发领域的编程语言。

作为一门通用的编程语言,C语言提供了丰富的算法和数据结构库,使得开发人员能够解决各种不同类型的问题。

下面是C语言入门算法的一些常见示例:1.排序算法:-冒泡排序:通过不断比较相邻的元素,并交换它们的位置来排序。

-插入排序:将未排序的元素逐一插入已排序的列表中。

-选择排序:通过重复找到最小的元素并将其放置在已排序序列的末尾来排序。

-快速排序:通过选择一个基准元素,将列表划分成较小和较大的两部分,然后对其进行递归排序。

-归并排序:将列表分成较小的子列表,然后逐个合并这些子列表。

2.查找算法:-顺序查找:逐个比较列表中的元素,直到找到匹配的元素为止。

-二分查找:在已排序的列表中通过递归或循环的方式,将待查找的元素与中间元素进行比较,以确定它可能在哪一半中。

-哈希表:通过散列函数将元素映射到一个较小的固定大小的数组(哈希表)中,并通过索引快速查找。

3.字符串算法:-字符串长度:使用循环逐个字符遍历,直到遇到字符串结束符'\0'为止,统计字符个数。

-字符串比较:逐个字符比较两个字符串的对应位置,直到遇到不相等的字符或字符串结束符。

-字符串拼接:将一个字符串的字符逐个复制到另一个字符串的末尾,直到遇到字符串结束符'\0'。

-子字符串匹配:在一个较长的字符串中查找一个较短的子字符串,常用的算法有朴素算法和KMP算法。

4.数值算法和运算:-求和、平均值、最大/最小值:循环遍历列表,累加求和,计算平均值,找出最大/最小值。

-阶乘和斐波那契数列:使用循环或递归计算给定数字的阶乘和斐波那契数列。

-幂运算和开方:通过循环或递归计算给定数字的幂和开方。

- 线性方程求解:求解形如ax + b = 0的一元线性方程。

5.图算法:-广度优先(BFS):通过遍历图的邻居节点来逐层扩展区域,通常用于查找最短路径。

-深度优先(DFS):通过遍历图的邻居节点来递归到达所有可能的节点,通常用于查找所有路径、拓扑排序等。

C语言的六种常用算法

C语言的六种常用算法

C语言的六种常用算法C语言是一种非常流行的编程语言,广泛应用于各种领域中。

在C语言中,有许多常用的算法,可以用来解决各种问题。

下面我们将详细介绍C语言中的六种常用算法。

1.排序算法:排序算法可以将一组数据按照一定的规则进行排序。

常见的排序算法有冒泡排序、选择排序、插入排序、快速排序等。

这些排序算法的原理各有不同,但都可以实现对数据的排序。

排序算法对于处理大量数据的应用非常重要,可以提高查找、统计等操作的效率。

2.查找算法:查找算法是指在一组数据中寻找特定元素的过程。

常见的查找算法有线性查找、二分查找、哈希查找等。

这些算法的实现方式不同,但都可以高效地找到目标元素。

查找算法广泛应用于数据库查询、引擎等需要快速查找数据的场景中。

3.图算法:图算法是针对图结构进行的一系列操作。

图是由顶点和边组成的数据结构,可以用来表示各种关系。

在图算法中,常见的操作包括遍历、连通性判断、最短路径查找等。

图算法在网络分析、社交网络分析、运输规划等领域中有着广泛的应用。

4.动态规划算法:动态规划算法是一种解决多阶段决策问题的方法。

它将问题划分为若干个阶段,每个阶段都有一系列可选的决策。

通过求解每个阶段的最优决策,最终得到整个问题的最优解。

动态规划算法在最短路径问题、背包问题、序列比对等领域中有着重要的地位。

5.深度优先算法:深度优先算法是一种遍历图或树的方法。

它从一个起始节点开始,沿着一条路径尽可能远地,直到遇到死路才返回并尝试其他路径。

深度优先算法常用于解决迷宫问题、图的连通性判断等。

6.广度优先算法:广度优先算法是一种遍历图或树的方法。

它从一个起始节点开始,首先访问所有相邻节点,然后再访问它们的相邻节点,以此类推,直到遍历完所有节点。

广度优先算法常用于寻找最短路径、社交网络分析等。

以上就是C语言中的六种常用算法。

这些算法在各自的领域中有着广泛的应用,对于解决各种问题起到了重要的作用。

对于想要学习C语言的人来说,掌握这些算法是非常重要的一步。

c语言快速排序法升序排列

c语言快速排序法升序排列

c语言快速排序法升序排列快速排序是一种常用的排序算法,其排序速度快、效率高,被广泛应用于各个领域,特别是在大量数据的排序场合中。

本文将介绍C语言快速排序法升序排列的方法及其代码实现,希望能帮助初学者掌握该算法。

一、快速排序算法原理快速排序是一种分治法排序算法,其核心思想是通过指定一个基准数,将数组分为两个部分,左半部分的所有元素都小于基准数,右半部分的所有元素都大于基准数。

然后通过递归的方式将左右两个部分分别进行快速排序,最终实现整个数组的排序。

算法步骤如下:1.选定一个基准数pivot,将数组分为两个部分,左半部分元素都小于pivot,右半部分元素都大于pivot。

2.递归地将左右两部分分别进行快速排序。

3.合并左右两个部分,得到有序数组。

二、C语言代码实现下面是C语言代码实现快速排序,该代码实现了升序排列。

代码中使用了指针的形式进行数组的操作,这种方法一般比使用数组变量更加高效。

```c#include <stdio.h>void quick_sort(int *arr, int left, int right) {if (left < right) {int i = left, j = right, pivot = arr[left]; //定义左右指针、基准数while (i < j) {while (i < j && arr[j] >= pivot) // 右指针往左移,找到第一个小于pivot的元素j--;if (i < j) // 找到小于pivot的元素,交换 i,j 两个元素的位置arr[i++] = arr[j];while (i < j && arr[i] < pivot) // 左指针往右移,找到第一个大于等于pivot的元素i++;if (i < j) // 找到大于等于pivot的元素,交换 i,j 两个元素的位置arr[j--] = arr[i];}arr[i] = pivot; // 将pivot放入i的位置quick_sort(arr, left, i - 1); // 递归排序左半部分quick_sort(arr, i + 1, right); // 递归排序右半部分}}三、代码解析1.函数参数```cvoid quick_sort(int *arr, int left, int right)```该函数接收三个参数:int型指针arr、int型left和int型right,arr表示待排序的数组,left和right表示数组的左右边界(left为数组下标最小值,right为数组下标最大值)。

c语言各种排序法详解

c语言各种排序法详解

一插入排序1.1 直接插入排序基本思想:每次将一个待排序额记录按其关键码的大小插入到一个已经排好序的有序序列中,直到全部记录排好序。

图解:代码实现:[cpp]view plaincopy1.//直接顺序排序2.void InsertSort(int r[],int n)3.{4.for(int i=2;i<n;i++)5.{6.r[0]=r[i];//设置哨兵7.for(int j=i-1;r[0]<r[j];j--)//寻找插入位置8.r[j+1]=r[j];//记录后移9.r[j+1]=r[0];10.}11.for(int k=1;k<n;k++)12.cout<<r[k]<<"";13.cout<<"\n";14.}1.2 希尔排序基本思想是:先将整个待排序记录序列分割成若干个子序列,在在序列内分别进行直接插入排序,待整个序列基本有序时,再对全体记录进行一次直接插入排序。

图解:代码实现:[cpp]view plaincopy1.<spanstyle="font-size:14px;">//希尔排序2.void ShellSort(int r[],int n)3.{4.int i;5.int d;6.int j;7.for(d=n/2;d>=1;d=d/2)//以增量为d进行直接插入排序8.{9.for(i=d+1;i<n;i++)10.{11.r[0]=r[i];//暂存被插入记录12.for(j=i-d;j>0&&r[0]<r[j];j=j-d)13.r[j+d]=r[j];//记录后移d个位置14.r[j+d]=r[0];15.}16.}17.for(i=1;i<n;i++)18.cout<<r[i]<<"";19.cout<<"\n";20.}</span>二交换排序2.1 起泡排序起泡排序是交换排序中最简单的排序方法,其基本思想是:两两比较相邻记录的关键码,如果反序则交换,直到没有反序的记录为止。

c语言的排序方法

c语言的排序方法

c语言的排序方法C语言的排序方法排序是计算机科学中非常重要的一个基本操作,它用于将一组无序的数据按照一定的规则进行重新排列,以便更方便地进行查找、插入和删除等操作。

C语言作为一种广泛应用的编程语言,提供了多种排序算法的实现方式,本文将介绍几种常用的排序方法及其实现。

一、冒泡排序(Bubble Sort)冒泡排序是最简单的排序算法之一,它的基本思想是重复地比较相邻的两个元素,如果它们的顺序错误就交换位置,直到没有需要交换的元素为止。

冒泡排序的时间复杂度为O(n^2)。

二、选择排序(Selection Sort)选择排序每次从待排序的数据中选择最小(或最大)的元素放到已排序的数据末尾,直到全部元素排序完成。

选择排序的时间复杂度也为O(n^2)。

三、插入排序(Insertion Sort)插入排序的思想是将一个记录插入到已经排好序的有序表中,形成一个新的有序表。

插入排序的时间复杂度为O(n^2),但在实际应用中,插入排序常常比其他排序算法更有效。

四、快速排序(Quick Sort)快速排序是一种基于分治法的排序算法,它通过选择一个基准元素,将待排序的数据分割成两部分,其中一部分的所有元素都比基准元素小,另一部分的所有元素都比基准元素大,然后对这两部分继续进行快速排序。

快速排序的时间复杂度为O(nlogn)。

五、归并排序(Merge Sort)归并排序采用分治法的思想,将待排序的数据分为两个子序列,分别进行排序,然后将两个有序的子序列合并成一个有序的序列。

归并排序的时间复杂度为O(nlogn)。

六、堆排序(Heap Sort)堆排序利用堆这种数据结构进行排序,它将待排序的数据构建成一个大顶堆或小顶堆,然后依次将堆顶元素与最后一个元素交换,并对剩余的元素重新调整堆,重复这个过程直到所有元素都排序完成。

堆排序的时间复杂度为O(nlogn)。

七、希尔排序(Shell Sort)希尔排序是一种改进的插入排序算法,它通过将待排序的数据分组,分组内进行插入排序,然后逐渐缩小分组的间隔,最终完成排序。

c语言实现基数排序算法

c语言实现基数排序算法

c语言实现基数排序算法【原创实用版】目录1.基数排序算法简介2.C 语言实现基数排序算法的方法3.基数排序算法的优缺点4.结论正文1.基数排序算法简介基数排序算法是一种非比较排序算法,它根据元素的位数进行排序。

该算法的主要思想是将数据按照它们的位数划分为不同的组,然后在每个组内进行排序。

最后,将所有组合并成一个有序的数据集。

2.C 语言实现基数排序算法的方法以下是使用 C 语言实现基数排序算法的一种方法:```c#include <stdio.h>#include <stdlib.h>void radixSort(int arr[], int n) {int i, j, max;int *临时数组;// 1.首先,找到最大值for (i = 0; i < n; i++) {max = arr[i];for (j = i + 1; j < n; j++) {if (arr[j] > max) {max = arr[j];}}}// 2.创建一个临时数组临时数组 = (int *)malloc((n + 1) * sizeof(int));// 3.将原始数组的每个元素放入临时数组for (i = 0; i < n; i++) {临时数组 [i] = arr[i];}// 4.根据位数进行排序for (i = 0; i < 31; i++) {// 从临时数组中取出当前位数的最大值max = 0;for (j = 0; j < n; j++) {if (临时数组 [j] > max) {max = temporary[j];}}// 将当前位数的最大值放入原始数组arr[i] = max;// 从临时数组中删除当前位数的最大值for (j = 0; j < n; j++) {if (临时数组 [j] == max) {临时数组 [j] = 0;break;}}}// 5.释放临时数组free(临时数组);}int main() {int arr[] = {9, 8, 7, 6, 5, 4, 3, 2, 1}; int n = sizeof(arr) / sizeof(arr[0]);radixSort(arr, n);for (int i = 0; i < n; i++) {printf("%d ", arr[i]);}return 0;}```3.基数排序算法的优缺点优点:- 基数排序算法是一种非比较排序算法,因此它的时间复杂度为O(nk),其中 n 为待排序数据的长度,k 为数据中最大值的位数。

快速排序(C语言)-解析

快速排序(C语言)-解析

快速排序(C语⾔)-解析快速排序快速排序是⼀种排序算法,对包含 n 个数的输⼊数组,最坏情况运⾏时间为O(n2)。

虽然这个最坏情况运⾏时间⽐较差,但快速排序通常是⽤于排序的最佳的实⽤选择,这是因为其平均性能相当好:期望的运⾏时间为O(nlgn),且O(nlgn)记号中隐含的常数因⼦很⼩。

另外,它还能够进⾏就地排序,在虚存环境中也能很好的⼯作。

快速排序(Quicksort)是对的⼀种改进。

快速排序由C. A. R. Hoare在1962年提出。

它的基本思想是:通过⼀趟排序将要排序的数据分割成独⽴的两部分,其中⼀部分的所有数据都⽐另外⼀部分的所有数据都要⼩,然后再按此⽅法对这两部分数据分别进⾏快速排序,整个排序过程可以进⾏,以此达到整个数据变成有序。

像合并排序⼀样,快速排序也是采⽤分治模式的。

下⾯是对⼀个典型数组A[p……r]排序的分治过程的三个步骤:分解:数组 A[p……r]被划分为两个(可能空)⼦数组 A[p……q-1] 和 A[q+1……r] ,使得 A[p……q-1] 中的每个元素都⼩于等于 A(q) , ⽽且,⼩于等于 A[q+1……r] 中的元素。

⼩标q也在这个划分过程中进⾏计算。

解决:通过递归调⽤快速排序,对于数组 A[p……q-1] 和 A[q+1……r] 排序。

合并:因为两个⼦数组是就地排序的,将它们的合并不需要操作:整个数组 A[p……r] 已排序。

下⾯的过程实现快速排序(伪代码):QUICK SORT(A,p,r)1if p<r2 then q<-PARTITION(A,p,r)3 QUICKSORT(A,p,q-1)4 QUICKSORT(A,q+1,r)为排序⼀个完整的数组A,最初的调⽤是QUICKSORT(A,1,length[A])。

数组划分: 快速排序算法的关键是PARTITION过程,它对⼦数组 A[p……r]进⾏就地重排(伪代码):PARTITION(A,p,r)1 x <- A[r]2 i <- p-13for j <- p to r-14do if A[j]<=x5 then i <- i+16 exchange A[i] <-> A[j]7 exchange A[i + 1] <-> A[j]8return i+1排序演⽰⽰例假设⽤户输⼊了如下数组:下标012345数据627389创建变量i=0(指向第⼀个数据), j=5(指向最后⼀个数据), k=6(为第⼀个数据的值)。

C语言常用9种算法

C语言常用9种算法

C语言常用9种算法C语言是一门广泛应用于编程领域的语言,具有丰富的算法库和功能。

在C语言中,有许多常用的算法可以帮助程序员解决各种问题。

本文将介绍C语言中常用的9种算法,以帮助读者深入了解和应用这些算法。

1.顺序算法:顺序算法是一种简单但有效的方法,通过逐个比较目标元素和数组中的元素来寻找指定值。

该算法适用于小规模的数据集,时间复杂度为O(n)。

2.二分算法:二分算法是一种高效的方法,适用于已排序的数组。

该算法通过将目标值与数组的中间元素进行比较,并根据比较结果将范围缩小一半。

时间复杂度为O(log n)。

3.冒泡排序算法:冒泡排序算法是一种简单但低效的排序方法,通过反复交换相邻的元素将较大的元素逐渐移至数组的末尾。

时间复杂度为O(n^2)。

4.选择排序算法:选择排序算法是一种简单但较为高效的排序方法,通过找到最小元素并将其放置在数组的起始位置,逐个选择剩余元素中的最小值,直到完成排序。

时间复杂度为O(n^2)。

5.插入排序算法:插入排序算法是一种简单而且对小数据集很有效的排序方法,通过将未排序的元素依次插入已排序的序列中,逐步构建有序的序列。

时间复杂度为O(n^2)。

6.快速排序算法:快速排序算法是一种高效的排序方法,通过选择一个基准值将数组分割成两个子数组,较小的值放在基准值的左边,较大的值放在右边。

然后对子数组进行递归排序。

时间复杂度为O(n log n)。

7.归并排序算法:归并排序算法是一种稳定而且高效的排序方法,通过将数组递归地分成两个子数组,然后合并这些子数组以得到排序结果。

时间复杂度为O(n log n)。

8.哈希算法:哈希算法是一种用于将数据映射到特定位置的算法,可以快速访问数据。

C语言提供了多种哈希算法库,例如MD5和SHA1等,用于数据完整性校验和密码存储等应用场景。

9.图算法:图算法是一类用于处理图结构的算法,包括广度优先、深度优先和最短路径算法等。

通过这些算法,可以实现许多图相关的问题,如寻找社交网络中的最短路径或者查找网络拓扑结构等。

数据结构(C语言)第八章 排序

数据结构(C语言)第八章 排序

直接插入排序过程
0 21 1 25 2 49 3 4 25* 16 5 08 temp
i=1
0 21
21
1 25
25 25
2 49
49 49
3 4 25* 16
25* 16 25* 16
5 08
08 08
temp 25
i=2
21
49
21
25
25 25
49
49 25*
25* 16
25* 16 49 16
希尔排序 (Shell Sort)

基本思想设待排序对象序列有 n 个对象, 首 先取一个整数 gap < n 作为间隔, 将全部对 象分为 gap 个子序列, 所有距离为 gap 的对 象放在同一个子序列中, 在每一个子序列中 分别施行直接插入排序。然后缩小间隔 gap, 例如取 gap = gap/2,重复上述的子序列划 分和排序工作。直到最后取 gap == 1, 将所 有对象放在同一个序列中排序为止。 希尔排序方法又称为缩小增量排序。
第八章 排序
概述
插入排序
交换排序 选择排序 归并排序 基数排序 各种内排方法比较
概 述

排序: 将一个数据元素的任意序列,重新
排列成一个按关键字有序的序列。

数据表(datalist): 它是待排序数据对象的
有限集合。

主关键字(key): 数据对象有多个属性域,
即多个数据成员组成, 其中有一个属性域可用 来区分对象, 作为排序依据,称为关键字。也 称为关键字。
直接插入排序 (Insert Sort)

基本思想 当插入第i (i 1) 个对象时, 前面的 R[0], R[1], …, R[i-1]已经排好序。这时, 用 R[i]的关键字与R[i-1], R[i-2], …的关键字顺 序进行比较, 找到插入位臵即将R[i]插入, 原 来位臵上的对象向后顺移。

c语言的排序方法

c语言的排序方法

c语言的排序方法C语言的排序方法排序是计算机科学中常见的操作,它的作用是将一组数据按照特定的规则进行重新排列。

在C语言中,有多种排序方法可以实现这个目标。

本文将介绍几种常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序和归并排序。

一、冒泡排序冒泡排序是一种简单但效率较低的排序算法。

它的基本思想是多次遍历待排序的数据,每次比较相邻的两个元素,如果它们的顺序不对就交换它们的位置。

通过多次遍历,最大(或最小)的元素会逐渐“冒泡”到最后。

二、插入排序插入排序是一种稳定且效率较高的排序算法。

它的基本思想是将待排序的数据分为已排序和未排序两部分,每次从未排序部分选择一个元素插入到已排序部分的正确位置。

通过多次插入操作,最终得到完全有序的数据。

三、选择排序选择排序是一种简单但效率较低的排序算法。

它的基本思想是每次从待排序的数据中选择最小(或最大)的元素,然后放到已排序部分的末尾。

通过多次选择操作,最终得到完全有序的数据。

四、快速排序快速排序是一种常用且高效的排序算法。

它的基本思想是通过递归地将待排序的数据分为两部分,一部分小于某个基准值,另一部分大于该基准值。

然后对这两部分分别进行快速排序,直到每个部分只有一个元素或为空。

最后将所有部分合并起来,即得到完全有序的数据。

五、归并排序归并排序是一种稳定且效率较高的排序算法。

它的基本思想是将待排序的数据分成若干个长度相等(或接近)的子序列,然后对每个子序列进行排序。

最后将排好序的子序列两两合并,直到所有子序列合并成一个有序的序列。

不同的排序算法适用于不同的场景。

冒泡排序和选择排序适用于数据量较小的情况,插入排序适用于数据基本有序的情况,快速排序适用于数据量较大且无序的情况,归并排序适用于数据量较大且需要稳定排序的情况。

在C语言中,实现这些排序算法并不复杂。

通过使用循环和条件语句,可以很容易地编写出排序的代码。

同时,为了提高排序算法的效率,还可以使用一些优化技巧,例如设置哨兵、使用递归等。

c语言十大排序算法

c语言十大排序算法

c语言十大排序算法C语言是一种广泛应用于计算机领域的编程语言,在数据处理过程中,排序算法是最常用的操作之一。

在C语言中,有许多经典的排序算法,下面将介绍十大排序算法并讨论其特点和适用场景。

1.冒泡排序算法冒泡排序算法是一种简单的排序方法,其基本思想是将要排序的数组分为两部分:已排序部分和未排序部分。

进入排序过程后,每一次排序将未排序部分中的第一个数与第二个数进行比较,若第二个数小于第一个数,则交换它们的位置,依次往后,直到最后一个未排序的数。

冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1),适用于数据量较小的排序场景。

2.插入排序算法插入排序算法是一种稳定的排序方法,其中以第一个元素作为基准,与后面的元素进行比较,若后面的元素小于前一个元素,则将其插入到合适位置,依次往后,直到最后一个元素。

插入排序的时间复杂度为O(n^2),空间复杂度为O(1),适用于数据量较小的排序场景。

3.选择排序算法选择排序算法是一种简单的排序算法,其基本思想是每次选择一个最小(或最大)的元素,在未排序部分找出最小的元素,并放到已排序部分的最后一个位置。

选择排序的时间复杂度为O(n^2),空间复杂度为O(1),适用于数据量较小的排序场景。

4.归并排序算法归并排序算法是一种稳定的排序算法,其基本思想是将数组分成两半,然后递归地将每个子数组排序,最后将两个排好序的子数组归并到一起。

归并排序的时间复杂度为O(nlogn),空间复杂度为O(n),适用于数据量较大的排序场景。

5.快速排序算法快速排序算法是一种常用的排序算法,其基本思想是将待排序的数组分为两个子数组,设置一个基准值,小于基准值的元素放到左边,大于基准值的元素放到右边,然后递归地对左右两个子数组进行排序。

快速排序的时间复杂度为O(nlogn),空间复杂度为O(nlogn),适用于数据量较大的排序场景。

6.计数排序算法计数排序算法是一种稳定的排序算法,其基本思想是先统计序列中每个元素出现的次数,将其存入临时数组中,然后从临时数组中按照顺序取出元素。

C语言常用算法归纳

C语言常用算法归纳

C语言常用算法归纳C语言是一种常用的编程语言,广泛应用于各种计算机领域。

在C语言中,算法是一种解决问题的方法论,是实现程序的关键所在。

本文将介绍C语言常用的算法,并对其进行归纳总结。

1.排序算法排序算法是将一组数据按照一定的顺序重新排列的过程。

常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。

-冒泡排序:该算法比较相邻的两个元素,并将较大的元素向后移动,重复此过程直到序列有序。

-选择排序:该算法通过不断选择最小的元素,并放到已排序部分的末尾,重复此过程直到整个序列有序。

-插入排序:该算法将元素逐个插入到已排好序的序列中,重复此过程直到整个序列有序。

-快速排序:该算法通过选择一个基准元素,将元素分为两个分区,并对每个分区递归地快速排序,最终将整个序列有序。

-归并排序:该算法将序列分为两个部分,并对每个部分递归地归并排序,最后将两个有序的部分归并。

上述排序算法中,冒泡排序和选择排序的时间复杂度为O(n^2),插入排序的时间复杂度为O(n^2)或O(n),快速排序和归并排序的平均时间复杂度为O(nlogn)。

2.查找算法查找算法是在一组数据中找到指定的元素的过程。

常见的查找算法包括线性查找、二分查找、哈希查找等。

-线性查找:该算法从序列的首个元素开始,逐个比较元素,直到找到指定元素或遍历完整个序列。

-二分查找:该算法通过比较中间元素和目标元素的大小关系,逐渐缩小查找范围,最终找到目标元素。

-哈希查找:该算法通过将元素与哈希函数的运算结果关联,将元素存储在哈希表中;查询时,通过哈希函数确定元素的位置,从而快速查找。

二分查找的时间复杂度为O(logn),哈希查找的平均时间复杂度为O(1)。

3.字符串算法字符串算法是对字符串进行处理和操作的一系列算法。

常见的字符串算法包括字符串复制、字符串连接、字符串比较、字符串截取等。

- 字符串复制:可以使用strcpy函数实现字符串复制。

例如,strcpy(dest, src)将将src字符串复制到dest字符串中。

C语言常用算法归纳

C语言常用算法归纳

C语言常用算法归纳C语言作为一种非常流行的编程语言,拥有丰富的算法库和常用算法。

在本篇文章中,我将为您介绍C语言中常用的算法分类,以及每个分类中的常用算法。

希望这篇文章能对您学习C语言算法有所帮助。

1.排序算法:排序算法用于将一组数据按照一定的顺序进行排列。

C语言中常用的排序算法有以下几种:-冒泡排序:通过依次比较相邻元素的大小,将较大的元素逐渐向后移动,实现排序。

-插入排序:将未排序的元素一个个插入到已经排序的序列中,使得整个序列有序。

-选择排序:每次从待排序的序列中选择最小(或最大)的元素,放到已排序序列的末尾。

-快速排序:通过一趟排序将待排序的数据分割成独立的两部分,然后再按照该方法对两部分数据分别进行快速排序,递归实现排序。

-归并排序:将待排序的数据递归地分成两部分,分别进行排序,然后将两个有序的子序列合并成一个有序的序列。

2.查找算法:查找算法用于在一组数据中寻找指定的元素。

C语言中常用的查找算法有以下几种:-顺序查找:从序列的起始位置依次遍历,直到找到目标元素。

-二分查找:对于已经排序的序列,通过每次将查找范围减半的方式进行查找,提高查找效率。

-插值查找:对于有序的序列,根据目标元素在序列中的分布情况,通过插值计算来确定查找位置。

3.字符串处理算法:字符串处理算法用于对字符串进行处理和操作。

C语言中常用的字符串处理算法有以下几种:-字符串比较:用于比较两个字符串是否相等。

-字符串拼接:将两个字符串合并成一个字符串。

-字符串查找:在一个字符串中寻找指定的子串。

-字符串替换:将字符串中指定的子串替换为新的子串。

4.图算法:图算法用于研究图结构的相关问题。

C语言中常用的图算法有以下几种:-广度优先:从图的其中一个顶点开始,按广度优先的原则依次访问与该顶点相邻的未访问的顶点。

-深度优先:从图的其中一个顶点开始,按深度优先的原则访问与该顶点相邻的未访问的顶点,直到无法继续访问为止。

- 最短路径算法:用于寻找两个顶点之间最短路径的算法,常见的最短路径算法有Dijkstra算法和Floyd算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构课程设计报告各种排序方法的C#程序设计
目录
一、实验目的及要求 (1)
二、程序介绍 (1)
三、实验步骤 (4)
(一)设计窗体基本结构 (4)
1、主窗体 (4)
2、子窗体 (5)
(二)代码编写 (5)
1、数据输入 (5)
2、排序方法 (5)
3、排序结果及算法的输出 (8)
四、实验总结 (9)
一、实验目的及要求
使用Microsoft visual studio C#2010设计一个可以完成使用各种排序方法对数据进行排序的窗体程序
二、程序介绍
在“排序”窗口文本框中输入需要排序的数据,根据需要采用的排序方法选择单选按钮,点击“查看排序结果及算法”按钮,可在另一窗口“排序结果及算法”中查看排序结果及算法内容,如下图所示:
例如:
输入数据选择“插入排序”
输入数据选择“希尔排序”
输入数据选择“冒泡排序”
输入数据选择“快速排序”
三、实验步骤
(一)设计窗体基本结构
1、主窗体
设置该窗体来输入需要排序的数字和选择排序方法,将该窗体命名为“排序”,并设置文本框以录入数据,运用单选按钮来选择排序方法,设置两个标签以说明文本框和单选按钮的意义,设置两个按钮来跳转到另一窗体和退出程序,并分别命名为“查看排序结果及算法”和“退出”。

如下图所示:
2、子窗体
设置该窗体来排序结果及算法,将该窗体命名为“排序结果及算法”,并设置文本框以输出排序结果,设置富文本框显示算法内容,设置两个标签以说明文本框及富文本框的意义,如下图所示:
(二)代码编写
1、数据输入
点击按钮“查看排序结果及算法”时先用一个数组记录文本框中输入的数据
代码如下:
2、排序方法
点击按钮“查看排序结果及算法”时根据不同的单选按钮采用不同的排序方法,排序后用一个字符型变量记录下排序结果,并跳转到另一窗体,“退出”按钮退出程序。

代码如下:
希尔排序
冒泡排序
一个字符型变量记录下排序结果,并跳转到另一窗体
“退出”按钮
3、排序结果及算法的输出
在文本框中输出排序结果,将各种算法的内容分别存在不同的txt文件中,在富文本框根据不同的排序结果显示不同算法,“返回”按钮返回前一窗体。

代码如下:
排序结果的显示
富文本框算法的显示
“返回”按钮
四、实验总结
通过这次试验,让我对各种排序方法有了进一步的了解,运用所掌握的基本理论知识和实际业务能力,提高了我的综合素质,在制作C#程序的过程中通过看书查资料等方式最后完成了程序制作,要多总结多动手才能真的掌握好编程,在以后要自己主动积极地尝试编程。

9。

相关文档
最新文档