2016—2017九年级数学(上)期末试卷及答案

合集下载

2016-2017学年第一学期期末考试九年级数学答案

2016-2017学年第一学期期末考试九年级数学答案

2016—2017学年第一学期期末考试试卷九年级数学参考答案二、填空题(每题5分,共30分)11.60 12.3 13.π48 14.5415. ②③ 16.5 三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.3602r n S π= ………………4分=ππ91036021002=⨯(2cm )………………4分 18.解:(1)一次出拳小聪出“石头”的概率是;………………2分(2)如图:………………4分则小聪胜小明的概率是=; ………………2分19.设经过t 小时后,乙船在甲船的正东方………………1分︒⨯=︒-302045)10100(Sin t Sin t ………………3分解得:)12(101210-=+=t ………………3分(不化简不扣分)答:经过)12(10-小时后,乙船在甲船的正东方.………………1分 20.(1) C ………………3分(2) 4)1(221--=x y ,其顶点为(1,-4), ………………1分 而抛物线2y 的顶点坐标为(m ,2),由它们的系数关系,可以得出友好抛物线的顶点的横坐标相同,纵坐标抛物线1y 是抛物线2y 的k 倍,………………2分∴2-=k , ∴1222++-=x x y ………………2分21.解:(1)y 1=2x ﹣20,(0<x≤200)………………2分y 2=10x ﹣40﹣0.05x 2=﹣0.05x 2+10x ﹣40.(0<x≤80).………………2分(2)对于y 1=2x ﹣20,当x=200时,y 1的值最大=380万元.………………2分对于y 2=﹣0.05(x ﹣100)2+460, ∵0<x≤80, ∴x=80时,y 2最大值=440万元.………………2分∵440>380,∴选择生产乙产品利润比较高.………………2分22.(1)证△OPI ≌△ODI (SAS) ………………6分 (2) I 为△OPQ 的内心,且∠OQP=90°,所以∠OIP=135°,……………4分则∠OID=135°,所以∠PID=90°………………2分23.(1)证△BHF ∽△DFG (两角对应相等的两个三角形相似) ………2分得出DGBFDF BH =,………………2分 又因为F 是BD 的中点,所以24BD GD BH =⋅………………2分 (2)同理可得△CBF ∽△FDG , ∴FGCFDF BC =, 又∵DF=BF ,∴FGCFBF BC = ∵∠CBF=∠CFG ,∴△CBF ∽△CFG ………………4分 ∴∠BCF =∠FCG ………………1分当CA=CG 时,CF ⊥AD ………………1分24.(1)3(2)(4)8y x x =-+-343832++-=x x ………………5分(2)当CD ∥BF 时,△COD ∽△FDB ∴DBDFOD OC = ∴ tt t t --+-=4)4)(2(833………………3分解得:41-=t (舍),22=t ………………2分∴ t=2时,CD ∥BF(3)当40<<t 时,①若CE=EF ,t t t 2383452+-=,32=t ………………1分 ②若CF=EF , 53)2383(852⨯+-=t t t ,911=t ………………1分③若CE=CF , 3433438362+-++-=t t t ,0=t (舍………1分当t>4时,只有CE=EF ,t t t 2383452-=,322=t …………1分∴ 当32=t 或119或223时CEF ∆为等腰三角形.。

2016-2017学年最新人教版九年级数学(上册)期末测试卷和答案

2016-2017学年最新人教版九年级数学(上册)期末测试卷和答案

2016-2017学年九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点(a,8)在二次函数y=ax2的图象上,则a的值是()A.2 B.﹣2 C.±2 D.±2.如果二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,那么()A.b2﹣4ac≥0 B.b2﹣4ac<0 C.b2﹣4ac>0 D.b2﹣4ac=03.国家实施惠农政策后,某镇农民人均收入经过两年由1万元提高到1.44万元.这两年该镇农民人均收入的平均增长率是()A.10% B.11% C.20% D.22%4.三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是()A.24 B.24或8C.48 D.85.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x﹣1)2+4 D.y=(x﹣1)2+26.抛物线y=x2+x﹣4的对称轴是()A.x=﹣2 B.x=2 C.x=﹣4 D.x=47.随机掷两枚硬币,落地后全部正面朝上的概率是()A.1 B.C.D.8.下列二次根式中,与是同类二次根式的是()A. B. C. D.9.如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB 的长是()A.2cm B.3cm C.4cm D.4cm10.如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5 B.4 C.3 D.211.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是()A.AD=BD B.∠ACB=∠AOE C.D.OD=DE12.关于二次函数y=x2+4x﹣7的最大(小)值,叙述正确的是()A.当x=2时,函数有最大值B.x=2时,函数有最小值C.当x=﹣1时,函数有最大值 D.当x=﹣2时,函数有最小值二、填空题(本大题共8小题,每小题3分,满分24分)13.方程x(x﹣1)=x的解为.14.抛物线y=x2+8x﹣4与直线x=4的交点坐标是.15.二次函数y=﹣x2+3的开口方向是.16.已知:△ABC中,∠C=90°,AC=5cm,AB=13cm,以B为圆心,以12cm长为半径作⊙B,则C点在⊙B.17.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.18.在同一时刻,一杆高为2m,影长为1.2m,某塔的影长为18m,则塔高为m.19.要用一条长为24cm的铁丝围成一个斜边长是10cm的直角三角形,则两直角边的长分别为.20.如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长26米,且斜坡AB的坡度为,则河堤的高BE为米.三、解答题(本大题共8小题,满分60分)21.计算:(﹣)﹣1+﹣2+|π﹣sin30°|0.22.已知抛物线y=x2﹣2x﹣8与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.23.如图,一根水平放置着的圆柱形输水管道的横截面如图所示,期中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是多少米?24.如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC.求证:CD=CE.25.已知:如图,△ABC内接于⊙O,AE是⊙O的直径,CD是△ABC中AB边上的高,求证:AC•BC=AE•CD.26.某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进60米到达点D,又测得点A的仰角为45度.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)27.已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.(1)求出cosB的值;(2)用含y的代数式表示AE;(3)求y与x之间的函数关系式,并求出x的取值范围;(4)设四边形DECF的面积为S,求出S的最大值.28.如图,抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于C点.(1)求A、B、C三点的坐标;(2)证明:△ABC为直角三角形;(3)在抛物线上除C点外,是否还存在另外一个点P,使△ABP是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2016-2017学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点(a,8)在二次函数y=ax2的图象上,则a的值是()A.2 B.﹣2 C.±2 D.±【考点】二次函数图象上点的坐标特征.【分析】因为点(a,8)在二次函数y=ax2的图象上,所以(a,8)符合解析式,代入解析式得8=a3,即a=2.【解答】解:把点(a,8)代入解析式得8=a3,即a=2.故选A.2.如果二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,那么()A.b2﹣4ac≥0 B.b2﹣4ac<0 C.b2﹣4ac>0 D.b2﹣4ac=0【考点】抛物线与x轴的交点.【分析】先看二次函数y=ax2+bx+c(a>0)的a的值a>0,故二次函数开口向上;再看二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,故可得此二次函数与x轴没有交点,由此得解.【解答】解:∵a>0,∴二次函数开口向上;又因为二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,所以此二次函数与x轴没有交点,所以b2﹣4ac<0.故选B.3.国家实施惠农政策后,某镇农民人均收入经过两年由1万元提高到1.44万元.这两年该镇农民人均收入的平均增长率是()A.10% B.11% C.20% D.22%【考点】一元二次方程的应用.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这两年该镇农民人均收入的平均增长率是x,那么由题意可得出1×(1+x)2=1.44,解方程即可求解.【解答】解:设这两年该镇农民人均收入的平均增长率是x,根据题意得:1×(1+x)2=1.44解得x=﹣2.2(不合题意舍去),x=0.2所以这两年该镇农民人均收入的平均增长率是20%.故选C.4.三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是()A.24 B.24或8C.48 D.8【考点】一元二次方程的应用;三角形三边关系;等腰三角形的性质;勾股定理的逆定理.【分析】本题应先解出x的值,然后讨论是何种三角形,接着对图形进行分析,最后运用三角形的面积公式S=×底×高求出面积.【解答】解:x2﹣16x+60=0⇒(x﹣6)(x﹣10)=0,∴x=6或x=10.当x=6时,该三角形为以6为腰,8为底的等腰三角形.∴高h==2,∴S△=×8×2=8;当x=10时,该三角形为以6和8为直角边,10为斜边的直角三角形.∴S△=×6×8=24.∴S=24或8.故选:B.5.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x﹣1)2+4 D.y=(x﹣1)2+2【考点】二次函数的三种形式.【分析】根据配方法进行整理即可得解.【解答】解:y=x2﹣2x+3,=(x2﹣2x+1)+2,=(x﹣1)2+2.故选:D.6.抛物线y=x2+x﹣4的对称轴是()A.x=﹣2 B.x=2 C.x=﹣4 D.x=4【考点】二次函数的性质.【分析】可以用配方法将抛物线的一般式写成顶点式,或者用对称轴公式x=.【解答】解:∵抛物线y=x2+x﹣4=(x﹣2)2﹣3,∴顶点横坐标为x=2,对称轴就是直线x=2.故选B.7.随机掷两枚硬币,落地后全部正面朝上的概率是()A.1 B.C.D.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出全部正面朝上的情况数,即可求出所求的概率.【解答】解:列表如下:所有等可能的情况有4种,其中全部正面朝上的情况有1种,则掷两枚硬币,落地后全部正面朝上的概率为.故选D.8.下列二次根式中,与是同类二次根式的是()A. B. C. D.【考点】同类二次根式.【分析】先将各二次根式化简为最简二次根式,然后根据同类二次根式的定义判断即可.【解答】解:A、=3,故A错误;B、,故B错误;C、=4,故C正确;D、=4,故D错误.故选:C.9.如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB 的长是()A.2cm B.3cm C.4cm D.4cm【考点】垂径定理;相交弦定理.【分析】利用垂径定理和相交弦定理求解.【解答】解:利用垂径定理可知,DP=CP=3,∵P是半径OB的中点.∴AP=3BP,AB=4BP,利用相交弦的定理可知:BP•3BP=3×3,解得BP=,即AB=4.故选D.10.如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5 B.4 C.3 D.2【考点】垂径定理;等边三角形的性质.【分析】当OM⊥AB时值最小.根据垂径定理和勾股定理求解.【解答】解:根据直线外一点到直线的线段中,垂线段最短,知:当OM⊥AB时,为最小值4,连接OA,根据垂径定理,得:BM=AB=3,根据勾股定理,得:OA==5,即⊙O的半径为5.故选A.11.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是()A.AD=BD B.∠ACB=∠AOE C.D.OD=DE【考点】圆周角定理;垂径定理.【分析】由垂径定理和圆周角定理可证,AD=BD,AD=BD,,而点D不一定是OE 的中点,故D错误.【解答】解:∵OD⊥AB∴由垂径定理知,点D是AB的中点,有AD=BD,,∴△AOB是等腰三角形,OD是∠AOB的平分线,有∠AOE=∠AOB,由圆周角定理知,∠C=∠AOB,∴∠ACB=∠AOE,故A、B、C正确,D中点D不一定是OE的中点,故错误.故选D.12.关于二次函数y=x2+4x﹣7的最大(小)值,叙述正确的是()A.当x=2时,函数有最大值B.x=2时,函数有最小值C.当x=﹣1时,函数有最大值 D.当x=﹣2时,函数有最小值【考点】二次函数的最值.【分析】本题考查二次函数最小(大)值的求法.【解答】解:原式可化为y=x2+4x+4﹣11=(x+2)2﹣11,由于二次项系数1>0,故当x=﹣2时,函数有最小值﹣11.故选D.二、填空题(本大题共8小题,每小题3分,满分24分)13.方程x(x﹣1)=x的解为x1=0,x2=2.【考点】解一元二次方程-因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣1)=x,x(x﹣1)﹣x=0,x(x﹣1﹣1)=0,x=0,x﹣1﹣1=0,x1=0,x2=2.故答案为:x1=0,x2=2.14.抛物线y=x2+8x﹣4与直线x=4的交点坐标是(4,44).【考点】二次函数图象上点的坐标特征.【分析】将x=4代入y=x2+8x﹣4中求y,可确定交点坐标.【解答】解:将x=4代入y=x2+8x﹣4中,得y=42+8×4﹣4=44,故交点坐标为(4,44).15.二次函数y=﹣x2+3的开口方向是向下.【考点】二次函数的性质.【分析】根据二次项系数的符号,直接判断开口方向.【解答】解:根据二次函数的性质可知a=﹣<0,所以开口向下.16.已知:△ABC中,∠C=90°,AC=5cm,AB=13cm,以B为圆心,以12cm长为半径作⊙B,则C点在⊙B上.【考点】点与圆的位置关系.【分析】首先根据勾股定理可求出BC的长,在根据点与圆的位置关系判定即可.【解答】解:∵∠C=90°,AC=5cm,AB=13cm,∴BC==12cm,∵以B为圆心,以12cm长为半径作⊙B,∴则C点在⊙B上,故答案为:上.17.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.【考点】概率公式;中心对称图形.【分析】让有中心对称图案的卡片的情况数除以总情况数即为所求的概率【解答】解:根据概率的求简单事件的概率的计算及中心对称图形概念的理解;理论上抽到中心对称图案卡片的概率是中心对称图案的卡片的个数除以所有所有卡片的个数,而中心对称图案有圆、矩形、菱形、正方形,所以概率为.18.在同一时刻,一杆高为2m,影长为1.2m,某塔的影长为18m,则塔高为30m.【考点】平行线分线段成比例.【分析】因为在同一时刻同一地点任何物体的高与其影子长的比值相同,所以利用题目的参照物就可以直接求出塔高.【解答】解:设塔高为x,根据同一时刻同一地点任何物体的高与其影子长的比值相同.得∴x=30.∴塔高为30m.19.要用一条长为24cm的铁丝围成一个斜边长是10cm的直角三角形,则两直角边的长分别为6cm,8cm.【考点】一元二次方程的应用;勾股定理.【分析】首先设一直角边长为xcm,则另一直角边长为(14﹣x)cm,由题意得等量关系:两直角边的平方和等于10的平方,进而列出方程,再解方程即可.【解答】解:设一直角边长为xcm,根据勾股定理得:(14﹣x)2+x2=102,解得x1=6,x2=8,故答案为:6cm,8cm.20.如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长26米,且斜坡AB的坡度为,则河堤的高BE为24米.【考点】解直角三角形的应用-坡度坡角问题.【分析】由已知斜坡AB的坡度,可得到BE、AE的比例关系,进而由勾股定理求得BE、AE的长,由此得解.【解答】解:由已知斜坡AB的坡度,得:BE:AE=12:5,设AE=5x,则BE=12x,在直角三角形AEB中,根据勾股定理得:262=5x2+(12x)2,即169x2=676,解得:x=2或x=﹣2(舍去),5x=10,12x=24即河堤高BE等于24米.故答案为:24.三、解答题(本大题共8小题,满分60分)21.计算:(﹣)﹣1+﹣2+|π﹣sin30°|0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负整数指数幂法则计算,第二项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣2+3﹣5﹣2+1=﹣6+.22.已知抛物线y=x2﹣2x﹣8与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.【考点】抛物线与x轴的交点.【分析】分别求出抛物线顶点P坐标,与x轴交点A、B坐标,即可解决问题.【解答】解:∵抛物线y=x2﹣2x﹣8,令y=0得x2﹣2x﹣8=0,∴x=4或﹣2,∴点A(﹣2,0),点B(4,0),∵y=(x﹣1)2﹣9,∴顶点P(1,﹣9),∴S△ABP=×6×9=27.23.如图,一根水平放置着的圆柱形输水管道的横截面如图所示,期中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是多少米?【考点】垂径定理的应用;勾股定理.【分析】设⊙O的半径是R,过点O作OD⊥AB于点D,交⊙O于点C,连接OA,由垂径定理得出AD的长,在Rt△AOD中利用勾股定理即可求出OA的长.【解答】解:设⊙O的半径是R,过点O作OD⊥AB于点D,交⊙O于点C,连接OA,∵AB=0.8m,OD⊥AB,∴AD==0.4m,∵CD=0.2m,∴OD=R﹣CD=R﹣0.2,在Rt△OAD中,OD2+AD2=OA2,即(R﹣0.2)2+0.42=R2,解得R=0.5m.∴2R=2×0.5=1米.答:此输水管道的直径是1米.24.如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC.求证:CD=CE.【考点】圆心角、弧、弦的关系;全等三角形的判定.【分析】证CD和CE所在的三角形全等即可.【解答】证明:∵OA=OB AD=BE,∴OA﹣AD=OB﹣BE,即OD=OE.在△ODC和△OEC中,,∴△ODC≌△OEC(SAS).∴CD=CE.25.已知:如图,△ABC内接于⊙O,AE是⊙O的直径,CD是△ABC中AB边上的高,求证:AC•BC=AE•CD.【考点】三角形的外接圆与外心;相似三角形的判定与性质.【分析】通过分析易证△BDC∽△ECA,利用相似比得出.即可得出AC•BC=AE•CD.【解答】证明:连接EC.∵AE是⊙O的直径,CD是△ABC中AB边上的高,∴∠ACE=∠CDB=90°.又∵∠B=∠E,∴△BDC∽△ECA.∴.∴AC•BC=AE•CD.26.某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进60米到达点D,又测得点A的仰角为45度.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB及CD=BC﹣BD=60构造方程关系式,进而可解,即可求出答案.【解答】解:由已知,可得:∠ACB=30°,∠ADB=45°,∴在Rt△ABD中,BD=AB.又在Rt△ABC中,∵tan30°=,∴,即BC=AB.∵BC=CD+BD,∴AB=CD+AB,即(﹣1)AB=60,∴AB=米.答:教学楼的高度为30(+1)米.27.已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.(1)求出cosB的值;(2)用含y的代数式表示AE;(3)求y与x之间的函数关系式,并求出x的取值范围;(4)设四边形DECF的面积为S,求出S的最大值.【考点】相似三角形的判定与性质;二次函数的最值.【分析】(1)根据勾股定理求出AB后,然后根据角的三角函数即可求出结论;(2)根据题意求证四边形DECF为矩形,即可推出DF=EC=y,然后结合图形即可求出AE=8﹣y;(3)根据余角的性质即可推出∠A=∠BDF,继而求证△ADE∽△DBF,结合对应边成比例和BF=4﹣x,AE=8﹣y,即可求出y=﹣2x+8(0<x<4);(4)根据(3)所推出的结论,结合矩形的面积公式通过等量代换,即可求出二次函数S=DE•DF=﹣2x2+8x,然后根据二次函数的最值公式即可求出S的最大值.【解答】解:(1)∵∠C=90°,BC=4,AC=8,∴cosB=BC:AB=4:4=,(2)∵∠C=90°,DE⊥AC,DF⊥BC,∴四边形DECF为矩形,∵DF=y,∴DF=EC=y,∵AC=8,AE=AC﹣EC,∴AE=8﹣y,(3)∵∠C=90°,DE⊥AC,DF⊥BC,∴∠A+∠B=90°,∠BDF+∠ADE=90°,∴∠A=∠BDF,∴△ADE∽△DBF,∴,∵矩形DECF,DF=y,DE=x,∴CF=x,CE=y,∴BF=BC﹣CF=4﹣x,∵AE=8﹣y,∴,∴y=﹣2x+8(0<x<4),(4)∵y=﹣2x+8,DE=x,DF=y,∴S=DE•DF=xy=x(﹣2x+8)=﹣2x2+8x=﹣2(x2﹣4x+4)+8,即S=﹣2(x﹣2)2+8,∴当x=2时,S的值最大,S的最大值为8.28.如图,抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于C点.(1)求A、B、C三点的坐标;(2)证明:△ABC为直角三角形;(3)在抛物线上除C点外,是否还存在另外一个点P,使△ABP是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】抛物线与x轴的交点;勾股定理的逆定理.【分析】(1)抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于C点,分别将x=0,y=0代入求得A、B、C的坐标;(2)由(1)得到边AB,AC,BC的长,再根据勾股定理的逆定理来判定△ABC为直角三角形;(3)根据抛物线的对称性可得另一点的坐标.【解答】解:(1)∵抛物线y=﹣x2+x+2与x轴交于A、B两点,∴﹣x2+x+2=0.即x2﹣x﹣4=0.解之得:x1=﹣,x2=2.∴点A、B的坐标为A(﹣,0)、B(2,0).将x=0代入y=﹣x2+x+2,得C点的坐标为(0,2);(2)∵AC=,BC=2,AB=3,∴AB2=AC2+BC2,则∠ACB=90°,∴△ABC是直角三角形;(3)当PC∥x轴,即P点与C点是抛物线的对称点,而C点坐标为(0,2)设y=2,把y=2代入y=﹣x2+x+2得:﹣x2+x+2=2,∴x1=0,x2=.∴P点坐标为(,2).第21页(共21页)。

2016-2017年福建省福州市九年级(上)期末数学试卷和解析答案

2016-2017年福建省福州市九年级(上)期末数学试卷和解析答案

2016-2017学年福建省福州市九年级(上)期末数学试卷一、选择题:共10小题,每题4分,共40分,每小题只有一个正确地选项,请在答题卡地相应位置填涂.1.(4分)下列图形中,是中心对称图形地是()A. B.C.D.2.(4分)若方程3(x﹣7)(x﹣2)=k地根是7和2,则k地值为()A.0 B.2 C.7 D.2或73.(4分)气象台预报“本市明天降水概率是80%”,对此信息,下面地几种说法正确地是()A.本市明天将有80%地地区降水B.本市明天将有80%地时间降水C.明天肯定下雨D.明天降水地可能性比较大4.(4分)二次函数y=x2﹣2地顶点坐标是()A.(0,0) B.(0,﹣2)C.(0,2) D.(,0)5.(4分)下列图形中,∠B=2∠A地是()A.B.C.D.6.(4分)在一幅长为80cm,宽为50cm地矩形风景画地四周镶一条相同宽度地边框,制成一幅挂图,如图所示.设边框地宽为xcm,如果整个挂图地面积是5400cm2,那么下列方程符合题意地是()A.(50﹣x)(80﹣x)=5400 B.(50﹣2x)(80﹣2x)=5400C.(50+x)(80+x)=5400 D.(50+2x)(80+2x)=54007.(4分)正六边形地两条对边之间地距离是2,则它地边长是()A.1 B.2 C.D.28.(4分)若点M(m,n)(mn≠0)在二次函数y=ax2(a≠0)图象上,则下列坐标表示地点也在该抛物线图象上地是()A.(﹣m,n)B.(n,m)C.(m2,n2)D.(m,﹣n)9.(4分)在⊙O中,将圆心绕着圆周上一点A旋转一定角度θ,使旋转后地圆心落在⊙O上,则θ地值可以是()A.30°B.45°C.60°D.90°10.(4分)圆心角为60°地扇形面积为S,半径为r,则下列图象能大致描述S 与r地函数关系地是()A.B.C.D.二、填空题:共6小题,每题4分,共24分.11.(4分)点(0,1)关于原点O对称地点是.12.(4分)从实数﹣1、﹣2、1中随机选取两个数,积为负数地概率是.13.(4分)已知∠APB=90°,以AB为直径作⊙O,则点P与⊙O地位置关系是.14.(4分)如图,利用标杆BE测量建筑物地高度.若标杆BE地高为1.2m,测得AB=1.6m,BC=12.4m,则楼高CD为m.15.(4分)已知▱ABCD地面积为4,对角线AC在y轴上,点D在第一象限内,且AD∥x轴,当双曲线y=经过B、D两点时,则k=.16.(4分)二次函数y=(x﹣2m)2+m2,当m<x<m+1时,y随x地增大而减小,则m地取值范围是.三、解答题:共9小题,满分86分.17.(8分)解方程x2+6x+1=0.18.(8分)已知关于x地一元二次方程(x﹣1)2=m﹣1有两个不相等地实数根,求m地取值范围.19.(8分)如图,△ABC中,∠C=90°,CA=CB=1,将△ABC绕点B顺时针旋转45°,得到△DBE(A、D两点为对应点),画出旋转后地图形,并求出线段AE地长.20.(8分)一个不透明地盒子中有2枚黑棋,x枚白棋,这些棋子除颜色外无其他差别,现从盒中随机摸出一枚棋子(不放回),再随机摸出一枚棋子.(1)若“摸出两枚棋子地颜色都是白色”是不可能事件,请写出符合条件地一个x 值;(2)当x=2时,“摸出两枚棋子地颜色相同”与“摸出两枚棋子地颜色不同”地概率相等吗?说明理由.21.(8分)如图,△ABC中,点D在BC边上,有下列三个关系式:①∠BAC=90°,②=,③AD⊥BC.选择其中两个式子作为已知,余下地一个作为结论,写出已知,求证,并证明.已知:求证:证明:22.(10分)如图,在左边托盘A(固定)中放置一个重物,在右边托盘B(可左右移动)中放置一定质量地砝码,可使得仪器左右平衡,改变托盘B与支撑点M地距离,记录相应地托盘B中地砝码质量,得到下表:(1)把上表中(x,y)地各组对应值作为点地坐标,在如图所示地平面直角坐标系中描出其余地点,并用一条光滑曲线连接起来;观察所画地图象,猜测y与x之间地函数关系,求出该函数解析式;(2)当托盘B向左移动(不超过点M)时,应往托盘B中添加砝码还是减少砝码?23.(10分)如图,在Rt△ABC中,∠C=90°,O为AB边上一点,⊙O交AB于E,F两点,BC切⊙O于点D,且CD=EF=1.(1)求证:⊙O与AC相切;(2)求图中阴影部分地面积.24.(13分)在平面直角坐标系xOy中,对于点P(x,y),若点Q地坐标为(x,|x﹣y|),则称点Q为点P地“关联点”.(1)请直接写出点(2,2)地“关联点”地坐标;(2)如果点P在函数y=x﹣1地图象上,其“关联点”Q与点P重合,求点P地坐标;(3)如果点M(m,n)地“关联点”N在函数y=x2地图象上,当0≤m≤2时,求线段MN地最大值.25.(13分)如图,C为线段AB上一点,分别以AC、BC为边在AB地同侧作等边△HAC与等边△DCB,连接DH.(1)如图1,当∠DHC=90°时,求地值;(2)在(1)地条件下,作点C关于直线DH地对称点E,连接AE、BE,求证:CE平分∠AEB;(3)现将图1中△DCB绕点C顺时针旋转一定角度α(0°<α<90°),如图2,点C关于直线DH地对称点为E,则(2)中地结论是否成立并证明.2016-2017学年福建省福州市九年级(上)期末数学试卷参考答案与试题解析一、选择题:共10小题,每题4分,共40分,每小题只有一个正确地选项,请在答题卡地相应位置填涂.1.(4分)下列图形中,是中心对称图形地是()A. B.C.D.【解答】解:A、不是中心对称地图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.2.(4分)若方程3(x﹣7)(x﹣2)=k地根是7和2,则k地值为()A.0 B.2 C.7 D.2或7【解答】解:整理方程得3x2﹣27x+42﹣k=0,∵方程地根是7和2,∴=14,解得:k=0,故选:A.3.(4分)气象台预报“本市明天降水概率是80%”,对此信息,下面地几种说法正确地是()A.本市明天将有80%地地区降水B.本市明天将有80%地时间降水C.明天肯定下雨D.明天降水地可能性比较大【解答】解:本市明天降水概率是80%,只说明明天降水地可能性比较大,是随机事件,A,B,C属于对题意地误解,只有D正确.故选:D.4.(4分)二次函数y=x2﹣2地顶点坐标是()A.(0,0) B.(0,﹣2)C.(0,2) D.(,0)【解答】解:二次函数y=x2﹣2地顶点坐标是(0,﹣2).故选B.5.(4分)下列图形中,∠B=2∠A地是()A.B.C.D.【解答】解:A中,∠A=∠B;B中,∠A与∠B地大小无法判定;C中,∠A+∠B=180°;D中,∠B=2∠A.故选D.6.(4分)在一幅长为80cm,宽为50cm地矩形风景画地四周镶一条相同宽度地边框,制成一幅挂图,如图所示.设边框地宽为xcm,如果整个挂图地面积是5400cm2,那么下列方程符合题意地是()A.(50﹣x)(80﹣x)=5400 B.(50﹣2x)(80﹣2x)=5400C.(50+x)(80+x)=5400 D.(50+2x)(80+2x)=5400【解答】解:依题意,设金色纸边地宽为xcm,(80+2x)(50+2x)=5400,故选:D.7.(4分)正六边形地两条对边之间地距离是2,则它地边长是()A.1 B.2 C.D.2【解答】解:连接OA、OB,设MN⊥AB、MN⊥DE,MN过中心O,∵ABCDEF是正六边形,∴∠AOB=60°,∠AOM=30°,∵正六边形地两条对边之间地距离是2,∴OM=ON=,∴AM=OM×tan∠AOM=1,∵OA=OB,OM⊥AB,∴AB=2AM=2,故选B.8.(4分)若点M(m,n)(mn≠0)在二次函数y=ax2(a≠0)图象上,则下列坐标表示地点也在该抛物线图象上地是()A.(﹣m,n)B.(n,m)C.(m2,n2)D.(m,﹣n)【解答】解:∵二次函数y=ax2(a≠0)地对称轴是y轴,∴点M(m,n)(mn≠0)关于y轴地对称点(﹣m,n)也在该抛物线图象上,故选:A.9.(4分)在⊙O中,将圆心绕着圆周上一点A旋转一定角度θ,使旋转后地圆心落在⊙O上,则θ地值可以是()A.30°B.45°C.60°D.90°【解答】解:如图所示:由旋转地性质可知:AO=AO′,∴OO′=OA=AO′,∴△OAO′为等边三角形.∴θ=∠OAO′=60°.故选:C.10.(4分)圆心角为60°地扇形面积为S,半径为r,则下列图象能大致描述S 与r地函数关系地是()A.B.C.D.【解答】解:∵圆心角为60°地扇形面积为S,半径为r,∴S==,∴S是r地二次函数,且r>0,∴C、D错误;∵r=1时,S=<1;r=2时,S=≈2.09,故选A.二、填空题:共6小题,每题4分,共24分.11.(4分)点(0,1)关于原点O对称地点是(0,﹣1).【解答】解:点(0,1)关于原点O对称地点是(0,﹣1),故答案为:(0,﹣1).12.(4分)从实数﹣1、﹣2、1中随机选取两个数,积为负数地概率是.【解答】解:从2,﹣3,﹣5这三个数中,随机抽取两个数相乘,有3种取法,其中有2种积为负数,故其概率为.故答案为13.(4分)已知∠APB=90°,以AB为直径作⊙O,则点P与⊙O地位置关系是点P在⊙O上.【解答】解:如图所示:当点P在⊙O上时,∵AB是⊙O地直径,∴∠APB=90°,又∵∠APB=90°,则点P在⊙O上.故答案为:点P在⊙O上.14.(4分)如图,利用标杆BE测量建筑物地高度.若标杆BE地高为1.2m,测得AB=1.6m,BC=12.4m,则楼高CD为10.5m.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故答案为10.5.15.(4分)已知▱ABCD地面积为4,对角线AC在y轴上,点D在第一象限内,且AD∥x轴,当双曲线y=经过B、D两点时,则k=2.【解答】解:由题意可画出图形,设点D地坐标为(x,y),∴AD=x,OA=y,∵▱ABCD地面积为4,∴AD•AC=2AD•OA=4,∴2xy=4,∴xy=2,∴k=xy=2,故答案为:216.(4分)二次函数y=(x﹣2m)2+m2,当m<x<m+1时,y随x地增大而减小,则m地取值范围是m≥1.【解答】解:∵y=(x﹣2m)2+m2,∴抛物线开口向上,对称轴为x=2m,∴当x<2m时,y随x地增大而减小,∵当m<x<m+1时,y随x地增大而减小,∴m+1≤2m,解得m≥1,故答案为:m≥1.三、解答题:共9小题,满分86分.17.(8分)解方程x2+6x+1=0.【解答】解:∵x2+6x=﹣1,∴x2+6x+9=﹣1+9,即(x+3)2=8,∴x+3=±2,则x=﹣3±2.18.(8分)已知关于x地一元二次方程(x﹣1)2=m﹣1有两个不相等地实数根,求m地取值范围.【解答】解:∵方程(x﹣1)2=m﹣1有两个不相等地实数根,∴m﹣1>0,解得:m>4.∴m地取值范围为m>4.19.(8分)如图,△ABC中,∠C=90°,CA=CB=1,将△ABC绕点B顺时针旋转45°,得到△DBE(A、D两点为对应点),画出旋转后地图形,并求出线段AE地长.【解答】解:如图,∵∠C=90°,CA=CB=1,∴∠ABC=45°,AB=BC=,∵△ABC绕点B顺时针旋转45°,得到△DBE,∴∠CBE=45°,BC=BE=1,∵∠CBE=∠CBA,∴点E在AB上,∴AE=AB﹣BE=﹣1.20.(8分)一个不透明地盒子中有2枚黑棋,x枚白棋,这些棋子除颜色外无其他差别,现从盒中随机摸出一枚棋子(不放回),再随机摸出一枚棋子.(1)若“摸出两枚棋子地颜色都是白色”是不可能事件,请写出符合条件地一个x 值1(或0);(2)当x=2时,“摸出两枚棋子地颜色相同”与“摸出两枚棋子地颜色不同”地概率相等吗?说明理由.【解答】解:(1)若“摸出两枚棋子地颜色都是白色”是不可能事件,则x为1或故答案为1(或0);(2)不相等.理由如下:画树状图为:共有12种等可能地结果数,其中摸出两枚棋子地颜色相同地结果数为4,摸出两枚棋子地颜色不同地结果数为8,所以摸出两枚棋子地颜色相同地概率==,摸出两枚棋子地颜色不同地概率==,所以“摸出两枚棋子地颜色相同”与“摸出两枚棋子地颜色不同”地概率不相等.21.(8分)如图,△ABC中,点D在BC边上,有下列三个关系式:①∠BAC=90°,②=,③AD⊥BC.选择其中两个式子作为已知,余下地一个作为结论,写出已知,求证,并证明.已知:求证:证明:【解答】解:已知①③,求证:②,证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠BAC=90°,∴∠B+∠C=90°,∴∠BAD=∠C,∴△ABD∽△CAD,∴.22.(10分)如图,在左边托盘A(固定)中放置一个重物,在右边托盘B(可左右移动)中放置一定质量地砝码,可使得仪器左右平衡,改变托盘B与支撑点M地距离,记录相应地托盘B中地砝码质量,得到下表:(1)把上表中(x,y)地各组对应值作为点地坐标,在如图所示地平面直角坐标系中描出其余地点,并用一条光滑曲线连接起来;观察所画地图象,猜测y与x之间地函数关系,求出该函数解析式;(2)当托盘B向左移动(不超过点M)时,应往托盘B中添加砝码还是减少砝码?【解答】解:(1)函数图象如图所示,.观察图象可知,函数可能是反比例函数,设y=(k≠0),把(10,30)地坐标代入,得k=300,∴y=,经检验,其余各个点坐标均满足y=.(2)当托盘B向左移动(不超过点M)时,应往托盘B中添加砝码.由图象可知,当x>0时,y随x地增大而增大,所以当托盘B向左移动时,x减小,y增大.23.(10分)如图,在Rt△ABC中,∠C=90°,O为AB边上一点,⊙O交AB于E,F两点,BC切⊙O于点D,且CD=EF=1.(1)求证:⊙O与AC相切;(2)求图中阴影部分地面积.【解答】(1)证明:连接OD,过点O作OH⊥AC于点H,∵BC是⊙O地切线,∴OD⊥BC.∵∠C=90°,∴∠OHC=∠ODC=∠C=90°,∴四边形OHCD是矩形.∵CD=EF,∴OH=EF=OE.∵OH⊥AC,∴AC是⊙O地切线;(2)解:∵OD=EF=1,CD=1,∠DOH=90°,∴S=1×1﹣=1﹣π.阴影24.(13分)在平面直角坐标系xOy中,对于点P(x,y),若点Q地坐标为(x,|x﹣y|),则称点Q为点P地“关联点”.(1)请直接写出点(2,2)地“关联点”地坐标;(2)如果点P在函数y=x﹣1地图象上,其“关联点”Q与点P重合,求点P地坐标;(3)如果点M(m,n)地“关联点”N在函数y=x2地图象上,当0≤m≤2时,求线段MN地最大值.【解答】解:(1)∵|2﹣2|=0,∴点(2,2)地“关联点”地坐标为(2,0).(2)∵点P在函数y=x﹣1地图象上,∴P(x,x﹣1),则点Q地坐标为(x,1),∵点Q与点P重合,∴x﹣1=1,解得:x=2,∴点P地坐标为(2,1).(3)∵点M(m,n),∴点N(m,|m﹣n|).∵点N在函数y=x2地图象上,∴|m﹣n|=m2.(i)当m≥n时,m﹣n=m2,∴n=﹣m2+m,∴M(m,﹣m2+m),N(m,m2).∵0≤m≤2,∴MN=|y M﹣y N|=|﹣m2+m﹣m2|=m|2m﹣1|.①当0≤m≤时,MN=﹣2m2+m=﹣2+,∴当m=时,MN取最大值,最大值为.②当<m≤2时,MN=2m2﹣m=2+,当m=2时,MN取最大值,最大值为6.(ii)当m<n时,n﹣m=m2,∴n=m2+m,∴M(m,m2+m),N(m,m2).∵0≤m≤2,∴MN=|y M﹣y N|=|m2+m﹣m2|=m,当m=2时,MN取最大值2.25.(13分)如图,C为线段AB上一点,分别以AC、BC为边在AB地同侧作等边△HAC与等边△DCB,连接DH.(1)如图1,当∠DHC=90°时,求地值;(2)在(1)地条件下,作点C关于直线DH地对称点E,连接AE、BE,求证:CE平分∠AEB;(3)现将图1中△DCB绕点C顺时针旋转一定角度α(0°<α<90°),如图2,点C关于直线DH地对称点为E,则(2)中地结论是否成立并证明.【解答】解:(1)∵△HAC与△DCB都是等边三角形,∴∠ACH=∠DCB=60°,AC=HC,BC=CD,∴∠HCD=180°﹣∠ACH﹣∠DCB=60°,∵∠DHC=90°,∴∠HDC=180°﹣∠DHC﹣∠HCD=30°,∴CD=2CH,∴BC=2AC,∴=2;(2)如图1,由对称性得∠EHD=90°,EH=HC,∵AH=HC,∴EH=AH,∵∠DHC=90°,∴E,H,C三点共线,∴∠AEC=∠AHC=30°,由(1)可得BC=2CH=EC,∴∠BEC=∠ACE=30°,∴∠AEC=∠BEC,即CE平分∠AEB;(3)结论仍然正确,理由如下: 如图2,由对称性可知:HC=HE , 又∵AH=HC , ∴HC=HA=HE ,∵A ,C ,E 都在以H 为圆心,HA 为半径地圆上, ∴∠AEC=∠AHC=30°,同理可得,∠BEC=∠BDC=30°, ∴∠AEC=∠BEC , ∴EC 平分∠AEB .赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:PABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

2016-2017年山东省济宁市九年级(上)期末数学试卷和解析答案

2016-2017年山东省济宁市九年级(上)期末数学试卷和解析答案

2016-2017学年山东省济宁市九年级(上)期末数学试卷一、选择题(本大题满分30分,每小题3分,每小题只有一个符合题意地选项,请你将正确选项地代号填在答题框内)1.(3分)下面地几何体中,主视图为三角形地是()A.B.C.D.2.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,AB=5,则cosB地值为()A.B.C.D.3.(3分)抛物线y=(x﹣2)2地顶点坐标是()A.(2,0) B.(﹣2,0)C.(0,2) D.(0,﹣2)4.(3分)某十字路口地交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯地概率为()A.B.C.D.5.(3分)如图,以点P为圆心,以为半径地圆弧与x轴交于A,B两点,点A地坐标为(2,0),点B地坐标为(6,0),则圆心P地坐标为()A.(4,)B.(4,2) C.(4,4) D.(2,)6.(3分)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上地概率是()A.B.C.D.7.(3分)如图所示,边长为1地小正方形构成地网格中,半径为1地⊙O地圆心O在格点上,则∠AED地正切值等于()A.B.C.2 D.8.(3分)抛物线y=ax2+bx+c(a≠0),对称轴为直线x=2,且经过点P(3,0),则a+b+c地值为()A.﹣1 B.0 C.1 D.39.(3分)如图,某数学兴趣小组将长为6,宽为3地矩形铁丝框ABCD变形为以A为圆心,AB为半径地扇形(忽略铁丝地粗细),则所得扇形BAD地面积为()A.3 B.18 C.9 D.610.(3分)如图,A点在半径为2地⊙O上,过线段OA上地一点P作直线l,与⊙O过A点地切线交于点B,且∠APB=60°,设OP=x,则△PAB地面积y关于x地函数图象大致是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)冬季移栽兰花苗对成活率有影响,苗木基地相同条件下实验数据如下:移栽10株有9株成活,移栽1000株有950株成活,则估计该兰花移栽成活地概率是.12.(3分)在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移3个单位,得到地抛物线地解析式是.13.(3分)两位同学玩“石头、剪子、布”游戏,随机出手一次,两人手势相同地概率是.14.(3分)如图,AB是⊙O地直径,点C在AB地延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=°.15.(3分)如图是圆心角为30°,半径分别是1,3,5,7,…地扇形组成地图形,阴影部分地面积一次记为S1、S2、S3、…,则S11=(结果保留π).三、解答题(本大题共55分,解答要写出必要地文字说明或推演步骤)16.(6分)计算:cos45°﹣tan30°•sin60°.17.(6分)某市教育系统举行“中国梦”演讲比赛,希望中学准备从甲、乙、丙三位教师和A、B两名学生中选取一位教师和一名学生参加比赛.(1)若随机选一位教师和一名学生,用树状图(或列表法)表示所有可能出现地结果;(2)求恰好选中有教师甲和学生A地概率.18.(7分)如图,某中学九年级数学兴趣小组测量校内旗杆AB地高度,在C点测得旗杆顶端A地仰角∠BCA=30°,向前走了20米到达D点,在D点测得旗杆顶端A地仰角∠BDA=60°,求旗杆AB地高度.(结果保留根号)19.(8分)如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB 于点D.(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);(2)求证:BC是过A,D,C三点地圆地切线.20.(8分)某班同学参加社会公益活动,准备用每斤6元地价格购进一批水果进行销售,并将所得利润捐给孤寡老人.这种水果每天地销售量y(斤)与销售单价x(元/斤)之间地对应关系如表所示:(1)按照满足表中地销售规律,求y与x之间地函数表达式;(2)按照满足表中地销售规律,求每天销售利润W(元)与销售单价x(元/斤)之间地函数表达式;(3)在问题(2)条件下,若水果地进货成本每天不超过960元,每天要想获得最大地利润,试确定这种水果地销售单价,并求出该天地最大利润.21.(9分)如图,已知⊙O是以AB为直径地△ABC地外接圆,过点A作⊙O地切线交OC地延长线于点D,交BC地延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE地长.22.(11分)(1)己知,如图1,△ABC是⊙O地内接正三角形,点P为弧BC上一动点,请探究PA,PB,PC三者之间有何数量关系,并给予证明.(2)如图2,四边形ABCD是⊙O地内接正方形,点P为弧BC上一动点,请探究PA,PB,PC三者之间有何数量关系,并给予证明.(3)如图3,六边形ABCDEF是⊙O地内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC三者之间有何数量关系,直接写出结论不需证明.2016-2017学年山东省济宁市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题满分30分,每小题3分,每小题只有一个符合题意地选项,请你将正确选项地代号填在答题框内)1.(3分)下面地几何体中,主视图为三角形地是()A.B.C.D.【解答】解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.2.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,AB=5,则cosB地值为()A.B.C.D.【解答】解:在Rt△ABC中,∠C=90°,AC=3,AB=5,由勾股定理,得BC===4.cosB==,故选:B.3.(3分)抛物线y=(x﹣2)2地顶点坐标是()A.(2,0) B.(﹣2,0)C.(0,2) D.(0,﹣2)【解答】解:因为抛物线y=(x﹣2)2是顶点式,顶点坐标是(2,0).故选A.4.(3分)某十字路口地交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯地概率为()A.B.C.D.【解答】解:抬头看信号灯时,是黄灯地概率为:5÷(30+25+5)=5÷60=故选:A.5.(3分)如图,以点P为圆心,以为半径地圆弧与x轴交于A,B两点,点A地坐标为(2,0),点B地坐标为(6,0),则圆心P地坐标为()A.(4,)B.(4,2) C.(4,4) D.(2,)【解答】解:过点P作PC⊥AB于点C;即点C为AB地中点,又点A地坐标为(2,0),点B地坐标为(6,0),故点C(4,0)在Rt△PAC中,PA=,AC=2,即有PC=4,即P(4,4).故选C.6.(3分)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上地概率是()A.B.C.D.【解答】解:画树状图得:∵共有12种等可能地结果,点(a,b)在函数y=图象上地有(3,4),(4,3);∴点(a,b)在函数y=图象上地概率是:=.故选D.7.(3分)如图所示,边长为1地小正方形构成地网格中,半径为1地⊙O地圆心O在格点上,则∠AED地正切值等于()A.B.C.2 D.【解答】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故选D.8.(3分)抛物线y=ax2+bx+c(a≠0),对称轴为直线x=2,且经过点P(3,0),则a+b+c地值为()A.﹣1 B.0 C.1 D.3【解答】解:∵抛物线y=ax2+bx+c地对称轴为2,∴根据二次函数地对称性得:点(3,0)地对称点为(1,0),∵当x=1时,y=a+b+c=0,∴a+b+c地值等于0.故选B.9.(3分)如图,某数学兴趣小组将长为6,宽为3地矩形铁丝框ABCD变形为以A为圆心,AB为半径地扇形(忽略铁丝地粗细),则所得扇形BAD地面积为()A.3 B.18 C.9 D.6【解答】解:∵矩形地长为6,宽为3,∴AB=CD=6,AD=BC=3,∴弧BD地弧长=6,∴S=lr=×6×6=18.扇形DAB故选B.10.(3分)如图,A点在半径为2地⊙O上,过线段OA上地一点P作直线l,与⊙O过A点地切线交于点B,且∠APB=60°,设OP=x,则△PAB地面积y关于x地函数图象大致是()A.B.C.D.【解答】解:∵A点在半径为2地⊙O上,过线段OA上地一点P作直线l,与⊙O过A点地切线交于点B,且∠APB=60°,∴AO=2,OP=x,则AP=2﹣x,∴tan60°==,解得:AB=(2﹣x)=﹣x+2,∴S=×PA×AB=(2﹣x)••(﹣x+2)=x2﹣2x+2,△ABP故此函数为二次函数,∵a=>0,∴当x=﹣=2时,S取到最小值为:=0,根据图象得出只有D符合要求.故选:D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)冬季移栽兰花苗对成活率有影响,苗木基地相同条件下实验数据如下:移栽10株有9株成活,移栽1000株有950株成活,则估计该兰花移栽成活地概率是0.95.【解答】解:估计该兰花移栽成活地概率是=0.95,故答案为:0.95.12.(3分)在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移3个单位,得到地抛物线地解析式是y=3(x﹣1)2+3.【解答】解:∵抛物线y=3x2地顶点坐标为(0,0),∴抛物线y=3x2向右平移1个单位,再向上平移3个单位得到地抛物线地顶点坐标为(1,3),∴平移后抛物线地解析式为y=3(x﹣1)2+2.故答案是:y=3(x﹣1)2+3.13.(3分)两位同学玩“石头、剪子、布”游戏,随机出手一次,两人手势相同地概率是.【解答】解:画树形图如下:从树形图可以看出,所有可能出现地结果共有9种,两人手势相同有3种,两人手势相同地概率=,故答案为:.14.(3分)如图,AB是⊙O地直径,点C在AB地延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=125°.【解答】解:连接OD,则∠ODC=90°,∠COD=70°;∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=125°,故答案为:125.15.(3分)如图是圆心角为30°,半径分别是1,3,5,7,…地扇形组成地图形,阴影部分地面积一次记为S1、S2、S3、…,则S11=14π(结果保留π).【解答】解:由题意可得出通项公式:S n=×(2n﹣1),即S11=×(2×11﹣1)=14π,故答案为14π.三、解答题(本大题共55分,解答要写出必要地文字说明或推演步骤)16.(6分)计算:cos45°﹣tan30°•sin60°.【解答】解:原式=×﹣•=1﹣=.17.(6分)某市教育系统举行“中国梦”演讲比赛,希望中学准备从甲、乙、丙三位教师和A、B两名学生中选取一位教师和一名学生参加比赛.(1)若随机选一位教师和一名学生,用树状图(或列表法)表示所有可能出现地结果;(2)求恰好选中有教师甲和学生A地概率.【解答】解:(1)列表得:(2)∵共有6种等可能地结果,选中教师甲和学生A地情况有1种,∴P(恰好选中有教师甲和学生A)=.18.(7分)如图,某中学九年级数学兴趣小组测量校内旗杆AB地高度,在C点测得旗杆顶端A地仰角∠BCA=30°,向前走了20米到达D点,在D点测得旗杆顶端A地仰角∠BDA=60°,求旗杆AB地高度.(结果保留根号)【解答】解:∵∠C=30°,∠ADB=60°,∴∠DAC=30°,∴AD=CD,∵CD=20米,∴AD=20米,在Rt△ADB中,=sin∠ADB,∴AB=AD×sin60°=20×=10米.19.(8分)如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB 于点D.(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);(2)求证:BC是过A,D,C三点地圆地切线.【解答】解:(1)作出圆心O,以点O为圆心,OA长为半径作圆;(2)证明:∵CD⊥AC,∴∠ACD=90°.∴AD是⊙O地直径连接OC,∵∠A=∠B=30°,∴∠ACB=120°,又∵OA=OC,∴∠ACO=∠A=30°,∴∠BCO=∠ACB﹣∠ACO=120°﹣30°=90°.∴BC⊥OC,∴BC是⊙O地切线.20.(8分)某班同学参加社会公益活动,准备用每斤6元地价格购进一批水果进行销售,并将所得利润捐给孤寡老人.这种水果每天地销售量y(斤)与销售单价x(元/斤)之间地对应关系如表所示:(1)按照满足表中地销售规律,求y与x之间地函数表达式;(2)按照满足表中地销售规律,求每天销售利润W(元)与销售单价x(元/斤)之间地函数表达式;(3)在问题(2)条件下,若水果地进货成本每天不超过960元,每天要想获得最大地利润,试确定这种水果地销售单价,并求出该天地最大利润.【解答】解:(1)设y与x之间地函数表达式是y=kx+b,由题意可得,解得k=﹣20,b=400,级y与x之间地函数表达式是:y=﹣20x+400;(2)由题意可得,W=(x﹣6)×(﹣20x+400)=﹣20x2+520x﹣2400,即每天销售利润W(元)与销售单价x(元/斤)之间地函数表达式为:W=﹣20x2+520x﹣2400;(3)由题意可得,0<6(﹣20x+400)≤960,解得12≤x<20,∵W=﹣20x2+520x﹣2400,对称轴为:x=﹣,﹣20<0,∴当x=13时,W取得最大值,此时W=﹣20×132+520×13﹣2400=980,即每天要想获得最大地利润,这种水果地销售单价是13元,该天地最大利润是980元.21.(9分)如图,已知⊙O是以AB为直径地△ABC地外接圆,过点A作⊙O地切线交OC地延长线于点D,交BC地延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE地长.【解答】解:(1)∵AD是圆O地切线,∴∠DAB=90°.∵AB是圆O地直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB.∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==2.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA.∴,即.解得:DE=.∴AE=AD﹣DE=.22.(11分)(1)己知,如图1,△ABC是⊙O地内接正三角形,点P为弧BC上一动点,请探究PA,PB,PC三者之间有何数量关系,并给予证明.(2)如图2,四边形ABCD是⊙O地内接正方形,点P为弧BC上一动点,请探究PA,PB,PC三者之间有何数量关系,并给予证明.(3)如图3,六边形ABCDEF是⊙O地内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC三者之间有何数量关系,直接写出结论不需证明.【解答】证明:(1)延长BP至E,使PE=PC,连接CE,如图1,∵A、B、P、C四点共圆,∴∠BAC+∠BPC=180°,∵∠BPC+∠EPC=180°,∴∠BAC=∠CPE=60°,PE=PC,∴△PCE是等边三角形,∴CE=PC,∠E=60°;又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,∴∠BCE=∠ACP,∵△ABC、△ECP为等边三角形,∴CE=PC,AC=BC,在△BEC和△APC中,,∴△BEC≌△APC(SAS),∴PA=BE=PB+PC;(2)过点B作BE⊥PB交PA于E,如图2,∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,∴∠APB=45°,∴BP=BE,∴PE=PB,在△ABE和△CBP中,∴△ABE≌△CBP(SAS),∴PC=AE,∴PA=AE+PE=PC+PB;(3)PA=PC+PB.证明:过点B,作BM⊥AP,在AP上截取AQ=PC,连接BQ,如图3,∵∠BAP=∠BCP,AB=BC,在△ABQ和△CBP中,∴△ABQ≌△CBP(SAS),∴BQ=BP,∴MP=QM,又∵∠APB=30°,∴cos30°=,∴PM=PB,∴PQ=PB,∴PA=PQ+AQ=PC+PB.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

16-17上学期九数期末答案

16-17上学期九数期末答案

松滋市2016—2017学年度毕业年级第一次质量检测九年级数学参考答案与评分说明一、选择题(3’×10=30’)1.B2.B3.A4.D5.B6.D7.A8.B9.B 10.C二、填空题(3’×8=24’)11.3,121-=-=x x 12.(1,4) 13.3114.5cm 2 15.相交 16.k>0且k ≠1 17.(-1,1) 18.381m S =三、解答题(按步骤给分,另解参照给分)19.(1) 0)1)(32(=--x x (2’) 1,2321==x x (2’) (2)9)2(2=-x , (2’) 32,3221-=+=x x (2’)20. (画树形图或列表或列举5分,得结果3分,共8分)P(后一个数比前一个数大1)=51204=21.(1)延长CD 到D,若O 是圆弧的圆心,连接OA.设半径为r (m ),在Rt △AOD 中, 222120)80(r r =+- (5’) r=130答:拱桥圆弧的半径是130米. (3’)22.(1)连接OF,则∠EFB=90º-∠OFB (2’)又OF=OB,∴∠OFB=∠OBF (1’)加之∠FNE=∠MNB=90º-∠OBF ∴∠EFB=∠FNE ∴EF=EN (2’)(2)连接ON,当N 是BF 中点时,ON ⊥BF. (2’)在Rt △BNM 中,MN=BM=1cm, ∴∠OBN=45º (1’)在Rt △ONB 中, MN 是等腰直角三角形ONB 斜边上的高,∴OM=BM=1cm, 即⊙O 的半径为2cm. (2’)23.(1)A(4m,3m)在x y 12=的图象上,∴12m 2=12,m=±1,又A 在第3象限, ∴m=-1 (3’)(2)∵B(4,3) ∴OB=5 OC=5 )(2153521平方单位=⨯⨯=∆COB S (4’)(3) B(4,3) C(-5,0) ∴BC:3531+=x y (3’)24.(1) 设所求解析式为22++=bt at y将(2,11) (4,18)代入上式得⎪⎩⎪⎨⎧=-=541ba ∴所求解析式为25412++-=t t y (4’)(2)当2541262++-=t t 时,12,821==t t .答:能.第8小时和12小时时,重量达到26克. (3’)(3) ∵ 27)10(41254122+--=++-=t t t y∴第10小时时,重量达到最大,为27克. (3’)25.(1)221m n = (2’)(2)当m=n 时,0212=-m m , (3’)又m ≠0,∴ m=2,此时⊙P 的半径为2. 当m=-n 时,结果与此完全一致. (2’) (3)取MN=152时,作PK ⊥MN 于K,连接PM.在Rt △PKM 中 7)15(822=-=PK . (2’)∴7≤n ≤8 (1’)14≤m ≤4或-4≤m ≤-14 (1’+1’=2’)。

人教版2016-2017学年第一学期九年级数学(上册 )期末测试卷及答案

人教版2016-2017学年第一学期九年级数学(上册 )期末测试卷及答案

2016-2017学年九年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣24.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1y2(填“>”或“<”或“=”).11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵(﹣)×(﹣)=1,∴﹣的倒数是﹣.故选D.【点评】本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】分别找出这个图形的主视图、俯视图、左视图,然后结合选项选出正确答案即可.【解答】解:该图形的主视图为:,俯视图为:,左视图为:,A、该图形为原图形的主视图,本选项正确;B、该图形为原图形的俯视图,本选项正确;C、该图形为原图形的左视图,本选项正确;D、观察原图形,不能得到此平面图形,故本选项错误;故选D.【点评】本题考查了简单组合体的三视图,要求同学们掌握主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣2【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.故选A.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】根据概率的求法,先画出树状图,求出所有出现的情况,即可求出答案.【解答】解:用A表示没蛋黄,B表示有蛋黄的,画树状图如下:∵一共有12种情况,两个粽子都没有蛋黄的有6种情况,∴则这两个粽子都没有蛋黄的概率是=故选B.【点评】此题主要考查了画树状图求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m【考点】相似三角形的应用.【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴=,∵BE=20m,CE=10m,CD=20m,∴,解得:AB=40,故选B.【点评】考查相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【考点】菱形的判定;平移的性质.【分析】首先根据平移的性质得出AB平行且等于CD,得出四边形ABCD为平行四边形,根据邻边相等的平行四边形是菱形可得添加条件AB=BC即可.【解答】解:∵将△ABC沿BC方向平移得到△DCE,∴AB平行且等于CD,∴四边形ABCD为平行四边形,当AB=BC时,平行四边形ACED是菱形.故选:A.【点评】此题主要考查了平移的性质和平行四边形的判定和菱形的判定,得出AB平行且等于CD是解题关键.7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:如图,①抛物线开口方向向下,则a<0.故①正确;②∵对称轴x=﹣=1,∴b=﹣2a>0,即b>0.故②错误;③∵抛物线与y轴交于正半轴,∴c>0.故③正确;④∵对称轴x=﹣=1,∴b+2a=0.故④正确;⑤根据图示知,当x=1时,y>0,即a+b+c>0.故⑤错误.综上所述,正确的说法是①③④,共有3个.故选C.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.【考点】反比例函数系数k的几何意义;含30度角的直角三角形;勾股定理.【分析】先由∠ACB=90°,BC=4,得出B点纵坐标为4,根据点B在反比例函数的图象上,求出B点坐标为(3,4),则OC=3,再解Rt△ABC,得出AC=4,则OA=4﹣3.设AB与y 轴交于点D,由OD∥BC,根据平行线分线段成比例定理得出=,求得OD=4﹣,最后根据梯形的面积公式即可求出阴影部分的面积.【解答】解:∵∠ACB=90°,BC=4,∴B点纵坐标为4,∵点B在反比例函数的图象上,∴当y=4时,x=3,即B点坐标为(3,4),∴OC=3.在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,AC=BC=4,OA=AC﹣OC=4﹣3.设AB与y轴交于点D.∵OD∥BC,∴=,即=,解得OD=4﹣,∴阴影部分的面积是:(OD+BC)•OC=(4﹣+4)×3=12﹣.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,含30度角的直角三角形的性质,平行线分线段成比例定理,梯形的面积公式,难度适中,求出B点坐标及OD的长度是解题的关键.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为x1=,x2=1.【考点】解一元二次方程-因式分解法.【分析】分解因式后即可得出两个一元一次方程,求出方程的解即可.【解答】解:2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,2x﹣1=0,x﹣1=0,x1=,x2=1,故答案为:x1=,x2=1【点评】本题考查了解一元一次方程和解一元二次方程的应用,关键是能把一元二次方程转化成解一元一次方程.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1<y2(填“>”或“<”或“=”).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象所经过的象限与函数图象的增减性进行填空.【解答】解:∵函数y=﹣中的﹣2<0,∴函数y=﹣的图象经过第二、四象限,且在每一象限内,y随x的增大而增大,∴点(2,y1),(3,y2)同属于第四象限,∵2<3,∴y1<y2.故填:<.【点评】本题主要考查反比例函数图象上点的坐标特征.解答该题时,利用了反比例函数图象的增减性.当然了,解题时也可以把已知两点的坐标分别代入函数解析式,求得相应的y值后,再来比较它们的大小.11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的5倍.【考点】相似图形.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.【考点】解直角三角形.【分析】根据直角三角形斜边上的中线等于斜边的一半求出AB的长度,再利用勾股定理求出BC 的长度,然后根据锐角的正切等于对边比邻边解答.【解答】解:∵CD是斜边AB上的中线,CD=2,∴AB=2CD=4,根据勾股定理,BC==,tanB===.故答案为:.【点评】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边应熟练掌握.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为20.【考点】矩形的性质;三角形中位线定理.【专题】几何图形问题.【分析】根据题意可知OM是△ADC的中位线,所以OM的长可求;根据勾股定理可求出AC的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO的长,进而求出四边形ABOM的周长.【解答】解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故答案为:20.【点评】本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好,难度不大.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,分母为2的指数次幂,分子比分母小1,根据此规律解答即可.【解答】解:∵2=21,4=22,8=23,16=24,32=25,…∴第n个数的分母是2n,又∵分子都比相应的分母小1,∴第n个数的分子为2n﹣1,∴第n个数是.故答案为:.【点评】本题是对数字变化规律的考查,熟练掌握2的指数次幂是解题的关键.三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】分别进行零指数幂、绝对值、特殊角的三角函数值、负整数指数幂等运算,然后按照实数的运算法则计算即可.【解答】解:原式=1+﹣2×+4=5.【点评】本题考查了实数的运算,涉及了零指数幂、绝对值、负整数指数幂及特殊角的三角函数值,属于基础题,注意各部分的运算法则.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,于是得到△ADE∽△ABC,根据相似三角形的性质得到=()2,于是求得S△ADE=27,即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2,∵AD=3BD,∴=,∴=,∵S△ABC=48,∴S△ADE=27,∴S四边形BCED=S△ABC﹣S△ADE=48﹣27=21.【点评】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.【考点】作图-位似变换.【专题】作图题.【分析】延长OA到A′,使AA′=OA,则点A′为点A的对应点,用同样方法作出B、C的对应点B′、C′,则△A′B′C′与△ABC位似,且相似比为2.【解答】解:如图,△A′B′C′为所作.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】设窗口A到地面的高度AD为xm,根据题意在直角三角形ABD和直角三角形ACD中,利用锐角三角函数用含x的代数式分别表示线段BD和线段CD的长,再根据BD﹣CD=BC=6列出方程,解方程即可.【解答】解:设窗口A到地面的高度AD为xm.由题意得:∠ABC=30°,∠ACD=45°,BC=6m.∵在Rt△ABD中,BD==xm,在Rt△ADC中,CD==xm,∵BD﹣CD=BC=6,∴x﹣x=6,∴x=3+3.答:窗口A到地面的高度AD为(3+3)米.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系求解.19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?【考点】列表法与树状图法.【分析】(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;(2)根据横坐标表示第一次,纵坐标表示第二次可以得到答案;(3)根据树状图和统计表分别求得其获胜的概率,比较后即可得到答案.【解答】解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,∴小明的实验是一个不放回实验,(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,(3)理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.故答案为:不放回;(3,2).【点评】本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率=.20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设道路的宽为x米,则绿地的面积就为(100﹣2x)(90﹣x),就有(100﹣2x)(90﹣x)=8448建立方程求出其解即可.【解答】解:设道路的宽为x米,由题意,得(100﹣2x)(90﹣x)=8448,解得:x1=2,x2=138(不符合题意,舍去)∴道路的宽为2米.【点评】本题考查了列一元二次方程解实际问题的运用,矩形面积公式的运用,一元二次方程的解法的运用,解答时根据绿地的面积为8448建立方程是关键.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)先根据等腰直角三角形的性质得出∠B=∠A=45°,再根据四边形DEFG是正方形可得出∠BFG=∠AED,故可得出∠BGF=∠ADE=45°,GF=ED,由全等三角形的判定定理即可得出结论;(2)过点C作CG⊥AB于点G,由正方形DEFG的面积为16cm2可求出其边长,故可得出AB的长,在Rt△ADE中,根据勾股定理可求出AD的长,再由相似三角形的判定定理得出△ADE∽△ACG,由相似三角形的对应边成比例即可求出AC的长.【解答】(1)证明:∵△ABC是等腰直角三角形,∠C=90°,∴∠B=∠A=45°,∵四边形DEFG是正方形,∴∠BFG=∠AED=90°,故可得出∠BGF=∠ADE=45°,GF=ED,∵在△ADE与△BGF中,,∴△ADE≌△BGF(ASA);(2)解:过点C作CG⊥AB于点H,∵正方形DEFG的面积为16cm2,∴DE=AE=4cm,∴AB=3DE=12cm,∵△ABC是等腰直角三角形,CH⊥AB,∴AH=AB=×12=6cm,在Rt△ADE中,∵DE=AE=4cm,∴AD===4cm,∵CH⊥AB,DE⊥AB,∴CH∥DE,∴△ADE∽△ACH,∴=,=,解得AC=6cm.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.【考点】反比例函数综合题.【分析】(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,根据等边三角形的知识求出AC和CD的长度,即可求出C点的坐标,把C点坐标代入反比例函数解析式求出k的值.(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标即为6,求出纵坐标,即可求出n的值.【解答】解:(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,∵△ABC是等边三角形,∴AC=AB=6,∠CAB=60°,∴AD=3,CD=sin60°×AC=×6=3,∴点C坐标为(3,3),∵反比例函数的图象经过点C,∴k=9,∴反比例函数的解析式y=;(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标为6,即纵坐标y==,也是向上平移n=.【点评】本题主要考查反比例函数的综合题,解答本题的关键是熟练掌握反比例函数的性质以及平移的相关知识,此题难度不大,是中考的常考点.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A坐标代入y=kx﹣6,根据待定系数法即可求得直线AB的解析式;(2)根据直线AB的解析式求出点B的坐标,点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法即可求解;(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴直线AB的解析式为y=2x﹣6,(2)∵抛物线的顶点为A(1,﹣4),∴设此抛物线的解析式为y=a(x﹣1)2﹣4,∵点B在直线y=2x﹣6上,且横坐标为0,∴点B的坐标为(3,0),又∵点B在抛物线y=a(x﹣1)2﹣4上,∴a(3﹣1)2﹣4=0,解之得a=1,∴此抛物线的解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(3)在y轴上存在点Q,使△ABQ为直角三角形.理由如下:作AE⊥y轴,垂足为点E.又∵点D是直线y=2x﹣6与y轴的交点,点C是抛物线y=x2﹣2x﹣3与y轴的交点∴E(0,﹣4),D(0,﹣6),C(0,﹣3)∴OD=6,OE=4,AE=1,ED=2,OC=3,OB=3,BD=,AD=①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=6﹣=,即Q1(0,﹣);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,﹣)或(0,)或(0,﹣1)或(0,﹣3).【点评】本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.。

人教版2016-2017学年九年级(上册)期末数学试卷及答案

人教版2016-2017学年九年级(上册)期末数学试卷及答案

人教版2016-2017学年九年级(上册)期末数学试卷及答案2016-2017学年九年级(上册)期末数学试卷一、选择题(共8小题,每小题4分,满分32分)1.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同。

若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球比摸到白球的可能性相等D.摸到红球比摸到白球的可能性大2.圆内接四边形ABCD中,已知∠A=70°,则∠C=()A.20°B.30°C.70°D.110°3.若关于x的方程2x²-ax+a-2=0有两个相等的实根,则a 的值是()A.-4B.4C.4或-4D.24.二次函数y=-x²+2x+4的最大值为()A.3B.4C.5D.65.在平面直角坐标系中,点A的坐标为(-1,-2),将OA绕原点O逆时针旋转180°得到OA',点A'的坐标为(a,b),则a-b等于()A.1B.-1C.3D.-36.如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,-2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)7.若c(c≠0)为关于x的一元二次方程x²+bx+c=0的根,则c+b的值为()A.1B.-1C.2D.-28.如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB边所在的直线为轴,将△ABC旋转一周,则所得几何体的表面积是()A.πB.24πC.πD.12π二、填空题(共6小题,每小题3分,满分18分)9.小红有一个正方体玩具,6个面上分别画有线段、角、平行四边形、圆、菱形和等边三角形这6个图形。

抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是_______。

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。

2016--2017学年度上学期期末九年级数学试题及答案

2016--2017学年度上学期期末九年级数学试题及答案

2016-2017学年度上学期期末考试九年级数学试题2017.01注意事项:1.答题前,请先将自己的姓名、考场、考号在卷首的相应位置填写清楚;2.选择题答案涂在答题卡上,非选择题用蓝色、黑色钢笔或圆珠笔直接写在试卷上.第Ⅰ卷(选择题共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.方程xx22=的根是A.2 B.0 C.2或0 D.无解2.若反比例函数的图象过点(2,1),则这个函数的图象一定过点A.(-2,-1) B.(1,-2) C.(-2,1) D.(2,-1)3. 如图,点A为α∠边上任意一点,作BCAC⊥于点C,ABCD⊥于点D,下列用线段比表示αsin的值,错误..的是A.BCCDB.ABACC.ACADD.ACCD4. 如图,AD∥BE∥CF,直线a,b与这三条平行线分别交于点A,B,C和点D,E,F,若AB=2,AC=6,DE=1.5,则DF的长为A.7.5 B.6 C.4.5 D.35.如图,四边形A BCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是A.88°B.92°C.106°D.136°6. 在Rt△ABC中,∠C=90°,34tan=A,若AC=6cm,则BC的长度为A.8cm B.7cm C.6cm D.5cm7. 已知二次函数)0()3(2≠-+=abxay有最大值1,则该函数图象的顶点坐标为A.)1,3(-- B.)(1,3- C.)1,3( D.)1,3(-8. 从n个苹果和4个雪梨中,任选1个,若选中苹果的概率是53,则n的值是(第3题图)(第4题图)(第5题图)A .8B .6C .4D .29. 已知反比例函数xy 5-=,则下列结论不正确...的是 A .图象必经过点)5,1(-, B .图象的两个分支分布在第二、四象限 C .y 随x 的增大而增大 D .若x >1,则5-<y <010. 直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则cos ∠CBE 的值是A .724B .37C .247 D .252411. 如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形 的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这 块扇形铁皮的半径是 A .40cm B .50cm C .60cm D .80cm12.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,AE =6,则tan∠BDE 的值是 A .34 B .43 C .21D .1:2 13.如图,△ABC 中,AD 是中线,BC =4,∠B =∠DAC ,则线段AC 的长为 A .22B .2C .3D .3214. 如图所示,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (2-,0)、B (1,0),直线x =21-与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD =MC ,连接AC ,BC ,(第13题图) (第14题图)(第10题图) (第11题图)(第12题图)AD ,BD ,某同学根据图象写出下列结论:①0=-b a ; ②当x <21-时,y 随x 增大而增大;③四边形ACBD 是菱形;④cba +-39>0.你认为其中正确的是 A .②③④B .①②③C .①③④D .①②③④第II 卷 非选择题(共78分)二、填空题(本题共5小题,每小题3分,共15分)15.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是 . 16. 若n (其中0≠n )是关于x 的方程022=++n mx x 的根,则m +n 的值为 . 17.如图,大圆半径为6,小圆半径为3,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A 中”记作事件W ,请估计事件W 的概率P (W )的值 .18. 如图,在△ABC 中,AD 平分∠BAC ,与BC 边的交点为D ,且DC =31BC ,DE ∥AC ,与AB 边的交点为E ,若DE =4,则BE 的长为 .19. 如图,在直角坐标系中,直线221-=x y 与坐标轴交于A ,B 两点,与双曲线)0(2>=x xky 交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA =AD ,则以下结论:①当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小;②4=k ;③当0<x <2时,y 1<y 2;④如图,当x=4时,EF =5.其中结论正确的有____________.(填序号)三、解答题(本大题共7小题,共63分) 20.(本题满分5分) 计算:2cos30sin 45tan 601cos60︒+︒--︒o .题号 二 三Ⅱ卷总分20 21 22 23 24 25 26 得分得分 评卷人(第19题图)(第17题图) (第18题图)21.(本题满分8分)解方程:(1))1(212+=-x x ; (2)05422=--x x .22. (本题满分8分)如图,一楼房AB 后有一假山,山坡斜面CD 与水平面夹角为30°,坡面上点E 处有一亭子,测得假山坡脚C 与楼房水平距离BC =10米,与亭子距离CE =20米,小丽从楼房顶测得点E 的俯角为45°.求楼房AB 的高(结果保留根号).得分 评卷人得分 评卷人(第22题图)30°23. (本题满分9分)如图,AB 是⊙O 的直径,CD 与⊙O相切于点C ,与AB 的延长线交于点D ,DE ⊥AD 且与AC 的延长线交于点E .(1)求证:DC =DE ;(2)若tan ∠CAB =21,AB =3,求BD 的长.(第23题图)24. (本题满分10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=35.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.得分评卷人(第24题图)25.(本题满分11分)如图,已知抛物线c bx x y ++=2经过A (1-,0)、B (3,0)两点,点C 是抛物线与y 轴的交点.(1)求抛物线的解析式和顶点坐标;(2)当0<x <3时,求y 的取值范围;(3)在抛物线的对称轴上是否存在点M ,使△BCM 是等腰三角形,若存在请直接写出点M 坐标,若不存在请说明理由.得分 评卷人(第25题图)26.(本题满分12分)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°.(1)操作发现如图2,固定△ABC ,使△DE C 绕点C 旋转,当点D 恰好落在AB 边上时,填空:①线段DE 与AC 的位置..关系是_________; ②设△BDC 的面积为1S ,△AEC 的面积为2S ,则1S 与2S 的数量关系是____________.(2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE //AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使BDE DCF S S ∆∆=,请直接写出相应的BF 的长.得分 评卷人A (D )B (E )C 图1 ACBDE图22016-2017学年度上学期期末考试 九年级数学参考答案 2017-1注意:解答题只给出一种解法,考生若有其他正确解法应参照本标准给分. 一、选择题(每小题3分,共42分)1-~5 CADCD 6~10BABCD 11~14 ACAB 二、填空题(每小题3分共15分) 15.2:1 16. 2- 17.4118. 8 19.①②③④ 三、解答题(本大题共7小题,共63分)20. 解:原式=21(1)()222÷-+2分124分 =12……5分 21. (8分)解:(1)将原方程变形为:0)1(2)1)(1(=+--+x x x ……………….1分∴0)21)(1(=--+x x ∴x +1=0或x ﹣3=0,……………………….3分 ∴x 1=﹣1,x 2=3;……………………………………………………….4分 (2)∵2x 2﹣4x ﹣5=0, ∴a =2,b =﹣4,c =﹣5,∴b 2﹣4ac =16+40=56,∴4564242±=-±-=a ac b b x ,…………………….3分∴2141,214121-=+=x x .…………………………………..4分 22.(8分)解:过点E 作EF ⊥BC 于点F .在Rt △CEF 中,CE =20,∠ECF =30° ∴EF =10 …………2分 CF =3 EF =103(米) ………4分 过点E 作EH ⊥AB 于点H .则HE =BF ,BH=EF .在Rt△AHE 中,∠HAE =45°,∴AH =HE ,又∵BC =10米,∴HE =(10+103)米, ………6分∴AB =AH +BH =10+103+10=20+103(米) ………………………7分 答:楼房AB 的高为(20+103) 米. ………………………8分23. (9分)(1)证明:如图,连接OC .…………………1分∵CD 与⊙O 相切于点C , ∴∠OCD =90°. ………………………2分 ∴∠1+∠2=90°.∵ED ⊥AD ,∴∠EDA =90°,∴∠A +∠E =90°. …………………3分 ∵OC =OA ,∴∠A =∠2.(2)解:设BD =x ,则AD =AB +BD =3+x ,OD =OB +BD =1.5+x . ………5分在Rt △AED 中,∵tan ∠CAB =21=AD DE ,∴DE =21AD =21(3+x ). ………6分 由(1)得DC =DE =21(3+x ). ……………7分 在Rt △OCD 中,222OD CD OC =+,∴222)5.1()3(215.1x x +=⎥⎦⎤⎢⎣⎡++. …………8分解得11=x ,32-=x (不合题意,舍去). ∴BD =1. ……………9分24.(10分)解:(1)过点A 作AE ⊥x 轴于点E ,如图所示.∵AE ⊥x 轴,∴∠AEO =90°.在Rt △AEO 中,AO =5,sin∠AOC =35,∴AE =AO •sin∠AOC =3,OE =22AO AE -=4,………2分∴点A 的坐标为(﹣4,3). ……………………3分设反比例函数解析式为k y x =.∵点A (﹣4,3)在反比例函数ky x=的图象上, ∴3=4k -,解得k =﹣12. ∴反比例函数解析式为y =﹣12x. …………………5分(2)∵点B (m ,﹣4)在反比例函数y =﹣12x的图象上,∴﹣4=﹣12m,解得m =3,∴点B 的坐标为(3,﹣4).…………………………6分设直线AB 的解析式为y =ax +b ,将点A (﹣4,3)、点B (3,﹣4)代入y =ax +b 中, 得34,43,a b a b =-+⎧⎨-=+⎩ 解得1,1.a b =-⎧⎨=-⎩ ∴一次函数解析式为y =﹣x ﹣1.…………8分 令一次函数y =﹣x ﹣1中y =0,则0=﹣x ﹣1,解得x =﹣1,即点C 的坐标为(﹣1,0). S △AOB =12OC •(y A ﹣y B )=12×1×[3﹣(﹣4)]=72. ……………10分 25.(10分)解:(1)把A (﹣1,0)、B (3,0)分别代入y =x 2+bx +c 中,得:⎩⎨⎧=++=+-03901c b c b ,解得:⎩⎨⎧-=-=32c b ,∴抛物线的解析式为y =x 2﹣2x ﹣3.……………3分∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴顶点坐标为(1,﹣4).…………………4分(2)由图可得当0<x <3时,﹣4≤y <0;…………….5分(3)存在……………….6分①当BC BM =时,141=m ,142-=m ;②当CM =CB 时,1733+-=m , 1734--=m ;③当BM =CM 时,(1,1-).所以点M 的坐标为(1,14)或(1,14-)或(1,173+-)或(1,173--)或(1,1-).………………….11分26.(12分)解:(1)①DE ∥AC ;………………2分 ②S 1=S 2;………………4分(2)如图,∵△DEC 是由△ABC 绕点C 旋转得到,∴BC =CE ,AC =CD ,∵∠ACN +∠BCN =90°, ∠DCM +∠BCN =180°-90°=90°,∴∠ACN =∠DCM ,在△AC N 和△DCM 中,⎪⎩⎪⎨⎧=︒=∠=∠∠=∠CD AC N CMD DCN ACN 90∴△ACN ≌△DCM (AAS),…………………6分∴AN =DM ,∴△BD C 的面积和△AEC 的面积相等(等底等高的三角形的面积相等), 即S 1=S 2;…………………7分如图,过点D 作1DF ∥BE ,易求四边形1BEDF 是菱形,所以BE =1DF ,且BE 、1DF 上的高相等,此时 BDE DCF S S ∆∆=1…………………8分过点D 作BD DF ⊥2,∵∠ABC =60°,1DF ∥BE ,∴︒=∠6021F DF ,︒=∠=∠=∠30211ABC DBE DB F ,∴︒=∠6021DF F , ∴21F DF ∆是等边三角形,∴1DF =2DF ,∵BD =CD ,∠ABC =60°,点D 是角平分线上一点,∴∠CDF 1=180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,在△CDF 1和△CDF 2中,⎪⎩⎪⎨⎧=∠=∠=CD CD CDF CDF DF DF 2121,∴△CDF 1≌△CDF 2(SAS), ∴点F 2也是所求的点,……………10分∵∠ABC =60°,点D 是角平分线上一点,DE ∥AB ,DF 1∥BE ,易证1BEDF 是菱形, 连接EF 1, 则BD EF ⊥1, 垂足为O ,在1BOF Rt ∆中,BO =21BD =2,︒=∠301BO F , ∴︒=30cos 1BF BO , ∴33423230cos 1==︒=BO BF ………………11分. 在Rt BD F 2中,︒=30cos 2BF BD ,∴33823430cos 2==︒=BD BF , 故BF 的长为334或338.…………………12分。

16-17第一学期期末测试9年级数学答案

16-17第一学期期末测试9年级数学答案

2016~2017学年度第一学期期末学业水平调研测试九年级数学答案及评分标准一、选择题1、方程032=-x 的根是( )A 、3=xB 、31=x ,32-=x C 、3=x D 、3=x ,3-=x2、下面图形中,既是轴对称图形,又是中心对称图形的是( )A 、等腰三角形B 、等边三角形C 、平行四边形D 、正方形 3、下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A 、012=+xB 、0122=+-x xC 、0122=-+x xD 、022=++x x 4、抛物线12+=x y 的对称轴是( )A 、x 轴B 、y 轴C 、直线1=xD 、直线1-=x5、如图, AB 是⊙O 的弦,AB OC ⊥,若⊙O 的半径为5,3=OC ,则弦AB 的长为( ) A 、8 B 、6 C 、5 D 、46、如图,⊙O 是ABC ∆的外接圆,︒=∠60BAC ,则BOC ∠的度数是( ) A 、︒30 B 、︒50 C 、︒60 D 、︒1207、袋子中装有4个除颜色外完全相同的小球,其中黄球3个,红球1个,则“从中任意模出2个球,它们的颜色相同”这一事件是( )A 、必然事件B 、不可能事件C 、随机事件D 、确定事件8、一枚质地均匀的骰子六个面上分别刻有1到6的点数,投掷一次,出现点数为3的概率是( )A 、21 B 、31 C 、41 D 、619、三角形的面积一定,则它的底边a 上的高h 与底边a 之间的函数关系的图象大致是( )第5题图第6题图10、根据如图所示的二次函数c bx ax y ++=2(0≠a )图象,下列判断正确的是( ) A 、0<a B 、函数y 有最大值C 、0<cD 、函数y 随着x 的增大而增大一、选择题: D D C B A D C D D C二、填空题:11、11-=x ,22=x ; 12(-3,2); 13、6; 14、2)1(2+-=x y 15、︒40; 16、︒120二、填空题11、方程0)2)(1(=-+x x 的根是 .12、点P (3,-2)关于原点对称的点的坐标是 .13、若正多边形的一个内角是︒120,则这个正多边形的边数为 .14、将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位,所得图象的函数关系式是 .15、如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 与⊙O 相切于点C ,︒=∠25A ,则D ∠的度数是 .16、如图,圆锥的底面半径OB 的长为5cm ,母线长为15cm ,则这个圆锥侧面展开图的圆心角α的度数是 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 17、解一元二次方程:0742=-+x x . 解:742=+x x , 1分47442+=++x x , 2分 11)2(2=+x , 3分第15题图第16题图112±=+x , 4分 1121+-=x ,1122--=x . 6分18、已知反比例函数xmy -=5,当2=x 时,3=y . (1)求m 的值,并指出当0>x 时,y 随着x 的增大而增大还是减小? (2)求当3-=x 时的函数值. 解:(1)∵当2=x 时,3=y ,∴253m-=,1-=m , 2分 即xy 6=,∴当0>x 时,y 随着x 的增大而减小; 4分(2)当3-=x 时,2366-=-==x y . 6分19、如图,在ABC ∆中,︒=∠90 C ,︒=∠30A ,3=BC .(1)作ABC ∆外接圆O (用尺规作图,保留作图痕迹,不写作法); (2)求(1)中的⊙O 的直径长. 解:(1)图略; 3分(2)∵︒=∠90 C ,∴AB 是圆O 的直径, 4分 又∵︒=∠30A ,3=BC∴322==BC AB . 6分评分说明:(1)共3分,其中作AB 的垂直平分线、作圆各给1分,写出答案给1分;(2)答案正确,但没写出“AB 是圆O 的直径”这一步的扣1分.四、解答题(二)(本大题共3小题,每小题7分,共21分)20、电动自行车已成为人们日常出行的首选工具,据某品牌电动自行车商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车的销售量月平均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1月至3月共盈利多少元?解:(1)设该品牌电动自行车的销售量月平均增长率为x , 1分 依题意得216)1(1502=+x , 2分B AC2536)1(2=+x , %202.01==x , 2.22-=x (不合题意,舍去) 4分∴该品牌电动自行车的销售量月平均增长率为20%; 5分(2)该经销商1月至3月共销售电动自行车546216)2.01(150150=+++辆, 每辆电动自行车利润为50023002800=-元, 6分 ∴则该经销商1月至3月共盈利273000500546=⨯元. 7分21、在一个不透明的口袋里有标号为1、2、3、4的四个小球,这些小球除数字外没有区别,现将小球搅拌均匀.(1)从袋中同时模出两个球,求两个球标号数字一个是奇数,另一个是偶数的概率. (2)若从袋中模一个球,记录球的号数,再放回搅拌均匀,再模出一个球,记录球的号数,用列表法求先后两次模出球的标号数字之和为偶数的概率;解:(1)从袋中同时模两个球的可能情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种,其中小球标号数字一个是奇数,另一个是偶数的情况有(1,2),(1,4),(2,3),(3,4)共4种, 2分故所求的概率为32641==P ; 3分 (2)两次模球的情况列表如下,共16种: 5分两次模出球的标号数字之和为偶数共有8种,故所求的概率为212=P . 7分 22、如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,ABC ∆的三个顶点都在格点上,将ABC ∆绕点A 按逆时针方向旋转︒90,得到//C AB ∆.(1)画出//C AB ∆; (2)求/BB 的长;ACB(3)求AB 在变换到/AB 过程中所扫过的区域面积S . 解:(1)图略; 2分 (2)∵522/=+==BC AC AB AB ,︒=∠90/BAB ,3分∴/ABB ∆是等腰直角三角形, 4分 ∴2555222/2/=+=+=AB AB BB ; 5分(3)所求的图形是圆心角为︒90的扇形, ∴225412ππ==R S . 7分 五、解答题(三)(本大题共3小题,每小题9分,共27分) 23、已知二次函数x x y 2212+-=. (1)用配方法求该函数图象的顶点坐标及对称轴;(2)根据下表给出x 的值,求出对应y 的值填写在表中,然后在给定的直角坐标系中(每格1个单位)描点,画出该函数图象;(3)根据图象指出,x 取什么值时,y 随x 的增大而减小;x 取什么值时,0>y .解:(1)2)2(2122122+--=+-=x x x y ; 2分 抛物线的顶点坐标是(2,2),对称轴是2=x , 3分 (2)图象略;(3)当2>x 时,y 随x 的增大而减小;当40<<x 时,0>y .(评分说明:(1)共3分,配方法占2分,写结论两个正确才给1分;(2)共4分,列表全部正确给2分,若有部分数对错误,扣1分;画图象正确给2分,若图象不正确,不给分;(3)共2分,每个结论1分)24、如图,ABC ∆内接于半圆,AB 是直径,过A 作直线MN ,ABC MAC ∠=∠,点D 是弧AC 的中点,连接BD 交AC 于G ,过D 作AB DE ⊥于E ,交AC 于F .(1)求证:MN 是半圆的切线; (2)求证:FG FD =; (3)求证:FG AF =.证明:(1)∵AB 是直径,∴︒=∠90ACB , ∴︒=∠+∠90ABC BAC , 1分 ∵ABC MAC ∠=∠,∴︒=∠+∠90MAC BAC , 2分 ∴MN BA ⊥, ∴MN 是半圆的切线; 3分(2)∵点D 是弧AC 的中点,∴CBG DBE ∠=∠(等弧所对的圆周角相等), 4分 又∵AB DE ⊥,︒=∠90ACB ,∴DBE FDB ∠-︒=∠90,CBG BGC FGD ∠-︒=∠=∠90, ∴FGD FDG ∠=∠, 5分 ∴FG FD =; 6分 (3)连结AD ,则︒=∠90ADB , ∵AB DE ⊥,∴ABD ADF ∠=∠(同为EDB ∠的余角), 又ABD DAC ∠=∠(等弧所对的圆周角相等), 7分 ∴DAF ADF ∠=∠, 8分 ∴FD AF =,而FG FD =, 9分 ∴FG AF =.25、如图,抛物线c bx ax y ++=2经过点A (-3,0),B (1,0),C (0,-3). (1)求该抛物线的解析式;(2)在抛物线的对称轴上存在一点P ,使得PC PA +的值最小,求此时点P 的坐标; (3)点M 是抛物线上的一个动点,且点M 在第三象限,当点M 运动到何处时,四边形AMCB 的面积最大?最大面积是多少?求出此时点M 的坐标.解:(1)依题意,得⎪⎩⎪⎨⎧-==++=+-30039c c b a c b a , 2分解得1=a ,2=b ,3-=c ,∴322-+=x x y ; 3分(2)抛物线322-+=x x y 的对称轴为1-=x ,连结AC ,与对称轴1-=x 交于点P ,则PC PA +的值最小, 4分 ∵直线AC 的解析式为3--=x y , 5分 令1-=x ,则2-=y ,即点P 的坐标是(-1,-2) 6分 (3)设M (m ,n ),(0<m ,0<n ),322-+=m m n , 连结AM 、MC 、BC ,过点M 作x MN ⊥轴于点N , 则3+=m AN ,m ON -=,3=OC ,1=OB ,)32(2-+-=m m MN , 7分AMN ∆的面积为)935(21)32()3(212321+---=+--⋅+=m m m m m m S ,梯形MNOC 的面积为)62(21)()332(212322m m m m m m S -+=-⋅++--=,OBC ∆的面积为2331212=⨯⨯=S ,四边形AMCB 的面积321S S S S ++=,OBC ∆的面积为2331212=⨯⨯=S , 四边形AMCB 的面积321S S S S ++=, ∴875)23(236292322++-=+--=m m m S , 8分 当23-=m 时,S 最大值为875,此时,4153232232-=-⎪⎭⎫⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=n ,即M (415,23--). 9分 (评分说明:(1)共3分,能列出三个方程中的两个方程都可以给2分,只有写出解析式给满分3分;(2)共3分,其中三个给分点为:说出点P 的位置、求直线AC 解析式、写出点P 的坐标;(3)共3分,其中三个给分点为:能表达出点M 的纵坐标为322-+=m m n 、写出四边形面积S 的解析式、写出点M 的坐标(没能写出给分点的,不管写多少,不管写得是否正确都不给分).另法:连结AM 、MC 、BC ,过点M 作x MN ⊥轴于点N ,交线段AC 于点E . 设M (m ,n ),(0<m ,0<n ), 则322-+=m m n ,E (m ,3--m )所以 ME =(3--m )-( 322-+m m )=m m 32--,ONME AN ME S S S CME AME AMC ⋅+⋅⋅=+∆∆∆2121=, ⋅=⋅⋅=+⋅⋅=2121)(21OA ME ON AN ME (m m 32--)3⋅ 所以 ,四边形AMCB 的面积=ABC AMC S S ∆∆+3421)3(232⨯⨯+--=m m 629232+--=m m因为023<- 所以当232-=-=a b m 时,四边形AMCB 的面积取得最大值为875.此时,4153232232-=-⎪⎭⎫⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=n ,即M (415,23--). 9分。

新人版数学2016年_2017年学年九年级上学期期末试题[含答案解析]

新人版数学2016年_2017年学年九年级上学期期末试题[含答案解析]

九年级数学试题一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入下表中.)22.关于x 的一元二次方程ax x 10-+=有实数根,则a 的取值范围是 A. 1a a 04≠≤且 B. 1a 4≤C. 1a a 04≠≥-且D. 1a 4≥-3.把抛物线21y x 2=-向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线解析式为A .21y x+112=+-()B .21y x+112=--()C .21y x 112=+-(-)D .21y x 112=-(-)- 4.已知二次函数21y x 632=-+().下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-6;③其图象顶点坐标为(6,3);④当x <6时,y 随x 的增大而减小.则其中说法正确的有 A .1个 B .2个 C .3个 D .4个5.已知点A(m ,1)与点B (5,n )关于原点对称, 则m 和n 的值为( ) A .m=5,n=-1 B .m=-5,n=1 C .m=-1,n=-5 D .m=-5,n=-16.如图,PA 、PB 、CD 分别切⊙O 于点A 、B 、E ,CD 分别交PA 、PB 于点C 、D.下列关系: ①PA=PB ;②∠ACO=∠DCO ;③∠BOE 和∠BDE 互补;④△PCD 的周长是线段PB 长度的2倍.则其中说法正确的有 A .1个 B .2个 C .3个 D .4个7.“从一个布袋中随机摸出1个球恰好是红球的概率为16”的意思是( )A. 布袋中有1个红球和5个其它颜色的球B. 摸球6次就一定有1次摸中红球C. 如果摸球次数很多,那么平均每摸球6次就有1次摸中红球D. 布袋中共有6个红球,从中摸到了一个红球 8.若某反比例函数的图象经过点(2,3),则下列四个点中,也在这个函数图象上的是 A.(-6,1) B.(1,6) C.(2,-3) D.(3,-2)9. △ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1:2,已知△ABC 的面积是3,则△A ′B ′C ′的面积是A .3B .6C .9D .1210.如图,△ABC 中,点D 在线段AB 上,且△ABC ∽△ACD,则下列结论一定正确的是A .AC 2=AB ·AD B .AC 2=BC ·AD C .AC ·CD=AB ·AD D .AC ·CD=CD ·BD第6题图二、填空题:11.已知抛物线2y x 3x m =+-与 x 轴只有一个公共点,则m= .12. 要组织一次排球邀请赛,参赛的每两队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请 个队参赛. 13.在△ABC 中,∠C=90°,AC=4,AB=5.现将△ABC 绕点B 逆时针旋转90°,若点C 旋转后的对应点是C ′,那么线段C C ′的长为 .14.四张完全相同的卡片上,分别画有等边三角形、矩形、菱形、圆,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率是 . 15.如图,A 、B 两点在双曲线4y x=上,分别经过A 、B 两点向轴作垂线段,已知图中阴影部分的面积S 阴影=1,则空白区域面积S 1+S 2= .16.如图所示,⊙O 内有折线OABC ,其中OA=2,AB=4,∠A=∠B=60°,则BC 的长为 . 17,则它的面积为 .18. 已知弦AB 和弦CD 相交于⊙O 内一点P ,AP=8,BP=3,PD=PC,则CD= . 三、解答题:19.解方程:2212x x 6x 9-=-+()20.某农场要建一个长方形的养鸡场,鸡场的一边靠着长为25米的墙,另外三边用木栏围成,木栏长40米.问养鸡场的面积能达到220平方米吗?如果能,请给出设计方案;如果不能,请说明理由.第16题图第10题图第15题图21.在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个是红球的概率为0.75.(1)根据题意,袋中有个蓝球.(2)若第一次随机摸出一球,不放回,再随机摸出第二个球.请用画树状图或列表法求“摸到两球中至少一个球为蓝球(记为事件A)”的概率P(A).22.为寻求合适的销售价格,商场对新进的一种商品进行了一周的试销,发现这种商品的每天销售量y(千克)与销售价格x(元/千克)之间成反比例关系.已知第一天以220元/千克的价格销售了80千克. (1)求y与x的函数关系式.(2)试销期间共销售了700千克这种新进商品,在试销后,商场决定将这种新进商品的销售价格定为160元/千克,这样按所发现的反比例关系预测剩余这种商品再用10天可以全部售完.问商场共新进多少千克的这种商品?23. 如图,□ABCD中,AB=6,E为AB中点,DE交AC于点F,FG∥AB交AD于点G.求线段FG的长.第23题图24. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 、E 分别是∠ACB 的平分线与⊙O 、AB 的交点,P 为AB 延长线上一点,且PC =PE .试判断直线PC 与⊙O 的位置关系,并说明理由.25.如图,△ABC 是一块锐角三角形的余料,它的边BC=120mm ,高AD=80mm .要把它加工成一个矩形零件PQMN ,使矩形的一边在BC 上,其余两个顶点分别在AB ,AC 上.问要使加工成的这个矩形面积最大,那么边长MN 应是多少mm ?26.如图,在平面直角坐标系中,抛物线2y ax bx c =++经过Rt △ABC 的三个顶点,其中∠ACB=90°,点A 坐标为(-2,0),点C 坐标为(0,4). (1)求该抛物线的解析式.(2)如果将线段OB 绕原点O 逆时针旋转60°到0D 位置,那么点B 的对应点D 是否会落在该抛物线的对称轴上?请说明理由.C第24题图2014—2015学年第一学期九年级数学试题参考答案及评分标准一、选择题:二、填空题:11.94; 12.8; 13.; 14.34;15.6; 16.6; 17. 18. 三、解答题:(共46分) 19.解:因式分解,得2212x x 3-=-()() ………1分开平方,得12x x 3-=-,或12x x 3-=--() ………3分解得 124x x 23==-, ………4分(此题解法不唯一,学生采用其它方法的参照此得分标准得分,即变形整理环节1分,正确化归成两个一次方程2分,正确得解1分.化归环节错一种情况可扣1分;求解环节即使错一解,该环节也判0分)20. 解:设养鸡场垂直于墙的一边长为x 米,若面积达到220平方米,则列方程 x(40-2x )=220 …………………2分整理得 x 2-20x+110=0△=400-440<0此方程没有实数根 …………………4分所以养鸡场的面积不能达到220平方米.…………………5分 21. (1)1. …………………1分(2)将袋中各球分别记为红1、红2、红3、蓝.根据题意,可以画出如下的树状图:…………………4分(列表法略,只要表或图正确即得3分.图表错误的判0分;对于出现图表有不规范情况的可扣1分.)由树状图可以看出,所有可能出现的结果共有12种,这些结果出现的可能性相等,其中事件A的结果共有6种,所以 P(A)=61122=.…………………5分22.解:(1)设y与x的函数关系式为ky k0x=≠(),根据题意,得k80220=…………………2分解得 k=17600所以y与x的函数关系式为17600yx =.…………………3分(2)当x=160时17600y110160==. …………………4分110×10+700=1800(千克)因此,商场共新进这种商品1800千克.…………………5分23.解:∵四边形ABCD是平行四边形,E为AB中点∴AB∥CD,CD=AB=2AE∴△AEF∽△CDF …………………1分∴12AF AECF CD==…………………2分∴13AFAC=…………………3分∵AB∥CD,AB∥FG∴FG∥CD.∴△AGF∽△ADC …………………4分∴13FG AFCD AC==…………………5分又CD=AB=6∴FG=2 …………………6分24.解:直线PC与⊙O相切. …………………1分理由:连接OC∵PC=PE∴∠PCE=∠PEC∴∠PCB+∠BCE=∠ACE+∠CAE…………………2分∵CD平分∠ACB∴∠BCE=∠ACE∴∠PCB=∠CAE …………………3分∵AB为直径∴∠ACB=90°∴∠CAE+∠CBA=90°∴∠PCB+∠CBA=90°…………………4分∵OC=OB∴∠OCB=∠CBA∴∠PCB+∠OCB =90°,即∠OCP =90° …………………5分 ∴直线PC 与⊙O 相切. …………………6分 25.解:设AD 交PN 于点E. ∵四边形PQMN 是矩形,AD ⊥BC∴PN ∥BC, AD ⊥PN,DE=MN …………………1分 ∴△APN∽△ABC …………………2分∴PN AEBC AD= …………………3分 设MN=x ,PN=y ,矩形PQMN 的面积为S ,由条件可得 y 80x 12080-= …………4分 解得3y x 1202=-+.…………5分∴233S=xy=x(x 120x 120x 22-+-+)=, ………………6分∵302-<∴当x=40时S 取最大值所以要使加工成的这个矩形面积最大,边长MN 应是40mm.………………7分 26.解:(1)由题意得:CO ⊥AB ,OA=2,OC=4 ∵∠ACB=90°, CO ⊥AB∴∠ACO+∠BCO=90°,∠ACO+∠CAO=90°,∠AOC=∠COB=90° ∴∠BCO=∠CAO ………………1分 ∴△AOC ∽△COB ∴OA OCOC OB = ………………2分 ∴244OB= 解得 OB=8 ∴点B 坐标为(8,0) ………………3分 ∵抛物线2y ax bx c =++经过点A 、B 、C ∴4a 2b c 0c 464a 8b c 0-+=⎧⎪=⎨⎪++=⎩解得1a 43b 2c 4⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩DM∴该抛物线的解析式为213y x x 442=-++. ………………5分(2)点D 不会落在该抛物线的对称轴上. ………………6分 理由:作DM ⊥x 轴于点M ,则在Rt △ODM 中,OD=OB=8,∠DOM=60° ∴∠ODM=30°∴OM=118422OD =⨯=.∴点D 的横坐标为4 ………………7分又由(1)可知,该抛物线的对称轴是直线x=3234124-=≠⨯-()∴旋转后点B 的对应点D 不会落在该抛物线的对称轴上. ………………8分。

9年级数学2016-2017上期末答案及建议

9年级数学2016-2017上期末答案及建议

2016-2017学年度上期期末检测九年级数学参考答案及评分建议A 卷(100分)一、选择题(本大题共十小题,每小题3分,共30分) 1-5 A B A C D 6-10 C B C D B二、填空题(本大题共四小题,每小题4分,共16分)11.2312.14m 13. 14. 6 三、解答题(本大题共六小题,共54分) 15.(本小题满分12分,每题6分)解:(1)原式12222=-⨯(4分) (2)254611∆=-⨯⨯= (2分)1= (2分) ∴ (5)26x --=⨯ (2分)∴ 112x =,213x = (2分) 16.(本小题满分6分)解:在Rt BCD V 中,45BCD ∠=︒, ∴ DC BC = (2分)在Rt ACD V 中,50ADC ∠=︒ ∴tan 50ACDC=︒ 即 1.2AC DC = (2分) 由题意知: 1.25AB AC BC BC BC m =-=-=,∴25BC m = (1分)∴建筑物BC 的高度为25m . (1分)18.(本小题满分8分)解:三张扑克牌可以分别简记为红2、红3、黑4,共有9种不同结果,如图所示.(4分)(1)∵两次抽得相同花色占5种情况,∴ 两次抽得相同花色的概率为59;(2分)(2)∵两次抽得的数字和是奇数占4种,∴两次抽得的数字和是奇数的概率为49.(2分) 19.(本小题满分10分)解:(1)∵ 抛物线2y x bx c =++过点A (-4,-3),对称轴是3x =- ∴ 1643321b c b -+=-⎧⎪⎨-=-⎪⎩⨯, (2分) ∴56c b =⎧⎨=⎩(1分) ∴ 抛物线的解析式为265y x x =++; (1分)(2)抛物线265y x x =++与x 轴的交点C (-5,0)、D(-1,0);(1分)与y 轴交点B (0,5)(1分)∴ 4CD =,5OB = ∴ △BCD 的面积1102CD OB =⨯⨯=; (1分)(3)连接BC 与对称轴交于点P ,此时△PBD 的周长最小(1分) 设对称轴与轴交于Q ,由平行得比例知255PQ =,2PQ =(1分) ∴ 所求点P 的坐标为(3-,2).(1分)20.(本小题满分10分)(1)证明: ∵矩形ABCD ∴AD ∥BC ,∴∠EAO=∠FCO ,∠AEO=∠CFO , 在△AOE 和△COF 中, ∠EAO =∠FCO ,∠AEO =∠CFO ,AO =CO∴ △AOE ≌△COF (AAS ), (1分)∴ EO=FO , ∴ 四边形AFCE 是平行四边形, (1分) ∵ EF ⊥AC , ∴ 四边形AFCE 是菱形;(1分)(2) ∵∠AEP=∠AOE=90°,∠EAP=∠OAE , ∴ △AOE ∽△AEP ,(1分) ∴AO AE=AE AP,∴2AE AO AP =⋅,(1分)∵ AC=2AO ,∴22AE AC AP =⋅.(1分) (3)解:∵ EF ⊥AC ,AO=CO ,∴ AF=CF (1分) ∵ 矩形ABCD ,AB=6,AD=8 ∴ AC=10(1分) ∵ ∠OCF=∠BCA ∴ Rt OCF Rt BCA ∆∆:(1分) ∴CF OC CA CB = ∴ 5108CF = ∴254AF CF ==(1分) B 卷(50分)一、填空题(本大题共五小题,每小题4分,共20分) 21. 31x -<<- 22.(1,4) 23.4.5 24.132521 二、解答题(本大题共三小题,共30分) 26.(本小题满分8分)解:(1)设BC 的长为x 米,则AB 的长为1(26)2x -)米,依题意得:(1分)1(26)802x x -=,(1分) 化简,得2261600x x -+=,解得:110x =,216x =,(1分) 当16x =米时,BC 的长超过墙的长12米,应舍去.(1分)答:若矩形猪舍的面积为80平方米,与墙平行的一边BC 的长为10米.(1分) (2)依题意得:1(26)2012x x x ⎧≥-⎪⎨⎪<≤⎩,(2分) 解得26123x ≤≤,(1分) 答:若边BC 的长度不小于与边AB 的长度,则BC 边至少应为26米.(1分) 27.(本小题满分10分)(1)证明:由题意知点C 与点N 重合,Rt △ABC 中,AD=BD ∴DC=DA=DB (1分)∵ α=30°,90EDF ∠=︒ ∴ ∠A=∠ADM=30°,∴MA=MD , ∵ MG ⊥AD ,∴ AG=12DC ,(1分) 同理,DH=12DB , ∴AG=DH ;(1分)(2)解:当0°<α<90°时,(1)中的结论成立.如图③,∵∠MDG=α, ∴ ∠DMG=90°-α=∠NDH ,∴ Rt △MGD ∽Rt △DHN ,∴DH NHMG DG=① (1分) 同理Rt △AGM ∽Rt △NHB ,∴AG MGNH BH=②(1分) 由①×②,得DG BH AG DH =,∴DG AG BH DHAG DH++=, 即AD BD AG DH=,(1分)∵AD=DB ,∴AG=DH ;(1分) (3)在Rt △DEF 绕点D 顺时针方向旋转过程中,DMDN值没有改变,(1分 ) ∵ Rt △MGD ∽Rt △DHN ,∴ DM MG DN DH =,∵AG=DH , ∴DM MGDN AG=(1分) 当α=30°时,MGAG=tan ∠A=tan30°=33 ∴33DM MG DN AG ==.(1分) 28.(本小题满分12分)解:(1)∵ 抛物线23y ax bx =+-与y 轴交于点C ∴ C (0,-3),∴ OC=3,(1分) ∵ BO=OC=3AO , ∴ BO=3,AO=1, ∴ B (3,0),A (-1,0),(1分) ∵ 该抛物线与x 轴交于A 、B 两点,∴ 933030a b a b +-=⎧⎨--=⎩,∴12a b =⎧⎨=-⎩,(1分) ∴ 抛物线解析式为223y x x =--,(1分)(2)由(1)知,抛物线解析式为2223(1)4y x x x =--=--,∴ E (1,-4), (1分) ∵ B (3,0),A (-1,0),C (0,-3),∴ BC=32,BE=25,CE=2, (1分)∵ 直线113y x =-+与y 轴交于点D , ∴ D (0,1), ∵ B (3,0),∴ OD=1,OB=3,BD=10, (1分) ∴2CE BC BEOD OB BD===, ∴ △BCE ∽△BDO ,(1分) (3)∵ BC 所在直线过点B (3,0)、C (0,-3) ∴ 直线BC 为3y x =- (1分) ∴ 当直线y x b =+与抛物线223y x x =--有唯一交点P 时,△PBC 的最大面积(1分) 把y x b =+代入223y x x =--得2330x x b ---=,由94(3)0b ∆=++=, ∴1232x x ==∴点P (32,154-)(1分) ∴ △PBC 的最大面积1315133115327()32442422428=⨯+⨯-⨯⨯-⨯⨯=.(1分)。

人版2016年_2017度九年级数学上学期期末考试试题和答案解析

人版2016年_2017度九年级数学上学期期末考试试题和答案解析

人教版2015-2016年度九年级数学上学期期末考试试卷及答案时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题3分,共30分) 1.(2013•内江)若抛物线y=x 2﹣2x+c 与y 轴的交点为(0,﹣3),则下列说法2.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等 于( ) A .1B .2C .1或2D .03.三角形的两边长分别为3和6,第三边的长是方程2680x x -+=的一个根,则这个三角形的周长是( )A.9 B.11 C.13 D 、144.(2015•兰州)下列函数解析式中,一定为二次函数的是( )A . y =3x ﹣1B . y =ax 2+bx +cC . s =2t 2﹣2t +1D . y =x 2+5.(2010 内蒙古包头)关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .256.(2013•荆门)在平面直角坐标系中,线段OP 的两个端点坐标分别是O (0,0),P (4,3),将线段OP 绕点O 逆时针旋转90°到OP ′位置,则点P ′的坐标为( )它完全相同。

小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )A .6B .16C .18D .248.如图,四边形ABCD 内接于⊙O ,BC 是直径,AD =DC ,∠ADB =20º,则∠ACB ,∠DBC 分别 为( )A .15º与30ºB .20º与35ºC .20º与40ºD .30º与35º9.如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向行走。

江苏南京2016年-2017年初三数学[上册]期末试题2套和答案解析

江苏南京2016年-2017年初三数学[上册]期末试题2套和答案解析

玄武区2016届九年级(上)期末考试数学试卷一、选择题(本大题共6小题,每小题2分,共计12分)1.一元二次方程x 2=1的解是 ( ) A .x =1B .x =-1C .x 1=1,x 2=-1D .x =02.⊙O 的半径为1,同一平面内,若点P 与圆心O 的距离为1,则点P 与⊙O 的位置关系 是 ( ) A .点P 在⊙O 外B .点P 在⊙O 上C .点P 在⊙O 内D .无法确定3.9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .中位数B .极差C .平均数D .方差4.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则方程ax 2+bx +c =0的一个解的范围是 ( )A .-0.01<x <0.02B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.205.若点A (-1,a ),B (2,b ),C (3,c )在抛物线y =x 2上,则下列结 论正确的是 ( ) A .a <c <b B . b <a <cC .c <b <aD . a <b <c6.如图,点E 在y 轴上,⊙E 与x 轴交于点A 、B ,与y 轴交于点C 、D ,若C (0, 9),D (0,-1),则线段AB 的长度为( )A .3B .4C .6D .8二、填空题(本大题共10小题,每小题2分,共20分)7.若b a =3,则b +a a= .8.一组数据:2,3,-1,5的极差为 .9.一元二次方程x 2-4x +1=0的两根是x 1,x 2,则x 1•x 2的值是 .10.某产品原来每件成本是100元,连续两次降低成本后,现在成本是81元,设平均每次降低成本的百分率为x ,可得方程 .11.在平面直角坐标系中,将抛物线y =2x 2先向右平移3个单位,再向上平移1个单位,得到的抛物线的函数表达式为 .12.已知圆锥的底面半径为6cm ,母线长为8cm ,它的侧面积为 cm 2. 13.如图,根据所给信息,可知BCB ′C ′的值为 .B(第6题)14.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则当x =3时,y = .15.如图,AB 是⊙O 的一条弦,C 是⊙O 上一动点且∠ACB =45°,E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于点G 、H .若⊙O 的半径为2,则GE +FH 的最大值为 .16.如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,点P 、Q 在DC 边上,且PQ =14D C .若AB=16,BC =20,则图中阴影部分的面积是 .三、解答题(本大题共11小题,共88分.解答时应写出文字说明、推理过程或演算步骤) 17.(10分)(1)解方程:(x +1)2=9; (2)解方程:x 2-4x +2=0.18.(6分)已知关于x 的一元二次方程(a +1)x 2-x +a 2-2a -2=0有一根是1,求a 的值.BN CQP (第16题)G(第15题)(第13题)O19.(8分)射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩(1)完成表中填空① ;② ;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩方差为43,你认为推荐谁参加比赛更合适,请说明理由.20.(7分)一只不透明的袋子中,装有三个分别标记为“1”、“2”、“3”的球,这三个球除了标记不同外,其余均相同.搅匀后,从中摸出一个球,记录球上的标记后放回袋中并搅匀,再从中摸出一个球,再次记录球上的标记.(1)请列出上述实验中所记录球上标记的所有可能的结果; (2)求两次记录球上标记均为“1”的概率.21.(8分)如图,在半径为2的⊙O 中,弦AB 长为2.(1)求点O 到AB 的距离.(2)若点C 为⊙O 上一点(不与点A ,B 重合),求∠BCA 的度数;A (第21题)22.(8分)已知二次函数y =x 2-2x -3.(1)该二次函数图象的对称轴为 ; (2)判断该函数与x 轴交点的个数,并说明理由;(3)下列说法正确的是 (填写所有正确说法的序号)①顶点坐标为(1,-4); ②当y >0时,-1<x <3;③在同一平面直角坐标系内,该函数图象与函数y =-x 2+2x +3的图象关于x 轴对称.23.(8分)如图,在四边形ABCD 中,AC 、BD 相交于点F ,点E 在BD 上,且AB AE =BC ED =ACAD.(1)求证:∠BAE =∠CAD ; (2)求证:△ABE ∽△AC D .ABCDF E(第23题)24.(7分)课本1.4有这样一道例题:据此,一位同学提出问题:“用这根长22 cm的铁丝能否围成面积最大的矩形?若能围成,求出面积最大值;若不能围成,请说明理由.”请你完成该同学提出的问题.25.(8分)如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O 是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.(第25题)26.(9分)已知一次函数y =x +4的图象与二次函数y =ax (x -2)的图象相交于A (-1,b )和B ,点P 是线段AB 上的动点(不与A 、B 重合),过点P 作PC ⊥x 轴,与二次函数y =ax (x -2)的图象交于点C . (1)求a 、b 的值(2)求线段PC 长的最大值;(3)若△PAC 为直角三角形,请直接写出点P 的坐标.27.(9分)如图,折叠边长为a 的正方形ABCD ,使点C 落在边AB 上的点M 处(不与点A ,B 重合),点D 落在点 N 处,折痕EF 分别与边BC 、AD 交于点E 、F ,MN 与边AD 交于点G . 证明:(1)△AGM ∽△BME ;(2)若M 为AB 中点,则AM 3=AG 4=MG5;(3)△AGM 的周长为2a .(第26题)ABCDMNE FG(第27题)2015-2016学年度第一学期期末学情调研 九年级数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7. 48. 69. 110.100(1-x )2=8111.y =2(x -3)2+112.48π 13.12 14.13 15.4- 2 16.92三、解答题(本大题共11小题,共88分) 17.(本题10分)(1)解:x +1=±3,∴x 1=2,x 2=-4.………………………………………………………5分(2)方法一:解:a =1,b =-4,c =2, b 2-4ac =8>0,x =4±2 22=2± 2 ,………………………………………… 3分∴x 1=2+ 2 ,x 2=2- 2 .…………………………………… 5分方法二:解:x 2-4x =-2, x 2-4x +4=-2+4,(x -2)2=2,…………………………………………………… 3分 x -2=± 2 ,∴x 1=2+ 2 ,x 2=2- 2 .……………………………… 5分 18.(本题6分)解:将x =1代入,得:(a +1)2-1+a 2-2a -2=0,解得:a 1=-1,a 2=2.………………………………………………… 5分 ∵a +1≠0,∴a ≠-1,∴a =2.………………………………………………………………… 6分19.(本题8分)解:(1)9;9.……………………………………………………………… 2分(2)S 甲2= 23.……………………………………………………………… 4分(3)∵X X 甲乙, S 甲2<S 乙2,∴推荐甲参加比赛合适.……………………………………………… 8分 20.(本题7分)解:(1)列表如下:…………………………………………………………………………… 4分 (2)在这种情况下,共包含9种结果,它们是等可能的.……………… 5分 所有的结果中,满足“两次记录球上标记均为‘1’”(记为事件A )的结果只有一种,所以P (A )= 19. …………………………………………………… 7分21.(本题8分)解:(1)过点O 作OD ⊥AB 于点D ,连接AO ,BO . ∵OD ⊥AB 且过圆心,AB =2,∴AD =12AB =1,∠ADO =90°.……………………………………… 2分在Rt △ADO 中,∠ADO =90°,AO =2,AD =1,∴OD =AO 2-AD 2= 3 .即点O 到AB 的距离为 3 .………… 4分 (2)∵AO =BO =2,AB =2,∴△ABO 是等边三角形,∴∠AOB =60°. ………………………… 6分若点C 在优弧⌒ACB 上,则∠BCA =30°;若点C 在劣弧 ⌒AB上,则∠BCA = 12(360°-∠AOB )=150°.…… 8分 22.(本题8分)解:(1)直线x =1.……………………………………………… 2分(2)令y =0,得:x 2-2x -3=0.∵b 2-4ac =16>0,∴方程有两个不相等的实数根,∴该函数与x 轴有两个交点.……………………………………… 6分 (3)①③.……………………………………………………………… 8分 23.(本题8分)证明:(1)在△ABC 与△AED 中,∵AB AE =BC ED =ACAD,∴△ABC ∽△AE D .…………………………………………………… 2分 ∴∠BAC =∠EAD , ∴∠BAC -∠EAF =∠EAD -∠EAF ,即∠BAE =∠CA D .…………………………………………………… 4分(2)∵AB AE =AC AD ,∴AB AC =AEAD. …………………………………………… 6分在△ABE 与△ACD 中,∵∠BAE =∠CAD ,AB AC =AEAD,∴ △ABE ∽△AC D . ………………………………………………… 8分24.(本题7分)解:能围成.设当矩形的一边长为x cm 时,面积为y cm 2.由题意得:y =x ·(222-x )…………………………………………………… 3分=-x 2+11x=-(x -112)2+1214…………………………………………… 5分 ∵(x -112)2≥0,∴-(x -112)2+1214≤1214.∴当x =112时,y 有最大值,y max =1214,此时222-x =112.答:当矩形的各边长均为112 cm 时,围成的面积最大,最大面积是1214cm 2.… 7分25.(本题8分)解:(1)AC 与⊙O 相切.本题答案不惟一,下列解法供参考. 证法一:∵BE 平分∠ABD ,∴∠OBE =∠DBO . ∵OE =OB ,∴∠OBE =∠OEB ,∴∠OBE =∠DBO ,∴OE ∥B D .………………………………… 2分 ∵AB =BC ,D 是AC 中点,∴BD ⊥A C .∴∠ADB =90°.∵AC 经过⊙O 半径OE 的外端点E ,∴AC 与⊙O 相切.……… 4分 证法二:∵BE 平分∠ABD ,∴∠ABD =2∠ABE .又∵∠ADE =2∠ABE ,∴∠ABD =∠ADE .∴OE ∥B D .……… 2分 ∵AB =BC ,D 是AC 中点,∴BD ⊥A C .∴∠ADB =90°.∵AC 经过⊙O 半径OE 的外端点E ,∴AC 与⊙O 相切.……… 4分 (2)设⊙O 半径为r ,则AO =10-r .由(1)知,OE ∥BD ,∴△AOE ∽△AB D .………………………… 6分∴AO AB =OE BD ,即10-r 10=r6,……………………………………………… 7分∴r =154.∴⊙O 半径是154.……………………………………… 8分26.(本题9分)解:(1)∵A (-1,b )在直线y =x +4上, ∴b =-1+4=3,∴A (-1,3).又∵A (-1,3)在抛物线y =ax (x -2)上,∴3=-a ·(-1-2),解得:a =1.…………………………… 2分 (2)设P (m ,m +4),则C (m ,m 2-2m ). ∴PC =(m +4)-(m 2-2m )=-m 2+3m +4=-(m -32)2+254………………………………………… 5分∵(m -32)2≥0,∴-(m -32)2+254≤254.∴当m =32时,PC 有最大值,最大值为254.……………………… 7分(3)P 1(2,6),P 2(3,7).……………………………………… 9分27.(本题9分)证明:(1)∵四边形ABCD 是正方形,∴∠A =∠B =∠C =90°, ∴∠AMG +∠AGM =90°.∵EF 为折痕,∴∠GME =∠C =90°, ∴∠AMG +∠BME =90°,∴∠AGM =∠BME . ………………………………………………… 2分 在△AGM 与△BME 中, ∵∠A =∠B ,∠AGM =∠BME ,∴△AGM ∽△BME . ………………………………………………… 3分 (2)∵M 为AB 中点,∴BM =AM =a2.设BE =x ,则ME =CE =a -x . 在Rt △BME 中,∠B =90°,∴BM 2+BE 2=ME 2,即(a2)2+x 2=(a -x )2,∴x =38a ,∴BE =38a ,ME =58a .由(1)知,△AGM ∽△BME , ∴AG BM =GM ME =AM BE =43.∴AG =43BM =23a ,GM =43ME =56a ,∴AM 3=AG 4=MG5.…………………………………………………… 6分 (3)设BM =x ,则AM =a -x ,ME =CE =a -BE . 在Rt △BME 中,∠B =90°,∴BM 2+BE 2=ME 2,即x 2+BE 2=(a -BE )2,解得:BE =a2-x 22a.由(1)知,△AGM ∽△BME , ∴C △AGM C △BME =AM BE =2aa +x. ∵C △BME =BM +BE +ME =BM +BE +CE =BM +BC =a +x , ∴C △AGM =C △BME ·AM BE=(a +x )·2aa +x=2a .……………………… 9分南京市江宁区2015-2016学年第一学期期末考试九年级数学(满分:120分 考试时间:120分钟)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.方程x (x+2)=0的解是( ▲ )2.两个相似三角形的相似比是2:3,则这两个三角形的面积比是 ( ▲ )3.如图,已知AB //CD //EF ,直线AF 与直线BE 相交于点O ,下列结论错误的是 ( ▲ )4.已知A (-1,y 1 ),B (2,y 2 )是抛物线y=-(x +2)2+3上的两点,则y 1,y 2的大小关系为 ( ▲ )5.如图,小明为检验M 、N 、P 、Q 四点是否共圆,用尺规分别作了MN 、MQ 的垂直平分线交于点O ,则M 、N 、P 、Q 四点中,不一定...在以O 为圆心,OM 为半径的圆上的点是 ( ▲ )6.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,O 是△ABC 的内心,以O 为圆心,r 为半径的圆与线段AB 有交点,则r 的取值范围是 ( ▲ )二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.一组数据-2,-1,0,3,5的极差是 ▲ .8.某车间生产的零件不合格的概率为11 000.如果每天从他们生产的零件中任取10个做试验,那么在大量的重复试验中,平均来说, ▲ 天会查出1个次品.9.抛掷一枚质地均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是 ▲ .A .-2B .0,-2C .0,2D .无实数根A .2:3B .2:3C .2:5D .4:9A .AD DF =BCCEB .OA OC =OB ODC .CD EF =OC OED .OA OF =OB OEA .y 1>y 2B .y 1<y 2C .y 1≥y 2D .y 1≤y 2A .点MB .点NC .点PD .点QA .r ≥1B .1≤r ≤5C .1≤r ≤10D .1≤r ≤4(第3题)5题)(第6题)10.某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图统计表.根据表中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数为 ▲ 人.11.如图,PA 、PB 分别切⊙O 于点A 、B ,∠P =70°,则∠C 的度数为 ▲ °. 12.如图,在正八边形ABCDEFGH 中,AC 、GC 是两条对角线,则∠ACG = ▲ °.13.沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2cm ,扇形的圆心角θ=120°,则该圆锥的母线长为 ▲ cm .14.某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为每平方米7800元,设该楼盘这两年房价平均降低率为x ,根据题意可列方程为 ▲ .15.如图,四边形ABCD 内接于⊙O ,若⊙O 的半径为6,∠A =130°,则扇形OBAD 的面积为 ▲ . 16.某数学兴趣小组研究二次函数y =mx 2-2mx +1(m ≠0)的图像时发现:无论m 如何变化,该图像总经过两个定点(0,1)和( ▲ , ▲ ).三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)(1)解方程:3x (x -2)=x -2 (2)x 2-4x -1=018.(6分)如图,利用标杆BE 测量建筑物的高度,如果标杆BE 长1.2m ,测得AB=1.6m , BC=8.4m ,楼高CD 是多少?G FE D C B A H (第 12题)(第11题)(第15题)B19.(6分)赵州桥的主桥拱是圆弧形,它的跨度(弧所对的弦)长为37.4 m ,拱高(弧的中点到弦的距离)为7.2 m ,请求出赵州桥的主桥拱半径(结果保留小数点后一位).20.(8分)一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下:(1)(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出两条支持乙组学生观点的理由.21.(8分)一个不透明的袋子中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由转动的转盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小亮和小丽想通过游戏来决定谁代表学校参加歌咏比赛.游戏规则为:一人从袋子中摸出一个小球,另一个人转动转盘,如果从袋中所摸球上的数字与转盘上转出数字之和小于4,那么小丽去,否则小亮去.(1)请用适当的方法求小丽参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.22.(8分)已知关于x的一元二次方程x2-x+m=0有两个不相等的实数根.(1)求实数m的取值范围;(2)若方程的两个实数根为x1、x2,且2x1·x2=m2-3,求实数m的值.23.(7分)用40cm长的铁丝围成一个扇形,求此扇形面积的最大值.24.(8分)已知二次函数y=-x2+(m-1)x+m.(1)证明:不论m取何值,该函数图像与x轴总有公共点;(2)若该函数的图像与y轴交点于(0,3),求出顶点坐标并画出该函数;(3)在(2)的条件下,观察图像,不等式-x2+(m-1)x+m>3的解集是▲ .25.(8分)如图,要设计一本画册的封面,封面长40cm ,宽30cm ,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的15,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:5≈2.236).26.(10分)如图①,A 、B 、C 、D 四点共圆,过点C 的切线CE ∥BD ,与AB 的延长线交于点E . (1)求证:∠BAC =∠CAD ;(2)如图②,若AB 为⊙O 的直径,AD =6,AB =10,求CE 的长; (3)在(2)的条件下,连接BC ,求CBAC的值.图①图②27.(11分)如图①,已知抛物线C 1:()412-+=x a y 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1. (1)求点C的坐标及 a 的值;(2)如图②,抛物线C2与C1关于x轴对称,将抛物线C2向右平移4个单位,得到抛物线C3.C3与x轴交于点B、E,点P是直线CE上方抛物线C3上的一个动点,过点P作y轴的平行线,交CE 于点F.①求线段PF长的最大值;②若PE=EF,求点P的坐标.图②九年级数学评分细则一、选择题(本大题共6二、填空题(共10小题,每小题2分,共20分)7.7; 8.100; 9.14; 10.520; 11.55;12.45; 13.6; 14.8100(1-x )2=7800; 15.10π; 16.(2,1)三、解答题(本大题共11小题,共88分)17.(8分)(1)解:3x (x -2)-(x -2)=0……………………………………2分(3x -1)(x -2)=0……………………………………3分 ∴x 1=13,x 2=2………………………………………….…4分(2)解一:(x -2)2=5…………………………………………………………2分x =±5+2 ……………………………………………………….…3分 ∴x 1=2+5,x 2=2-5………………………………………….…4分 解二:∵a =1,b =-4,c =-1∴b 2-4ac =20>0(不写不扣分)……………………………………1分 ∴x =4± 202……………………………………………………3分∴x =2± 5∴x 1=2+5,x 2=2-5…………………………………………………………4分18.(6分)解法一:相似;∵EB ⊥AB ,DC ⊥AB ,∴EB ∥DC ,∴△AEB ∽△ADC ,-------------------------------------------------------2分 ∴EB DC =AB AC ,即1.2DC = 1.61.6+8.4,----------------------------------------------4分 ∴DC =7.5m .-------------------------------------------------------------------6分解法二:三角函数;∵EB ⊥AB ,DC ⊥AB ,∴tan ∠A = EB AB = DCAC,-------------------------------------------------------3分 即1.21.6=DC 1.6+8.4,------------------------------------------------------4分 ∴DC =7.5m .---------------------------------------------6分19.(6分)设半径为r ,圆心为O ,作OC ⊥AB ,垂足为点D ,交弧AB 于点C ,--------1分∴ AD =DB =18.7,CD 是拱高.在Rt △AOD 中,由勾股定理,得OA 2=OD 2+ AD 2,即r 2=(r -7.2)2+18.72,-----------------4解得r ≈27.9 m .因此,赵州桥的主桥拱半径约为27.9 m .20.(8分)解:(1)甲组:中位数7; 乙组:平均数7;分)(2)(答案不唯一,写出两条即可)O①因为乙组学生的平均分高于甲组学生的平均分,所以乙组学生的成绩好于甲组;②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组.----------------------------------------------------------------------------------8分(每条2分) 21.(8分)解:(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,―――――――――2分 ∴P (和小于4)==,∴小丽参加比赛的概率为;―――――――――――4分(2)不公平.--------------------------------------------------------------------------------------5分∵P (小颖)=,P (小亮)=.∴P (和小于4)≠P (和大于等于4),--------------------------------------------------------6分 ∴游戏不公平;可改为:若两个数字之和小于5,则小丽去参赛;否则,小亮去参赛.――――――8分 (答案不唯一)22.(8分)解:(1)∵方程有两个不相等的实数根,∴b 2-4ac =1-4m>0,………………2分 即m<14;………………3分(2)由根与系数的关系可知:x 1·x 2=m ,………………4分∴2m =m 2-1, 整理得:m 2-2m -1=0,…………5分 解得:m =1±2.…………7分 ∵m<14∴ 所求m 的值为1- 2 ……………………………….8分23.(7分)解一:设半径为r ,弧长为l ,则40=2r + l ,---------------------------------1分∴l =40-2r ,------------------------------------------------------------------2分∴S 扇形=12lr =12r (40-2r ) -----------------------------------------------4分=-r 2+20r =-(r -10)2+100 -------------------------------------6分∴当半径为10时,扇形面积最大,最大值为100cm 2.-----------7分解二:设半径为r ,圆心角为n °,则40=2r +n πr180,---------------------------2分∴n =(40r -2)180π,------------------------------------------------------------3分∴S 扇形=n πr 2360 = 12 r 2(40r-2) -----------------------------------------------4分 =-r 2+20r =-(r -10)2+100 ---------------------------------------6分∴当半径为10时,扇形面积最大,最大值为100cm 2.---------------7分 24.(8分)解:(暂略)---------------8分 25.(8分)解一:设上、下边衬宽均为4xcm ,左、右边衬宽均为3xcm , ----------1分则(40-8x )(30-6x )=45×40×30----------------------------------------------------------4分整理,得x 2﹣10x +5=0,解之得x =5±25 ----------------------------------------6分 ∴x 1≈0.53,x 2≈9.47(舍去),--------------------------------------------------------8分答:上、下边衬宽均为2.1cm ,左、右边衬宽均为1.6cm .解二:设中央矩形的长为4xcm ,宽为3xcm , ----------------------------------------1分则4x ×3x =45×40×30-----------------------------------------------------------------------4分解得x 1=45,x 2=-45(舍去)---------------------------------------------------6分∴上、下边衬宽为20-85≈2.1,左、右边衬宽均为15-65≈1.6,--------8分 答:上、下边衬宽均为2.1cm ,左、右边衬宽均为1.6cm . 25.(10分)(1)解一:连接OC ,∵CE 为⊙O 的切线,∴OC ⊥CE .……………………………………1分 ∵BD ∥CE ,∴OC ⊥B D .………………………2分 ∴OC 平分弧B D. ………………………………3分 ∴∠BAC =∠CA D. ………………………………4分 (2)连接OC ,∵AB 为直径,∴∠ADB =90°. ∴∠ADB =∠OCE =90°∵AD =6,AB =10,∴BD=8,OC=5, ∵BD ∥CE ,∴∠ABD =∠E .∴△ABD ∽△OEC ………………………………6分∴AD OC =BD CE ,即 65= 8CE完美WORD 格式专业整理 知识分享 ∴CE = 203. ……………………………………7分 (3)∵AB 为直径,∴∠ACB =90°,∵∠ACO+∠OCB =∠OCB+∠BCE =90°,∴∠CAO=∠ACO =∠BCE∵∠E =∠E °,∴△CBE ∽△ACE ,即CB AC = CE AE…………………8分 ∵△ABD ∽△OEC ,∴ AD OC =AB OE ,∴OE = 253…………………9分 ∴CB AC = 203253+5 = 12. …………………………….…10分 27.(11分)解:(1)顶点C 为(-1,-4) ………………………………………1分∵点B (1,0)在抛物线C 1上,∴()41102-+=a ,解得,a =1 ………2分 (2)①∵C 2与C 1关于x 轴对称,∴抛物线C 2的表达式为()412++-=x y ……3分 抛物线C 3由C 2平移得到,∴抛物线C 3为()564322-+-=+--=x x x y ……4分 ∴E (5,0)设直线CE 的解析式为:y =kx +b ,则⎩⎨⎧-4=-k +b 0=5 k +b ,解得⎩⎨⎧k = 23 b =﹣103,…………………………………………………5分 ∴直线BC 的解析式为y =23x ﹣103, …………………………………………………6分 设P (x ,﹣x 2+6x ﹣5),则F (x ,23x ﹣103), ∴PF =(﹣x 2+6x ﹣5∴当x =83时,PF ②若PE =EF ,∵ PF ∴﹣x 2+6x ﹣5=-23x 解得x 1=53,x 2=5(舍去) ∴P (53,209).………………………………………………………………………11分。

2016-2017年九年级上学期期末数学试卷及答案

2016-2017年九年级上学期期末数学试卷及答案

C O 图4DB A 2016-2017年九年级上学期期末数学试卷一、选择题(每小题4分,共40分)1. 下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( B )A .B .C .D .2.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同。

小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( B )A .6 B .16 C .18 D .243.已知1x 、2x 是一元二次方程2362x x =-的两根,则1122x x x x -+的值是( C )A .43-B .83C .83-D .434.已知二次函数y =-(x +k )2+h ,当x >-2时,y 随x 的增大而减小,则函数中k 的取值范围是( C )A .k ≥-2 B .k ≤-2 C .k ≥2 D .k ≤2 5.在△ABC 中,∠A =90°,AB =3cm ,AC =4cm ,若以A 为圆心3cm 为半径作⊙O ,则BC 与⊙O 的位置关系是( A )A .相交 B .相离 C .相切 D .不能确定 6.如图C 、D 是以线段AB 为直径的⊙O 上两点,若CA CD =,且40ACD ∠=, 则CAB ∠=( B ) A.10B.20C.30D.407.如图在△ABC 中,∠C=90°,AC=4,BC=3,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为 ( A ) A .10 B .2 2 C .3 D .2 58.如图AB 是⊙O 的直径,AB=2,点C 在⊙O 上,∠CAB=30°,D 为 的中点,P 是直径AB 上一动点,则PC+PD 的最小值为( B )A .22B.2C.1D.29.如图⊙O 是以原点为圆心,2为半径的圆,点P 是直线 y =-x +6上的一点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( B )A .3B .4C .6-D .3-110.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为x =1,给出下列结论:①abc >0;②当x >2时,y >0;③3a +c >0;④3a+b >0.其中正确的结论有( C ) A .①② B .①④ C .①③④ D .②③④ 二、填空题(每小题4分,共40分)11.已知m 是关于x 的方程x 2﹣2x ﹣3=0的一个根,则2m 2﹣4m= 6 .12.若关于x 的二次函数221y kx x =+-与x 轴仅有一个公共点,则实数k 的值为1k =-. 13.如图,⊙O 的直径CD 与弦AB 垂直相交于点E ,且BC =1,AD =2,则⊙O 的直径长为5 .14.如图,AB 为⊙0的弦,AB=6,点C 是⊙0上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、BC 的中点,则MN 长的最大值是____32__________。

2016-2017学年第一学期九年级数学期末试题及答案

2016-2017学年第一学期九年级数学期末试题及答案

2016-2017学年第一学期期末测试九年级数学试卷(时间120分钟,满分120分)一、 选择题(本大题共10小题,每小题3分,共30分,请将答案填涂在答题卡上) 1、-5的倒数是( )A 、B 、C 、-5D 、52、a 2•a 3等于( )A 、3a 2B 、a 5C 、a 6D 、a 83、下列事件为必然事件的是( )A 、打开电视机,它正在播广告B 、抛掷一枚硬币,一定正面朝上C 、投掷一枚普通的正方体骰子,掷得的点数小于7D 、某彩票的中奖机会是1%,买1张一定不会中奖4、下面如图是一个圆柱体,则它的主视图是( )A B C D5.下列命题中,假命题是( ) A . 平行四边形是中心对称图形B . 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C . 对于简单的随机样本,可以用样本的方差去估计总体的方差D . 若x 2=y 2,则x=y6.若关于x 的不等式⎩⎨⎧≤-<-1270x m x 的整数解共有4个,则m 的取值范围是A .76<<mB .76<≤mC .76≤≤mD .76≤<m7.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A .3 B .4 C .5 D .6ABCDFE8.如图是一块△ABC 余料,已知AB=20cm ,BC=7cm ,A C=15cm ,现将余料裁剪成一个圆形材料,则该圆的最大面积是( )A . πcm 2B . 2πcm 2C . 4πcm 2D . 8πcm 29.如图,△ABC 中,∠ACB=90°,∠A=30°,AB=16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边A C (或边CB )于点Q .设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致是( )A .B .C .D .10. 如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交CE于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有A .1个B .2个C .3个D .4个A BCDEFG二、填空题(本大题共8小题,11--14每小题3分,15--18每小题4分,共28分,请将答案填在后面的表格里)11.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为_ 12. 因式分解:22a b ab b ++= .13.随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是 .14.现有一张圆心角为108°,半径为40cm 的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为 .15.如图,已知正方形ABCD 的边长是8,M 在DC 上,且DM=2,N 是AC 边上的一动点,则DN+NM 的最小值是_______.16. 如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .17.如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则PQ 的长为xyABO1S2S16题图18.如图,点M 是反比例函数y=在第一象限内图象上的点,作MB⊥x 轴于B .过点M 的第一条直线交y 轴于点A 1,交反比例函数图象于点C 1,且A 1C 1=A 1M ,△A 1C 1B 的面积记为S 1;过点M 的第二条直线交y 轴于点A 2,交反比例函数图象于点C 2,且A 2C 2=A 2M ,△A 2C 2B 的面积记为S 2;过点M 的第三条直线交y 轴于点A 3,交反比例函数图象于点C 3,且A 3C 3=A 3M ,△A 3C 3B 的面积记为S 3;以此类推…;则S 1+S 2+S 3+…+S 8= _________ .11 12 13 1415 16 17 18三.解答题:本大题共7小题,总分62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分7分,第⑴题3分,第⑵题4分)(1) 计算:1021()(52)18(2)23---+--⋅(2) 先化简再计算:(x -1x -x -2x +1)÷2x 2-x x 2+2x +1,其中x 满足x 2-x -1=0.20. (本题满分8分)某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000 名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:(1)表中a和b所表示的数分别为:a=___________,b=_______________;(2)请在图中补全额数分布直方图;(3)如果把成绩在70分以上(含70分)定为合格,那么该市20000名九年级考生数学成绩为合格的学生约有多少名?21.(本题满分8分)如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.22. (本题满分8分)周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)23. (本题满分9分)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.24.(本题满分10分)已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P 是线段DE上一定点(其中EP<PD)(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请直接写出它们所满足的数量关系式,不需要说明理由.25.(本题满分12分)如图,抛物线经过(40)(10)(02),,,,,三点.A B C-(1)求出抛物线的解析式;⊥轴,垂足为M,是否存在P点,使得以A,P,M为(2)P是抛物线上一动点,过P作PM x△相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;顶点的三角形与OAC△的面积最大,求出点D的坐标.(3)在直线AC上方的抛物线上有一点D,使得DCAO xy AB C 4 12-(第25题图) O xyAB C4 12-(备用)数学答案1—10题:ABCAD,DDCDD 11---18题:9.63×10-5b(a+1)27/8, 18. 10 4 3 255/51219题:2-221xx 1 20题:解:(1)a=40,b=0.09;(2)如图:;(3)(0.12+0.09+0.08)×24000 =0.29×24000=6960(人)答:该市24000名九年级考生数学成绩为优秀的学生约有6960名。

2016—2017上学期初三数学期末测试卷及答案

2016—2017上学期初三数学期末测试卷及答案

2016—2017上学期数学期末测试卷考试时间120分钟 满分150分一、选择题:(本题共8小题,每小题3分,共24分)说明:下面各题都给出代号为A 、B 、C 、D 的四个答案,请把唯一正确的答案代号填到题后的括号内。

1.在平面直角坐标系中,点(2,-1)在第( )象限。

A 、第一象限B 、第二象限C 、第三象限D 、第四象限 2.下列各式运算正确的是( )A 、325x x x += B 、32x x x -= C 、326x x x ⋅= D 、32x x x ÷= 3.在Rt △ABC 中,∠C =90°,AB =13,cosB =135,则BC 的值是( ) A 、3 B 、4 C 、 5 D 、12 4.函数2+=x y 中,自变量x 的取值范围是 ( )A .x <-2B .x ≤-2C .x >-2D .x ≥-25.将一张正方形形纸片按图1-①所示的方式对折,再按图1-②所示的虚线剪去一个小三角形,将余下纸片展开得到的图案是 ( )6.要调查志成学校初三学生的学习情况,选取调查对象最合适的是(A .选取一个班级的学生B 、选取协议(1)班50名学生C 、选取志成100班50名学生D 、随机选取50名初三学生7.如图2,A 、C 、B 是⊙O 上三点,若∠AOC=40°,则∠ABC 的度数是( ) A 、10° B 、20° C 、40° D 、80°8.某圆锥的母线长为13cm ,高为12cm ,则此圆锥的侧面展开面积为 ( ) A 、25π B 、60π C 、65π D 、156π二、填空题(本题共9小题,每小题3分,共27分)9.大连地区今年二月份最高气温为-4℃,最低气温为-16℃,则二月份的最高气温比最低气温高________℃。

10.计算:=+-)23)(32(________。

B 图21—① 1—② A B C D11.如图3,点P 是反比例函数xky =图象上一点,已知由点P 向 两坐标轴作垂线所得矩形面积为6,则k 的值为_______。

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案2016-2017学年度第一学期期末考试初三年级数学试卷一、选择题(10×3分=30分)1、下列图形中,既是中心对称图形又是轴对称图形的是(。

)2、将函数y=-3x^2+1的图象向右平移2个单位得到的新图象的函数解析式为(。

)A。

y=-3(x-2)^2+1B。

y=-3(x+2)^2+1C。

y=-3x^2+2D。

y=-3x^2-23、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为(。

)A.40°B.30°C.45°D.50°4、方程x^2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.无法确定5、如图,有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上,从中任意抽取一张是数字3的概率是(。

)A、1/4B、1/6C、2/3D、1/36、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是(。

)A.4B.5C.6D.37、如果矩形的面积为6,那么它的长y与宽x间的函数关系用图像表示(。

)8、如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△ABC1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于(。

)A.55°B.70°C.125°D.145°9、一次函数y=ax+b与二次函数y=ax^2+bx+c在同一坐标系中的图像可能是(。

)A.B.C.D.10、如图,已知正方形ABCD的边长为2,P为BC的中点,连接AP并延长交BD于点E,则PE的长度为(。

)A。

2B。

1C。

√2D。

1/√2二、填空题(8×4分=32分)11、方程x^2=x的解是(。

)12、正六边形的边长为10cm,那么它的边心距等于(。

2016-2017学年人教版初三数学第一学期期末试卷含答案

2016-2017学年人教版初三数学第一学期期末试卷含答案

2016-2017学年九年级(上)期末数学试卷一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:273.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x26.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于______.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=______.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为______.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=______.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为______;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为______.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为______.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c >0;③a>b;④4ac﹣b2<0.其中正确结论有______.24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为______.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为______.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).28.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].2016-2017学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限【考点】反比例函数的性质.【分析】根据反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:∵k=﹣1,∴图象在第二、四象限,故选:C.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数图象的性质.2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:27【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【解答】解:两个相似三角形面积的比是(2:3)2=4:9.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)【考点】反比例函数图象上点的坐标特征.【分析】把已知点坐标代入反比例解析式求出k的值,即可做出判断.【解答】解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选B.【点评】此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x2【考点】根的判别式.【分析】分别求出各个选项中一元二次方程的根的判别式,进而作出判断.【解答】解:A、x2﹣8=0,△=32>0,方程有两个不相等的实数根,此选项错误;B、2x2﹣4x+3=0,△=42﹣4×2×3=﹣8<0,方程没有实数根,此选项错误;C、9x2﹣6x+1=0,△=(﹣6)2﹣4×9×1=0,方程有两个相等的实数根,此选项正确;D、5x+2=3x2=,△(﹣5)2﹣4×3×(﹣2)=49>0,方程有两个不相等的实数根,此选项错误;故选C.【点评】本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)【考点】位似变换;坐标与图形性质.【分析】由两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD,根据位似的性质,即可求得答案.【解答】解:∵A(4,6),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴点A的对应点C的坐标为:(2,3).故选A.【点评】此题考查了位似变换的性质.注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选B.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【考点】相似三角形的判定;平行四边形的性质.【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CBP,∴△EDC∽△CBP,故有3对相似三角形.故选:D.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 【考点】由实际问题抽象出一元二次方程.【分析】此题利用基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格,列方程即可.【解答】解:由题意可列方程是:200×(1﹣x)2=168.故选A.【点评】此题考查一元二次方程的应用最基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格.10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】根据平移规律:“左加右减,上加下减”,直接代入函数解析式求得平移后的函数解析式.【解答】解:抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,得y=(x+2)2﹣3,故选:B.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于.【考点】比例的性质.【分析】根据比例的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由=,得a=.当a=时,===,故答案为:.【点评】本题考查了比例的性质,利用了比例的性质,分式的性质.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=2.【考点】锐角三角函数的定义.【分析】由正切的定义可知tanB=,代入计算即可.【解答】解:∵∠C=90°,AC=4,BC=2,∴tanB===2,故答案为:2.【点评】本题主要考查三角函数的定义,掌握正切的定义是解题的关键.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为1.【考点】反比例函数系数k的几何意义.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值|k|,△POD的面积为矩形面积的一半,即|k|.【解答】解:由于点P是反比例函数y=﹣图象上的一点,所以△POD的面积S=|k|=|﹣2|=1.故答案为:1.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可直接求解.【解答】解:∵DE∥AC,∴,即,解得:EC=.故答案为:.【点评】本题考查了平行线分线段成比例定理,理解定理内容是解题的关键.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.【考点】实数的运算;解一元二次方程-因式分解法.【分析】(1)方程利用因式分解法求出解即可;(2)原式利用零指数幂、负整数指数幂,以及特殊角的三角函数值计算即可得到结果.【解答】解:(1)分解得:(x﹣3)(x+1)=0,可得x﹣3=0或x+1=0,解得:x1=3,x2=﹣1;(2)原式=1+2﹣3﹣=3﹣4.【点评】此题考查了实数的运算,以及解一元二次方程﹣因式分解法,熟练掌握运算法则是解本题的关键.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.【考点】相似三角形的判定.【分析】根据相似三角形的判定,解题时要认真审题,选择适宜的判定方法.【解答】证明:∵AD=DB,∴∠B=∠BAD.∵∠BDA=∠1+∠C=∠2+∠ADE,又∵∠1=∠2,∴∠C=∠ADE.∴△ABC∽△EAD.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由转盘A获胜的有5种情况,转盘B获胜的有4种情况,即可求得其概率,继而求得答案.【解答】解:(1)画树状图得:则共有9种等可能的结果;(2)选择转盘A.理由:∵转盘A获胜的有5种情况,转盘B获胜的有4种情况,∴P(转盘A)=,P(转盘B)=,∴选择转盘A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),可以求得k的值,从而可以求得点A的坐标,从而可以求出一次函数y=x+b中b 的值,本题得以解决;(2)将第一问中求得的两个解析式联立方程组可以求得点B的坐标,进而可以求得△AOB 的面积;(3)根据函数图象可以解答本题.【解答】解;(1)∵反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),∴,解得,k=2,∴点A(1,2),∴2=1+b,得b=1,即这两个函数的表达式分别是:,y=x+1;(2)解得,或,即这两个函数图象的另一个交点B的坐标是(﹣2,﹣1);将y=0代入y=x+1,得x=﹣1,∴OC=|﹣1|=1,∴S△AOB=S△AOC+S△BOC=,即△AOB的面积是;(3)根据图象可得反比例函数值大于一次函数值的x的取值范围是x<﹣2或0<x<1.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为cm或20cm;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.【考点】相似三角形的判定与性质.【分析】(1)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.(2)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ 对应成比例以及AP和BC对应成比例两种情况来求x的值;(3)当S△BCQ:S△ABC=1:3时,=,于是得到,通过相似三角形的性质得到,即可得到结论.【解答】解:(1)由题意得,PQ平行于BC,则AP:AB=AQ:AC,AP=4x,AQ=30﹣3x∴=∴x=;(2)假设两三角形可以相似,情况1:当△APQ∽△CQB时,CQ:AP=BC:AQ,即有=解得x=,经检验,x=是原分式方程的解.此时AP=cm,情况2:当△APQ∽△CBQ时,CQ:AQ=BC:AP,即有=解得x=5,经检验,x=5是原分式方程的解.此时AP=20cm.综上所述,AP=cm或AP=20cm;故答案为:cm或20cm;(3)当S△BCQ:S△ABC=1:3时,=,∴,由(1)知,PQ∥BC,∴△APQ∽△ABC,∴,∴S△APQ:S△ABQ=2.【点评】本题主要考查了相似三角形的判定和性质,根据三角形相似得出线段比或面积比是解题的关键.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为2014.【考点】根与系数的关系.【分析】根据一元二次方程的解的定义得到a2﹣2015a=﹣1,a2=2015a﹣1,再根据根与系数的关系得到a+b=2015,然后把要求的式子进行变形,再代入计算即可.【解答】解:∵a是方程x2﹣2015x+1=0的根,∴a2﹣2015a+1=0,∴a2﹣2015a=﹣1,a2=2015a﹣1,∵a,b是方程x2﹣2015x+1=0的两根,∴a+b=2015,∴a2﹣2014a+b=a2﹣2015a+a+b=﹣1+2015=2014;故答案为:2014.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的解.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与得出他们“心有灵犀”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,得出他们“心有灵犀”的有10种情况,∴得出他们“心有灵犀”的概率为:=.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c >0;③a>b;④4ac﹣b2<0.其中正确结论有①③④.【考点】二次函数图象与系数的关系.【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣=﹣,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.【解答】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0,故①正确;∵x=1时,y<0,∴a+b+c<0,故②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣=﹣,∴b=3a,又∵a<0,b<0,∴a>b,故③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,故④正确;综上,可得正确结论有3个:①③④.故答案为①③④.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义;平移的性质.【分析】利用平行四边形的面积公式得出M的值,进而利用反比例函数图象上点的性质得出k的值.【解答】解:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=1,∴A(1,2),∴k=1×2=2.故答案为:2.【点评】此题主要考查了平移的性质和反比例函数系数k的几何意义,得出A点坐标是解题关键.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【考点】翻折变换(折叠问题).【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.【点评】本题考查了翻折变换,利用了翻折的性质,勾股定理,等腰三角形的判定.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?【考点】二次函数的应用;一次函数的应用.【分析】(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×0.8=360元;(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;(3)利用最大利润=y(x﹣4),进而利用配方法求出函数最值即可.【解答】解:(1)由题意知:当蔬菜批发量为60千克时:60×5=300(元),当蔬菜批发量为90千克时:90×5×0.8=360(元).故答案为:300,360;(2)设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得,解得.故该一次函数解析式为:y=﹣30x+240;(3)设当日可获利润w(元),日零售价为x元,由(2)知,w=(﹣30x+240)(x﹣5×0.8)=﹣30(x﹣6)2+120,﹣30x+240≥75,即x≤5.5,当x=5.5时,当日可获得利润最大,最大利润为112.5元.【点评】此题主要考查了一次函数的应用以及二次函数的应用,得出y与x的函数关系式是解题关键.27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).【考点】一次函数综合题.【分析】(Ⅰ)根据折叠的性质得出BM=AM,再由勾股定理进行解答即可;(Ⅱ)根据勾股定理和三角形的面积得出△AMN,△COM和△ABO的面积,进而表示出S 的代数式即可;(Ⅲ)把S=代入解答即可.【解答】解:(Ⅰ)在Rt△ABO中,点A(,0),点B(0,1),点O(0,0),∴OA=,OB=1,由OM=m,可得:AM=OA﹣OM=﹣m,根据题意,由折叠可知△BMN≌△AMN,∴BM=AM=﹣m,在Rt△MOB中,由勾股定理,BM2=OB2+OM2,可得:,解得m=,∴点M的坐标为(,0);(Ⅱ)在Rt△ABO中,tan∠OAB=,∴∠OAB=30°,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年九年级数学(上)期末试卷说明:1、本卷共有6个大题,24个小题,全卷满分120分,考试时间120分钟。

2、不要答在试题卷上,请将答案写在所给的答题卡相应位置,否则不给分。

一、选择题(本大题共6小题,每小题3分,共18分) 1.下列电视台的台标,是中心对称图形的是A .B .C .D .2.掷一枚质地均匀的硬币10次,下列说法正确的是( ) A .必有5次正面朝上 B . 可能有5次正面朝上 C .掷2次必有1次正面朝上 D . 不可能10次正面朝上 3.用配方法解方程x 2-2x -3=0时,配方后所得的方程为A 、(x -1)2=4B 、(x -1)2=2C 、(x +1)2=4D 、(x +1)2=24.九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意列出方程为A 、12 x (x -1)=2070B 、12 x (x +1)=2070 C 、x (x +1)=2070 D 、x (x -1)=20705.小明想用一个圆心角为120°,半径为6cm 的扇形做一个圆锥的侧面(接缝处忽略不计),则做成的圆锥底面半径为A 、4 cmB 、3 cmC 、2 cmD 、1 cm6.已知抛物线y =ax 2+bx 和直线y =ax +b 在同一坐标系内的图象如图,其中正确的是A B C D 二、填空题(本大题共8小题,每小题3分,共24分) 7.一元二次方程x 2=x 的解为 。

8.如图,若AB 是⊙O 的直径,AB =10,∠CAB =30°, 则BC = 。

9.如图所示的五角星绕中心点旋转一定的角度后能与 自身完全重合,则其旋转的角度至少为 。

10.某品牌手机两年内由每台2500元降低到每台1600元, 则这款手机平均每年降低的百分率为 。

B11.若正方形的边长为6cm ,则其外接圆半径是 。

12.林业工人为调查树木的生长情况,常用一种角卡工具,可以很快测出大树的直径,其工作原理如图所示,已知AC和AB 都与⊙O 相切,∠BAC =60°,AB =0.6m ,则这棵大树 的直径为 。

13.将二次函数y =-2(x -1)2 +3的图象关于原点作对称变换,则对称后得到的二次函数的解析式为 。

14.如图,矩形ABCD 内接于⊙O ,∠OAD =30°,若点P 是⊙O 上一点,且OP ⊥OA ,则∠OPB 的度数为 。

三、(本大题共4小题,每小题6分,共24分) 15.已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8)。

求该抛物线的解析式。

16.如图,在10×10的正方形格纸中,小正方形的顶点称为格点,用尺规完成下列作图(保留作图痕迹,不要求写作法)。

(1)在图1的方格纸中,画出一个经过E 、F 两点的圆弧,并且使得半径最小,请在图中标出圆心O 并直接写出该圆的半径长度。

(2)在图2的方格纸中,画出一个经过E 、F 两点的圆弧,并且使圆心是格点,请在图中标出圆心O 并直接写出该圆的半径长度。

17.在体育课上,老师向排好队列的学生讲解行进间传球的要领时,叫甲、乙、丙、丁四位是年级球队队员的同学出列,配合老师进行传球示范。

(1)首先球在老师手里时,直接传给甲同学的概率是多少?(2)当老师传给甲后,老师叫四位同学相互传球,其他人观看体会,当甲第一个传出,求甲传给下一个同学后,这个同学又再传回给甲的概率。

18.已知关于x 的方程x 2+ax +a -2=0。

(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根。

四、(本大题共3小题,每小题8分,共24分)19.如图所示,正方形网格中,△ABC 为格点三角形(即三角形的顶点都在格点上). (1)把△ABC 沿BA 方向平移后,点A 移到点A 1,在网格中画出平移后得到的△A 1B 1C 1; (2)把△A 1B 1C 1绕点A 1按逆时针方向旋转90°,在网格中画出旋转后的△A 1B 2C 2;图1 E F 图2EFCA B ·O A D B C ·O(3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.20.如图,CD 为⊙O 的直径,CD ⊥AB ,垂足为点F , AO ⊥BC ,垂足为点E ,OA =1。

(1)求∠C 的大小;(2)求阴影部分的面积。

21.在等边△ABC 中,以BC 为直径的⊙O 与AB 交于点D , DE ⊥AC ,垂足为点E .(1)求证:DE 为⊙O 的切线; (2)计算CEAE 。

五、(本大题共2小题,每小题9分,共18分)22.某校七年级学生准备去购买《英汉词典》一书,此书标价为20元。

现A 、B 两书店都有此书出售,A 店按如下方法促销:若只购一本,则按标价销售;若一次性购买多于一本,但不多出20本时,每多购一本,每本销售价在标价的基础上优惠2%(例如买两本,每本价优惠2%;买三本价优惠4%,以此类推);若购买多于20本时,每本售价为12元。

B 店一律按标价的7折销售。

(1)试分别写出在两书店购此书的总价y A 、y B 与购本书数x 之间的函数关系式。

(2)若某班一次性购买多于20本时,那么去哪家书店购买更合算?为什么?若要一次性购买不多于20本时,先写出y (y =y A -y B )与购书本数x 之间的函数关系式,并在图中画出其函数图象,再利用函数图象分析去哪家书店购买更合算。

23.在一节数学实践活动课上,老师拿出三个边长都为5cm 的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为 cm ; (Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为 cm ; (Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为 cm ;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.六、(本大题共12分) 24.如图1,若抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上(点A 与点B 不重合),我们定义:这样的两条抛物L 1,L 2互为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有多条。

(1)如图2,已知抛物线L 3:y =2x 2-8x +4与y 轴交于点C ,试求出点C 关于该抛物线对称轴对称的点D 的坐标;(2)请求出以点D 为顶点的L 3的友好抛物线L 4的解析式,并指出L 3与L 4中y 同时随x 增大而增大的自变量的取值范围;(3)若抛物y =a 1 (x -m ) 2+n 的任意一条友好抛物线的解析式为y =a 2 (x -h ) 2+k ,请写出a 1与a 2的关系式,并说明理由。

图2 图1参考答案一、选择题1、A2、B3、A4、D5、C6、D 二、填空题7、x 1=0,x 2=1; 8、5 9、72° 10、20% 11、3 2 cm 12、25 3 13、y =2(x +1)2 -3 14、15°或75°三~六15、y =2x 2+2x -4 16、解:(1)作图如图1(2)作图如图2,半径等于517、解:(1)当球在老师手里时,先直接传给甲同学的概率是14;…………………2分(2)当甲传出球后,经两次传球的情况可用如下树状图表示:…………………4分∴再传回甲的概率为39 =13 。

………………………………………6分18、(1)将x =1代入方程x 2+ax +a -2=0得,1+a +a -2=0,解得,a =12 ;方程为x 2+12 x -32 =0,即2x 2+x -3=0,设另一根为x 1,则x 1=-32 .(2)∵△=a 2-4(a -2)=a 2-4a +8=a 2-4a +4+4=(a -2)2+4>0,…3分 ∴不论a 取何实数,该方程都有两个不相等的实数根.……………6分图图219、(1)画图正确。

…………2分 (2)画图正确.………………4分 (3)BB 1=22+22 =2 2 ;……5分 弧B 1B 2的长=90π 2 180 = 2 π2 。

……7分点B 所走的路径总长=2 2 +2 π2。

……8分 20、(1)证明:由CD ⊥AB ,得 ⌒ AD = ⌒ DB ;∴∠AOD =2∠C由AO ⊥BC ,易得∠C =30°。

…………4分 (2)13 π- 3 4 ………………8分21、(1)证明:连接OD ,∵△ABC 为等边三角形,∴∠ABC =60°, 又∵OD =OB ,∴△OBD 为等边三角形, ∴∠BOD =60°=∠ACB , ∴OD ∥AC , 又∵DE ⊥AC ,∴∠ODE =∠AED =90°, ∴DE 为⊙O 的切线;………………4分 (2)解:连接CD ,∵BC 为⊙O 的直径,∴∠BDC =90°,又∵△ABC 为等边三角形,∴AD =BD =12 AB ,在Rt △AED 中,∠A =60°,∴∠ADE =30°, ∴AE =12 AD =14 AC ,CE =AC -AE =34 AC ,∴CEAE=3.………………8分 22、解:(1)设购买x 本,则在A 书店购书的总费用为20x [1-2%(x -1)](0<x ≤20)12x ,(x >20) ………………3分在B 书店购书的总费用为y B =20×0.7x =14x ………5分 (2)当x >20时, 显然y A <y B ,去A 店买更合算。

当0<x ≤20时,y =y A -y B =-25 x 2+325x=-25(x -8)2 +25.6y A =当-25 (x -8)2+25.6=0时,x =0或16。

………7分由图象可得:当0<x <16时, y >0;当x =16时,y =0;当16<x ≤20时,y <0。

综上所述,若购书少于16本时,到B 书店购买; 若购买16本,到A 、B 书店费用一样;若超过16本,则到A 书店购买合算。

相关文档
最新文档