中考数学与圆的综合有关的压轴题附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学与圆的综合有关的压轴题附答案
一、圆的综合
1.已知AB ,CD 都是O e 的直径,连接DB ,过点C 的切线交DB 的延长线于点E . ()1如图1,求证:AOD 2E 180∠∠+=o ;
()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点G ,求证:DG CF =;
()3如图3,在()2的条件下,当DG 3CE 4
=时,在O e 外取一点H ,连接CH 、DH 分别交O e 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.
【答案】(1)证明见解析(2)证明见解析(3)837+
【解析】
【分析】
(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可;
(2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;
(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE 于W .解直角三角形分别求出KM ,KH 即可;
【详解】
()1证明:如图1中,
O Q e 与CE 相切于点C ,
OC CE ∴⊥,
OCE 90∠∴=o ,
D E 90∠∠∴+=o ,
2D 2E 180∠∠∴+=o ,
AOD COB ∠∠=Q ,BOC 2D ∠∠=,AOD 2D ∠∠=,
AOD 2E 180∠∠∴+=o .
()2证明:如图2中,作OR AF ⊥于R .
OCF F ORF 90∠∠∠===o Q ,
∴四边形OCFR 是矩形,
AF//CD ∴,CF OR =,
A AOD ∠∠∴=,
在AOR V 和ODG V 中,
A AOD ∠∠=Q ,ARO OGD 90∠∠==o ,OA DO =,
AOR ∴V ≌ODG V ,
OR DG ∴=,
DG CF ∴=,
()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .
设DG 3m =,则CF 3m =,CE 4m =,
OCF F BTE 90∠∠∠===o Q ,
AF//OC//BT ∴,
OA OB =Q ,
CT CF 3m ∴==,
ET m ∴=,
CD Q 为直径,
CBD CND 90CBE ∠∠∠∴===o ,
E 90EBT CBT ∠∠∠∴=-=o ,
tan E tan CBT ∠∠∴=,
BT CT ET BT
∴=, BT 3m m BT
∴=,
BT ∴=负根已经舍弃),
tan E m
∠∴== E 60∠∴=o ,
CWD HDE H ∠∠∠=+Q ,HDE HCE ∠∠=,
H E 60∠∠∴==o ,
MON 2HCN 60∠∠∴==o ,
OM ON =Q ,
OMN ∴V 是等边三角形,
MN ON ∴=,
QM OB OM ==Q ,
MOQ MQO ∠∠∴=,
MOQ PON 180MON 120∠∠∠+=-=o o Q ,MQO P 180H 120∠∠∠+=-=o o , PON P ∠∠∴=,
ON NP 141125∴==+=,
CD 2ON 50∴==,MN ON 25==,
在Rt CDN V 中,CN 48==,
在Rt CHN V 中,CN 48tan H HN HN
∠===
HN ∴=
在Rt KNH V 中,1KH HN 2==NK HN 242
==,
在Rt NMK V 中,MK 7===,
HM HK MK 7∴=+=.
【点睛】
本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.
2.如图,△ABC 的内接三角形,P 为BC 延长线上一点,∠PAC=∠B ,AD 为⊙O 的直径,
过C作CG⊥AD于E,交AB于F,交⊙O于G.
(1)判断直线PA与⊙O的位置关系,并说明理由;
(2)求证:AG2=AF·AB;
(3)若⊙O的直径为10,AC=25,AB=45,求△AFG的面积.
【答案】(1)PA与⊙O相切,理由见解析;(2)证明见解析;(3)3.
【解析】
试题分析:(1)连接CD,由AD为⊙O的直径,可得∠ACD=90°,由圆周角定理,证得∠B=∠D,由已知∠PAC=∠B,可证得DA⊥PA,继而可证得PA与⊙O相切.
(2)连接BG,易证得△AFG∽△AGB,由相似三角形的对应边成比例,证得结论.(3)连接BD,由AG2=AF•AB,可求得AF的长,易证得△AEF∽△ABD,即可求得AE的长,继而可求得EF与EG的长,则可求得答案.
试题解析:解:(1)PA与⊙O相切.理由如下:
如答图1,连接CD,
∵AD为⊙O的直径,∴∠ACD=90°.
∴∠D+∠CAD=90°.
∵∠B=∠D,∠PAC=∠B,∴∠PAC=∠D.
∴∠PAC+∠CAD=90°,即DA⊥PA.
∵点A在圆上,
∴PA与⊙O相切.
(2)证明:如答图2,连接BG,