反演规则求反函数
求反函数的9种方法
求反函数的9种方法
1、求偏导数法:将函数y=f(x)求其偏导数,并把x 和y变为未知量,解出来的式子就是函数y=f(x)的反函数。
2、分部离散法:将原函数y=f(x)分成不同的区间,利用不同的方法分步求得反函数。
3、分段函数法:将原函数y=f(x)分不同的段,在每一段上使用恰当的函数拟合,求得拟合函数的反函数。
4、已知极限法:利用原函数的极限的性质和选定的不同的点,构造出反函数的函数表示式,从而求反函数。
5、特殊函数法:应用一些特殊的函数,如指数函数、对数函数、三角函数等,将原函数变形,然后求反函数。
6、拉格朗日变换法:将原函数y=f(x)表示为拉格朗日函数,然后求反函数。
7、积分法:将原函数y=f(x)积分,再将x和y变为未知量,解出来的式子就是函数y=f(x)的反函数。
8、图像法:将原函数y=f(x)图像化,利用图像的对称性,求出反函数。
9、数值计算法:以某一点为起点,给出一个步长,求出反函数中每一点的x坐标和y坐标,构成反函数。
反函数是什么?这里说得非常清楚
反函数是什么?这里说得非常清楚一·关于反函数的总总:
1. 反函数是函数的一个重要性质,也是研究函数的一种重要方法。
2. 反函数在新课标高中数学教材中已经弱化,只要求指数函数与对数函数互为反函数即
可。
另外,高考数学中对反函数的考查也在淡化,甚至几乎不考了。
3. 原函数与反函数的图象关于直线y=x(或一三象限的角平分线)对称,这是互为反函数
的两个函数之间最重要的性质,许多试题的突破口皆在此。
4. 反函数在大学的《高等数学》中会继续涉及,因此,了解反函数的相关性质对后续学习
大有裨益。
二·反函数的定义:
当一个函数是一一映射时,可以把这个函数的因变量作为一个新函数的自变量,而把这个函数的自变量叫做新函数的因变量,我们称这两个函数互为反函数。
三·求反函数的步骤:
1. 求原函数的值域,由此确定反函数的定义域;
2. 反解原函数,用因变量y来表示自变量x;
3. 将自变量x与因变量y互换,得出反函数的解析式并补充定义域。
四·反函数的性质:
【注意】
偶函数的图象关于y轴对称是指的一个函数自身的对称,而原函数与反函数的对称是指两个函数之间的对称。
五·与反函数相关的高考试题:
1·求反函数:
2·反函数的性质:
!。
数电试题库(打印)
第一、二章数制转换及逻辑代数(11001)2=()10;(6AB)16=()10(46BE.A)16=()2=()10(32)10=()2;(110101.01)2=()10 (132.6)10=()8421BCD;(32.6)10=()余3码二、试分别用反演规则和对偶规则写出下列逻辑函数的反函数式和对偶式。
1、Y=+CD2、Y= C3、Y= D4、Y= A B5、Y=A+6、Y=ABC+三、用公式法化简为最简与或式:1、Y=C+ A2、Y=C+BC+A C+ABC3、Y=(A+B)4、Y=A(C+D)+D+5、CAY+B+=+BCBBA四、证明利用公式法证明下列等式1、++BC+=+ BC2、AB+BCD+C+C=AB+C3、A+BD+CBE+A+D4、AB++ A+B=)5、AB(C+D)+D+(A+B)(+)=A+B+D五、用卡诺图化简函数为最简与-或表达式1、Y(A,B,C,D)=B+C++AD2、Y(A,B,C,D)=C+AD+(B+C)+A+3、Y(A,B,C,D)=4、Y(A,B,C,D)=5、Y(A,B,C,D)=+(5,6,7,13,14,15)6、Y(A,B,C,D)=+(6,14)7、Y(A,B,C,D)=+(3,4,13)8、∑∑+=)11532()13,96410()(,,,,,,,,,,d m D C B A Y1、逻辑函数的表达方法有:逻辑函数表达式,逻辑图,_____,_____。
2、数字电路可进行_____运算,_____运算,还能用于_____。
3、若用二进制代码对48个字符进行编码,则至少需要 位二进制数。
4、 要用n 位二进制数为N 个对象编码,必须满足 。
5、逻辑函数进行异或运算时,若“1”的个数为偶数个,“0”的个数为任意个,则运算结果必为 。
1. 在N 进制中,字符N 的取值范围为:( )A .0 ~ NB .1 ~ NC .1 ~ N -1D .0 ~ N-1 2. 下列数中,最大的数是 ( )。
数字电子技术教案第3章 逻辑代数基础
难点:任意项和非完全描述函数。
方法步骤:理论讲授、例题讲解、课堂练习、课堂提问。
器材保障:多媒体电脑、投影仪、扩音设备。
教学内容与时间安排:
首先,在黑板上简单举例说明逻辑函数常见的两种描述方式——真值表、表达式,或者叫做“表现形式”。
一、描述方式之一——真值表
本次课小结:
本次课,首先学习了逻辑函数的两种描述方式——真值表和表达式,在 “表达式描述方式”这一部分内容中,又包括表达式的类型、标准的表达式;然后了解了不同描述方式之间的相互转换的方法;最后学习了非完全描述的逻辑函数和任意项。
至此,本课程的第一部分内容已经结束。对这一部分的知识结构、主要内容及学习要求做一个简单的梳理和总结。
(三) 逻辑关系、逻辑函数与数字电路
通过幻灯片上的表格说明三者之间的一一对应关系。
二、常见的逻辑运算
注意强调逻辑关系、逻辑运算和逻辑门之间的联系;注意指出三种逻辑关系、逻辑运算和逻辑门的特点;再次强调逻辑运算与普通代数运算的区别;三种逻辑运算的优先级不同;要求学生认识逻辑门的三套符号,使用国标符号。
1和0的概念是真与假、高与低、导通与截止等对应。
注意三个域之间的对应:逻辑关系、逻辑运算、逻辑门。
注意总结每种逻辑门的特点。
基本定理是等式证明、公式变换的依据。
三条规则熟练掌握应用。
总结知识点,提示知识预习。
内容
备注
《数字电子技术》课程教案
讲课题目:第05讲 逻辑代数(2) —逻辑函数的描述方式
目的要求:1、掌握逻辑函数的两种描述方式——真值表、表达式;2、理解最小项、最大项和任意项的概念。
前面提到,在逻辑函数的真值表中,自变量的每一组取值组合都代表着一个最大项和最小项。如果自变量的某个取值组合令函数值为1,则这个取值组合所代表的最小项就会出现在函数的最小项表达式中;如果自变量的某个取值组合令函数值为0,则这个取值组合所代表的最大项就会出现在函数的最大项表达式中。
复习题(数电答案)
1.下列四种类型的逻辑门中,可以用( D )实现与、或、非三种基本运算。
A. 与门 B. 或门 C. 非门 D. 与非门 2. 根据反演规则,CD C B A F ++=)(的反函数为(A )。
A. ))((''''''D C C B A F ++= B. ))((''''''D C C B A F ++= C. ))((''''''D C C B A F += D. ))(('''''D C C B A F ++= 3.逻辑函数F=)(B A A ⊕⊕ =( A )。
A. BB. AC. B A ⊕D. B A ⊕4. 最小项ABCD 的逻辑相邻最小项是( A )。
A. ABCDB. ABCDC. ABCDD. ABCD 5. 对CMOS 与非门电路,其多余输入端正确的处理方法是(D )。
A. 通过大电阻接地(>1.5K Ω)B. 悬空C. 通过小电阻接地(<1K Ω)D. 通过电阻接+VCC 6. 下列说法不正确的是( C )。
A .当高电平表示逻辑0、低电平表示逻辑1时称为正逻辑。
B .三态门输出端有可能出现三种状态(高阻态、高电平、低电平)。
C .OC 门输出端直接连接可以实现正逻辑的线与运算。
D .集电极开路的门称为OC 门。
7.已知74LS138译码器的输入三个使能端(E 1=1, E 2A = E 2B =0)时,地址码A 2A 1A 0=011,则输出 Y 7 ~Y 0是( C ) 。
A. 11111101B. 10111111C. 11110111D. 111111118. 若用JK 触发器来实现特性方程为1+n QQ AB Q +=A ,则JK 端的方程为( A )。
A.J=AB ,K=AB.J=AB ,K=AC. J =A ,K =ABD.J=B A ,K=AB 9.要将方波脉冲的周期扩展10倍,可采用( C )。
第四章:逻辑代数及其化简(2)
包含律:AB AC BC AB AC 证:AB AC BC AB AC A ABC
AB AC ABC ABC
AB1 C AC 1 B
若两个乘积项中分别 包含A和A两个因子, 而这两个乘积项的其 余因子组成第三个乘 积项,则第三个乘积 项是多余的。可消去
定理:任何逻辑函数 F 都可以用最小项之和的形式表示。 而且这种形式是唯一的。 1、 真值表法: 将逻辑函数先用真值表表示,然后再根据真值表写出最 小项之和。 例:将 F ABC BC AC 表示为最小项之和的形式。 解:由最小项特点知:n 个变量都出现,BC 缺变量 A ,
AC缺变量B, BC和AC不是最小项。 所以 F 是一般与-或式,不是最小项之和的标准形式。
例:已知一个奇偶判别函数的真值表(偶 ③ n个输入变量就有2n个 为1,奇为0),试写出它的逻辑函数式。
A 0 0 0
B 0 0 1
C 0 1 0
Y
0
1 1
1
0 0
1
0 1
1
1
0
解: 当ABC=011时, 使乘积项 ABC 1 1 1 1 不同的取值组合。 当ABC=101时, 使乘积项ABC 1 当ABC=110时, 使乘积项ABC 1 因此,Y的逻辑函数应当等于这三个乘积项之和。 Y ABC ABC ABC
二、从逻辑表达式列出真值表 将输入变量的所有状态组合 逐一代入逻辑式,求出函数值, 列成表,即可得到真值表。 例:已知函数 Y A BC ABC 求其对应真值表。 解:将三变量所有取值组合代 入Y式中,将计算结果列表。
A B C 0 0 0 0 0 1
BC
逻辑函数的基本运算与定律
与逻辑和与运算
♦ “所有前提皆为真,结论才为真”,这种逻辑关系称为与逻
辑; ♦与逻辑表明只有当所有前提条件均具备时,结论命题才为真;
电路实例
2016/9/23
状态表
开关A开关B 灯L
断断灭 断通灭 通断灭 通通亮
真值表
AB
L=A*B
00
0
0
1
0
1
0
0
与门符号
7
2.1基本逻辑运算-与逻辑和与运算
>
L = A^B
证明:
__ __ __ __ __ __
A + AB = A + B
A + AB = (A + A)・(A + B) =1 ・(A + B) =A + B
2.5逻辑代数的常用公式一消冗余项公式
__ __
> 2.5.3消冗余项公式
AB + AC + BC = AB + AC
证明: AB + AC + BC = AB + AC + (A + A) BC
2016/9/23
5
2.1基本逻辑运算-非逻辑和非运算
> L = f (刀)=A ♦ 字母A上方的短划线“一”表示非运算,符号读作“A非”; ♦ 非逻辑公理
0=1 1=0
♦ 非运算规则
A=A
♦ 表明非运算具有“否定之否定等于肯定”的双重否定律;
2016/9/23
6
2.1基本逻辑运算-与逻辑和与运算
11
2.1基本逻辑运算一逻辑运算的完备集
逻辑运算的优先级和逻辑运算的完备集
♦三种基本逻辑运算如在逻辑运算式中同时出现时,其优先顺序
数字电子技术考试卷及答案 (5)
七、(本题12分)画出用74161的异步清零功能构成的80进制计数器的连线图。
八、(本题15分)用D触发器设计一个按自然态序进行计数的同步加法计数器。
要求当控制信号M=0时为5进制,M=1时为7进制(要求有设计过程)。
7《数字电子技术基础》期末考试A卷标准答案及评分标准8910北京航空航天大学2004-2005 学年第二学期期末《数字数字电子技术基础》考试A 卷班级______________学号_________姓名______________成绩_________2007年1月18日班号学号姓名成绩《数字电路》期末考试A卷注意事项:1、答案写在每个题目下面的空白处,如地方不够可写在上页背面对应位置;2、本卷共5页考卷纸,7道大题;((a)74LS85四、逻辑电路和各输入信号波形如图所示,画出各触发器Q 端的波形。
各触发器的初始状态为0。
(本题12分)五、由移位寄存器74LS194和3—8译码器组成的时序电路如图所示,分析该电路。
(1)画出74LS194的状态转换图;(2)说出Z 的输出序列。
(本题13分)CP CP六、已知某同步时序电路的状态转换图如图所示。
(1)作出该电路的状态转换表;(2)若用D触发器实现该电路时写出该电路的激励方程;(3)写出输出方程。
(本题15分)七、电路由74LS161和PROM组成。
(1)分析74LS161的计数长度;(2)写出W、X、Y、Z的函数表达式;(3)在CP作用下。
分析W、X、Y、Z端顺序输出的8421BCD码的状态(W为最高位,Z为最低位),说明电路的功能。
(本题16分)《数字电子技术基础》期末考试A卷标准答案及评分标准一、1、按照波形酌情给分。
北京航空航天大学2005-2006 学年第二学期期末《数字电子技术基础》考试A 卷班级______________学号_________姓名______________成绩_________2006年7月12日班号学号姓名成绩N图712Q Q Y(状态转换、设计过程和步骤对得10分,化简有误扣3-5分)七、MN=00时,是5进制,显示最大数字为4;MN=01时,是6进制。
反函数怎么求有哪些方法
反函数怎么求有哪些方法
求反函数的方法是把x和y互换,然后解出y即可,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域,最具有代表性的反函数就是对数函数与指数函数。
反函数求解方法
(1)从原函数式子中解出x用y表示;
(2)对换 x,y ,
(3)标明反函数的定义域
如:求y=√(1-x) 的反函数
注:√(1-x)表示根号下(1-x)
两边平方,得y²=1-x
x=1-y²
对换x,y 得y=1-x²
所以反函数为y=1-x²(x≥0)
说明:
反函数里的x是原函数里的y ,原函数中,y≥0,所以反函数里的x≥0。
在原函数和反函数中,由于交换了x,y的位置,所以原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。
反函数求解方法有哪些
1、求反函数只有一种方法,就是反解方程,互换xy位置,求定义域,逆方程是以x为未知数,y为已知数求解x的值,通过交换x和y在这个公式中的位置,可以得到反函数的解析表达式,求出反函数的定义域,求出解析表达式,求出定义域,进而完成反函数的求解。
2、反函数是对确定的函数执行逆运算的函数,设函数y=fx,x∈A的范围为C,如果发现一个函数gy处处等于X,这样的函数X = gy,y∈C称为函数y=fx和x∈A的反函数,并记录为Y = f-1,最具代表性的反函数是对数函数和指数函数。
数字电子技术复习知识点
"数字电子技术"重要知识点汇总一、主要知识点总结和要求1.数制、编码其及转换:要求:能熟练在10进制、2进制、8进制、16进制、8421BCD、格雷码之间进展相互转换。
举例1:〔37.25〕10= ( )2= ( )16= ( )8421BCD解:〔37.25〕10= ( 100101.01 )2= ( 25.4 )16= ( 00110111.00100101 )8421BCD 2.逻辑门电路:(1)根本概念1〕数字电路中晶体管作为开关使用时,是指它的工作状态处于饱和状态和截止状态。
2〕TTL门电路典型高电平为3.6 V,典型低电平为0.3 V。
3〕OC门和OD门具有线与功能。
4〕三态门电路的特点、逻辑功能和应用。
高阻态、高电平、低电平。
5〕门电路参数:噪声容限V NH或V NL、扇出系数N o、平均传输时间t pd。
要求:掌握八种逻辑门电路的逻辑功能;掌握OC门和OD门,三态门电路的逻辑功能;能根据输入信号画出各种逻辑门电路的输出波形。
举例2:画出以下电路的输出波形。
解:由逻辑图写出表达式为:C+==,则输出Y见上。
+Y+AABBC3.根本逻辑运算的特点:与运算:见零为零,全1为1;或运算:见1为1,全零为零;与非运算:见零为1,全1为零;或非运算:见1为零,全零为1;异或运算:相异为1,一样为零;同或运算:一样为1,相异为零;非运算:零变 1, 1 变零;要求:熟练应用上述逻辑运算。
4. 数字电路逻辑功能的几种表示方法及相互转换。
①真值表〔组合逻辑电路〕或状态转换真值表〔时序逻辑电路〕:是由变量的所有可能取值组合及其对应的函数值所构成的表格。
②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。
③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。
④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。
⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。
反演规则资料
• 通过反演规则实现隐私保护的反演方法 • 对隐私数据进行反演,找出数据保护的方法和策略 • 对隐私保护算法进行反演,找出算法的漏洞和攻击方法
06
反演规则的未来发展趋势与挑战
反演规则的理论创新与算法改进
反演规则的理论创新
• 研究反演规则的新理论和新方法 • 探索反演规则在新兴领域的应用和挑战 • 提出反演规则的优化算法和改进策略
程序优化的方法
• 通过反演规则进行程序优化的方法 • 对程序进行反演,找出程序的瓶颈和性能问题 • 对瓶颈和性能问题进行反演,找出优化的方法和策略
04
反演规则在自然语言处理中的应用
反演规则在语法分析和生成中的应用
自然语言处理的概念
• 通过反演规则理解自然语言处理的概念 • 自然语言处理是一种研究计算机处理自然语言的技术 • 自然语言处理包括语法分析、语义分析和生成等任务
反演规则面临的法律问题
• 研究反演规则在知识产权和数据保护方面的法律问题 • 探讨反演规则在网络犯罪和网络安全方面的法律问题 • 提出反演规则的法律监管和法律责任
谢谢观看
Docs
自然语言处理的反演方法
• 通过反演规则实现自然语言处理的反演方法 • 对自然语言表达式进行反演,找出语法结构和语义关系 • 对自然语言生成进行反演,找出生成规则和生成过程
反演规则在语义分析和推理中的应用
自然语言语义分析的方法
• 通过反演规则进行自然语言语义分析的方法 • 对自然语言进行反演,找出语义前提和结论 • 对语义前提和结论进行反演,找出语义关系和解义策略
解决数学问题的实例
• 反演规则在解决数学几何问题中的应用 • 反演规则在解决数学代数问题中的应用 • 反演规则在解决数学概率问题中的应用
逻辑代数的基本公式、定律和规则
逻辑代数的基本公式、定律和规则示例文章篇一:《逻辑代数的基本公式、定律和规则》一、逻辑代数的基本公式1. 常量之间的运算公式- 0和1是逻辑代数中的两个常量。
0就像是黑暗,1就像是光明。
在逻辑代数里,0 + 0 = 0,这就好比两个黑暗加在一起还是黑暗呀。
那0 + 1 = 1呢,就好像黑暗里来了一点光明,那结果就是光明啦。
1 + 1 = 1,这可能有点奇怪,可这就像两个光明加在一起还是光明,不会变得更亮啦。
- 0×0 = 0,这很好理解,就像两个没有东西相乘还是没有东西。
0×1 = 0,就像没有东西和有东西相乘,结果就是没有东西。
1×1 = 1,有东西和有东西相乘还是有东西嘛。
2. 变量与常量的运算公式- 对于变量A,A + 0 = A。
这就像你有一个东西A,再加上没有东西(0),那还是你原来的东西A呀。
A + 1 = 1,不管你原来有什么东西A,再加上光明(1),那结果就是光明(1)啦。
- A×0 = 0,不管你是什么东西A,和没有东西(0)相乘,结果就是没有东西(0)。
A×1 = A,就像你有东西A,和有东西(1)相乘,结果还是你原来的东西A。
3. 同一律、互补律等公式- 同一律就是A×A = A,A + A = A。
比如说你有一个苹果A,那一个苹果乘以一个苹果还是一个苹果,一个苹果加上一个苹果还是一个苹果(在逻辑代数的概念里哦)。
- 互补律是A×A' = 0,A+A' = 1。
A'就像是A的反面。
如果A是白天,A'就是黑夜。
白天和黑夜不能同时存在(A×A' = 0),而白天或者黑夜肯定有一个存在(A+A' = 1)。
二、逻辑代数的基本定律1. 交换律- 在逻辑代数里,加法交换律是A + B = B + A,就像你有苹果A和香蕉B,先数苹果再数香蕉,和先数香蕉再数苹果,总数是一样的。
《数字电子技术》知识点
《数字电子技术》知识点《数字电子技术》知识点第1章 数字逻辑基础1.数字信号、模拟信号的定义 2.数字电路的分类 3.数制、编码其及转换 要求:能熟练在10进制、2进制、8进制、16进制、8421BCD 之间进行相互转换。
举例1:(37.25)10= ( )2= ( )16= ( )8421BCD 解:(37.25)10= (100101.01)2= ( 25.4)16= (00110111.00100101)8421BCD 4.基本逻辑运算的特点与运算:见零为零,全1为1; 或运算:见1为1,全零为零;与非运算:见零为1,全1为零; 或非运算:见1为零,全零为1; 异或运算:相异为1,相同为零;同或运算:相同为1,相异为零; 非运算:零变 1, 1变零; 要求:熟练应用上述逻辑运算。
5.数字电路逻辑功能的几种表示方法及相互转换。
①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。
②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。
③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。
④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。
⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。
⑥状态图(只有时序电路才有):描述时序逻辑电路的状态转换关系及转换条件的图形称为状态图。
要求:掌握这五种(对组合逻辑电路)或六种(对时序逻辑电路)方法之间的相互转换。
6.逻辑代数运算的基本规则 ①反演规则:对于任何一个逻辑表达式Y ,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y 的反函数Y (或称补函数)。
这个规则称为反演规则。
②对偶规则:对于任何一个逻辑表达式Y ,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,则可得到的一个新的函数表达式Y ',Y '称为函Y 的对偶函数。
反函数及其图象
反函数及其图象知识点的辅导:反函数也是函数,它是函数部分的重要概念之一.从映射的观点认识,反函数也是一种映射:如果函数y =f (x )是定义域集合A 到值域集合C 的映射,那么它的反函数y=f -1(x )是集合C 到集合A 的映射.但必须明确只有一一映射确定的函数才有反函数.要正确地理解反函数的概念,关键是要弄清y =f (x )、x= f -1(y )以及y =f -1(x )三者之间的关系,特别是在不同的函数中x 、y 在含义、地位上的区别,以及三个函数的图象之间的关系. 一、反函数的定义函数y =f (x )中x 是自变量,y 是x 的函数,设它的定义域为A ,值域为C ,我们根据函数y =f (x )中x 、y 的关系,用y 把x 表示出,得到x=φ(y ),如果对于y 在C 中的任何一个值,通过x=φ(y ),x 在A 中都有唯一的值和它对应,那么x=φ(y )就表示y 是自变量,x 是自变量y 的函数,这样的函数x=φ(y )(y ∈C )叫做函数y= f (x )(x ∈A )的反函数.记作x= f -1(y ).在函数x= f -1(y )中,y 是自变量,x 表示函数,但在习惯上,我们一般用x 表示自变量,用y 表示函数,为此我们常常对调函数x= f -1(y )中的字母x 、y ,把它改写成y =f -1(x ).注:1o不是任何函数都有反函数,因为函数是数集A 到数集B 的映射,它的对应法则包括一对一和多对一两种情况,根据反函数的定义,只有给出的函数y= f (x )的对应关系是一对一的,才有反函数.例:(1)函数y=x 2(x ∈R )有没有反函数?为什么?(2)怎样改变定义域才能使它有反函数?反函数是什么?解:(1)函数y=x 2(x ∈R )没有反函数(2)如果把定义域分为(-∞,0]、[0,+∞)两个区间,则y =x 2在(-∞,0]上存在反函数,其反函数是y =-)0(≥x x ,y =x 2在[0,+∞)上存在反函数,其反函数是y =)0(≥x x .一般地,由于严格单调函数的对应关系是从“定义域到值域”的“一对一”,所以能求出它的反函数,即严格单调函数必有反函数,且严格递增函数的反函数也必严格递增,如果用某一个解析式表示的函数不是单调函数,可以将其定义域限制在一个单调区间内,也能研究它的反函数.2o 反函数的定义域与值域正好是原函数的值域与定义域,否则,即使对应法则互逆,也不能算是原函数的反函数.如:)(2)(2z x x y z y y x ∈=∈=与前者的值域不是后者的定义域,所以求原来函数的反函数时,必须已知或先确定原来函数的值域.3o 函数y =f (x )如果有反函数y =f -1(x ),那么原来函数y=f (x )也是反函数 y =f -1(x )的反函数,即它们互为反函数.因而f -1[f (x )]=x ,f[f -1(x )]=x.4o y =f (x ),x =f -1(y ),y =f -1(x )之间的关系.a. y =f (x )与x =f -1(y ):x ,y 所表示的量相同,但是地位不同.在y=f (x )中,x 是自变量,y 是函数值;在x =f -1(y )中,y 是自变量,x 是函数值. b. y =f (x )与y =f -1(x ):x 、y 地位相同,x 都是自变量,y 是函数值,这比较符合 习惯,并给研究函数带来某些方便,但是x 、y 所表示的量(指实际意义)在两式中被互换了,在y =f (x )中的x 、y 所表示的量分别是y =f -1(x )中的y 、x 所表示的量.c. x =f -1(y )与y =f -1(x ):都是y =f (x )的反函数,它们的对应法则相同,故实质上是同一个函数.二、互为反函数的函数图象间的关系例:求函数y=3x -2(x ∈R )的反函数,并且画出y =f (x )、x =f -1(y )与y =f -1(x )考虑:在例中,函数y =3x -2的图象与其反函数32+=y x 的图象有何关系?函数y=3x -2的图象与其反函数32+=x y 的图象有何关系?为什么?分析:函数y =3x -2与其反函数32+=y x ,虽然形式上它们的图象是同一条直线,但它们的自变量轴与因变量轴恰恰相反.如果我们把x 轴都看作是自变量轴,y 轴看作因变量轴,那么它们的图象是关于直线y=x 对称的.为了看清这一点,我们把函数y =3x -2的反函数32+=y x 换写成32+=x y ,这时函数与反函数中x 都表示自变量,y 都表示因变量,从图中看到,它们的图象是关于直线y=x 对称的.结论:1o .函数y =f (x )的图象和它的反函数y=f -1(x )的图象关于直线y=x 对称; 2o .y =f (x )与x =f -1(y )的图象重合知识点的讲解例1:求下列函数的反函数:(1)y=)1(11≠-+x xxxxx(2)y=x 2-8x +13 (x ≥4) (3)y =x|x|+2x (4)y =1-)01(12<≤-x x -(1)解:在原函数中,y=xxx xx -+-=-++--=-+12112)1(111-≠∴y 由y=xx -+11得:1+x =(1-x )y∴y -xy=1+x∴(y +1)x =y -1 ① y ≠-1 ∴x=11+-y y ②∴原函数的反函数是y=11+-x x (x ≠-1)说明:本题在由①式得到②式时,不能想当然将等式两边同除y +1,应注意,这样做的前提条件是y ≠-1 ,所以本题一开始先求原函数的值域,一方面是为了得到反函数的定义域,另一方面是为了保证后面正确运算的可能性. (2)解:y =f (x )=x 2-8x +16=(x -4)2-3 ∴ 当x ≥4时,f (x )单调递增 ∴它存在反函数.由y=(x -4)2-3得 (x -4)2=y +3 ∴x -4=3+±y∴x =43+±y 4≥x ∴ x =4+3+y又)4(1382≥+-=x x x y的值域是 y ≥-3∴原函数的反函数是y =4+3+x (x ≥-3)说明:通过本小题再次说明只有一一映射确定的函数才有反函数,y =x 2-8x+13本不存在反函数,但当把x 的取值范围限定在定义域的某个单调区间上以后,可以求出反函数,而且它的反函数也是唯一的,其表达式应由原函数中x 的范围(即x ≥4)加以确定. (3)解:y =x|x|+2x =⎩⎨⎧<+-≥+0,20,222x x x x x x 1o .当x ≥0时,由y =x 2+2x =(x +12)-1,得x +1=1+±y ,11011++-=∴≥+±-=y x x y x又 y =x 2+2x ,当x ≥0时,y ≥0∴y =x|x|+2x 当x ≥0时的反函数是y =-1+)0(1≥+x x ;2o .当x<0时,由y =-x 2+2x =-(x -12)+1,得(x -12)=1-y ,即x-1=y -±1,x =1y -±1 x<0 ∴x =1-y -1 又 y =x|x|+2x 当x<0时,y<0∴y =x|x|+2x (x<0)的反函数是y =1-)0(1<-x x∴y =x|x|+2x 的反函数是 y =⎩⎨⎧<--≥++-)0(11)0(11x xx x说明:1o对于求分段函数的反函数问题,应分别求出每一段上原函数的反函数,然后再表示成分段函数的形式.2o要注意,本题反函数中的x ≥0与x<0是由原函数的值域得到的,而不是由原函数中的x ≥0,x<0直接得来的. (4)解:由y =1-21x -得21x -=1-y ∴1-x 2=1-2y +y 2 ∴x =-22y y - 又 y =1-)01(12<≤--x x 的值域是0<y ≤1∴原函数的反函数是y =-)10(22≤<-x x x小结:求函数的反函数的步骤:①判断确定f(x)的映射是否为一一映射.一般情况下,所给的f(x)都是由一一映射所确定的函数,但是大家应明确不是由一 一映射确定的函数就求不出反函数;②将y=f(x)看成方程,解出x =f -1(y);③将x,y 互换,得到y =f -1(x);④写出y =f -1(x)的定义域.一般情况下,应通过原函数的值域确定反函数的定义域.例2:已知函数),(cd x R x dcx b ax y -≠∈++=中a 、b 、c 、d 均不为0(1)试求a 、b 、c 、d 满足什么条件时有反函数,并求出此反函数; (2)试求a 、b 、c 、d 满足什么条件时函数与反函数的图象重合.解:(1)由dcx b ax y ++=得cyx +dy =a x +b ,得(cy -a )x=b -dy ,这里必须cy -a ≠0,即 000·≠-≠+--+≠-++ad cb dcx adcax cb cax a dcx bax c 得得,在此条件下,得acy dy b x --=∴知当cb -a d ≠0时,函数)(cd x R x dcx b ax y -≠∈++=且的反函数是)(c b x R x acx b dx y ≠∈-+-=且(2)由条件,函数与反函数的图象重合即两函数是同一函数.由dcx b ax y ++=与acx b dx y -+=-比较可得a +d =0,知当cb -a d ≠0且a +d=0时,函数与反函数的图象重合.说明:本题中的结论可作为一个规律,加以记忆,这样对于dcx b ax y ++=型的反函数,不需进行推导,可直接写出结果. 例3:求下列函数的反函数。
反函数定理
反函数定理在数学中,反函数定理给出了向量值函数在含有定义域中一点的开区域内具有反函数的充分条件。
该定理还说明了反函数的全导数存在,并给出了一个公式。
反函数定理可以推广到定义在流形上、以及定义在无穷维巴拿赫空间(和巴拿赫流形)上的映射。
定义设M与N为n维光滑流形,U为M的开集,f:U→N为光滑映射。
若f在p∈U有极大阶,则存在p的邻域V,使得限制f:V→f(V)为微分同胚。
简介反函数定理说明如果从Rn的一个开集U到Rn的连续可微函数F 的全导数在点p可逆(也就是说,F在点p的雅可比行列式不为零),那么F在点p的附近具有反函数。
也就是说,在F(p)的某个邻域内,F的反函数存在。
而且,反函数F-1也是连续可微的。
在无穷维的情况中,需要弗雷歇导数在p附近具有有界的反函数。
最后,定理说明这个公式还可以从链式法则推出。
链式法则说明,如果G和H是两个函数,分别在H(p)和p具有全导数,那么:J(G∘H)(P)=JG(H(P))*Jh(P)设G为F,H为F-1,(G∘H)就是恒等函数,其雅可比矩阵也是单位矩阵。
在这个特殊的情况中,上面的公式可以对Jf-1(F(p))求解。
注意链式法则假设了函数H的全导数存在,而反函数定理则证明了F-1在点p具有全导数。
F的反函数存在,等于是说方程组yi = Fj(x1,...,xn)可以对x1,...,xn求解,如果我们把x和y分别限制在p和F(p)的足够小的邻域内。
这个公式还可以从链式法则推出。
链式法则说明,如果G和H是两个函数,分别在H(p)和p具有全导数,那么:J(G∘H)(P)=JG(H(P))*Jh(P)设G为F,H为F-1,(G∘H)就是恒等函数,其雅可比矩阵也是单位矩阵。
在这个特殊的情况中,上面的公式可以对Jf-1(F(p))求解。
注意链式法则假设了函数H的全导数存在,而反函数定理则证明了F-1在点p具有全导数。
F的反函数存在,等于是说方程组yi = Fj(x1,...,xn)可以对x1,...,xn求解,如果我们把x和y分别限制在p和F(p)的足够小的邻域内。
逻辑代数基础习题资料
逻辑代数基础习题第二章 逻辑代数基础[题2.1] 选择题以下表达式中符合逻辑运算法则的是 。
A.C ·C =C 2B.1+1=10C.0<1D.A+1=12. 逻辑变量的取值1和0可以表示: 。
A.开关的闭合、断开B.电位的高、低C.真与假D.电流的有、无3. 当逻辑函数有n 个变量时,共有 个变量取值组合。
A. nB. 2nC. n 2D. 2n4. 逻辑函数的表示方法中具有唯一性的是 。
A .真值表 B.表达式 C.逻辑图 D.卡诺图5. 在 输入情况下,“与非”运算的结果是逻辑0。
A .全部输入是0 B.任一输入是0 C.仅一输入是0 D.全部输入是16.在 输入情况下,“或非”运算的结果是逻辑0。
A .全部输入是0 B.全部输入是1C.任一输入为0,其他输入为1D.任一输入为17. 求一个逻辑函数F 的对偶式,可将F 中的 。
A .“·”换成“+”,“+”换成“·”B.原变量换成反变量,反变量换成原变量C.变量不变D.常数中“0”换成“1”,“1”换成“0”E.常数不变8. 在同一逻辑函数式中,下标号相同的最小项和最大项是关系。
A .互补 B.相等 C.没有关系9. F=A +BD+CDE+ D= 。
A. AB. A+DC. DD. A+BD10.A+BC= 。
A .A+B B.A+C C.(A+B )(A+C ) D.B+C11.逻辑函数F=)(B A A ⊕⊕= 。
A.BB.AC.B A ⊕D. B A ⊕[题2.2]判断题(正确打√,错误的打×)1. 逻辑变量的取值,1比0大。
( )2. 异或函数与同或函数在逻辑上互为反函数。
( )3.若两个函数具有相同的真值表,则两个逻辑函数必然相等。
()4.因为逻辑表达式A+B+AB=A+B成立,所以AB=0成立。
()5.若两个函数具有不同的真值表,则两个逻辑函数必然不相等。
()6.若两个函数具有不同的逻辑函数式,则两个逻辑函数必然不相等。
数字电子技术》知识点
《数字电子技术》知识点第1章数字逻辑基础1.数字信号、模拟信号的定义2.数字电路的分类3.数制、编码其及转换要求:能熟练在10进制、2进制、8进制、16进制、8421BCD之间进行相互转换。
举例1:()10= ( )2= ( )16= ( )8421BCD解:()10= 2= ( 16= 8421BCD4.基本逻辑运算的特点与运算:见零为零,全1为1;或运算:见1为1,全零为零;与非运算:见零为1,全1为零;或非运算:见1为零,全零为1;异或运算:相异为1,相同为零;同或运算:相同为1,相异为零;非运算:零变1,1变零;要求:熟练应用上述逻辑运算。
5.数字电路逻辑功能的几种表示方法及相互转换。
①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。
②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。
③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。
④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。
⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。
⑥状态图(只有时序电路才有):描述时序逻辑电路的状态转换关系及转换条件的图形称为状态图。
要求:掌握这五种(对组合逻辑电路)或六种(对时序逻辑电路)方法之间的相互转换。
6.逻辑代数运算的基本规则①反演规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y的反函数Y(或称补函数)。
这个规则称为反演规则。
②对偶规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,则可得到的一个新的函数表达式Y',Y'称为函Y 的对偶函数。
反演规则求反函数
反演规则求反函数
反函数是数学中一个概念,用来描述一些函数之间的对应关系。
对立函数也可以简单地定义为把一个函数的变量变成另一个函数的
变量。
反函数可以分解成两部分:反演规则和反演函数。
反演规则是定义在反函数上的一个规则,用来说明当一个函数的变量发生变化时,另一个函数的变量会如何变化。
换句话说,反演规则将一个函数的变量变成另一个函数的变量。
反演规则可以通过求导来推导,但这需要我们具备相应的数学基础。
反演函数就是根据反演规则求出的函数,它就是把一个函数的变量变成另一个函数的变量的过程。
反演函数可以是非线性函数,也可以是线性函数。
反演函数也可以用来求解一些数学问题,比如求解积分函数或者求解一些偏微分方程。
反演函数的求解需要我们具备一定的数学基础,特别需要我们掌握相关的求导等知识。
反演函数也可以用程序来求解,只需要设计好反演算法即可。
反演函数的求解也可以使用数学软件来辅助求解,这可以节省我们的算法设计的时间。
总结起来,求反函数需要我们具备求导等数学知识,也可以使用相关算法或者数学软件来求解。
求反函数不仅可以用来求解数学问题,还可以应用在科学研究和工程设计中,起到重要的作用。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反演规则求反函数
反演规则求反函数
反函数是数学中常见的概念,反函数是函数的反转,它是一种特殊的函数,可以将函数的输入和输出反转。
换句话说,反函数就是将函数的x和y坐标反转。
在数学中,我们可以使用反演规则来求反函数。
一、定义反函数
反函数是一种特殊的函数,也称为反对称函数,它是把原函数f(x)的输入和输出反转的函数。
反函数的定义是:如果函数f(x)的输入是x,输出是y,那么反函数的输入是y,输出是x,即:f^{-1}(y)=x。
例如,函数f(x)=2x+1的反函数就是f^{-1}(y)=\frac{y-1}{2}。
二、反演规则
反演规则是求反函数的一种方法。
它的基本原理是:对于函数f(x)的反函数,则f^{-1}(y)=x,将函数f(x)的x和y坐标反转,即可求出反函数,即:f^{-1}(y)=x=f(x)。
反演规则求反函数的具体步骤如下:
1、将函数f(x)的x和y坐标反转,变为新的函数y=f^{-1}(x);
2、移项,将y移至左边,即:f^{-1}(x)=y;
3、将函数f^{-1}(x)中的x和y坐标反转,变为新的函数f^{-1}(y)=x;
4、结论:此时反函数f^{-1}(y)的形式和原函数f(x)的形式一致,即反函数f^{-1}(y)=x=f(x)。
三、例题
例1:求函数f(x)=2x+1的反函数。
解:根据反演规则,将函数f(x)的x和y坐标反转,变为新的函数y=f^{-1}(x),即y=2x+1;
移项,将y移至左边,即:f^{-1}(x)=y,即f^{-1}(x)=2x+1;
将函数f^{-1}(x)中的x和y坐标反转,变为新的函数f^{-1}(y)=x;
结论:此时反函数f^{-1}(y)=x=f(x),即反函数f^{-1}(y)=2y+1。
例2:求函数f(x)=\frac{1}{x}的反函数。
解:根据反演规则,将函数f(x)的x和y坐标反转,变为新的函数y=f^{-1}(x),即y=\frac{1}{x};
移项,将y移至左边,即:f^{-1}(x)=y,即f^{-1}(x)=\frac{1}{x};
将函数f^{-1}(x)中的x和y坐标反转,变为新的函数f^{-1}(y)=x;
结论:此时反函数f^{-1}(y)=x=f(x),即反函数f^{-1}(y)=\frac{1}{y}。
四、总结
反演规则是求反函数的一种方法,它的基本原理是:对于函数f(x)的反函数,则f^{-1}(y)=x,将函数f(x)的x和y坐标反转,即可求出反函数,即:f^{-1}(y)=x=f(x)。
反演规则求反函数的具体步骤是:将函数f(x)的x和y坐标反转,变为新的函数y=f^{-1}(x);移项,将y移至左边,即:f^{-1}(x)=y;将函数f^{-1}(x)中的x和y 坐标反转,变为新的函数f^{-1}(y)=x;结论:此时反函数f^{-1}(y)的形式和原函数f(x)的形式一致,即反函数f^{-1}(y)=x=f(x)。
通过反演规则,可以轻松求解反函数。