高等数学(会计,财务)期末考试(B)and 参考答案
会计高等数学试题及答案
会计高等数学试题及答案一、单项选择题(每题2分,共10分)1. 函数\( f(x) = x^2 - 4x + 3 \)的零点个数是()。
A. 0B. 1C. 2D. 32. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值是()。
A. 0B. 1C. 2D. 33. 以下哪个函数是奇函数()。
A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^4 \)D. \( f(x) = \sin x \)4. 积分\( \int_0^1 x^2 dx \)的值是()。
A. 1/3B. 1/2C. 2/3D. 15. 以下哪个选项是二阶导数()。
A. \( f'(x) \)B. \( f''(x) \)C. \( f'''(x) \)D. \( f^{(4)}(x) \)二、填空题(每题3分,共15分)1. 函数\( f(x) = e^x \)的导数是______。
2. 函数\( f(x) = \ln x \)的定义域是______。
3. 函数\( f(x) = \cos x \)的周期是______。
4. 函数\( f(x) = \arctan x \)的值域是______。
5. 函数\( f(x) = x^3 - 3x^2 + 2 \)的拐点是______。
三、计算题(每题10分,共20分)1. 计算极限\( \lim_{x \to \infty} \frac{x^2 - 4x + 3}{x^2 +2x + 1} \)。
2. 计算不定积分\( \int (2x + 1)^3 dx \)。
四、证明题(每题15分,共30分)1. 证明函数\( f(x) = x^3 \)在\( x = 0 \)处连续。
2. 证明函数\( f(x) = \sin x \)在\( x = \frac{\pi}{2} \)处可导。
《财务会计》期末试卷4套含答案(大学期末复习资料)
《财务会计》期末试卷一一、单项选择题(每题1分,共20分)1.确定会计核算空间范围的基本前提是()。
A. 持续经营B.会计主体C.货币计量D.会计分期2.下列计价方法中,不符合企业会计准则规定的是()。
A.发出存货计价所使用的个别计价法B.发出存货计价所使用的后进先出法C.发出存货计价所使用的先进先出法D.发出存货计价所使用的移动平均法3.下列不能在“固定资产”账户核算的有()。
A.购入正在安装的设备B.经营性租出的设备C.融资租入的不需安装的设备D.购入的不需安装的设备4.下列固定资产中,不应计提折旧的固定资产有()。
A.大修理的固定资产B.当月减少的固定资产C.经营租入固定资产D.融资租入的固定资产5.W企业购进设备一台,设备的入账价值为172万元,预计净残值为16万元,预计使用年限为5年。
在采用年数总和法计提折旧的情况下,该项设备第二年应提折旧额为()万元。
A.40B.41.6C.30D.45.876.下列各项中所发生的固定资产后续支出中,不能资本化的支出是()。
A.资产生产的产品质量提高B.资产的生产能力增大C.恢复或保持资产的原有性能标准,以确保未来经济效益的实现D.资产的估计使用年限延长7.下列项目中,属于其他业务收入的是()。
A.罚款收入 B.出售固定资产收入C.材料销售收入 D.出售无形资产收入8.某单位出纳小李发现单位账上一笔无法查明原因的现金短缺,经批准后应该作如下账务处理()。
A.借:管理费用-现金短缺贷:待处理财产损溢-待处理流动资产损溢B.借:营业外收入贷:待处理财产损益-待处理流动资产损溢C.借:其他应收款贷:待处理财产损益-待处理流动资产损溢D.借:财务费用贷:待处理财产损益-待处理流动资产损溢9.某企业购入股票20万股,划分为交易性金融资产,支付的价款为103万元,其中包含已宣告发放的现金股利3万元和支付交易费用3万元。
该项交易性金融资产的入账价值为()万元。
A.103B.97C.100D.10510.下列金融资产中,应作为可供出售金融资产的是()。
第二学期高等数学(B)Ⅱ期末考试试卷答案
解:
G G i j G ∂ ∂ rot A = ∂x ∂y 2 z − 3 y 3x − z
2002-2003 学年第二学期高等数学(B)Ⅱ期末考试试卷答案
北 方
交
通
大
学
2002-2003 学年第二学期高等数学(B)Ⅱ期末考试试卷答案
一.计算题(本题满分 35 分,共有 5 道小题,每道小题 7 分) , 1.设 z = arctan 解:
y ,求 dz . x
⎛ y⎞ ⋅ d⎜ ⎟ , ⎝ x⎠ ⎛ y⎞ 1+ ⎜ ⎟ ⎝x⎠ 1
z = 4 1−
求下雨时过房顶上点 P 1, 解:
x2 y2 − . 16 36
(
3,
11 处的雨水流下的路线方程(不考虑摩擦) .
)
雨水沿 z 轴下降最快的方向下流,即沿着 z 的梯度
grad z =
∂z G ∂z G i+ j ∂y ∂x
的反方向下流.因而雨水从椭球面上流下的路线在 xOy 坐标面上的投影曲线上任一点处的切线应与
G k G G G ∂ = 2 i + 4 j + 6k ∂z y − 2x
5.求解微分方程 y ′′ + 4 y = 4 cos 2 x . 解: 先解对应的齐次方程 y ′′ + 4 y = 0 .其特征方程为 r + 4 = 0 ,得其解为 r1 = 2i , r2 = −2i .因而对
高等数学b1期末考试试题及答案
高等数学b1期末考试试题及答案一、选择题(每题5分,共30分)1. 函数 \( f(x) = \frac{1}{x} \) 在 \( x = 0 \) 处的极限是:A. 0B. 1C. 无穷大D. 不存在答案:D2. 设 \( f(x) \) 在 \( x=a \) 处可导,则下列说法正确的是:A. \( f(x) \) 在 \( x=a \) 处连续B. \( f(x) \) 在 \( x=a \) 处不可导C. \( f(x) \) 在 \( x=a \) 处不连续D. \( f'(a) \) 不存在答案:A3. 计算定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{6} \)答案:A4. 函数 \( y = x^3 + 3x^2 - 9x + 1 \) 的导数是:A. \( 3x^2 + 6x - 9 \)B. \( 3x^2 + 6x + 9 \)C. \( x^2 + 6x - 9 \)D. \( 3x^2 + 6x - 9 \)答案:A5. 曲线 \( y = x^2 \) 在 \( x = 2 \) 处的切线方程是:A. \( y = 4x - 4 \)B. \( y = 4x + 4 \)C. \( y = 4x - 8 \)D. \( y = 4x + 8 \)答案:C6. 级数 \( \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \) 的和是:A. 1B. \( \frac{1}{2} \)C. 0D. 无穷大答案:B二、填空题(每题5分,共20分)1. 函数 \( f(x) = x^3 - 3x \) 的极值点是 \( \boxed{0} \)。
2. 函数 \( y = \ln(x) \) 的导数是 \( \boxed{\frac{1}{x}} \)。
高财会计期末考试试题及答案
高财会计期末考试试题及答案一、选择题(每题2分,共20分)1. 会计的基本职能是()。
A. 核算与监督B. 计划与控制C. 预测与决策D. 组织与领导答案:A2. 资产负债表是反映企业在某一特定日期()的财务状况的会计报表。
A. 年初B. 年末C. 月末D. 季末答案:B3. 会计信息的质量要求中,要求会计信息应具有可比性,这体现了()原则。
A. 客观性B. 可理解性C. 重要性D. 一致性答案:D4. 下列哪项不属于流动资产?()A. 现金B. 应收账款C. 存货D. 固定资产答案:D5. 会计核算的基本原则不包括()。
A. 历史成本原则B. 权责发生制原则C. 收付实现制原则D. 配比原则答案:C...(此处省略其他选择题,以符合题目要求)二、判断题(每题1分,共10分)1. 会计的基本假设包括会计主体、持续经营、货币计量和会计分期。
()答案:√2. 会计政策变更必须在会计报表附注中披露。
()答案:√3. 所有者权益变动表是反映企业在一定会计期间内所有者权益变动情况的会计报表。
()答案:√4. 会计估计变更属于会计政策变更。
()答案:×5. 会计信息的可靠性要求是指会计信息应当真实、准确、完整。
()答案:√...(此处省略其他判断题)三、简答题(每题5分,共20分)1. 简述会计的四个基本假设及其意义。
答案:会计的四个基本假设包括会计主体、持续经营、货币计量和会计分期。
会计主体假设意味着会计核算的范围限定于特定的经济实体;持续经营假设表明企业将持续运营,不会在短期内停止运营;货币计量假设规定会计信息以货币作为计量单位;会计分期假设则允许将企业的经济活动划分为等长的会计期间,以便于定期提供财务报告。
2. 什么是会计政策?请举例说明。
答案:会计政策是指企业在会计核算中所采用的具体原则、基础和方法。
例如,固定资产的折旧方法可以是直线法或双倍余额递减法,存货的计价方法可以是先进先出法或加权平均法等。
高数b2期末考试试题及答案
高数b2期末考试试题及答案一、选择题(每题5分,共30分)1. 设函数f(x)=x^3-3x+1,求f'(x)的值。
A. 3x^2 - 3B. x^2 - 3xC. 3x^2 - 3xD. x^3 - 3x^2答案:A2. 计算定积分∫(0,1) x^2 dx。
A. 1/3B. 1/2C. 2/3D. 1/4答案:B3. 求极限lim(x→0) (sin x) / x。
A. 1B. 0C. 2D. ∞答案:A4. 判断下列级数是否收敛。
∑(1/n^2),n从1到∞。
A. 收敛B. 发散答案:A5. 判断函数f(x)=e^x在实数域R上的连续性。
A. 连续B. 不连续答案:A6. 求二阶偏导数f''(x,y),其中f(x,y)=x^2y+y^2。
A. 2xyB. 2xC. 2yD. 2答案:B二、填空题(每题5分,共20分)1. 设函数f(x)=ln(x+1),求f'(x)=______。
答案:1/(x+1)2. 计算定积分∫(0,2π) sin(x) dx=______。
答案:03. 求极限lim(x→∞) (1+1/x)^x=______。
答案:e4. 判断级数∑(1/n),n从1到∞是否收敛,答案是______。
答案:发散三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1,x=11/3。
经检验,x=1为极大值点,x=11/3为极小值点。
2. 计算定积分∫(0,1) e^x dx。
答案:∫(0,1) e^x dx = [e^x](0,1) = e^1 - e^0 = e - 1。
3. 求极限lim(x→0) (e^x - 1) / x。
答案:根据洛必达法则,lim(x→0) (e^x - 1) / x = lim(x→0) e^x = 1。
2021年财经大学财务会计专业《线性代数》期末考试卷(B卷)及答案
2021年财经大学财务会计专业《线性代数》期末考试卷(B 卷)考试形式 闭卷 使用学生 考试时间 120分钟 出卷时间说明:考生应将全部答案都写在答题纸上,否则作无效处理。
答题时字迹要清晰。
姓名 学号 班级一、选择题(每题3分,共18分)1.已知三阶行列式2333231232221131211==a a a a a a a a a D ,则三阶行列式=+-+-+-=333231312322212113121111254254254a a a a a a a a a a a a D ( ). A 、12 B 、8 C 、16 D 、40 2.下列叙述成立的是( ). A .若B A ,可逆,则B A +必可逆 B .若B A ,可逆,则AB 必可逆 C .若B A ,可逆,则B A -必可逆 D .若B A +可逆,则A 与B 都可逆3.已知4阶行列式D 中第二行的元素自左向右依次为-1,3,-2,2,它们的余子式分别为3,1,-3,5,则4阶行列式D =( ).A 、10B 、-10C 、16D 、-16 4.设矩阵A =(1 2),⎪⎪⎭⎫⎝⎛=4321B ,C =⎪⎪⎭⎫⎝⎛654321,则下列矩阵运算中有意义的是( ). A .ACB B .BAC C .ABCD .CAB5.当λ=( )时,方程组1231231222x x x x x x λ++=⎧⎨++=⎩,有无穷多解。
A .1B .2C .3D .4 6. 设A 是n 阶方阵,2A =,则*AA =( ). A 、2 B 、12- C 、12n - D 、2n二、填空题(每题3分,共24分)1. 排列64175382的逆序数为 .2.设⎪⎪⎪⎭⎫ ⎝⎛-=2110154214321A ,则=)(A R .3.设A =802020301⎛⎫ ⎪⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A = .4.行列式D 4=5123121232122x x x x x 的展开式中4x 的系数= .5.设142513A ⎡⎤=⎢⎥⎣⎦,100145B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则T A B += . 6.设5阶行列式4,3-==B A ,则2T A B = .7. 行列式123207236的12a 2=的代数余子式12A = . 8. 齐次线性方程组0AX (A 是m n ⨯矩阵)只有零解的充要条件是 .三、计算题(每小题8分,共40分)1.计算四阶行列式xx x xD ++++=11111111111111114.2. 计算n 阶行列式122222222222322222122222n D n n=-.3. 判别矩阵012114210A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭是否可逆, 若可逆,则求出逆矩阵1-A .4.求向量组12(1,2,3,1),(3,2,1,1)T T αα=-=-,34(2,4,1,1),(2,2,2,1)T Tαα==-的秩与它的一个最大无关组,并把其余向量用该最大无关组线性表示.5.求解非齐次线性方程组12341234123423135322423x x x x x x x x x x x x -+-=⎧⎪-+-=⎨⎪++-=⎩.四、综合题(每小题9分,共18分)1.设向量组12,,,m ααα线性无关,而向量组12,,,,m βααα线性相关,则β可由向量组12,,,m ααα线性表示,且表示法唯一.2.某水果批发部向A 、B 、C 、D 四家水果店分别批发的苹果、橘子和香蕉的数量如下(单位:千克):已知苹果、橘子和香蕉的批发价分别为每千克1.50元、1.80元和2.20元. 试通过矩阵运算计算A 、B 、 C 、D 四家水果店应支付的金额各为多少元?试卷答案(B 卷)一、选择题(每题3分,共18分)1、C2、B3、A4、C5、B6、D 二、填空题(每题3分,共24分)1、152、23、2040206016-⎛⎫ ⎪ ⎪ ⎪-⎝⎭4、105、254268⎛⎫ ⎪ ⎪ ⎪⎝⎭6、487、28、()R A n = 三、计算题(每题8分,共40分)1、34411141114111000(4)41110004111000xx x x x D x x x x x xxx++++===+++++. (8分)注:解法不唯一,酌情给分.2、1000010000222220222200100001002(2)!000300003000002002n D n n n n n --===------ (8分) .注:解法不唯一,酌情给分.3、因0121142210A ==-,故A 可逆. (4分) 且*14221842||2321A A A --⎛⎫⎪==-- ⎪ ⎪--⎝⎭. (4分) 4、设[]1234A αααα=,110013221322132222242040202011010231120854001000101111023100000000⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦A 所以[]12343R αααα=,故向量组的秩为3. (4分)1α,2α,3α为一个最大无关组,且4121122ααα=+. (4分)注:此题有很多种答案5、1231131532~21223B --⎛⎫ ⎪-=- ⎪ ⎪-⎝⎭1231105401~05401--⎛⎫⎪--⎪ ⎪-⎝⎭123110540100002--⎛⎫⎪-- ⎪ ⎪⎝⎭(4分) ()2,()3R A R B ∴==. (2分) ∴ 方程组无解. (2分)四、综合题(每题9分,共18分)1、因为r αααβ,,,,21 线性相关,所以存在一组不全为零的数12,,,,r k c c c ,使得 11220r r k c c c βααα++++=. (2分)若0k =, 则11220r r c c c ααα+++=. 而r ααα,,,21 线性无关,可得120r c c c ====,与12,,,,r k c c c 不全为零矛盾. 故0k ≠.从而1212r r c c ck k kβααα=----. (3分)下证表示法唯一. 设1122r r c c c βααα=+++,1122r r k k k βααα=+++.两式相减得:111222()()()0r r r c k c k c k ααα-+-++-=.而r ααα,,,21 线性无关,可得0,1,2,,i i c k i r -==,即,1,2,,i i c k i r ==. (4分)2、 10040603541.56035502631.86030602702.2504530222⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. (7分)故A 、B 、 C 、D 四家水果店应支付的金额各为354、263、270、222元. (2分)。
第一学期《高等数学B》期末考试试题及答案
武汉大学数学与统计学院2007—2008第一学期《高等数学B 》期末考试试题(180学时)一、(87'⨯)试解下列各题:1、计算n →∞2、计算0ln(1)lim cos 1x x xx →+--3、计算arctan d x x x ⎰4、 计算4x ⎰5、计算d x xe x +∞-⎰6、设曲线方程为sin cos 2x t y t=⎧⎨=⎩,求此曲线在点4t π=处的切线方程。
7、已知2200d cos d y x te t t t =⎰⎰,求x y d d8、设11x y x-=+,求()n y二、(15分)已知函数32(1)x y x =-求: 1、函数)(x f 的单调增加、单调减少区间,极大、极小值;2、函数图形的凸性区间、拐点、渐近线 。
三、(10分)设()g x 是[1,2]上的连续函数,0()()d x f x g t t =⎰1、用定义证明()f x 在(1,2)内可导;2、证明()f x 在1x =处右连续;四、(10分)1、设平面图形A 由抛物线2y x = ,直线8x =及x 轴所围成,求平面图形A 绕x轴旋转一周所形成的立体体积; 2、在抛物线2(08)y x x =≤≤上求一点,使得过此点所作切线与直线8x =及x 轴所围图形面积最大。
五、(9分)当0x ≥,对()f x 在[0,]b 上应用拉格朗日中值定理有: ()(0)()(0,)f b f f bb ξξ'-=∈对于函数()arcsin f x x =,求极限0lim b bξ→武汉大学数学与统计学院 B 卷2007—2008第一学期《高等数学B 》期末考试试题一、(86'⨯)试解下列各题:1、计算30arctan lim ln(12)x x x x →-+2、计算120ln(1)d (2)x x x +-⎰ 3、计算积分:21arctanxd x x +∞⎰ 4、已知两曲线()y f x =与1x yxy e++=所确定,在点(0,0)处的切线相同,写出此切线方程,并求极限2lim ()n nf n→∞5、设,2221cos cos t x t udu y t t ⎧=⎪⎨=-⎪⎩,试求:d d y x,22d |d t y x 的值。
财务会计学期末考试试卷及答案
会计专业《财务会计》期末考试试卷(B卷)班级姓名学号1.在会计核算过程中,财务处理方法前后各期( )。
A.应当一致不得随意变更 B.可以变动,但须经过批准C.可以任意变动 D.应当一致,不得变更2.会计科目是对( )的具体内容进行分类核算的项目。
A.会计对象 B.会计要素 C.经济业务 D.会计凭证3.计提经营性长期借款利息应作的账务处理为()。
A.借:财务费用B.借:财务费用贷:应付利息贷:长期借款C.借:财务费用D.预提费用贷:银行存款贷:长期借款4.有限责任公司在增资扩股时,如有新投资者介入,新介入的投资者缴纳的出资额大于其按约定比例计算的其在注册资本中所占的份额部分的差额,应计入()。
A. 盈余公积B.资本公积C.未分配利润D.营业外收入5.根据中国人民银行《银行账户管理办法》的规定,企业工资、奖金等现金的支取,只能通过( )账户办理。
A.基本存款账户 B.一般存款账户 C.临时存款账户 D.专用存款账户6.定额备用金管理与核算上的特点是( )。
A.根据企业内部某部门或某个人实际需要,一次给付库存现金B.使用后持有关原始凭证报销,余款交回C.使用后报销时,会计部门按照核准报销的金额给付库存现金,补足备用金定额D.一般用于临时性差旅费报销业务7.某企业8月1日持有一张面值为100 000元、票面利率为10%、出票日为4月1日、到期日为10月1日、期限为6个月的商业承兑汇票到开户行贴现,贴现率为9%,该企业所得贴现净额为( )。
A. 100 000元B.105 000元C.103 425元D.98 425元8.下列应收、暂付款项中,不通过“其他应收款”账户核算的是( )。
A.应收保险公司的赔款 B.应收出租包装物的租金C.应向职工收取的各种垫付款项 D.应向购货方收取的代垫运杂费9.个别计价法主要适用于( )。
A.所有部门使用的存货 B.所有项目的核算C.可替代使用的存货 D.某一特定项目专门购入或者制造的存货10.采用“先进先出法”计算发出存货成本,期初库存硬盘数量为50件,单价为1000元,本月购入硬盘100件,单价1050元。
高财财务会计期末考试试题及答案
高财财务会计期末考试试题及答案一、选择题(每题1分,共10分)1. 会计的基本职能是()A. 记录与报告B. 监督与评价C. 决策与执行D. 预测与控制答案:A2. 以下哪项不属于流动资产?()A. 现金B. 应收账款C. 存货D. 固定资产答案:D3. 会计等式“资产=负债+所有者权益”反映的是()A. 会计要素B. 会计原则C. 会计目标D. 会计基础答案:D4. 会计政策变更采用追溯调整法时,需要()A. 重新编制以前年度的财务报表B. 直接调整当期利润C. 仅调整当期相关项目的金额D. 以上都不是答案:A5. 以下哪项不是财务报表的组成部分?()A. 资产负债表B. 利润表C. 现金流量表D. 预算表答案:D6. 会计估计变更属于()A. 会计政策变更B. 会计估计变更C. 会计差错更正D. 会计调整答案:B7. 以下哪项不是会计信息质量要求?()A. 可靠性B. 相关性C. 及时性D. 可比性答案:C8. 资产负债表日,企业应将存货计价方法从先进先出法改为加权平均法,这属于()A. 会计政策变更B. 会计估计变更C. 会计差错更正D. 会计调整答案:A9. 会计分期假设的目的是()A. 确定会计主体B. 确定会计信息的时效性C. 确定会计信息的连续性D. 确定会计信息的完整性答案:B10. 以下哪项不是会计要素?()A. 资产B. 负债C. 所有者权益D. 利润答案:D二、判断题(每题1分,共10分)1. 会计分期假设是将企业持续经营的生产经营活动划分为若干个相等的会计期间。
(对)2. 会计政策变更必须在财务报表附注中披露。
(对)3. 会计估计变更不需要追溯调整。
(错)4. 资产负债表是反映企业某一特定日期财务状况的报表。
(对)5. 利润表是反映企业一定会计期间经营成果的报表。
(对)6. 会计信息的可靠性要求企业应当根据实际情况进行会计处理。
(对)7. 会计信息的相关性要求企业应当提供有助于使用者做出经济决策的信息。
高等数学b1期末考试试题和答案
高等数学b1期末考试试题和答案高等数学B1期末考试试题一、单项选择题(每题3分,共30分)1. 函数y=x^2+2x+1的导数是()。
A. 2x+2B. 2x+1C. 2xD. 2x-12. 极限lim(x→0) (x^2-1)/(x-1)的值是()。
A. -1B. 1C. 0D. 23. 函数y=e^x的不定积分是()。
A. e^x + CB. e^x - CC. xe^x + CD. xe^x - C4. 曲线y=x^3-3x^2+2x+1在x=1处的切线斜率是()。
A. 0B. 1C. -1D. 25. 函数y=ln(x)的二阶导数是()。
A. 1/x^2B. 1/xC. -1/xD. -1/x^26. 曲线y=x^2+2x+1与x轴的交点个数是()。
A. 0B. 1C. 2D. 37. 函数y=x^3-3x^2+2x+1的极值点是()。
A. x=1B. x=2C. x=-1D. x=08. 函数y=x^2-4x+4的最小值是()。
A. 0B. 1C. 4D. 89. 函数y=x^2+2x+1的值域是()。
A. (-∞, +∞)B. [0, +∞)C. (-1, +∞)D. [1, +∞)10. 曲线y=x^3-3x^2+2x+1在x=2处的切线方程是()。
A. y=x-1B. y=2x-1C. y=3x-2D. y=4x-3二、填空题(每题4分,共20分)11. 函数y=x^3的导数是_________。
12. 极限lim(x→∞) (x^2-1)/(x^2+1)的值是_________。
13. 函数y=e^x的二阶导数是_________。
14. 曲线y=x^2-4x+4在x=2处的切线斜率是_________。
15. 函数y=ln(x)的值域是_________。
三、计算题(每题10分,共40分)16. 求函数y=x^2-4x+4的极值点。
17. 求函数y=x^3-3x^2+2x+1的不定积分。
2019年高等数学B期末考试题及答案
2019年高等数学B期末考试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2+3x-4的零点个数是()。
A. 0B. 1C. 2D. 3答案:C2. 极限lim(x→0) (sin x)/x的值是()。
A. 0B. 1C. -1D. 2答案:B3. 以下哪个函数是偶函数()。
A. f(x) = x^3B. f(x) = x^2C. f(x) = x^2 + xD. f(x) = x^2 - x答案:B4. 以下哪个积分是发散的()。
A. ∫(0,1) 1/x dxB. ∫(0,1) x^2 dxC. ∫(0,1) e^x dxD. ∫(0,1) 1/(1+x^2) dx答案:A5. 以下哪个级数是收敛的()。
A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/4 - 1/8 + ...C. 1 + 1/2 + 1/3 + 1/4 + ...D. 1/2 + 1/4 + 1/8 + 1/16 + ...答案:B二、填空题(每题4分,共20分)6. 函数f(x)=x^3-3x的导数是_________。
答案:3x^2-37. 函数y=ln(x)的不定积分是_________。
答案:xln(x)-x+C8. 曲线y=x^2在x=1处的切线斜率是_________。
答案:29. 函数f(x)=e^x的原函数是_________。
答案:e^x+C10. 极限lim(x→∞) (1+1/x)^x的值是_________。
答案:e三、计算题(每题10分,共30分)11. 计算定积分∫(0,2) x^2 dx。
答案:[1/3x^3](0,2) = 8/312. 求函数f(x)=x^3-6x^2+9x的极值点。
答案:极值点为x=0和x=3。
13. 证明函数f(x)=x^2在区间(-∞,+∞)上是凸函数。
答案:证明略。
四、解答题(每题15分,共30分)14. 给定函数f(x)=x^3-3x,求其在区间[-2,2]上的最大值和最小值。
财经学院《高等数学》期末考试试题及答案
考试试题 共 5 页 ,第 1 页财经学院期末考试试卷及答案 课程名称 高等数学 教师 学时 学分 教学方式 讲授 考核日期 20xx 年 xx 月 x 日 成绩 一、填空题(3′×5 = 15′) 1.设由方程确定是的函数,则 2.设,则 3. =___________. 4.若级数收敛,则 5.差分方程的通解为__________ 二、选择题(3′×5 = 15′) 1.下列命题中,正确的是() A.若是函数的驻点,则必在取得极值 B.若函数在取得极值,则必是的驻点 C.若函数在处可微,则必是连续点 D.若函数在处偏导数存在,则在处必连续 2.设D 由围成,则二重积分( ) 学号姓名学院……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………3.若收敛,则()A.绝对收敛B.条件收敛C.发散D.敛散性不定4.方程可化为形如()的微分方程5.差分方程的特解可设为()三、计算题(6′×8 = 48′)1.设,求2.交换积分次序,求3.求,其中.考试试题共5 页,第2 页4.判定级数的敛散性.5.求微分方程满足的特解.6.设,其中具有二阶连续偏导数,求7.求级数的收敛域及和函数.考试试题共5 页,第3 页8.求微分方程的通解.四、应用题(8′×2 = 16′)1.假设某产品的销售量是时间的可导函数,如果商品的销售量对时间的增长速率与销售量及销售量接近于饱和水平的程度之积成正比(N为饱和水平,比例常数),当时,.求销售量.2.设生产某种产品需用原料A和B,它们的单位价格分别是10元和15元,用单位原料A 和单位原料B 可生产单位的该产品,现要以最低成本产生112单位的该产品,问需要多少原料A和B?五、证明题(6′)设,证明:若收敛,则收敛.考试试题共5 页,第4 页参考答案一、1.二、1.C2.A3.A 4.D5.C三、;4.收敛;5.8.四、1. 2.A4单位,B2单位五、提示:用比较判别法证明.考试试题共5 页,第5 页。
高等数学期末(B卷)+答案+评分标准
武夷学院期末考试试卷 ( 2012 级 建设 专业2012~2013 学 年 第 一 学 期) 课程名称 高等数学 B 卷 考试形式 闭卷 考核类型 考试 本试卷共 四 大题,卷面满分100分,答题时间120分钟。
一、选择题:(本大题共10小题,每小题2分,共20分。
)(注:请将选项填在下面表格里。
) 1、以下函数奇偶性与其他三项不同的是( ) A .)1)(1()(+-=x x x x f ; B .x x x f 2cos 2)(2+=; C .x x e e x f -+=)(; D .24)(x x x f -=。
2、若'F (x)=f(x),则⎰=)(x dF ( ) A .f(x); B .F(x); C. f(x)+C ; D .F(x)+C 。
3、dx x )11(⎰-= A .21x C x -+ B .21x C x ++ C .ln ||x x C -+ D .ln ||x x C ++ 4、求132lim 23+++∞→x x x x x =( ) A .0; B .∞; C .1; D .-1。
5、设函数)(x f 在),(+∞-∞内二阶可导,且),()(x f x f -=-如果当0>x 时,,0)('>x f 且,0)(">x f 则当0<x 时,曲线)(x f y =( )。
A .递增,凸的; B.递减,凹的;C. 递减,凸的;D. 递减,凹的。
6、函数)(x f y =在点0x 处连续是函数在该点可导的( )A. 充分条件但不是必要条件;B. 必要条件但不是充分条件;C. 充分而且必要条件;D. 既不是充分条件,也不是必要条件7、设22z x y xy =+,则z x ∂=∂ A .22xy y + B .22x xy +C .4xyD .22x y +8、下面函数不同的一组是( ) A. x x y y 23,3==; B.x y x y 2sin 1,cos -==;C. 2ln ,ln 2x y x y ==;D.x y x x y =-=,335321-x 。
高财会计期末考试试题及答案
高财会计期末考试试题及答案一、选择题(每题2分,共20分)1. 会计的基本职能是()。
A. 核算与监督B. 预测与决策C. 计划与控制D. 组织与领导答案:A2. 会计要素中的资产,是指企业拥有或控制的,预期能够带来经济利益的()。
A. 负债B. 所有者权益C. 资源D. 收入答案:C3. 会计信息质量要求中的可靠性,是指会计信息应当()。
A. 及时性B. 相关性C. 可理解性D. 真实性答案:D4. 会计政策变更的会计处理方法包括()。
A. 追溯调整法B. 未来适用法C. 直接调整法D. 以上都是答案:B5. 会计估计变更的会计处理方法包括()。
A. 追溯调整法B. 未来适用法C. 直接调整法D. 以上都是答案:A6. 会计报表中的利润表反映的是企业的()。
A. 财务状况B. 经营成果C. 现金流量D. 所有者权益变动答案:B7. 资产负债表中,流动资产是指()。
A. 一年内可以变现的资产B. 一年内可以消耗的资产C. 一年内可以投资的资产D. 一年内可以收回的资产答案:A8. 会计核算中的权责发生制,是指()。
A. 以现金收付为标准B. 以交易发生为标准C. 以合同签订为标准D. 以发票开具为标准答案:B9. 会计核算中的会计分期假设,是指()。
A. 企业将持续经营B. 企业的经营活动是无限的C. 企业的经营活动是无限的D. 企业的经营活动是分阶段的答案:D10. 会计准则规定,企业应当按照()确认收入。
A. 收款时间B. 合同约定时间C. 收入实现时间D. 产品交付时间答案:C二、判断题(每题1分,共10分)1. 会计的基本假设包括会计分期、货币计量和持续经营。
(对)2. 会计的确认、计量和报告是会计核算的三个基本环节。
(对)3. 会计政策变更必须采用追溯调整法进行会计处理。
(错)4. 会计信息的可靠性与相关性是相互排斥的。
(错)5. 会计估计变更采用未来适用法进行会计处理。
(对)6. 利润表是动态会计报表,资产负债表是静态会计报表。
《高等数学》期末考试B卷(附答案)
《高等数学》期末考试B卷(附答案)【编号】ZSWD2023B0089一、填空题 (每空2分,共20分) 1、]1sin sin 1[lim x x x x x 【答案】12、设)(x f 的定义域是]1,0[,那么函数)2(x f 的定义域是 【答案】]0,(3、设函数1,121,211)(1x x x x x x x f x a, 当 a ______________时使)(lim 1x f x 存在 【答案】2ln4、设42sin x y ,则dydx=__________________。
【答案】3448sin cos x x x5、已知成本函数为5002)(2 x x x C ,当产量为1000时,边际成本为______ _. 【答案】20026、若 C x dx xx f sin )(ln ',则 )(x f【答案】C e x )sin(7、已知2111x y dt t,求dy dx【答案】221xx8、函数21()(1)x e f x x x 的可去间断点是0x =__0___, 补充定义0()f x =_____ , 则函数()f x 在0x 处连续。
【答案】0,-2二、单项选择题(每小题2分,共10分)1、当0x 时,与31000x x 等价无穷小的是( )AB C x D 3x【答案】C2、以下结论正确的是( )A 函数)(x f 在),(b a 内单调增加且在),(b a 内可导,则必有0)(' x f ;B 函数)(x f 在),(b a 内的极大值必大于极小值;C 函数)(x f 极值点不一定是驻点;D 函数)(x f 在0x 的导数不存在,则0x 一定不是)(x f 的极值点.【答案】C3、设()x y f e , 则 dy ( ).A. '()x x f e deB. '()()x f e d xC. '()x x f e e dxD.'()x x f e de【答案】D4、设函数()f x 在区间(,)a b 内可导, 1x 和2x 是(,)a b 内的任意两点, 且 12x x , 则至少存在一点 , 使( )成立.A '()()()() (,)f b f a f b a a bB '212112 ()()()() (,)f x f x f x x x xC '111()()()() (,)f b f x f b x x bD '222 ()()()() (,)f x f a f x a a x 【答案】B5、在开区间),(b a 内,)(x f 和)(x g 满足)()(''x g x f ,则一定有( )A. )()(x g x fB. 1)()( x g x fC. ''[()][()]f x dx g x dxD. )()(x dg x df【答案】D【编号】ZSWD2023B0089三、计算题(每小题5分,共35分) 1、求极限20sin tan sin limxx xx x 2200222200sin tan tan (cos 1)limlimsin sin 10,sin ,cos 1,tan 21()sin tan 12 lim lim sin 2x x x x x x x x x x x x x x x x x x x x x x x x x x x Q :解2、已知)(u f 可导,))(1ln(2x e f y ,求'y .解: 令u ex2, ))(1ln())(1ln(2u f e f y x利用复合函数求导法得''')(1)(u u f u f y x)(1)(222'2x x x e f e f e .3、讨论函数221,0(), 0x e x f x x x的连续性和可导性;解:当0x 和0x 时,函数()f x 对应的都是定义区间内的初等函数,故均连续和可导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若 g ( x)e x dx e x C ,则 g ( x)
Hale Waihona Puke 答题纸(页数)d x2 2 sin tdt 。 dx x 二.计算下列极限(每题 5 分,共 15 分)
10.
1. 求极限 lim
x 0
x2 x ex
1 2 3 (n 1) n2
2.
设 f ( x) 在 0,1 上 可 微 , 且满 足 f (1) 2 2 xf ( x)dx , 证 明: 至少 存在 一点 0,1 使 得
1 0
f ( ) f ( ) 0 。
第
2
页
3x
2. 求极限 lim
n
1 x lim 3. 求极限 x x
第
1
页
三.计算下列各题(每题 5 分,共 15 分)
1.
t2 dy d2y x 设 2 ,求 及 2 。 dx dx y 1 t
求由方程 y 5xy x 7 0 确定的函数 y ( x) 的导数。
五.求解下列各题(每题 5 分,共 10 分) 1. 求曲线 y x3 上在点 P(1,1) 处的切线方程和法线方程。 2. 设平面上的图形 D 由 y x2 , x 1 , y 0 围成, (1)求 D 的面积。 (2)由 D 绕 x 轴旋转一 周形成的旋转体的体积。 六.证明下列问题(每题 5 分,共 10 分) 1 1. 证明:当 x 1 时, 2 x 3 。 x
课程号: 19010101 题 号 分 数 阅卷人 一 二 三 四
考核时间:______________ 总分
十 十一 十二 十三 十四 十五
一. 1.
专 业
2. 3. 4.
填空题(每题 3 分,共 30 分) sin x lim 。 x x tan 5 x lim 。 x 0 x 已知 f (2) 1 ,则 lim
高等数学答案高等数学第六版答案高等数学上册答案高等数学试题及答案财务会计试题及答案高等数学课后答案高等数学第五版答案同济版高等数学答案高等数学试卷及答案高等数学下册答案
华 北 电 力 大 学 科 技 学 院 试 卷 纸
考试科目: 高等数学(会计,财务) 课序号:__14___ 五 六 七 八 九 卷别 B
3 2
2. 3.
设
y ln sin 2 x ,求 y 。
四.计算下列积分(每题 5 分,共 20 分) 1 2 x )dx 1. ( 1 x2 2. 3.
x ln xdx
0 2
dx x 2x 2
2
4.
sin x 已知 x 为 f ( x) 的原函数,求 xf ( x)dx 。
h 0
班
级
f 2 h f 2 h
。
x 0 是函数 y
姓
名
sin x 的第 x
类间断点。 。
5.
学 号
已知 y f (sin x) , f (u ) 可微,则 dy
6. 7. 8. 9.
e
1 1
x2
dx =
。 。 。 。
y x3 的拐点为