光学信息技术原理及应用课后重点习题答案
陈家璧版光学信息技术原理及应用习题解答(7-8章)

陈家璧版光学信息技术原理及应用习题解答(7-8章)-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第七章 习题解答1. 某种光盘的记录范围为内径80mm,外径180mm 的环形区域,记录轨道的间距为2um.假设各轨道记录位的线密度均相同记录微斑的尺寸为um,试估算其单面记录容量. (注: 内、外径均指直径)解: 记录轨道数为 25000002.0280180=⨯-=N单面记录容量按位计算为 ∑=⨯≈⨯+=Nn n M 110107.10006.0)002.040(2π bits = 17 Gb.按字节数计算的存储容量为 2.1GB.2. 证明布拉格条件式(7-1)等效于(7-17)式中位相失配= 0的情形, 因而(7-18)式描述了体光栅读出不满足布拉格条件时的位相失配。
证明: 将体光栅读出满足布拉格条件时的照明光波长(介质内) 和入射角 (照明光束与峰值条纹面间夹角)分别记为0和θ0, 则根据布拉格条件式(7-1)有: 2sin θ0= 0 其中为峰值条纹面间距.对于任意波长λa (空气中) 和入射角θr (介质内), 由(7-17)式, 位相失配 δ 定义为:24)cos(n K K ar πλθφδ--=其中n 0为介质的平均折射率, K = 2π/Λ为光栅矢量K 的大小,φ为光栅矢量倾斜角,其值为 22πθθφ++=sr ,θr 为再现光束与系统光轴夹角 (参见图7-9).当 δ = 0 时,有2422cos n K K a r s r πλθπθθ=⎪⎭⎫ ⎝⎛-++ 即:Λ=Λ=⎪⎭⎫ ⎝⎛-2422sin 0λππλθθn s rλ为介质中的波长. 由于角度2sr θθ-恰为照明光与峰值条纹面的夹角θ, ∑ ©亦即布拉格条件2Λ sin θ = λ.当读出光偏离布拉格角θo 和布拉格波长λo 的偏移量分别为∆θ和∆λ时,有[]0200200002044sin )sin(cos )cos( 4)()(cos n K n K K K n K K πλπλθθφθθφπλλθθφδ∆--∆--∆-=∆+-∆+-=利用布拉格条件式(7-17), 以及∆θ和∆λ很小时的近似关系 cos ∆θ≈1 和 sin ∆θ≈∆θ, 立即可得:δ =∆θK sin(φ-θ0) - ∆λK 2/4πn 0 即(7-18)式 原题得证。
《光学信息处理》习题解答

第 2 页 共 61 页
Q
a
<
1 L
,
b
<
1 W
《光学信息技术原理及应用》习题解答
∴ 1 > L, 1 > W ab
Q
1 a
是
H(
fx,
fy)
在
fx
方向的宽度,
1 b
是
H(
fx,
fy)
在
fy
方向的宽度,
L
、W
分别是输入函数
f ( x, y) 在频域上的频带宽。
∴ H( fx, fy) 在 fx 、 fy 方向的宽度大于 F( fx, fy) ,即 F( fx, fy) 能完全通过系统传递函数为
解:对于线性空间不变系统,设系统的脉冲响应为 h( x) ,输入函数表示式为 g( x) ,输出函数表示式为
g ' ( x) ,则
g'(x) = g(x) ∗h(x) 或 G'( f ) = G( f ) ⋅ H ( f )
+∞
∑ 由 g(x) = comb(x) 知, G( f ) = comb( f ) = δ ( f − n) ,所以 n=−∞
第 6 页 共 61 页
《光学信息技术原理及应用》习题解答
图 1.4(a)
(1)由 H 1 (
f
)
=
rect
(
f 2
)
得 h1 ( x )
=
2 sin
c(2 x)
,函数图形如图
1.4(b)所示
图 1.4(b)
+16
∑ g1(x) = gi (x) ∗ h1(x) = Λ( x − 3n) * h1( x) ,函数图形如图 1.4(c)所示。 n=−16 +16 ∑ 如果考虑到系统为线性不变系统,对上式的卷积可以先计算 Λ(x) * 2sinc(2x) 。 Λ(x − 3n) 表 n=−16
陈家璧版光学信息技术原理及应用习题解答(7-8章)

陈家璧版光学信息技术原理及应用习题解答(7-8章)-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第七章 习题解答1. 某种光盘的记录范围为内径80mm,外径180mm 的环形区域,记录轨道的间距为2um.假设各轨道记录位的线密度均相同记录微斑的尺寸为um,试估算其单面记录容量. (注: 内、外径均指直径)解: 记录轨道数为 25000002.0280180=⨯-=N单面记录容量按位计算为 ∑=⨯≈⨯+=Nn n M 110107.10006.0)002.040(2π bits = 17 Gb.按字节数计算的存储容量为 2.1GB.2. 证明布拉格条件式(7-1)等效于(7-17)式中位相失配= 0的情形, 因而(7-18)式描述了体光栅读出不满足布拉格条件时的位相失配。
证明: 将体光栅读出满足布拉格条件时的照明光波长(介质内) 和入射角 (照明光束与峰值条纹面间夹角)分别记为0和θ0, 则根据布拉格条件式(7-1)有: 2sin θ0= 0 其中为峰值条纹面间距.对于任意波长λa (空气中) 和入射角θr (介质内), 由(7-17)式, 位相失配 δ 定义为:24)cos(n K K ar πλθφδ--=其中n 0为介质的平均折射率, K = 2π/Λ为光栅矢量K 的大小,φ为光栅矢量倾斜角,其值为 22πθθφ++=sr ,θr 为再现光束与系统光轴夹角 (参见图7-9).当 δ = 0 时,有2422cos n K K a r s r πλθπθθ=⎪⎭⎫ ⎝⎛-++ 即:Λ=Λ=⎪⎭⎫ ⎝⎛-2422sin 0λππλθθn s rλ为介质中的波长. 由于角度2sr θθ-恰为照明光与峰值条纹面的夹角θ, ∑ ©亦即布拉格条件2Λ sin θ = λ.当读出光偏离布拉格角θo 和布拉格波长λo 的偏移量分别为∆θ和∆λ时,有[]0200200002044sin )sin(cos )cos( 4)()(cos n K n K K K n K K πλπλθθφθθφπλλθθφδ∆--∆--∆-=∆+-∆+-=利用布拉格条件式(7-17), 以及∆θ和∆λ很小时的近似关系 cos ∆θ≈1 和 sin ∆θ≈∆θ, 立即可得:δ =∆θK sin(φ-θ0) - ∆λK 2/4πn 0 即(7-18)式 原题得证。
陈家璧版-光学信息技术原理及应用习题解答(4-7章)

第四章习题4.1若光波的波长宽度为λΔ,频率宽度为νΔ,试证明:λλννΔΔ=。
设光波波长为nm 8632=.λ,nm 8-10⨯2=λΔ,试计算它的频宽νΔ。
若把光谱分布看成是矩形线型,那么相干长度?=c l 证明:参阅苏显渝,李继陶《信息光学》P349,第4.1题答案。
421.510c λνλ∆∆==⨯赫,32010()c c cl ct m ν===⨯∆4.2设迈克尔逊干涉仪所用的光源为nm 0589=1.λ,nm 6589=.2λ的钠双线,每一谱线的宽度为nm 010.。
(1)试求光场的复自相干度的模。
(2)当移动一臂时,可见到的条纹总数大约为多少?(3)可见度有几个变化周期?每个周期有多少条纹?答:参阅苏显渝,李继陶《信息光学》P349,第4.2题答案。
假设每一根谱线的线型为矩形,光源的归一化功率谱为()^1212rect rect νννννδνδνδν⎡--⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦G (1)光场的复相干度为^1()()exp(2)1sin ()exp(2)[1exp(2)]2r j d c j j τνπντνδντπντπντ∞==+∆⎰G 式中12ννν-=∆,复相干度的模为ντπδνττ∆=cos )(sin )(c r 由于νδν∆ ,故第一个因子是τ的慢变化非周期函数,第二个因子是τ的快变化周期函数。
相干时间由第一个因子决定,它的第一个零点出现在δντ1=c 的地方,c τ为相干时间,故相干长度δλλδλλδντ22≈===cc l c c 。
(2)可见到的条纹总数589301.05893====δλλλcl N (3)复相干度的模中第二个因子的变化周期ντ∆=1,故可见度的变化周期数601.06==∆=∆==δλλδννττc n 每个周期内的条纹数9826058930===n N 4.3假定气体激光器以N 个等强度的纵模振荡,其归一化功率谱密度可表示为()()()()∑21-21--=+-1=N N n n NνννδνΔgˆ式中,νΔ是纵模间隔,ν为中心频率并假定N 为奇数。
光学信息技术原理及技术陈家壁第二版课后习题答案

第一章 习题解答1.1 已知不变线性系统的输入为()()x x g comb = 系统的传递函数⎪⎭⎫⎝⎛bfΛ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略, (2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f sinc sinc 1,,y x,f ∴,,,,y x,f ====bxa x ab bf af rect y x f bf af rect y x f Wf L f rect y x f y x yx yx F F F F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似)(1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comby x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f com b y 7x sin y rect x rect x com by x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
陈家璧版-光学信息技术原理及应用习题解答(4-7章)

第四章习题4.1 若光波的波长宽度为λΔ,频率宽度为νΔ,试证明:λλννΔΔ=。
设光波波长为nm 8632=.λ,nm 8-10⨯2=λΔ,试计算它的频宽νΔ。
若把光谱分布看成是矩形线型,那么相干长度?=c l证明:参阅苏显渝,李继陶《信息光学》P349,第4.1题答案。
421.510c λνλ∆∆==⨯赫,32010()c c cl ct m ν===⨯∆ 4.2 设迈克尔逊干涉仪所用的光源为nm 0589=1.λ,nm 6589=.2λ的钠双线,每一谱线的宽度为nm 010.。
(1)试求光场的复自相干度的模。
(2)当移动一臂时,可见到的条纹总数大约为多少?(3)可见度有几个变化周期?每个周期有多少条纹?答:参阅苏显渝,李继陶《信息光学》P349,第4.2题答案。
假设每一根谱线的线型为矩形,光源的归一化功率谱为 (1)光场的复相干度为式中12ννν-=∆,复相干度的模为 由于νδν∆,故第一个因子是τ的慢变化非周期函数,第二个因子是τ的快变化周期函数。
相干时间由第一个因子决定,它的第一个零点出现在ντ1=c 的地方,c τ为相干时间,故相干长度δλλδλλδντ22≈===cc l c c 。
(2)可见到的条纹总数589301.05893====δλλλcl N (3)复相干度的模中第二个因子的变化周期ντ∆=1,故可见度的变化周期数601.06==∆=∆==δλλδννττc n 每个周期内的条纹数9826058930===n N 4.3假定气体激光器以N 个等强度的纵模振荡,其归一化功率谱密度可表示为 式中,νΔ是纵模间隔,ν为中心频率并假定N 为奇数。
(1)证明复自相干度的模为 (2)若3=N ,且ντΔ10≤≤,画出()τγ与ντΔ的关系曲线。
答:参阅《统计光学(基本概念个习题)》P131。
证明(1),复相干度)(τγ与归一化功率谱密度即光源的光谱特性间具有下列关系: 将(4.3.1)式带入得到其中()∑-=∆+∆∆--=2)1(022/)1(2211N n j N j nj e e eντπντπντπ 因而(){[]()[][][][]})2e xp ()2e xp (2/2/)1(2e xp 2/)1(2e xp 2/12e xp 2/)1(2e xp)2e xp (1ντπντπντπντπντπντπτνπτγ∆--∆-+∆--+∆--∆-+-∆-=j j N j N j N j N j j N=ντπντπντπτνπ∆-+∆--∆-2cos 12/)1(2cos 2/)1(2cos 12N N eN j =ντπντπτνπ∆∆-sin sin 12N e N j 复相干度的包络则为 (2),当N=3时,其ντγ∆-曲线如图1所示。
光学信息技术原理及应用61816

s
in
2
a 2
f
x
习题
19 0 6
教科书P47习题2.4,2.5,2.6
tx0
,
y0
exp
j
k 2z
x02 y02
exp
j
2 z
x0 x
y0 ydx0dy0
菲涅耳衍射举例(续3)
19 0 6
进一步作代数的化简得
U x, y
A jz 2
exp
j
k 2z
x2 y2 b2
光学信息技术原理及应用
(八)
夫琅和费衍射1 衍9 射0举例6 及习题总结
夫琅和费衍射举例
19 0 6
例一、余弦型振幅光栅夫琅和费衍射的光强分布 余弦型振幅光栅处于一个宽度为 l 的方孔内,光栅空间
频率为 f0 ,透过率调制度为 m ,其透过率函数图示 为:
余弦型光栅振幅透过率函数
夫琅和费衍射举例(续)
a 4
fx
2
a 2 sinc2 a
2
2
f
x
c
os
a 2
f
x
j sin a 2
f
x
c
os
a 2
f
x
j sin a 2
2
f x
a 2 sinc2 a 2
f
x
A exp
z
jkzexp
jk 2z
x02 y0
b2
陈家璧版_光学信息技术原理及应用习题解答(1-3章)

第一章习题1.1 已知不变线性系统的输入为()()x x g com b = 系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果La 1<,Wb 1<,试证明()()y x f y x f bx a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1证明:(){}(){}(){}()()(){}(){}()y x,f bxsinc a x sinc ab bf afrect y x f y x,f bfaf rect y x f W f L f rect y x f y x,f yxyx y x *⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F,,F ,,F F 1-(2)如果La 1>, Wb 1>,还能得出以上结论吗?答:不能。
因为这时(){}(){}()yx yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x fy x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F FF F F ,F ,F F,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫⎝⎛75⎪⎭⎫⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect xrect x cos f rect f sinc 75f sinc x cos y 7x sin y rect xrect x cos y x h y x fy x g x yxππδπF FF F F ,F ,F F,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π, 答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75fsinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g yxx y xx y xx x x y xδδδδδπδπF FFF FF F F,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f ff rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comby x g y x y x y x y x y xx y x y x y x y x xy x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F,.,.,.,F FF F F,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛50⎪⎭⎫⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
光学信息技术原理及应用(第二版)课后答案汇总

第一章 习题解答1.1 已知不变线性系统的输入为()()x x g c o m b =系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略, (2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零,(1) 如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2) 如果L a 1>, Wb 1>,还能得出以上结论吗?答:不能。
因为这时(){}(){}()y x yx bf af rect y x f W f L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π, 答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comby x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f com b y 7x sin y rect x rect x com by x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛50⎪⎭⎫ ⎝⎛331= 对下述传递函数利用图解方法确定系统的输出。
光学信息技术原理及应用课后重点习题答案

利用傅立叶变换的相移定理,得到
把它带入(3)式,则有
强度分布
2.6试证明如下列阵定理:假设在衍射屏上有 个形状和方位都相同的全等形开孔,在每一个开孔内取一个相对开孔来讲方位一样的点代表孔的位置,那末该衍射屏生成的夫琅和费衍射场是下列两个因子的乘积:(1)置于原点的一个孔径的夫琅和费衍射(该衍射屏的原点处不一定有开孔);(2) 个处于代表孔位置的点上的点光源在观察面上的干涉。
1.6 若只能用 表示的有限区域上的脉冲点阵对函数进行抽样,即
试说明,即使采用奈魁斯特间隔抽样,也不能用一个理想低通滤波器精确恢复 。
答:因为 表示的有限区域以外的函数抽样对精确恢复 也有贡献,不可省略。
第二章习题解答
2.1一列波长为 的单位振幅平面光波,波矢量 与 轴的夹角为 ,与 轴夹角为 ,试写出其空间频率及 平面上的复振幅表达式。
,
由此得 (1)
角的最大值为 (2)
此时像面上的复振幅分布和强度分布为
(3)照明光束的倾角取最大值时,由(1)式和(2)式可得
即 或 (3)
时,系统的截止频率为 ,因此光栅的最大频率
(4)
比较(3)和(4)式可知,当采用 倾角的平面波照明时系统的截止频率提高了一倍,也就提高了系统的极限分辨率,但系统的通带宽度不变。
可以解得,通过传递函数(2)得到的输出函数为:
该函数依然限制在 区间内,但其平均值为零,是振幅为0.043,周期为0.75,的一个余弦函数与振幅为0.027,周期为0.6的另一个余弦函数的叠加。
1.5 若对二维函数
抽样,求允许的最大抽样间隔并对具体抽样方法进行说明。
答:
也就是说,在X方向允许的最大抽样间隔小于1/2a,在y方向抽样间隔无限制。
陈家璧版 光学信息技术原理及应用习题解答(3-4章)

第三章 习题3.1 参看图3.5,在推导相干成像系统点扩散函数(3.35)式时,对于积分号前的相位因子⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+≈⎥⎦⎤⎢⎣⎡+2220202002exp )(2exp M y x d k j y x d k j i i试问(1)物平面上半径多大时,相位因子⎥⎦⎤⎢⎣⎡+)(2exp 20200y x d k j相对于它在原点之值正好改变π弧度?(2)设光瞳函数是一个半径为a 的圆,那么在物平面上相应h 的第一个零点的半径是多少?(3)由这些结果,设观察是在透镜光轴附近进行,那么a ,λ和d o 之间存在什么关系时可以弃去相位因子⎥⎦⎤⎢⎣⎡+)(2exp 20200y x d k j 3.2 一个余弦型振幅光栅,复振幅透过率为 00002cos 2121),(x f y x t π+=放在图3.5所示的成像系统的物面上,用单色平面波倾斜照明,平面波的传播方向在x 0z 平面内,与z 轴夹角为θ。
透镜焦距为f ,孔径为D 。
(1)求物体透射光场的频谱;(2)使像平面出现条纹的最大θ角等于多少?求此时像面强度分布;(3) 若θ采用上述极大值,使像面上出现条纹的最大光栅频率是多少?与θ=0时的截止频率比较,结论如何?3.3光学传递函数在f x = f y =0处都等于1,这是为什么?光学传递函数的值可能大于1吗?如果光学系统真的实现了点物成点像,这时的光学传递函数怎样?3.4当非相干成像系统的点扩散函数h I (x i ,y i )成点对称时,则其光学传递函数是实函数。
3.5 非相干成像系统的出瞳是由大量随机分布的小圆孔组成。
小圆孔的直径都为2a ,出瞳到像面的距离为d i ,光波长为λ,这种系统可用来实现非相干低通滤波。
系统的截止频率近似为多大?3.6 试用场的观点证明在物的共轭面上得到物体的像 解:如图设1∑是透过率函数为),(00y x t 的物平面,2∑是与1∑共轭的像平面,即有fd d i 1110=+ 式中f 为透镜的焦距,设透镜无像差,成像过程分两步进行:(1) 射到物面上的平面波在物体上发生衍射,结果形成入射到透镜上的光场l U ; (2) 这个入射到透镜上的光场经透镜作位相变换后,在透镜的后表面上形成衍射场'l U ,这个场传到像面上形成物体的像。
陈家璧版-光学信息技术原理及应用习题解答(9-11章)

第九章习题解答9-1. 用白光再现彩虹全息时,如果彩虹全息有实狭缝象,在狭缝实象处观察全息图,人眼将能观察到单色的全息象,试分析人眼在狭缝前后位置时的全息象的颜色分布情况。
如彩虹全息再现的是虚狭缝,再分析人眼观察到的全息象情况。
答:在图示的情况下,物的两个端点为A 和B 点,它们被全息记录在一条线区域上,当白光再现时,这一区域的衍射光是色散的,长波长的衍射角较大,而短波长的衍射较小,。
按图示的光路结构, A 点的长波长沿AM 方向衍射,短波长沿AN 方向衍射,B 点的长波长沿BN 方向衍射,短波长沿BM 方向衍射。
假设沿AP 和BP 方向衍射的波长相同,那么人眼在P 处观察将看到单色象,当眼睛靠近全息图时,将看到象的上方偏蓝,而下方偏红,反之则相反。
对于虚狭缝的情况,如上图所示,P 点是某一衍射波长的虚狭缝,A 和B 两点是两线全息图,象上的两点与它们对应,AM 是线全息图A 最短波长的衍射方向,BM 是线全息图B 的最长波长衍射方向。
显然,眼睛在M 点观察,将能看到A 、B 之间的所有象点,但它们的颜色呈光谱色分布,在图示情况下,上部是紫色,下部是红色。
眼睛观察到的象的范围由眼睛离全息图的距离决定,离得越远,观察到的范围越大。
9-2. 用白光点光源再现彩虹全息时,人眼将能观察到由光谱色组成的单色象。
如果用白光线光源作为再现光源,线光源的扩展方向与狭缝方向垂直,这时观察到的是消色差的黑白象,试解释其原因。
答:线光源可以看成由无数个点光源组成,每一个点光源都按光谱色排列形成一组彩色狭缝,线光源上不同点形成的狭缝的位置各不相同,它们在与狭缝垂直的方向上平移。
这无数个狭缝相互迭合在一起,使人眼在该处观察时,无数个不同波长的再现象重合在一起,这也就形成了消色差的黑白象。
9-3. 在一步法彩虹全息记录光路中,物的大小为10cm ,人双眼的瞳孔间距为6.5cm ,透镜的孔径为20cm ,对物体1:1成像,如狭缝距全息图30cm ,要求人双眼能同时看见完整的象,试计算成像透镜的焦比。
《光学信息技术原理及应用》(第2版)教学课件 光学信息处理第1讲B

• 函数作为基元函数的情况。根据 函数的筛选性质(A.7,或
《积分变换》P16中1.12式),任何输入函数都可以表达为
fx1,yf,x,ydd
• 积分就是“相加”,筛选性质表明任意函数都可以表示为无穷多的
函数的和,每个 函数的“大小”被输入函数“调制”。
• 函数通过系统后的输出用算符可以表示为
gx2,y L f, x ,y d d
• 对于线性系统的一个重要子类——不变线性系统,分析才变得简单
• 大多数情况下,光学系统都可以看做不变线性系统
19
练习
1、已知函数 U x A ex j2 p f0 x 求下列函数,并作出函 数图形。(1)U x 2(2) UxU*x (3)UxU*x2
2、已知函数
fx re x c 2 r te x 2 c t 求下列函数,
2
近代光学对信息时代发展的重要作用
• 20世纪40年代末提出的全息术
• 50年代产生的光学传递函数
• 60年代发明的激光器
• 70年代发展起来的光纤通信
• 80年代成为微机标准外设的光驱
• 航天航空事业中应用的空间光学,神州五号搭载的相 机拍到美国军用机场照片分辨率一米
3
信息光学的研究方法和用途
17
1.1.2 脉冲响应和叠加积分(2)
• 根据线性系统的叠加性质,算符与加(乘)法的顺序可以交换,算符 与对基元函数积分的顺序也就可以交换
g x2, y f, L x , y d d
• 定义为系统的脉冲响应函数
h x 2 , y ; , L x , y
• 得到系统输出为 “叠加积分”
7
第一章 二维线性系统分析
• 把光学系统看成二维线性系统---信息传输系统,而不 是看成一个物理的成象系统或干涉、衍射系统
《光学信息处理》习题解答

(2)
如果
a
>
1, L
b
>
1 W
,因
f
( x,
y) 是限带函数,在频域内, F (
fx,
f y ) 在长、宽分别为 L 、W
的矩
形内不为零, a > 1 、 b > 1 即 1 < L 、1 < W ,也就是说滤波器通带宽度比输入函数波形宽度窄,
L
Wa
b
势必有一部分信号不能通过滤波器,在频域内,这时 F ( f x , f y ) ⋅ H ( f x , f y ) ≠ F ( f x , f y ) ,在空域内即 1 sinc( x )sinc( y ) * f (x, y) ≠ f (x, y) ab a b
g 1 ( x , y ) = F −1 [G 1 ( f x , f y )] = cos 4π x
(2)由
f2
(x,
y)
=
cos(
4π x ) rect
(x 75
) rect
(y 75
)
得:
F2 (
fx,
fy
)
=
1 [δ 2
(
fx
−
2)
+
δ(
fx
+
2)]δ
(
fy
)
∗ 752 sinc(75
f x )sinc(75
)]
*
Λ(
x)
对下述传递函数用图解方法确定系统的输出。
(1)
H 1 ( f ) = rect(
f) 2
(2)
H 2 ( f ) = rect(
f ) − rect( 4
信息光学课后习题答案

信息光学课后习题答案信息光学是一门研究光在信息处理和传输中的应用的学科,课后习题是帮助学生巩固课堂知识的重要手段。
以下是一些信息光学课后习题的参考答案。
习题一:光的干涉现象1. 描述杨氏双缝干涉实验的基本原理。
答:杨氏双缝干涉实验是利用两个相干光源产生的光波在空间中相遇时,由于相位差不同而相互叠加,形成明暗相间的干涉条纹。
当两束光波的相位差为整数倍的波长时,它们相互加强,形成亮条纹;当相位差为半整数倍波长时,它们相互抵消,形成暗条纹。
2. 计算双缝干涉的条纹间距。
答:设双缝间距为d,观察屏与双缝的距离为L,光波长为λ。
根据干涉条纹的间距公式:\[ \Delta x = \frac{\lambda L}{d} \],可以计算出条纹间距。
习题二:光的衍射现象1. 解释夫琅禾费衍射和菲涅尔衍射的区别。
答:夫琅禾费衍射适用于远场条件,即观察点距离衍射屏很远,可以忽略衍射波的弯曲。
而菲涅尔衍射适用于近场条件,考虑了衍射波的弯曲效应。
2. 描述单缝衍射的光强分布特点。
答:单缝衍射的光强分布呈现中央亮条纹最宽最亮,两侧条纹逐渐变窄变暗,且条纹间距随着角度的增大而增大。
习题三:光的偏振现象1. 什么是偏振光,它有哪些应用?答:偏振光是指光波振动方向被限制在特定平面内的光。
偏振光的应用包括偏振太阳镜减少眩光,液晶显示技术,以及光学测量和成像技术等。
2. 解释马吕斯定律。
答:马吕斯定律描述了偏振光通过偏振器时,透射光强与入射光强的关系。
根据马吕斯定律,透射光强I与入射光强I0的关系为:\[ I = I_0 \cos^2(\theta) \],其中θ是偏振器的偏振方向与光波振动方向之间的夹角。
习题四:光纤通信1. 解释全内反射原理。
答:全内反射是指当光从折射率高的介质进入折射率低的介质时,如果入射角大于临界角,光将不会穿透界面,而是完全反射回高折射率介质内部。
这是光纤通信中光信号能够长距离传输的关键原理。
2. 描述单模光纤和多模光纤的区别。
陈家璧版 光学信息技术原理及应用习题解答(5-6章)

第五章习题解答5.1两束夹角为 θ = 450的平面波在记录平面上产生干涉,已知光波波长为632.8nm ,求对称情况下(两平面波的入射角相等)该平面上记录的全息光栅的空间频率。
答案:已知:θ = 450,λ= 632.8nm求:全息光栅空间频率f x解:根据平面波相干原理,干涉条纹的空间分布满足关系式 2 d sin (θ/2)= λ其中d 是干涉条纹间隔。
由于两平面波相对于全息干板是对称入射的,故记录在干板上的全息光栅空间频率为f x = (1/d )= (1/λ)·2 sin (θ/2)= 1209.5 l /mm 答:全息光栅的空间频率为1209.5 l /mm 。
5.2 如图5.33所示,点光源A (0,-40,-150)和B (0,30,-100)发出的球面波在记录平面上产生干涉:xz图5.33 (5.2题图)(1)写出两个球面波在记录平面上复振幅分布的表达式;解答:设:点源A 、B 发出的球面波在记录平面上的复振幅分布分别为U A 和U B , 则有 ()[{]}22--22)()()/(e x p e x p A A A A A A y y x x z jk jkz a U +=()[{]}22--22)()()/(e x p e x p B B B B B B y y x x z jk jkz a U +=其中: x A = x B = 0, y A = -40, z A = -150, y B = 30, z B = -100; a A 、a B 分别是球面波的振幅;k 为波数。
(2)写出干涉条纹强度分布的表达式;I = |U A +U B |2 = U A ·U A * + U B ·U B * +U A *·U B + U A ·U B *[{]{[]}}[{]{[]}}--2---2-4--2--2--442222222222)()()/()()()/(exp )exp()()()/()()()/(exp )exp(B B B A A A B A BA B B B A A A B ABA BA y y x x z jk y y x x z jk jkz jkz a a y y x x z jk y y x x z jk jkz jkz a a a a ++•+++++•++=(3)设全息干板的尺寸为100 × 100 mm 2,λ = 632.8nm ,求全息图上最高和最低空间频率;说明这对记录介质的分辨率有何要求?解答:设全息干板对于坐标轴是对称的,设点源A 与点源B 到达干板的光线的最大和最小夹角分别为θmax和θmin,A 、B 发出的到达干板两个边缘的光线与干板的夹角分别为θA 、θB 、θA ’和θB ’,如图所示,它们的关系为θA = tg-1[z A /(-y A - 50)] ,θB = tg-1[z B /(-y B - 50)]θA ’= tg -1[z A /(y A - 50)] ,θ B ’= tg -1[z B /(y B - 50)]θmax =θ A -θB, θmin =θ B ’-θA ’根据全息光栅记录原理,全息图上所记录的 最高空间频率 f max = (2/λ)sin (θmax /2)·cos α 1 最低空间频率 f min = (2/λ)sin (θmin /2)·cos α2其中α角表示全息干板相对于对称记录情况的偏离角,由几何关系可知 cos α 1 = sin (θA+θB )/2 , cos α 2 = sin (θA ’+θB ’)/2将数据代入公式得 f max = 882 l /mm ,f min = 503 l /mm答:全息图的空间频率最高为882 l /mm ,最低为503 l /mm ,要求记录介质的分辨率不得低于900 l /mm 。
陈家璧版_光学信息技术原理及应用习题解答(1-2章)

第一章习题1.1 已知不变线性系统的输入为()()x x g com b = 系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x y x y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
信息光学 课后习题答案

信息光学课后习题答案信息光学课后习题答案在信息时代,光学技术的应用越来越广泛。
信息光学是一门研究光的传播、控制和处理的学科,它涉及到光的物理性质、光学仪器和光学系统的设计等方面。
在信息光学的学习过程中,习题是非常重要的一部分,通过解答习题可以巩固理论知识,提高问题解决能力。
下面是一些信息光学课后习题的答案,希望能对你的学习有所帮助。
1. 什么是光的干涉?请简要描述干涉的条件和干涉的类型。
答:光的干涉是指两束或多束光波相互叠加产生干涉现象的现象。
干涉的条件包括:光源的相干性、光波的波长、光波的振幅和相位等。
根据光波的相位关系和干涉光波的振幅分布,干涉可以分为构成干涉的光波相位差为定值的相干干涉和相位差随空间位置而变化的非相干干涉。
2. 什么是光的衍射?请简要描述衍射的条件和衍射的类型。
答:光的衍射是指光波通过物体的边缘或孔径时发生偏折和扩散的现象。
衍射的条件包括:波长与物体尺寸的比值、入射光波的方向和物体的形状等。
根据物体的形状和光波的传播方式,衍射可以分为菲涅尔衍射和菲拉格衍射。
3. 什么是光的偏振?请简要描述光的偏振现象和偏振的方法。
答:光的偏振是指光波中的电矢量在特定方向上振动的现象。
偏振可以通过特定的方法将非偏振光转化为偏振光,常用的偏振方法包括:偏振片的使用、布儒斯特角的利用和波片的调整等。
4. 什么是光的散射?请简要描述散射的条件和散射的类型。
答:光的散射是指光波与物质相互作用后改变传播方向的现象。
散射的条件包括:光波与物质的相互作用力、物质的尺寸和光波的波长等。
根据散射物体的尺寸和光波的波长,散射可以分为瑞利散射、米氏散射和光学散射等。
5. 什么是光的吸收?请简要描述吸收的条件和吸收的影响因素。
答:光的吸收是指光波在物质中被吸收转化为其他形式的能量的现象。
吸收的条件包括:光波与物质的相互作用力、物质的性质和光波的波长等。
吸收的影响因素包括:物质的吸收系数、光波的强度和入射角度等。
以上是对一些信息光学课后习题的简要解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 习题解答1.1 已知不变线性系统的输入为()()x x g com b = ,系统的传递函数⎪⎭⎫⎝⎛bf Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略, (2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零,(1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π,答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ 1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
(1)()⎪⎭⎫⎝⎛2=f f H rect (2)()⎪⎭⎫ ⎝⎛2-⎪⎭⎫⎝⎛4=f f f H rect rect 答:图解方法是在频域里进行的,首先要计算输入函数的频谱,并绘成图形{}{}[]21()()()()()3350(3)50sin (50)sin i x x G f g x comb rect x comb f c f c f⎧⎫⎡⎤⎧⎫==*Λ⎨⎨⎬⎬⎢⎥⎣⎦⎩⎭⎩⎭=*F F F方括号内函数频谱图形为:f1212353432135343233150图1.4(1)f c 2sin 图形为:f13213312310.6850.170.041图 1.4(2)因为f c 2sin 的分辨力太低,上面两个图纵坐标的单位相差50倍。
两者相乘时忽略中心五个分量以外的其他分量,因为此时f c 2sin 的最大值小于0.04%。
故图解)(f G 频谱结果为:f3213233150G(f)50*0.68550*0.171图 1.4(3)传递函数(1)形为:f 111图 1.4(4)因为近似后的输入函数频谱与该传递函数相乘后,保持不变,得到输出函数频谱表达式为:⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+++*⎥⎦⎤⎢⎣⎡-+++)32()32(171.0)50(sin 50)31()31(685.0)(f f f c f f f δδδδδ其反变换,即输出函数为:)50(322cos 342.032cos 37.11x rect x x ⎥⎦⎤⎢⎣⎡++ππ 该函数为限制在[]25,25-区间内,平均值为1,周期为3,振幅为1.37的一个余弦函数与周期为1.5,振幅为0.342的另一个余弦函数的叠加。
传递函数(2)形为:f1图 1.4(5)此时,输出函数仅剩下在[]1,2--及[]2,1两个区间内分量,尽管在这两个区间内输入函数的频谱很小,相对于传递函数(2)在[]1,1-的零值也是不能忽略的,由于027.0)35(sin 043.0)34(sin 22==c c可以解得,通过传递函数(2)得到的输出函数为:)50(352cos 027.0342cos 043.0x rect x x ⎥⎦⎤⎢⎣⎡+ππ 该函数依然限制在[]25,25-区间内,但其平均值为零,是振幅为0.043,周期为0.75,的一个余弦函数与振幅为0.027,周期为0.6的另一个余弦函数的叠加。
1.5 若对二维函数()()ax a y x h 2=sinc ,抽样,求允许的最大抽样间隔并对具体抽样方法进行说明。
答:(){}(){}()y x f δa f ax sinc a y x h ⎪⎭⎫⎝⎛==2ΛF ,F ≤∞21=21≤∴Y aB X x ;也就是说,在X 方向允许的最大抽样间隔小于1/2a ,在y 方向抽样间隔无限制。
1.6 若只能用b a ⨯表示的有限区域上的脉冲点阵对函数进行抽样,即 ()()⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=b y a x Y y X x y x g y x g s rect rect comb comb ,, 试说明,即使采用奈魁斯特间隔抽样,也不能用一个理想低通滤波器精确恢复()y x g ,。
答:因为b a ⨯表示的有限区域以外的函数抽样对精确恢复()y x g ,也有贡献,不可省略。
第二章 习题解答2.1 一列波长为λ的单位振幅平面光波,波矢量k 与x 轴的夹角为045,与y 轴夹角为060,试写出其空间频率及1z z =平面上的复振幅表达式。
答:λ23=x f , λ22=y f , ()()()0,0,0λ222λ3πexpj2jkz exp ,,11U y x z y x U ⎪⎪⎭⎫ ⎝⎛+=2.2 尺寸为a ×b 的不透明矩形屏被单位振幅的单色平面波垂直照明,求出紧靠屏后的平面上的透射光场的角谱。
答:()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=b y rect a x rect y x U , ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛λβλλcos b sinc αcos a sinc ab βcos λαcos A , ,2.3 波长为λ的单位振幅平面波垂直入射到一孔径平面上,在孔径平面上有一个足够大的模板,其振幅透过率为()⎪⎭⎫ ⎝⎛32+150=0λπ0x cos x t .,求紧靠孔径透射场的角谱。
答::⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛31++⎪⎭⎫ ⎝⎛31-250+⎪⎭⎫ ⎝⎛50=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1+33+⎪⎭⎫ ⎝⎛1-3250+⎪⎭⎫ ⎝⎛50=⎪⎭⎫ ⎝⎛λβδλλαδλλαδλβλαδλβδλαλλδλαλ3λλβλαδλβλαcos cos cos cos cos cos cos cos δcos cos cos cos A .,..,.,2.4 参看图2.13,边长为a 2的正方形孔径内再放置一个边长为a 的正方形掩模,其中心落在()ηξ,点。
采用单位振幅的单色平面波垂直照明,求出与它相距为z 的观察平面上夫琅和费衍射图样的光场分布。
画出0==ηξ时,孔径频谱在x 方向上的截面图。
yxOa2a图2.4题答:()⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛2=000000a ηy rect a ξx rect a y rect a x rect y x t , (){}()()()()()()y x y x y x f f a j2-exp af sinc af sinc a 2af sinc 2af sinc a y x t +-4=2200π,F()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛4⨯⎪⎭⎫⎝⎛+1=2222z y z x a j2-exp z λy a sinc z λx a sinc a z λy 2a sinc z λx 2a sinc a y x 2z k j exp jkz exp z λj y x U λλπ,()2222⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛41=z y z x a j2-exp z y a sinc z x a sinc a z y 2a sinc z x 2a sinc a z y x I λλπλλλλλ2, 2.5 图2-14所示的孔径由两个相同的矩形组成,它们的宽度为a ,长度为b ,中心相距为d 。