基于multisim11仿真的生物医学工程课程设计:人体阻抗测量

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计报告————

人体阻抗测量

引言

本课程设计探索了一种人体阻抗测量系统,以及通过此系统分析人体阻抗特性。本设计采用由一对激励电极及一对敏感电极组成的四电极结构, 用文氏电桥振荡器产生50 kH z 的正弦波信号, 经过一定的削减,施加在与人体皮肤接触的激励电极对上,通过测量敏感电极对的电压, 实现人体生物阻抗的检测, 可望有效克服接触电阻抗以及空间电磁波的干扰。multisim 软件仿真结果表明, 这种测量系统在测量结果的线性、稳定性及准确性等方面的性能可满足人体成分测量的要求。

Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。Multisim 被美国NI公司收购以后,其性能得到了极大的提升。最大的改变就是:Multisim 9与LABVIEW 8的完美结合:

(1)可以根据自己的需求制造出真正属于自己的仪器;

(2)所有的虚拟信号都可以通过计算机输出到实际的硬件电路上;

(3) 所有硬件电路产生的结果都可以输回到计算机中进行处理和分析。

如此,学员可以很好地、很方便地把刚刚学到的理论知识用计算机仿真真实的再现出来。并且可以用虚拟仪器技术创造出真正属于自己的仪表。极大地提高了学员的学习热情和积极性。真正的做到了变被动学习为主动学习。

1、人体阻抗模型及其测量的意义:

人体的基本构造单位是细胞。细胞被一层具有特殊结构和功能的半透性膜所包被,称作细胞膜或质膜,它允许某些物质有选择地通过,同时又严格地保持细胞内物质成分的稳定。由于细胞膜的存在,人体组织的阻抗特性可由图1 所示的等效电路表示。其中Re,Ri和Ci分别为细胞外液电阻,细胞内液电阻和细胞膜电容。

人体阻抗是包括人体皮肤、血液、肌肉、细胞组织及其结合部在内的含有电阻和电容的全阻抗,如图2所示。皮肤表面0.05~0.2mm厚的角质层电阻值很高。在干燥和干净的状态下,其电阻率可达105 ~ 106Ω·m。但因其不是一张完整的薄膜,又很容易受到破坏,故计算人体阻抗时一般不予以考虑。人体各部分阻抗大小对比如表1所示。遭受突然的生理刺激时,人体阻抗可能明显降低。

便携式人体健康状况检测仪受到越来越多的重视, 该类仪器中人体成分检测占据极其重要的地位, 例如脂肪、水分检测仪等。目前存在的测量人体成分的方法主要有生物电阻抗法、水重法、同位素稀释法以及双能量X光吸收法等。其中,生物电阻抗分析法(BIA :Bioelectrical impedanceanalysis)具有无创、简便、廉价、可靠的独特优点, 医生和病人都易于接受,并且这种方法测量人体成分的可行性已经得到大量实验结果的验证。生物阻抗技术的真正优势或诱人之处在于利用生物阻抗所携带的丰富生理和病理信息,进行人体组织与器官的无损伤功能评价。

2、系统结构框图与完整电路图

3、各模块实现

3.1、文氏电桥振荡器:

图3 文氏电桥正弦振荡器

根据人体电阻抗谱图, 在特征频率 f c 上, 人体电阻抗的虚部| X | 最大, 人体中的脂肪和非脂肪成分同时得到最大的体现, 因此选 f c 作为测量频率。通常人体特征频率为50 kH z 。

电路的震荡频率f osc = 1/2лRC,理论与实际有出入,经多次调试,最终选定R=10K Ω、C=205pF,使其输出较为准确的50KHz的正弦波。电路从起振到稳定输出需要一定时间,所以开始仿真后要经过等待才能看到如下图所示的合格波形:

图4 振荡器输出50KHz正弦波

3.2、V/I变换

电流信号比电压信号抗干扰能力强,所以微弱信号传递时常以电流形式进行。下图就是我们采用的V/I方案,把电压信号转变成电流信号。下方的电压跟随器起传导电压、隔离电流的作用;理论上,流经负载Rx的电流为

I out = V in*(R32/R30) /(Rs+R0+Rx);

图5 振荡器与V/I变换电路

所谓的V/I变换,其实是将输入电压放大一定倍数再加到负载上,从而得到电流的。只是负载变化对电流的影响相对减小了一些。

图6 V/I电路的输入/输出

如上图,人体阻抗一般为500Ω左右,则电路稳定后流经人体的电流不超过500uA。振荡器产生的信号强度被削减了29%。

图7 V/I电路的幅频特性图

图8 V/I电路的相频特性图

3.3、2选1开关与差动放大器

差分放大器是一种零点漂移很小的直接耦合放大器,常用于直流放大。它可以是平衡(术语“平衡”意味着差分)输入和输出,也可以是单端(非平衡)输入和输出,常用来实现平衡与不平衡电路的相互转换,是各种集成电路的一种基本单元。在实际应用中,温度变化和电源电压不稳等因素对放大作用的影响,等效于每个晶体管的输入端产生了一个漂移电压。利用差放电路的对称性可以使之互相抵消或予以削弱,使输出端的漂移电压大大减小。显然,共模增益越小,即电路对称性越好时,这种漂移电压也越小。而相对于由晶体管构成的差放,由运放构成的差放又具有输入阻抗高、输出阻抗小、使用方便、调试容易等优势。

如下图右边部分所示的由3个运放构成的差动放大器也称仪用放大器。在R11=R12、R13=R14的情况下,放大倍数为

A = Vin*((R8+R9+R10)/R9)*R13/R11

图左下角的R19与晶体管、二极管、VC、继电器构成2选1开关。mux接到单片机的P3.1引脚。

相关文档
最新文档