三相交流异步电动机的调速控制电路

合集下载

三相异步电动机的变极调速控制

三相异步电动机的变极调速控制

SB3常闭触头 先断开,切断 KM1线圈电路
SB2常开触头 后闭合
KM1自锁触头复位断开
KM1主触 头断开
电动机因惯 性继续旋转
KM1互锁触头复位闭合
KM2、KM3 线圈都得电
●按钮控制的双速电动机变极调速工作过程
2)高速运转
需要高速运转时,也需要先按下低速启动按钮SB2,把定子 绕组接成△,让电动机低速启动。 启动结束,再按下高速启动按钮SB3,把定子绕组换接成YY, 实现电动机高速运行。
KT常开延时闭合
KM1失电 拆除△接线,切除电动机正序电源
定子绕组尾端接反序电源
KM2得电 KM3得电
电动机YY连接, 定子绕组首端 高速运转 短接于一点
变极调速安装接线注意事项: 1)正确识别电动机定子绕组的9个接线端子。 2)交换任意两相电源的相序。
2)按钮控制的双速电动机变极调速
注意控制电路的线号
三、变极调速原理
把定子每相绕组都看成两个完全对称的“半相绕组”。
以U相为例,设相电流从绕组的头部U1流进,尾部U2流出。 当U相两个“半相绕组”头尾相串联时(顺串),根据右手 螺旋法则,可判断出定子绕组产生4极磁场。 若U相两个“半相绕组” 尾尾相串联(反串)或者头尾相并 联(反并),定子绕组产生2极磁场。
●按钮控制的双速电动机变极调速工作过程
1)低速运转
需要低速运转时,按下低速启动按钮SB2,把定子绕组接成 △,让电动机低速启动,并连续运转。
合上QS,M3线圈电路
SB2常开触头后 闭合,KM1线圈
通电
KM1电气互锁触头断开, 对KM2、KM3互锁
KM1主触 头闭合
相关知识——三相异步电动机的电气调速
• 什么叫恒转矩调速?

三相异步电动机的调速控制ppt课件

三相异步电动机的调速控制ppt课件

三角形与双星形联结法(恒功率调速场合使用)
➢ 三角形联结时,p=2 (低速)各相绕组互为240 电角度 ➢ 双星形联结时,p=1 (高速) 各相绕组互为120 O 电角度 为保持变速前后转向不变,变极对数时必须改变电源的相序
O
主电路析
KM3接通 KM2、KM1断开
三角形
双星形
主电路分析
相序 U V W
电磁离合器
电枢 磁极 线圈
电磁调速异步电动机的控制
晶闸管可控 整流电源
测速发电机
一.三相笼型电动机的变极调速
n﹦60pf1 (1﹣S)
多速电动机
双速(一套绕组) √ 三速(两套绕组) 四速(两套绕组)
星形与双星形联结法(恒转矩调速场合使用)
➢ 星形联结时, p=2 (低速)各相绕组互为240 O电角度 ➢ 双星形联结时,p=1 (高速)各相绕组互为120 O电角度 为保持变速前后转向不变,变极对数时必须改变电源的相序
相序 W
U
V 三角形
KM3断开
双星形 KM2、KM1接通
控制电路分析
SC→低速 KM3接通(三角形) SC→高速 KM3接通(三角形)- KM3断 KM2、KM1接通(双星形)
KT延时
二.绕线式电动机转子串电阻的调速
转子串电阻 → n → s
用凸轮控制器进行调速(吊车﹑起重机) (转子电路中串接三相不对称电阻)
SQ1、SQ2:限位开关
凸轮控制器 ➢ 黑点表示该位置触头接通 ➢ 无黑点表示该位置触头不接通
KT10~12: 决定KM通断 KT6~9: 控制电机转向 KT1~5: 短接电阻
三.电磁调速异步电动机的控制
电磁调速的组成: 异步电动机 电磁离合器 控制装置

三相异步电动机连续控制电路

三相异步电动机连续控制电路

三相异步电动机连续控制电路一、引言三相异步电动机是工业生产中最常用的电动机之一。

它具有结构简单、使用可靠、运行平稳等特点,被广泛应用于各种机械设备中。

在实际应用中,为了满足不同的工艺要求和实现自动化控制,需要对三相异步电动机进行连续控制。

本文将介绍三相异步电动机连续控制电路的相关知识。

二、三相异步电动机基础知识1. 三相异步电动机的结构和工作原理三相异步电动机由定子和转子两部分组成。

定子上布置着三个对称排列的同心圆形线圈,称为定子绕组。

转子上也布置着类似的线圈,称为转子绕组。

当通过定子绕组通以交流电时,在定子内形成旋转磁场,磁场旋转速度等于供电频率除以极对数。

由于转子中也存在磁场,因此在磁场作用下,转子会受到一个旋转力矩,并随着旋转磁场而旋转。

2. 三相异步电动机的运行特性三相异步电动机具有以下运行特性:(1)起动特性:三相异步电动机的起动需要通过一定的方法来实现,常用的方法有直接启动、降压启动和星-三角启动等。

(2)空载特性:当三相异步电动机处于空载状态时,其转速会略高于额定转速。

(3)负载特性:当三相异步电动机处于负载状态时,其转速会下降,但不会低于额定转速。

三、三相异步电动机连续控制电路1. 三相异步电动机连续控制原理三相异步电动机连续控制是指通过改变电源对电机的供电方式和供电参数,来实现对电机的运行状态进行调节。

常用的控制方式有调速、正反转和制动等。

其中调速是最常见的一种控制方式。

2. 三相异步电动机调速控制原理调速是通过改变供电频率或改变供电电压来实现对三相异步电动机转速进行调节。

常用的调速方法有变频调速和降压调速两种。

(1)变频调速变频调速是指通过将交流供电源经过整流、滤波、逆变等处理后,得到一个可变频率、可变幅值的交流输出,从而实现对电机转速的调节。

变频调速的优点是调速范围大,控制精度高,但成本较高。

(2)降压调速降压调速是指通过改变电源对电机的供电电压来实现对电机转速的调节。

常用的降压调速方法有自耦降压启动、稳压变压器降压启动和可控硅降压启动等。

三相异步电动机启动,调速,制动

三相异步电动机启动,调速,制动

任务3.三相异步电动机的制动及实现
(1)电源反接制动
三相异步电动机的电源反接制动是将三相电 源中的任意两相对调,使电动机的旋转磁场反 向,产生一个与原转动方向相反的制动转矩, 迅速降低电动机的转速,当电动机转速接近零 时,立即切断电源。
这种制动方法制动转矩大,效果好,但冲击 剧烈,电流较大,易损坏电动机及传动零件。
(4)绕线型异步电动机转子串 电阻起动
绕线型异步电动机的起动,只要在转子回 路串入适当的电阻,就既可限制起动电流, 又可增大起动转矩,但在起动过程中,需 逐级将电阻切除。现在多用在转子回路接 频敏变阻器起动。
任务1:三相异步电动机的起动及实现
任务1:三相异步电动机的起动及实现
3.三相异步电动机启动控制电 路
任务1:三相异步电动机的起动及实现
自锁(自保): 依靠接触器自身辅助常开 触头
而使线圈保持通电的控制方 式 自锁触头: 起自锁作用的辅助常开触 头 工作原理: 按下按钮(SB1),线圈(KM)通 电,电机起动;同时,辅助触头 (KM)闭合,即使按钮松开,线圈 保持通电状态,电机 连续运行。
图为单向连续运行控制电路
K1为起动电流倍数:Ist为电动机的起动电流(A);In为电 动机的额定电流(A);Sn为电源变压器总容量;Pn为电 动机的额定功率。
Hale Waihona Puke 任务1:三相异步电动机的起动及实现
(2).星-三角降压起动 正常运行时,接成△形的鼠笼电动机,在起动时接成 星形,起动完毕后再接成△,称星-三角起动。
任务1:三相异步电动机的起动及实现
任务3.三相异步电动机的制动及实现
3.反接制动控制电路
任务3.三相异步电动机的制动及实现
4.能耗制动控制电路

电气控制与PLC技术-三相异步电动机的调速运行控制

电气控制与PLC技术-三相异步电动机的调速运行控制

1、继电器-接触器控制电路原理图
2、工作原理
按下起动按钮SB2,KM1线圈得电吸合 ,电动机作Δ联接低速运转,同时中间继电 器KA线圈通电并自锁,保证了KM1的长期 得电和时间继电器KT的线圈得电吸合; KT经延时,其动断触头断开,切断KM1, 其动合触头闭合,KM2、KM3线圈得电吸 合,电动机作双Y联接高速运转。
任务8:三相异步电动机的调速运行控制
三、三相双速异步电动机变极调速运行的PLC控制(续)
(二)课上讲解
1、将三相双速异步电动机变极调速运行的继电器-接触器控制电路改造为用PLC控制 ,其输入/输出是如何分配的?
电气 符号
输入
输入 端子
功能
电气 符号
输出
输出 端子
功能
任务8:三相异步电动机的调速运行控制
三相双速异步电动机变极调速运行的继电器-接触器控制电路原理图
任三相双速异步电动机变极调速运行的继电器-接触器控制(续)
(一)课上问题(续)
1、简述三相双速异步电动机变极调速运行继电器-接触器控制电路工作原理。(续)
a)
b)
三相双速异步电动机联结方式分解示意图
a)分解前 b)分解后
任务8:三相异步电动机的调速运行控制
六、知识拓展
1、三速电动机的控制
三速电动机通过改变绕组的组合 方式而得到不同的磁极对数。按下起 动按钮SB1,KM1和KM2的线圈得电 吸合并自锁,电动机作Δ联接低速运转; 按下SB2,KM1和KM2的线圈失电释 放,低速运转停止,而KM3线圈得电 吸合并自锁,电动机作Y联接中速运转, 时间继电器KT线圈得电;经延时, KM3线圈失电释放,中速运转停止, 而KM4和KM5线圈得电吸合并自锁, 电动机作双Y联接高速运转。

三相异步电动机双速可逆变频调速PLC控制

三相异步电动机双速可逆变频调速PLC控制

三相异步电动机双速可逆变频调速PLC控制异步电动机变频调速所要求的变频电源几乎都采用静止式变频器。

利用变频器进行调速控制时,只需改变变频器内部逆变电路换流器件的开关顺序,即可以达到对输出进行换相的目的,很容易实现电动机的正、反转切换。

本文介绍了PLC在三相交流异步电动机变频调速系统方面的设计,说明了系统的控制策略和工作原理,探讨三相异步电动机双速可逆变频调速PLC控制。

1、PLC在三相交流异步电动机变频调速系统设计三相交流异步电动机变频调速系统,以可编程序控制器PLC 作为核心控制部件,通过速度传感器将电动机的转速信号传给PLC, PLC经过控制规律的运算后,给出控制信号,改变电动机输入电压的频率,来调节电动机的转速,从而构成了一个闭环的速度控制系统。

如图1 所示。

2、三相异步电动变频器电路连接的要点2.1变频器前面一定要加接触器输入侧接触器的作用。

一般说来,在断路器和变频器之间,应该有接触器。

a. 可通过按钮开关方便地控制变频器的通电与断电。

b. 发生故障时可自动切断变频器电源,如:变频器自身发生故障,报警输出端子动作时,可使接触器KM迅速断电,从而使变频器立即脱离电源。

另外,当控制系统中有其他故障信号时,也可迅速切断变频器电源。

2.2变频器与电动机之间是否接输出接触器并不要求和工频进行切换时,变频器与电动机接触器,则有可能在变频器的输出频率较高的致变频器跳闸。

a. 当一台变频器只控制一台电动机,且并不要求和工频进行切换时,变频器与电动机之间不要接输出接触器。

因为如果接入了输出接触器,则有可能在变频器的输出频率较高的情况下启动电动机,产生较大的启动电流,导致变频器跳闸。

b. 必须接输出接触器的情况有两种:当一台变频器接多台电动机时,每台电动机必须要有单独控制的接触器。

另外,在变频和工频需要切换的情况下,当电动机接至工频电源时,必须切断和变频器之间的联系。

通用变频器,一般都是采用交、直、交的方式组成,利用普通的电网电源运行的交流拖动系统,为了实现电动机的正、反转切换,必须利用触器等装置对电源进行换相切换。

三相异步电动机调速方法

三相异步电动机调速方法

三相异步电动机调速方法三相异步电动机是工业生产中常见的一种电动机,它具有结构简单、运行可靠、维护方便等优点,因此在各种机械设备中得到广泛应用。

在实际生产中,为了满足不同工艺要求和工作条件,常常需要对三相异步电动机进行调速。

下面将介绍几种常见的三相异步电动机调速方法。

首先,我们来介绍电压调制调速方法。

这是一种最为简单的调速方法,通过改变电动机的供电电压来实现调速。

当电动机的供电电压降低时,电动机的转速也会相应降低,反之亦然。

这种方法简单易行,成本低廉,但是调速范围有限,且效率不高。

其次,我们来介绍频率调制调速方法。

这种方法是通过改变电动机的供电频率来实现调速。

通常情况下,电动机的供电频率是恒定的,但是通过变频器等设备可以改变供电频率,从而实现调速。

这种方法调速范围广,效率高,但是设备成本较高。

另外,我们还可以采用极对数调速方法。

这是通过改变电动机的极对数来实现调速。

当电动机的极对数增加时,电动机的转速会相应降低,反之亦然。

这种方法调速范围广,效率高,但是需要更换电动机的定子绕组,成本较高。

除了以上几种常见的调速方法外,还有一些其他的调速方法,如机械变速调速方法、液压变速调速方法等。

这些方法各有特点,可以根据具体的工艺要求和工作条件选择合适的调速方法。

总的来说,三相异步电动机的调速方法有多种多样,可以根据具体的需求选择合适的调速方法。

在选择调速方法时,需要考虑调速范围、效率、成本等因素,并结合实际情况进行综合考虑。

希望本文介绍的内容能够为大家在实际生产中选择合适的调速方法提供一些参考,使生产过程更加顺利高效。

三相异步电动机的调速

三相异步电动机的调速

m1 p U1 2 1 ( ) 常数 ' 4 f1 2 ( L1 L2 ) Te max的降低是由定子绕组电阻 r 的影响所致。尤其是当 f1 低到使得 r 由上式可见, 1 1 ( x1 x2 ) 相比较时, Te max下降严重。 可以与 Te max
解决措施: 可以对 U1 / f1的线性关系加以修正,提高低频时的 U1 / f1 ,以补偿 低频时定子绕组电阻压降的影响(见下图)。
TY 9550PY 9550PYY ( ) /( ) 1 TYY n1 2n1
结论:Y/YY接变极调速属于恒转矩调速方式。
第12章 三相异步电动机的调速
b、△/YY接变极调速
假定变极调速前后电机的功率因数 cos1 、效率 均不变,并设每半相绕组中的电 流均为额定值 I 1N ,则 /YY变极前后电动机的输出功率和输出转矩分别满足下列关系:
改变极对数p都是成倍的变化,转速也是成倍的变化,故为有级调速。 改变定子绕组的联结法改变绕组极对数的原理。 见下页图12-1,12-2
第12章 三相异步电动机的调速
三相异步电动机的转子转速可由下式给出:
60 f1 n (1 s) p
由上式可见,三相异步电动机的调速方法大致分为如下几种: 变极调速; 变频调速; 改变转差率调速; 其中,改变转差率的调速方法涉及: 改变定子电压的调压调速; 绕线式异步电动机的转子串电阻调速; 电磁离合器调速; 绕线式异步电动机的双馈调速与串级调速。
由此绘出保持U1 / f1=常数时变频调速的典型机械特性如下图所示。为便于比较,图 中还同时绘出了 Te max 常数时的机械特性,如图中的虚线所示。
三相异步电动机变频调速时 的机械特性( U1 / f1 =常数)

实验二 三相交流异步电动机变频调速实验

实验二  三相交流异步电动机变频调速实验

实验二三相交流异步电动机变频调速实验一、实验目的1.学习和掌握变频器的操作及控制方法;2.深入了解三相异步电动机变频调速性能;3.进一步学习PLC控制系统硬件电路设计和程序设计、调试。

二、实验原理1.三相交流异步电动机变频调速原理通过改变三相异步电动机定子绕组电压的频率,可以改变转子的旋转速度,当改变频率的同时改变电压的大小,使电压与频率的比值等于常数,则可保证电动机的输出转矩不变。

变频器就是专用于三相异步电动机调频调速的控制装置。

它的输入为单相交流电压(控制750W及以下的小功率电动机)或三相交流电压(控制750W以上的大功率电动机),而输出为幅值和频率均可调的三相交流电压供给三相异步电动机。

变频器的生产厂家很多,产品也很多,但基本原理相同。

本实验中采用的是松下小型变频器VFO 200W,有如下几种操作模式。

(1)运行/停止、正转/反转的操作模式:对于电动机的启动/停止以及正反转的控制有外部操作和面板操作两种模式,通过专用参数的设定来实现。

面板操作模式:通过变频器自带面板上的操作键实现运行/停止、正转/反转控制;外部操作模式:通过接在变频器专用输入端开关信号的接通、断开实现运行/停止、正转/反转。

(2)频率设定模式:频率的设定分为面板设定、外部设定两种,通过专用参数的设定来实现。

面板设定模式是根据面板上的电位器或专用键来设定频率的大小。

外部设定模式可以通过变频器上专用输入端上的电位器、电压信号、电流信号、开关编码信号以及PWM信号来实现频率的设定。

2.实验电路图本次实验的主要内容为“外部控制和外部电位器频率设定”。

实验电路图如图17.1所示。

图17.1 三相交流异步电动机变频调速实验电路图由图17.1可知,运行时,PLC程序要使Y4为1,停止时要使Y4为0,频率大小通过改变1、2、3端连接的电位器位置来调节。

3.电路接线表本实验的电路接线表如下表17.1(注:图17.1中方框内的接线已经在内部接好,不需再接线)表17.1 三相交流异步电动机变频调速实验电路接线图三、实验步骤1.按表17.1接线(为了安全起见,接线时请务必断开QF4);2.征得老师同意后,合上断路器QF2和QF4,接通操作面板上的电源开关;3.运行PC机上的PLC工具软件FXGP_WIN-C,输入课前编好的PLC程序(或直接打开已经编制好的,路径为:HJD-DJ1 \程序\实验17\变频调速.PMW),确认程序无误后,将其写入到PLC并运行。

三相异步电动机调速控制电路

三相异步电动机调速控制电路

U1 V1 U2 V2
W1 W2
U2 V2
L1
L2
L3
1、接触器手动控制的双速电动机调速电路
三只交流接触器双速控制 1、工作原理
低速启动:按下低速启动按钮SB2,其一组常闭触点断开,切断高速控制交 流接触器KM2,KM3线圈回路电源,起到停止高速及按钮互锁作用;其另一组常 开触点闭合,低速交流接触器KM1线圈得电吸和,KM1并联在低速启动按钮SB2 两端的辅助常开触点闭合,自锁,KM1三相主触点闭合,电动机得电为三角形低 速运行,同时指示灯HL1灭,HL2亮,说明电动机已经低速运转了。
按下中速启动按钮SB3的两组常闭触点断开,其中SB3 的一组常闭触点切断交 流接触器KM1线圈电源,KM1线圈断电释放,KM1三相主触点 断开,电动机绕 组U1、V1、W1失电而停止低速运转,KM1辅助常开触点断开,低速运转指示 灯HL2灭。其中串联在交流接触器KM2、KM4线圈回路中的另一组SB3常闭触点 断开,对KM2、KM4起互锁作用,在SB3启动按钮按下的同时,SB3常闭触点 闭合,接通中速交流接触器KM3线圈回路电源,KM3线圈得电闭合,KM3辅助 常开触点闭合自锁,KM3三相主触点闭合。电动机绕组U2、V2、W2通以三相 380V交流电源,结成Y型中速启动,与此同时KM3 的两组辅助常闭触点断开起 互锁作用。KM3辅助常开触点闭合,指示灯HL3亮,说明电动机以中速启动运 转了。
3、外加电阻调速控制电路
THE
END
Thank you!
高速启动:直接按下高速启动按钮SB3,其一组常闭触点断开,切断低速控制 交流接触器K行停止;其中SB3另一组常开触点闭合,高速交流接触器KM2,KM3 线圈得电吸和,KM2,KM3并联在高速启动按钮SB3 两端的辅助常开触点闭合, 自锁, KM2,三相主触点闭合,接通高速绕组电源, KM3,三相主触点闭合,电动 机得电为双星型连接高速运行;同时指示灯HL2灭,HL3亮,说明电动机已经高 速运转了。

三相异步电动机连续控制电路原理

三相异步电动机连续控制电路原理

一、概述三相异步电动机是工业生产中常用的一种电动机,它具有结构简单、可靠性高、效率高等优点,在很多领域都有广泛的应用。

而对于三相异步电动机的控制,连续控制电路是一种常见的控制方法,它通过对电动机的供电电压进行调节,实现对电动机转速的连续控制,是一种有效的控制手段。

本文将介绍三相异步电动机连续控制电路的原理,包括其基本原理、实现方式和应用。

二、三相异步电动机基本原理1. 三相异步电动机的结构和工作原理三相异步电动机是一种感应电动机,由定子和转子组成。

当通过定子绕组通入三相交流电时,会在定子绕组中产生一个旋转磁场。

转子由感应电动机的工作原理可知,在这旋转磁场的作用下,转子内也会产生感应电动势,从而使转子产生转动运动。

通过控制定子绕组中的电流或转子上的电流,可以实现对三相异步电动机的控制。

2. 三相异步电动机的控制原理三相异步电动机的控制原理主要是通过改变电动机的供电电压和频率来实现。

其中,改变电动机的供电电压可以实现对电动机转矩和转速的控制;而改变电动机的供电频率,则可以实现对电动机转速的控制。

在连续控制电路中,通常采用改变电动机的供电电压来进行控制。

三、三相异步电动机连续控制电路原理1. 连续控制电路的基本结构连续控制电路的基本结构包括电源模块、控制模块和输出模块。

电源模块负责将输入的交流电转换为可供电动机使用的直流电;控制模块负责对输出电压进行调节,实现对电动机的控制;输出模块将调节后的电压提供给电动机使用。

2. 连续控制电路的工作原理连续控制电路通过控制控制模块中的电路来改变输出电压,从而实现对电动机的控制。

一般来说,控制模块中会采用脉宽调制(PWM)或者调压变压器来实现对输出电压的调节。

通过改变控制模块中的控制信号,可以精确地调节输出电压,从而实现对电动机转速的连续控制。

四、三相异步电动机连续控制电路的实现方式1. 脉宽调制(PWM)控制方式脉宽调制是一种常用的连续控制方式,它通过改变输出脉冲的宽度来实现对输出电压的调节。

三相异步电机的调速

三相异步电机的调速

一.基频以下变频调速 A),保持 为常数
上式对s求导,即 有最大转矩和临界转差率为
一.基频以下变频调速 B),保持 为常数 为防止磁路的饱和,当降低定子电源频率时,保持 为常数,使气 隙每极磁通 为常数,应使电压和频率按比例的配合调节。这时,电动 机的电磁转矩为 上式对s求导,即 有最大转矩和临界转差率为
当某一瞬间电势的极性 与 或同相时,有转子回路电流为
反相
式中“–”号表示 与 反相,“+”号表示 与 同相。异步电动机的电磁 转矩为
当电动机定子电压及负载转矩都保持不变时,转子电流可看成常数;同时考虑到电 动机正常运行时s很小,sx2《 r2 忽略sx2 则: 在负载转矩 一定的条件下,若 转子串入 与 反相,则
变频调速原理及其机械特性
改变异步电动机定子绕组供电电源的频率 ,可以改变同步 转速n 1 ,从而改变转速。如果频率 连续可调,则可平滑的调 节转速,此为变频调速原理。
三相异步电动机运行时,忽略定子阻抗压降时,定子每相电 压为 如果降低频率 ,且保持定子电源电压 不变,则气隙每 极磁通 将增大,会引起电动机铁芯磁路饱和,从而导致过大 的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。 因此,降低电源频率 时,必须同时降低电源电压 ,以达到控 制磁通 的目的。对此,需要考虑基频(额定频率)以下的调 速和基频以上调速两种情况
三相异步电动机的调速
根据三相异步电动机的转速公式为
通过上式可知,改变交流电机转速的方 法有三种 1.变转差率调速:改变s实现调速; 2.变极调速:改变p来实现调速 3.变频调速:改变f1实现调速
三相异步电动机的调速
改变转差率的方法很多,常用的方案有改变异步电动机的定子 电压调速,采用电磁转差(或滑差)离合器调速,转子回路串电 阻调速以及串极调速。前两种方法适用于鼠笼式异步电动机,后 者适合于绕线式异步电动机。这些方案都能使异步电动机实现平 滑调速,但共同的缺点是在调速过程中存在转差损耗,即在调节 过程中转子绕组均产生大量的钢损耗( )(又称转差功 率),使转子发热,系统效率降低;主要存在调速范围窄、效率低, 对电网污染较大,不能满足交流调速应用的广泛需求; 改变电机的极数的调速,无法实现连续调速,并且接线麻烦, 应用的场合少;但价格便宜; 改变频率进行调速是最理想的,但这个梦想经历了百年之久, 直至20世纪70年代,大功率晶体管(GTR)的开发成功,才实现 变频调速,随着电子技术和计算机技术的日益发展变频调速技术 日益成熟,应用得越来越广泛了

三相双速异步电动机控制电路

三相双速异步电动机控制电路

一、双速电机控制原理调速原理根据三相异步电动机的转速公式:n1=60f/p三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。

根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等)。

这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。

下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。

∴转速比=2/1=2双速电机的变速原理是:电机的变速采用改变绕组的连接方式,也就是说用改变电机旋转磁场的磁极对数来改变它的转速。

如你单位的双速电机(风机),平时转速低,有时风机就高速转,主要是通过外部控制线路的切换来改变电机线圈的绕组连接方式来实现。

1、在定子槽内嵌有两个不同极对数的共有绕组,通过外部控制线路的切换来改变电机定子绕组的接法来实现变更磁极对数;2、在定子槽内嵌有两个不同极对数的独立绕组;3、在定子槽内嵌有两个不同极对数的独立绕组,而且每个绕组又可以有不同的联接。

(一)双速电机定子接线图三相双速异步电动机的定子绕组有两种接法:△接和YY接法,如下图所示。

图(a)△接(低速)图(b)YY接(高速)图25-1 三相双速异步电动机定子绕组接线图图(a)为双速异步电动定子绕组的△接法,三相绕组的接线端子U1、V1、W1与电源线连接,U2、V2、W2三个接线端悬空,三相定子绕组接成△形。

三相异步电动机的几种调速方式

三相异步电动机的几种调速方式

三相异步电动机的几种调速方式三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p与转差率s均可太到改变转速的目的。

从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。

在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以与应用电磁转差离合器、液力偶合器、油膜离合器等调速。

改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。

从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以与能将转差损耗回收的调速方法(如串级调速等)。

有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。

一般来说转差损耗随调速X围扩大而增加,如果调速X围不大,能量损耗是很小的。

一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点:效率高,调速过程中没有附加损耗;应用X围广,可用于笼型异步电动机;调速X围大,特性硬,精度高;技术复杂,造价高,维护检修困难。

三相异步电动机的速度控制

三相异步电动机的速度控制

智能照明
智能照明系统通过控制灯具的亮 度和色温来营造不同的氛围,其 中三相异步电动机的速度控制可 以实现灯具的精确调光和动态效 果。
智能窗帘
智能窗帘通过三相异步电动机驱 动,实现窗帘的自动开合和角度 调整。速度控制可以确保窗帘运 动的平稳性和精确性,提高用户 体验。
新能源汽车领域应用前景
电动汽车驱动系统
转差率
转差率是异步电动机的一个重要参数,表示转子转速与旋转磁场转速 之间的差异程度。转差率的大小直接影响电动机的运行效率和性能。
异步电动机运行特性
启动特性
异步电动机在启动时,通常需要较大的启动电流以克服转 子的静摩擦力和惯性力。启动后,随着转速的升高,电流 逐渐减小。
负载特性
异步电动机在带负载运行时,随着负载的增加,转速会相 应降低,同时电流增大。在额定负载下,电动机的运行效 率最高。
见。
06
三相异步电动机速度控制 应用前景
工业领域应用现状
自动化生产线
在自动化生产线中,三相异步电动机的速度控制是实现精确同步和高效生产的关键。通过 调整电动机的转速,可以适应不同工序的加工需求,提高生产线的整体效率。
数控机床
数控机床是工业制造领域的重要设备,其主轴和进给轴通常采用三相异步电动机驱动。通 过速度控制,可以实现高精度、高效率的切削加工,提高产品质量和生产效率。
子铁芯中产生旋转磁场。
磁极对数
旋转磁场的转速与磁极对数有关。 磁极对数越多,旋转磁场的转速
越低。
转子转动原理
转子导体
转子导体中的电流在旋转磁场的作用下受到电磁力作用,使得转子 开始转动。
转子转速
转子的转速通常略低于旋转磁场的转速,这也是异步电动机得名的 原因。转子的转速与负载大小、电源电压、电动机设计等因素有关。

三相交流异步电动机调速方法

三相交流异步电动机调速方法

三相交流异步电动机调速方法一、调频调速法调频调速法是通过改变电源的频率来改变电动机的转速。

传统的调频调速法使用直流电源的伺服电动机,通过改变直流电压的大小来改变电动机的转速。

而对于异步电动机,调频调速法使用的是变频器。

变频器是一种能够改变交流电频率的装置,可以将常规的50Hz或60Hz的交流电源转换为可变频率的交流电源。

当将变频器与异步电动机配对使用时,可以通过改变输出频率来改变电动机的转速。

调频调速法的原理是:变频器将电网电源的交流电压转换为直流电压,并经过变频器内部的变换电路转换为可控的交流电源输出,通过调整变频器的输出频率,可以改变电动机的转速。

调频调速法的优点是:调速范围广,可靠性高。

通过调整变频器的输出频率,可以使电动机在范围内任意转速。

同时,调频调速法可以保持电动机的高效率,提高能源利用效率。

二、电压调制调速法电压调制调速法是通过改变电源的电压来改变电动机的转速。

这种调速方法在控制电动机转速时需要改变电源电压的大小,以达到改变电动机转速的目的。

电压调制调速法的原理是:在控制电动机转速时,通过改变供电电压的大小,从而改变电机的转速。

在供电电压改变的同时,也要保持电动机的机械可靠性和高效率。

电压调制调速法的优点是:控制简单,实时性好。

通过改变供电电压,可以快速实现电动机的转速调节,同时也不会对电动机的机械可靠性和高效率造成影响。

三、频率调制调速法频率调制调速法是通过改变电源的频率来改变电动机的转速。

与调频调速法类似,频率调制调速法使用的是变频器。

频率调制调速法的原理是:通过调整变频器的输出频率,改变电动机的转速。

在频率调制调速法中,可以通过输入指定的频率值,使电动机按照指定的频率运行。

频率调制调速法的优点是:控制精确,稳定性好。

可以通过输入指定的频率值,实现电动机的精确调节,同时也保持电动机的稳定性。

四、极数切换调速法极数切换调速法是通过改变电动机的外部电路来改变电动机的转速。

这种调速方法是通过改变电动机的极数来改变电动机的转速。

三相380V变频器的控制异步交流电动机正反转工作过程详解

三相380V变频器的控制异步交流电动机正反转工作过程详解

腹有诗书气自华一提到变频器,大家都知道,用它来调速 效果很好。

其实,用变频器三相380v 来控制三相异步交流电机的正反转,效果也不错。

下面就给大家来讲解一下。

现举一例说明,看下图:变频调速电动机正反转控制电路上图为三相380V 变频器控制三相交流电机正反转电路图。

从图中可以看出,电路由两部分组成:负载工作主电路和控制电路。

负载工作主电路是由电源主开关(断路器)、交流接触器KM 主触点、变频器内置交—直—交转换电路、三相异步交流电动机M 等。

控制电路由变频器内置辅助电路,启动按钮开关SB2,停止按钮开关SB1、交流接触器KM 电磁线圈,接触器常开辐助触点及电机正反转选择开关SA 等。

RP 为频率给定信号电位器。

二、三相380V 变频器控制三相交流电机正反转工作过程见上图,先合上电源开关QF ,控制电路得电,当按下启动按钮SB2时,接触器KM线圈得电吸合并自锁,连接COM与SA之间的接触器动合触点KM闭合。

主电路中接触器主触点闭合,变频器输入端R、S、T得电,变频器准备工作。

操作选择开关SA,当SA与FWD接通时,电机正向运转;当SA与REV接通时,电机反向运转。

需要停机时,将选择开关SA置于中间位置,三相380V 变频器先停止工作。

按下停止按钮SB1,接触器KM线圈失电复位,接触器主触点断开,切断三相电源。

若先按下停止按钮SB1,接触器线圈失电复位,接触器主触点断开,直接切断变频器输入电源,电机停止工作。

深圳市艾米克电气有限公司自2004年成立以来,经过十年的快速稳健发展,目前已经成长为国际知名的变频器制造商。

公司具有业内领先的自主核心技术和可持续研发能力,提供通用变频器、电流矢量变频器、磁通矢量变频器、风机专用变频器、水泵专用变频器、纺织专用变频器、空压机变频器、注塑机专用变频器等优质产品。

由于变频器在众多行业中都能实现高效节约电能,提高工艺水平等优势,艾米克变频器已广泛应用于风机、水泵、空压机、注塑机、卷绕机、中央空调,纺织、化工、冶金、矿业、制药、陶瓷、造纸、油田、塑料、印刷、热电、烟草、食品等各类机械设备中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相交流异步电动机的调速控制电路
由三相沟通异步电动机的转速公式可知,要转变异步电动机的转速,可采纳转变电源频率f 1 、转变磁极对数p 以及转变转差率s 等3 种基本方法。

1、变极调速原理
转变异步电动机定子绕组的连接方式,可以转变磁极对数,从而得到不同的转速。

常见的沟通变极调速电动机有双速电动机和多速电动机。

双速电动机定子绕组常见的接法有Y/YY 和△ /YY 两种。

下图所示为4/2 极△ /YY 的双速电动机定子绕组接线图。

在制造时每相绕组就分为两个相同的绕组,中间抽头依次为U2 、V2 、W2 ,这两个绕组可以串联或并联。

依据变极调速原理“定子一半绕组中电流方向变化,磁极对数成倍变化”,下图(a) 将绕组的U1 、V1 、W1 三个端子接三相电源,将U2 、V2 、W2 三个端子悬空,三相定子绕组接成三角形(△)。

这时每相的两个绕组串联,电动机以4 极运行,为低速。

下图(b) 将U2 、V2 、W2 三个端子接三相电源,U1 、V1 、W1 连成星点,三相定子绕组连接成双星(YY )形。

这时每相两个绕组并联,电动机以 2 极运行,为高速。

依据变极调速理论,为保证变极前后电动机转动方向不变,要求变极的同时转变电源相序。

(a) 低速△形接法(b) 高速YY 形接法
图4/2 极△ /YY 形的双速电动机定子绕组接线图
2、变极调速掌握电路
4/2 极的双速沟通异步电动机掌握电路如下图所示。

图4/2 极的双速沟通异步电动机掌握电路
上图中,合上电源开关QS ,按下SB2 低速起动按钮,接触器KM1 线圈得电并自锁,KM1 的主触点闭合,电动机M 的绕组连接成△形并以低速运转。

由于SB2 的动断触点断开,时间继电器线圈KT 不得电。

按下高速起动按钮SB3 ,接触器KM1 线圈得电并自锁,电动机M 连接成△形低速起动;由于SB3 是复合按钮,时间继电器KT 线圈同时得电吸合,KT 瞬时动合触点闭合自锁,经过肯定时间后,KT 延时动断触点分断,接触器KM1 线圈失电释放,KM1 主触点断开,KT 延时动合触点闭合,接触器KM2 、KM3 线圈得电并自锁,KM2 、KM3 主触点同时闭合,电动机M 的绕组连接成YY 形并以高速运行。

相关文档
最新文档