2016八年级上册数学第二章知识点汇总北师大版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016八年级上册数学第二章知识点汇总

(北师大版)

2016八年级上册数学第二章知识点汇总(北师大版)

认识无理数知识点:

1.无限小数都是无理数无限小数分:为无限循环小数和

无限不循环小数,其中无限循环小数是有理数,只有无

限不循环的小数才是无理数。

2.无理数包括正无理数、负无理数和零。受思维习

惯的影响,有些同学错误认为正无理数与负无理数之间

应有零,零也是无理数,其实零是一个有理数,因此,

无理数只分为正无理数和负无理数两类。

3.带根号的数是无理数。是有理数2,是有理数-2,可见带根号的数不一定是无理数。

4.无理数是用根号形式表示的数。是无理数,但并

不是用根号形式表示的,再如:0.1010010001(两个1之间依次多一个),亦为不带根号的无理数。

5.无理数是开方开不尽的数。无理数并非由开方的

结果来定义的,事实上,如,0.232232223,等无理数,都不是由开方得到的。

6.两个无理数的和、差、积、商仍是无理数。两个

无理数的和,差,积,商不一定是无理数,如:等都是

有理数。

7.无理数与有理数的乘积是无理数。这种说法是错

误的!由等似乎易见无理数与有理数的积是无理数,就

下肯定结论,错了!如等足以推翻以上结论。8.有些无

理数是分数。因为分数属于有理数,且无理数与有理数

是两类不同的数,所以说,无理数不可能写成分数,当然,有些无理数可以借助分数线来表示。如,但一定要注意它并不是分数。

9.无理数比有理数少。这种说法错误,无理数在人

们生产和生活中使用的少一些,但并不是说无理数就少

一些,我们平常的计算中没有特别需要时,习惯地把一

些无理数按要求通过取近似值的方法用有理数来表示,

这样似乎就觉得使用无理数少一些,实际上,无理数也

有无限个且比有理数多得多。

10.一个无理数的平方一定是有理数。这种说法错误,不要误认为只有等无理数,如等也是无理数,显然等不是有理数。

平方根知识点:

显然,如果我们知道了这两个平方根的一个,那么就可

以及时的根据相反数的概念得到它的另一个平方根。

如果一个数的平方等于a,那么这个数叫做a的平方根。0的平方根是0。负数在实数范围内不能开平方,只

有在正数范围内,才可以开平方根。例如:-1的平方根为i,-9的平方根为3i。

平方根包含了算术平方根,算术平方根是平方根中的一种。

平方根和算术平方根都只有非负数才有。

被开方数是乘方运算里的幂。

求平方根可通过逆运算平方来求。

开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。

若x的平方等于a,那么x就叫做a的平方根,即√a=x

立方根知识点:

1、平方根的意义:如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根)。

注意:这样的数常常有两个。

2、平方根的性质:

(1)一个正数有两个平方根,它们互为相反数;如9的平方根是±3。

(2)0的平方根是0本身;

(3)负数没有平方根。

3.平方根的表示方法: 正数a的平方根表示为“±

4.算术平方根:正数a的正的平方根也叫做a的算术

平方根。记作根号a。0的平方根0,也叫做0的算术平方根。

6.立方根和开立方同平方根开平方的概念类似。

易犯错误:

1.算术平方根与平方根混淆,例如出现100的平方根等于10的错误.

2.根号a表示的正数a的平方根。蕴含条件a≥0。

估算知识点:

估算的方法

1.四舍五入

例题:2的算数平方根(保留到0.01)

解:根号2≈2.进一法

例题:一支笔2.6元,四支需多少钱(保留到整数)

解:2.6*4=10.4元≈11元

如果四舍五入的话是10元,是不够的,所以是要进上去的

3.去尾法

例题:有20元,买3元一支的笔,可卖多少支?

解:20/支≈6支

如果四舍五入的话是7支,买不到,所以是要去掉的

按照一般方法就是把854估做840,840除以7等于120.但这样在尺度上让学生不好把握.我们可以直接算出

854除以7等于122.再看122最接近那个整十或整百数.我们不难看出122字接近120,所以估算结果等于120.

这样学生通过求除法的准确值,再找出商最接近的整十

或整百数就容易多了

比如2个数或多个数相乘或则相加、相减、相除,

我们不能很快且正确的算出来,就是只有打开的算出来。

用计算器开方知识点:

我们可以利用计算器计算比较两个无理数的大小。

1)任意找一个你认为很大的正数,利用计

算器对它进行开方运算,对所得的结果再进行开方

运算„„随着开方数的增加,你发现了什么?

(2)改用另一个小于1的正数试一试,看看是否仍有类似规律。

教师归纳:

随着开方次数的增加,运算结果越来越接近实数知

识点:

实数,是有理数和无理数的总称。数学上,实数定

义为与数轴上的点相对应的数。实数可以直观地看作有

限小数与无限小数,它们能把数轴“填满”。但仅仅以

列举的方式不能描述实数的整体。实数和虚数共同构成

复数。

1、实数的分类:有理数和无理数

2、数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上点一一对应.

3、相反数:符号不同的两个数,叫做互为相反数.a 的相反数是-a,0的相反数是0. (若a与b护卫相反数,则a+b=0)

4、绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.

5、倒数:乘积为1的两个数

6、乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.(平方和立方)

7、平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.(算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.) 二次根式知识点:

1.二次根式:式子(≥0)叫做二次根式。

2.最简二次根式:

(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;③分

相关文档
最新文档