8个常见分布期望和方差
常用分布的数学期望及方差

方差的性质
方差具有可加性
对于两个独立的随机变量X和Y,有Var(X+Y) = Var(X) + Var(Y)。
方差具有对称性
对于一个常数a和随机变量X,有Var(aX) = |a|^2 * Var(X)。
方差具有非负性
对于随机变量X,有Var(X) >= 0,其中 Var(X) = 0当且仅当X是一个常数。
05 数学期望与方差的应用
在统计学中的应用
描述性统计
数学期望和方差用于描述一组数据的中心趋势和 离散程度,帮助我们了解数据的基本特征。
参数估计
通过样本数据的数学期望和方差,可以对总体参 数进行估计,如均值和方差的无偏估计。
假设检验
在假设检验中,数学期望和方差用于构建检验统 计量,判断原假设是否成立。
常见分布的数学期望
均匀分布的数学期望为
$E(X) = frac{a+b}{2}$,其中a和b是均匀分布的下限和上 限。
柯西分布的数学期望为
$E(X) = frac{pi}{beta} sinh(frac{1}{beta})$,其中β是柯西 分布的参数。
拉普拉斯分布的数学期望为
$E(X) = frac{beta}{pi} tan(frac{pi}{beta})$,其中β是拉普 拉斯分布的参数。
03
泊松分布
正态分布是一种常见的连续型随机变量 分布,其方差记作σ²。正态分布的方差 描述了随机变量取值的分散程度。
二项分布是一种离散型随机变量分布, 用于描述在n次独立重复的伯努利试验 中成功的次数。其方差记作σ²,且σ² = np(1-p),其中n是试验次数,p是单次 试验成功的概率。
泊松分布是一种离散型随机变量分布, 用于描述在一段时间内随机事件发生的 次数。其方差记作σ²,且σ² = λ,其中 λ是随机事件发生的平均速率。
4_2方差及常见分布的期望方差

《概率统计》 返回 下页 结束
X P 8 0.3 9 0.2 10 0.5
Y P
8 0.2
9 0.4
10 0.4
偏离期望 的平方的 期望
解:
E ( X ) 8 0.3 9 0.2 10 0.5 =9.2(环) E (Y ) 8 0.2 9 0.4 10 0.4=9.2(环)
因此,从平均环数上看,甲乙两人的射击水平是一样的, 但两人射击水平的稳定性是有差别的,怎么体现这个差别呢?
b
1 E ( X ) xf ( x) dx x dx a b a ba 2 2 2 b 1 a ab b E ( X 2 ) x 2 f ( x) dx x 2 dx a ba 3 1 2 ab 2 2 2 2 ) D( X ) E( X ) [ E( X )] (a ab b ) ( 3 2
§4.2 方 差
0. 方差概念的引入
随机变量的数学期望是一个重要的数学特征,反应了随机变 量取值的平均大小,但只知道随机变量的数学期望是不够的.
引例1 甲、乙两门炮同时向一目标射击10发炮弹,其落点距 目标的位置如图:
中心
中心
甲炮射击结果
《概率统计》
返回
下页
常见分布的期望和方差

罕有散布的期望和方差(0,1)N 2()Yx n t =概率与数理统计重点摘要1.正态散布的盘算:()()()X F x P X x μσ-=≤=Φ.2.随机变量函数的概率密度:X 是屈服某种散布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =.(拜见P66~72)3.散布函数(,)(,)xyF x y f u v dudv -∞-∞=⎰⎰具有以下基赋性质:⑴.是变量x,y 的非降函数;⑵.0(,)1F x y ≤≤,对于随意率性固定的x,y 有:(,)(,)0F y F x -∞=-∞=; ⑶.(,)F x y 关于x 右持续,关于y 右持续;⑷.对于随意率性的11221212(,),(,),,x y x y x x y y << ,有下述不等式成立:4.一个主要的散布函数:1(,)(arctan )(arctan )23x y F x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++ 5.二维随机变量的边沿散布:边沿概率密度:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰边沿散布函数:()(,)[(,)]()(,)[(,)]xX yY F x F x f u y dy du F y F y f x v dx dv+∞-∞-∞+∞-∞-∞=+∞==+∞=⎰⎰⎰⎰二维正态散布的边沿散布为一维正态散布.6.随机变量的自力性:若(,)()()X Y F x y F x F y =则称随机变量X,Y 互相自力.简称X 与Y 自力.7.两个自力随机变量之和的概率密度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞+∞-∞-∞=-=-⎰⎰个中Z =X +Y8.两个自力正态随机变量的线性组合仍屈服正态散布,即22221212(,Z aX bY N a b a b μμσσ=+++). 9.期望的性质:……(3).()()()E X Y E X E Y +=+;(4).若X,Y 互相自力,则()()()E XY E X E Y =. 10.方差:22()()(())D X E X E X =-.若X,Y不相干,则()()()D X Y D X D Y +=+,不然()()()2(,)D X Y D X D Y Cov X Y +=++,()()()2(,)D X Y D X D Y Cov X Y -=+-11.协方差:(,)[(())(())]Cov X Y E X E X Y E Y =--,若X,Y 自力,则(,)0Cov X Y =,此时称:X 与Y 不相干. 12.相干系数:(,)()()XY Cov X Y X Y ρσσ==1XY ρ≤,当且仅当X 与Y 消失线性关系时1XY ρ=,且1,b>0;1,b<0XY ρ⎧=⎨-⎩ 当 当。
理解概率分布函数常见分布公式详解

理解概率分布函数常见分布公式详解概率分布函数(Probability Distribution Function,简称PDF)是描述随机变量取值概率分布的函数,常用于统计学和概率论中。
在统计学中,常见的概率分布函数有众多的公式。
本文将详细解释几种常见的概率分布函数公式,包括均匀分布、正态分布、指数分布和泊松分布。
一、均匀分布均匀分布是最简单的概率分布函数之一,它在一个有限区间内的取值是均匀分布的。
均匀分布的概率密度函数公式为:f(x) = 1 / (b - a),a ≤ x ≤ b其中,a和b分别是区间的上下界。
均匀分布的期望值(均值)为(a + b)/ 2,方差为(b - a)^2 / 12。
二、正态分布正态分布是自然界和社会现象中常见的概率分布函数。
它在统计学中有着重要的地位。
正态分布的概率密度函数(Probability Density Function,简称PDF)公式为:f(x) = (1 / (σ * √(2π))) * exp(-((x - μ)^2/(2σ^2)))其中,μ是期望值(均值),σ是标准差。
正态分布的期望值和方差分别为μ和σ^2。
三、指数分布指数分布是描述事件发生的时间间隔的概率分布函数,常用于可靠性工程和排队论中。
指数分布的概率密度函数公式为:f(x) = λ * exp(-λx),x ≥ 0其中,λ是事件发生率。
指数分布的期望值为1 / λ,方差为1 / λ^2。
四、泊松分布泊松分布是描述单位时间或空间内事件发生次数的概率分布函数,常用于描述稀有事件的发生情况。
泊松分布的概率质量函数(Probability Mass Function,简称PMF)公式为:P(X = k) = (λ^k * exp(-λ)) / k!其中,λ是单位时间或空间内事件的平均发生率。
泊松分布的期望值和方差均为λ。
以上是几种常见的概率分布函数公式的详细解释。
这些概率分布函数在不同领域的应用非常广泛,能够描述和解释各种随机现象的概率分布情况。
常见分布的期望与方差的计算知识分享

3. 泊松分布
设 X ~ π(λ ), 且分布律为
P{ X = k} = λk e−λ , k = 0,1,2,", λ > 0.
k!
∑ ∑ 则有 E( X ) = ∞ k ⋅ λk e−λ = e−λ ∞ λk−1 ⋅ λ
k=0 k!
k=1 (k − 1)!
= λe−λ ⋅ eλ = λ
= np[ p + (1 − p)]n−1 = np
E( X 2 ) = E[ X ( X − 1) + X ] = E[ X ( X − 1)] + E( X )
∑ = n k(k − 1)⎜⎛ k ⎞⎟ pk (1 − p)n−k + np
k=0
⎝n⎠
∑ = n k(k − 1)n!pk (1 − p)n−k + np
(法二) X 的分布律为
P{ X = k} = ⎜⎛ n ⎞⎟ pk (1 − p)n−k ,(k = 0,1,2,", n),
⎝k⎠
∑ ∑ 则有 E( X ) = n k ⋅ P{ X = k} = n k⎜⎛ n ⎞⎟ pk (1 − p)n−k
k=0
k=0 ⎝ k ⎠
∑n
=
kn! pk (1 − p)n−k
E( X 2 ) = E[ X ( X − 1) + X ]
= E[ X ( X − 1)] + E( X )
∑ = +∞ k(k − 1) ⋅ λk e−λ + λ
k=0
k!
∑+∞
= λ2e−λ ⋅
λk − 2
+ λ = λ2e−λeλ + λ = λ2 + λ .
高中数学中的概率统计应用概率分布计算期望与方差的技巧

高中数学中的概率统计应用概率分布计算期望与方差的技巧概率统计是高中数学的重要内容之一,其应用广泛且重要。
在概率统计中,我们经常遇到需要计算随机变量的期望和方差的问题。
概率分布是解决这些问题的关键工具之一。
在本文中,我们将介绍一些高中数学中常见的概率分布,以及计算期望和方差的技巧。
1. 离散概率分布离散概率分布指的是随机变量只能取有限个或可列个值的概率分布。
其中,最常见的离散概率分布有二项分布、泊松分布和几何分布。
1.1 二项分布二项分布在实际问题中经常出现,特别是在重复试验的情况下。
假设有n个独立的重复试验,每次试验有成功和失败两种可能结果。
如果成功的概率为p,失败的概率为q=1-p,则随机变量X表示n次试验中成功的次数。
二项分布的概率密度函数为:P(X=k) = C(n,k) * p^k * q^(n-k)其中,C(n,k)表示组合数。
二项分布的期望和方差的计算公式如下:E(X) = npVar(X) = npq1.2 泊松分布泊松分布适用于描述单位时间或空间内随机事件发生的次数。
例如,某地区每小时的交通事故数、每天接到的电话数等。
泊松分布的概率密度函数为:P(X=k) = (λ^k * e^(-λ)) / k!其中,λ代表单位时间或单位空间内平均发生的次数。
泊松分布的期望和方差的计算公式如下:E(X) = Var(X) = λ1.3 几何分布几何分布用于描述一系列独立重复试验中,首次成功所需的试验次数。
例如,投掷一枚硬币直到首次出现正面的次数等。
几何分布的概率密度函数为:P(X=k) = q^(k-1) * p其中,p表示成功的概率,q=1-p表示失败的概率。
几何分布的期望和方差的计算公式如下:E(X) = 1/pVar(X) = q/(p^2)2. 连续概率分布连续概率分布指的是随机变量可以取某个区间内的任意值的概率分布。
最常见的连续概率分布有均匀分布、正态分布和指数分布。
2.1 均匀分布在均匀分布中,随机变量在某一区间内的取值是等可能的。
常见分布的期望和方差

罕睹分散的憧憬战圆好之阳早格格创做(0,1)N 2()Yx n t =概率取数理统计沉面纲要1、正态分散的预计:()()()X F x P X x μσ-=≤=Φ.2、随机变量函数的概率稀度:X是遵循某种分散的随机变量,供()Y f X =的概率稀度:()()[()]'()Y X f y f x h y h y =.(拜睹P66~72)3、分散函数(,)(,)xyF x y f u v dudv -∞-∞=⎰⎰具备以下基赋本量:⑴、是变量x ,y 的非落函数;⑵、0(,)1F x y ≤≤,对付于任性牢固的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 闭于x 左连绝,闭于y 左连绝;⑷、对付于任性的11221212(,),(,),,x y x y x x y y << ,有下述没有等式创造:4、一个要害的分散函数:1(,)(arctan )(arctan )23x y F x y πππ2=++22的概率稀度为:22226(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++ 5、二维随机变量的边沿分散:边沿概率稀度:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰边沿分散函数:()(,)[(,)]()(,)[(,)]xX yY F x F x f u y dy du F y F y f x v dx dv+∞-∞-∞+∞-∞-∞=+∞==+∞=⎰⎰⎰⎰二维正态分散的边沿分散为一维正态分散.6、随机变量的独力性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独力.简称X 取Y 独力.7、二个独力随机变量之战的概率稀度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞+∞-∞-∞=-=-⎰⎰其中Z =X +Y8、二个独力正态随机变量的线性推拢仍遵循正态分散,即22221212(,Z aX bYN a b a b μμσσ=+++).9、憧憬的本量:……(3)、()()()E X Y E X E Y +=+;(4)、若X ,Y 相互独力,则()()()E XY E X E Y =. 10、圆好:22()()(())D X E X E X =-. 若X ,Y 没有相闭,则()()()D X Y D X D Y +=+,可则()()()2(,)D X Y D X D Y Cov X Y +=++,()()()2(,)D X Y D X D Y Cov X Y -=+-11、协圆好:(,)[(())(())]Cov X Y E X E X Y E Y =--,若X ,Y 独力,则(,)0Cov X Y =,此时称:X 取Y 没有相闭. 12、相闭系数:(,)()()XYCov X Y X Y ρσσ==1XY ρ≤,当且仅当X 取Y 存留线性闭系时1XYρ=,且1,b>0;1,b<0XYρ⎧=⎨-⎩ 当 当。
经典分布及其他公式

续表:
对总体(或样 本)的要求
假设
检验统计量及其分布
H0 的拒绝域
H 0 : 0
正态总体
H1 : 0 H 0 : 0 H1 : 0
2
未知
t
x 0 s/ n
t t
2
t t t t
H 0 : 0 H1 : 0 H 0 : 1 2
2
2.
2分布
设x1 , x 2 , , x n 是独立同分布随机变量 ,且每个随机变量都服 从 标准正态分布 N 0,1, 则随机变量 xi2 服从自由度为 n的卡
2 i 1 n
方分布 2 (n).
2 若对于给定的 (0 1),存在 (n),使得
两正态总体 方差已知
H1 : 1 2 H 0 : 1 2 H 1 : 1 2 H 0 : 1 2 H 1 : 1 2
Z
( x1 x 2 ) ( 1 2 )
Z Z
2
12 22 n1 n2
Z Z Z Z
正态总体
2
(n 1) s 2
2
方差比
2 1 2 2
两正态总体
2 2 s2 / 2 F 2 s1 / 12
假设检验小结表
对总体(或样 本)的要求 假设 检验统计量及其分布 H0 的拒绝域
H 0 : 0 H1 : 0
正态总体
H 0 : 0 H1 : 0 H 0 : 0 H1 : 0 H 0 : 1 2
t t
2
t t t t
续表:
常见概率分布期望方差以及分布图汇总

������������
������������ 2
指数分布(负指 数分布)
Γ(1, ������)
������ > 0
������
������ 2
注:指数分布是Γ分布的特殊情况 χ2 分布
������2 (������)
������ ≥ 1
负二项分布(帕
离 散 型
斯卡分布)
B0 (������, ������)
0<p<1 r≥1
K=r,r+1,… P{������ = ������} = (1 − ������)������−1 ������ K=1,2,…
������ ������ 1 ������ ������������ ������
������ 2 ∞ ������⁄ 2
0,n>1
������ , ������ > 2 ������ − 2
非中心 t 分布
������(������, ������)
������ ������ ≥ 1
������ − 1 ������Γ ( ) ������ 2 √ ������ 2 Γ( ) 2 (n>1)
常见的“概率分布表 + 分布图”汇总(内容源自书本,同时本人额外加了许多内容进去。此表可直接打印)整理人:算法君
说明,我们学过的各种概率分布公式较多且形式多样,各分布的数学期望及方差是常用的数据,为方便做题目,也方便记忆故作此表,并在此共享给大家希望给大家提供一定方便!
类
分布
单点分布(退化 分布) (0-1)分布(两点 分布或伯努利分 布) 二项分布
数学期望 a p np
概率分布计算公式

概率分布计算公式概率分布是概率论中重要的概念之一,它描述了随机变量在各个取值上的取值概率。
在实际问题中,我们常常需要计算概率分布以解决相关的概率统计问题。
本文将介绍几种常见的概率分布以及它们的计算公式。
一、二项分布(Binomial Distribution)二项分布是概率论中常用的离散型概率分布,它描述了在一定次数的独立重复试验中,成功事件发生的次数的概率分布。
其计算公式为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)其中,P(X=k)表示成功事件发生k次的概率,n表示试验次数,p表示每次试验成功的概率,C(n, k)表示组合数,可以使用n个数任取k个的方式计算。
二项分布的期望为E(X)=np,方差为Var(X)=np(1-p)。
二、泊松分布(Poisson Distribution)泊松分布是一种离散型概率分布,适用于描述单位时间(或单位空间)内随机事件发生的次数。
其计算公式为:P(X=k) = (λ^k * e^(-λ))/k!其中,P(X=k)表示事件发生k次的概率,λ表示单位时间(或单位空间)内事件发生的平均次数,e为自然对数的底。
泊松分布的期望为E(X)=λ,方差为Var(X)=λ。
三、正态分布(Normal Distribution)正态分布是概率论中最重要的连续型概率分布,也称为高斯分布。
它的形状呈钟型曲线,对称于均值。
正态分布在实际问题中得到广泛应用。
其概率密度函数的计算公式为:f(x) = (1 / (σ * √(2π))) * e^((-1/2)*((x-μ)/σ)^2)其中,f(x)表示随机变量X的概率密度函数,μ为均值,σ为标准差,π为数学常数3.14159。
正态分布的期望为E(X)=μ,方差为Var(X)=σ^2。
四、指数分布(Exponential Distribution)指数分布是一种连续型概率分布,其概率密度函数具有常数倍衰减的特点。
八大分布函数表

八大分布函数表在学习统计学时,概率函数是我们必须掌握的重要概念。
它用于表示一个随机变量的概率分布情况,比如说我们可以得到一个随机变量的期望值或者方差等信息,而这些都是基于概率函数的。
概率函数有很多种,其中最常用的就是八大分布函数表。
八大分布函数表是概率分布函数的最重要的表示形式。
它们之所以被称为“八大”,是因为它们包含概率分布函数中最常见的八种函数。
它们分别为:正态分布函数,卡方分布函数,指数分布函数,Beta 分布函数,泊松分布函数,F分布函数,t分布函数和τ函数。
它们的具体的表达形式如下:1.态分布函数:f(x) = 1/(σ√2π) * e^-(x-μ)^2/2σ^22.方分布函数:f(x) = 1/(2^(k/2) (k/2))x^(k/2-1)e^-x/23.数分布函数:f(x) =e^-λx4. Beta分布函数:f(x) = (α +) / (α) (β) x^(α - 1) (1 - x)^(β - 1) 5.松分布函数:f(x) =^x / x! e^-λ6. F分布函数:f(x) = (Γ ((m+n)/2)/Γ (m/2)Γ (n/2)) (m/n)^(m/2)x^((m-2)/2) (1+m/nx)^(-(m+n)/2)7. t分布函数:f(x) = ( (ν+1) / 2) / (π^(1/2) (ν /2)) (1 + (x^2 /))^(- (ν +1) /2)8.函数:f(x) = (1/(π))^(1/2) (1 + (x/ν))^(-1/2)以上就是八大分布函数表的定义。
虽然它们的表达形式有所不同,但它们的特征都是由参数,σ,λ,α,β,k,ν决定的。
在统计学中,八大分布函数表被广泛应用。
它们可以用来描述一组样本数据的概率分布情况,也可以用来估算样本数据的期望值或样本方差等概率特性。
此外,八大分布函数表还可以用来建立多项式拟合模型,用来描述和估算离散变量的变化趋势。
常见分布的数学期望和方差

e x , x 0
f (x) 0, x0
E( X )
xf ( x)dx
x ex dx
0
x de x
0
xex
0
exdx
0
1
ex
0
1
.
14
2. 指数分布 X ~ E() .
E( X )
1
,D( X )
1
2
E( X 2 ) x 2 f ( x) dx x 2 ex dx
一、常见离散型分布的数学期望和方差
1. 0-1分布 X 0 1
P 1 p p
E( X ) 0(1 p) 1 p p . E( X 2 ) 02 (1 p) 12 p p , D( X ) E( X 2 ) [E( X )]2 p p2 p(1 p) .
E( X ) p D( X ) p(1 p)
2
方 差
正态 分布
f (x)
1
e , ( x )2 2 2
x
2
( 0)
2
例1
设X
~
N
(
1
,
2 1
)
,Y
~
N
(2ຫໍສະໝຸດ ,2 2)
,且X ,Y
相互
独立,则 E( XY )
, D( XY )
.
解 E( XY ) 12 ,
D( XY ) E[( XY )2 ] [E( XY )]2
[D( X ) (EX )2 ][D(Y ) (EY )2 ] (12 )2
D. D(2 X 1) 4np(1 p)
解选
例2 设(D随).机变量X ,Y 相互独立且分布相同,则 X Y
与 2X 的关系是则( ).
离散分布的期望和方差

离散分布的期望和方差:
离散型随机变量的的期望也就是离散型随机变量的均值的是为了表达一个随机变量取值的中间水平,随机变量的方差刻画了随机变量取值的离散程度。
由于它们反映了随机变量取值的平均水平及稳定性,所以随机变量的均值和方差在市场预测等其他方面有着重要的应用。
离散型随机变量的期望公式:离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p (X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi)。
则E(X)=X1*p(X1)+X2**p(X2)+……+Xn**p(Xn)= X1*f1(X1)+X2*f2(X2)+……+Xn*fn (Xn)。
离散型随机变量的方差公式:D(X)=E{[X-E(X)]^2}=E(X^2)-(EX)^2。
常见的分布的方差和期望:
1、均匀分布:期望是(a+b)/2,方差是(b-a)的平方/12。
2、二项分布:期望是np,方差是npq。
3、泊松分布:期望是p,方差是p。
4、指数分布:期望是1/p,方差是1/(p的平方)。
5、正态分布:期望是u,方差是&的平方。
6、X服从参数为p的0-1分布,则E(X)=p,d(X)=p(1-p)。
常见分布的期望和方差.pdf

x +
FX (x) = F(x, +) =
边缘分布函数:
[
− −
f (u, y)dy]du
y +
FY ( y) = F(+, y) =
[
− −
f (x, v)dx]dv
二维正态分布的边缘分布为一维正态分布。
6、随机变量的独立性:若 F(x, y) = FX (x)FY ( y) 则称随机变量 X,Y 相互独立。简称 X 与 Y 独立。
9、期望的性质:……(3)、 E(X +Y) = E(X ) + E(Y) ;(4)、若 X,Y 相互独立,则 E(XY) = E(X )E(Y) 。
10、方差: D(X ) = E(X 2 ) − (E( X ))2 。 若 X,Y 不相关,则 D(X +Y) = D(X ) + D(Y) ,否则 D(X +Y) = D(X ) + D(Y) + 2Cov(X ,Y) ,
分布类型
0-1 分布 B(1,p) 二项分布 B(n,p)
泊松分布 P(λ)
均匀分布 U( a,b ) 正态分布 N( , 2 )
指数分布 E(λ)
2 分布, 2 (n)
t 分布, t(n)
常见分布的期望和方差
概率密度函数
pi = P X = i = Cni piqn−i (q =1− p),(i =1, 2,..., n)
⑵、 0 F(x, y) 1,对于任意固定的 x,y 有: F(−, y) = F(x, −) = 0 ;
⑶、 F(x, y) 关于 x 右连续,关于 y 右连续;
⑷、对于任意的 (x1, y1), (x2, y2 ), x1 x2, y1 y2 ,有下述不等式成立:
常见分布的数学期望和方差

分布
k!
数
k 0,1,2,
pq
npq
学 期
均匀 分布
f (x)
1 b
a
,
a
x
b
0 , else
望 与
指数 分布
f
(
x)
e x
0,
,
x0 else
( 0)
ab 2 1
(b a)2 12 1
2
方 差
正态 分布
f (x)
1
e ,
(
x) 2 2
2
x
2
( 0)
2
例1
设X
~
N
(
1
,
2 1
E( X i ) p , D( X i ) p(1 p) ,
而 X= X1+X2+…+Xn , Xi 相互独立,
n
n
所以 E( X ) E( X i ) E( X i ) np .
i 1
i 1
n
n
D( X ) D( X i ) D( X i ) np(1 p) .
i 1
i 1
所以 D( X ) np(np p 1) (np)2 np(1 p) .
4
下面利用期望和方差的性质重新求二项分布的
数学期望和方差.
设 X ~ B ( n, p ),X表示n重伯努利试验中的成功次数.
设
1 X i 0
如第i次试验成功 如第i次试验失败
i=1,2,…,n
则
Xi
P
10
p 1 p
与 2X 的关系是则( ).
A.有相同的分布
B.数学期望相等
C.方差相等
概率分布期望方差汇总

概率分布期望方差汇总概率分布是描述随机变量取值的概率的数学模型。
期望是对随机变量取值的平均值的度量,方差则是衡量随机变量取值分散程度的度量。
在概率论和统计学中,期望和方差是两个重要的概念,对于理解和应用概率分布非常关键。
一、期望期望是对随机变量取值的平均值的度量,也可以理解为随机变量的中心位置。
对于离散随机变量X,其期望计算公式为E(X) = Σ x*p(x),即随机变量各取值乘以其对应的概率之和。
对于连续随机变量X,其期望计算公式为E(X) = ∫ x*f(x) dx,其中f(x)是X的概率密度函数。
二、方差方差是对随机变量取值分散程度的度量。
方差越大,表示随机变量的取值更分散;方差越小,表示随机变量的取值更集中。
方差计算公式为Var(X) = E[(X-E(X))^2],即随机变量取值与其期望之差的平方的期望。
方差的平方根称为标准差。
三、常见概率分布的期望和方差1.二项分布二项分布是最常见的离散概率分布之一,描述在n次独立重复试验中成功次数的分布。
设X为成功次数,则X服从参数为n和p的二项分布记作X~B(n,p)。
期望:E(X) = np方差:Var(X) = np(1-p)2.泊松分布泊松分布描述单位时间或单位空间内事件发生的次数的概率。
设X为单位时间或单位空间内事件发生的次数,则X服从参数为λ的泊松分布记作X~P(λ)。
期望:E(X)=λ方差:Var(X) = λ3.均匀分布均匀分布是最简单的连续概率分布之一,描述在一个区间上随机取值的概率。
设X在[a,b]区间上服从均匀分布,则X服从均匀分布记作X~U(a,b)。
期望:E(X)=(a+b)/2方差:Var(X) = (b-a)^2/124.正态分布正态分布是最常见的连续概率分布之一,其概率密度函数呈钟型曲线。
设X服从参数为μ和σ^2的正态分布记作X~N(μ,σ^2)。
期望:E(X)=μ方差:Var(X) = σ^25.指数分布指数分布描述连续随机事件发生的时间间隔的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8个常见分布期望和方差
概率分布的期望和方差为了理解和预测复杂的概率分布,其中最重要
的两个因素是期望和方差。
概率分布的期望是由可能的结果的各种频率的
平均值。
它是一个数字,可以确定概率变量的未来值的变化,用来表明对
分布结果的期望:方差是描述随机变量变化程度的数字,它表示数据离期
望值多大程度。
期望和方差是描述统计定律的基本量,它们是用于理解和预测随机变
量的行为的最重要的两个概念。
此外,方差也是可以利用的重要的统计概念,用来表明总体变化的大小,以及在给定范围内期望出现变化的可能性。
尽管,有很多不同的概率分布存在,但是在概率领域,最常用的概率
分布可以分为三类:正态分布,二项分布和卡方分布。
下文将分别介绍这
三类分布的期望和方差。
正态分布是指概率分布中,观测值的分布曲线呈现出钟形状,中心对
称型的曲线。
正态分布的期望可以表示为:E(x)=μ,即随机变量的期望
值就是均值。
正态分布的方差可以表示为:V(x)=σ2,其中σ2是样本
数据的方差,表示数据的变化程度。
二项分布研究的是独立重复试验,其中均有概率p成功,概率q失败,这里p+q=1。
对二项分布,其期望值E(X)=np,即期望值取决于p值和重复
次数n;其中变异系数V(x)=npq,表示数据变异的程度。
卡方分布也被称为卡方正态或卡方分位数分布,它描述的是数据来源
于独立正态分布的累积分布,通常用于统计检验中的卡方检验。
对卡方分布,其期望值E(X)=n;变异系数V(x)=2n,表示数据变异的程度。
总的来说,概率分布的期望和方差是理解和预测复杂概率分布的基础,它们提供了一种可以用来确定观测值的有效值并预测观测结果的方法。
通
过期望和方差,我们可以很容易地推断三类常见分布的理论值,进一步推
断复杂概率分布的变化趋势,从而帮助更好地。