现代控制理论讲义(1,2.4)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪言

1-1 自动控制发展历史简介

自动控制思想及其实践可以说历史悠久。它是人类在认识世界和改造世界的过程中产生的,并随着社会的发展和科学水平的进步而不断发展。早在公元前300年,古希腊就运用反馈控制原理设计了浮子调节器,并应用于水钟和油灯中。在如图1-1所示的水钟原理图中,最上面的蓄水池提供水源,中间蓄水池浮动水塞保证恒定水位,以确保其流出的水滴速度均匀,从而保证最下面水池中的带有指针的浮子均匀上升,并指示出时间信息。

同样早在1000多年前,我国古代先人们也发明了铜壶滴漏计时器、指南车等控制装置。首次应用于工业的自控器是瓦特(J.Watt)于1769年发明的用来控制蒸汽机转速的飞球控制器,如图1-2所示。而前苏联则认为1765年珀尔朱诺夫(I.Polzunov)的浮子水位调节器最有历史意义。

图1-1 水钟原理图图图 1-2 飞球转速调节器原理图

1868年以前,自控装置和系统的设计还处于直觉阶段,没有系统的理论指导,因此在控制系统的各项性能(如稳、准、快)的协调控制方面经常出现问题。十九世纪后半叶,许多科学家开始基于数学理论的自控理论的研究,并对控制系统的性能改善产生了积极的影响。1868年,麦克斯威尔(J.C.Maxwell)建立了飞球控制器的微分方程数学模型,并根据微分方程的解来分析系统的稳定性。1877年,罗斯(E.J.Routh)提出了不求系统微分方程根的稳定性判据。1895年,霍尔维茨(A.Hurwitz)也独立提出了类似的霍尔维茨稳定性判据。第二次世界大战前后,由于自动武器的需要,为控制理论的研究和实践提出了更大的需求,从而大大推动了自控理论的发展。1948年,数学家维纳(N.Wiener)的<<控制论>>(CYBERNETICS)一书的出版,标志着控制论的正式诞生。这个“关于在动物和机器中的控制和通讯的科学”(Wiener所下的经典定义)经过了半个多世纪的不断发展,其研究内容及其研究方法都有了很大的变化。图1-3所示为控制理论的主要发展历史。

图1-3 控制理论发展简史

概括地说,控制论发展经过了三个时期:

第一阶段是四十年代末到五十年代的经典控制论时期,着重研究单机自动化,解决单输入单输出(SISO-Single Input Single Output)系统的控制问题;它的主要数学工具是微分方程、拉普拉斯变换和传递函数;主要研究方法是时域法、频域法和根轨迹法;主要问题是控制系统的快速性、稳定性及其精度。

第二阶段是六十年代的现代控制理论时期,着重解决机组自动化和生物系统的多输入多输出

(MIMO-Multi-Input Multi-Output)系统的控制问题;主要数学工具是一次微分方程组、矩阵论、状态空间法等等;主要方法是变分法、极大值原理、动态规划理论等;重点是最优控制、随机控制和自适应控制;核心控制装置是电子计算机;

第三阶段是七十年代的大系统理论时期,着重解决生物系统、社会系统这样一些众多变量的大系统的综合自动化问题;方法是时域法为主;重点是大系统多级递阶控制;核心装置是网络化的电子计算机。

从控制论的观点看,人是最巧妙,最灵活的控制系统。它善于根据条件的变化而作出正确的处理。如何将人的智能应用于实际的自动控制系统中,这是个有重要意义的问题。七十年代开始,人们不仅解决社会、经济、管理、生态环境等系统问题,而且为解决模拟人脑功能,形成了新的学科----人工智能科学,这是控制论的发展前沿。计算机技术的发展为人工智能的发展提供了坚实的基础。人们通过计算机的强大的信息处理能力来开发人工智能,并用它来模仿人脑。在没有人的干预下,人工智能系统能够进行自我调节、自我学习和自我组织,以适应外界环境的变化,并作出相应的决策和控制。

1-2 现代控制理论的基本内容

科学在发展,控制论也在不断发展。所以“现代”两个字加在“控制理论”前面,其含义会给人误解的。实际上,我们讲的现代控制理论指的是五六十年代所产生的一些控制理论,主要包括:

用状态空间法对多输入多输出复杂系统建模,并进一步通过状态方程求解分析,研究系统的可控性、可观性及其稳定性,分析系统的实现问题;

用变分法、最大(最小)值原理、动态规划原理等求解系统的最优控制问题;其中常见的最优控制包括时间最短、能耗最少等等,以及它们的组合优化问题;相应的有状态调节器、输出调节器、跟踪器等综合设计问题;

最优控制往往要求系统的状态反馈控制,但在许多情况下系统的状态是很难求得的,往往需要一些专门的处理方法,如卡尔曼滤波技术来求得。这些都是现代控制理论的范畴。

六十年代以来,现代控制理论各方面有了很大的发展,而且形成几个重要的分支课程,如线性系统理论,最优控制理论,自适应控制理论,系统辩识理论,等等。

对控制系统一定要进行定量分析,否则就没有控制论;而要进行定量分析,就必须用数学模型来刻划描述系统,也即建立系统的数学模型,这是一个很重要的问题。

经典控制论中常用一个高阶微分方程来描述系统的运动规律,而现代控制论中采用的是状态空间法,就是用一组状态变量的一阶微分方程组作为系统的数学模型。这是现代控制理论与经典控制理论的一个重要区别。从某种意义上说,经典控制中的微分方程只能描述系统的输入与输出的关系,却不能描述系统内部的结构及其状态变量,它描述的只是一个‘黑箱’系统。而现代控制论中的状态空间法不但能描述系统输入与输出的关系,而且还能完全描述内部的结构及其状态变量的关系,它描述的是一个‘白箱’系统。由于能够描述更多的系统信息,所以可以实现更好的系统控制。

第二章状态空间分析法

2-1 状态、状态变量、状态空间、状态方程、动态方程

任何一个系统在特定时刻都有一个特定的状态,每个状态都可以用最小的一组(一个或多个)独立的状态变量来描述。

设系统有n个状态变量x1,x2,…,x n,它们都是时间t的函数,控制系统的每一个状态都可以在一个由x1,x2,…,x n为轴的n维状态空间上的一点来表示,用向量形式表示就是:X = (x1,x2,…,x n)T,X称作系统的状态向量。

设系统的控制输入为:u1,u2,...,u r,它们也是时间t的函数。记:U = (u1,u2,...,u r)T,那么表示系统状态变量X(t)随系统输入U(t)以及时间t变化的规律的方程就是控制系统的状态方程,如式(2-1)所示。

………………………………………………………………(2-1)其中 F = (f1,f2,...,f n)T是一个函数矢量。

设系统的输出变量为y1,y2,...,y m,则Y = (y1,y2,...,y m)T 称为系统的输出向量。表示输出变量Y(t)

相关文档
最新文档