微积分复习附解题技巧
《微积分(上)》复习重难点方法解读
《微积分(上)》复习重难点解读第一篇 函数、连续、极限求极限。
求函数的极限是每年的必考题。
本章的另一块内容判断函数是否连续,其实质仍是求函数极限。
所以本章只要抓住了极限就基本上把握了全章的核心内容,求极限的方法很多但在考试中常用的主要有1. 利用极限的四则运算法则求极限(这是求极限的最基本知识)2. 利用重要极限求极限3. 利用罗必达法则求极限(求关于函数的未定式的极限)4. 利用无穷小替换(它往往在求极限的过程中使用能使问题简化)5. 利用夹逼定理6. 利用单调有界准则(主要求通项由递推公式给出的极限)7. 利用定积分定义(主要求通项是n 项和的数列的极限)8. 利用导数定义求极限(主要用于已知条件中给出函数在一点可导求关于该函数的某个极限)9. 利用连续函数的性质(这一条不会单独命题,但它常用在求极限的过程中,是求极限的基础知识)10.利用极限与无穷小的关系(主要用于已知极限,求另一形式的极限)典型题型典型题型一:求未定式的极限典型的未定式共有七种:000"","","",0","0","","1"0∞∞∞-∞∞∞∞。
读者在遇到这七种未定式时,建议采用罗必达法则试一试。
(使用罗毕达法则时应注意:(1)使用罗毕达法则时,要先判定是否为0""0或""∞∞;(2)在使用法则前应先化简,(3)当0()()lim ()x x x f x g x →∞→''不存在(或非∞)时,不能推出0()()lim ()x x x f x g x →∞→不存在(4)当x →∞时,若式子中含有cos ,sin x x (或0x →时,式11cos ,sin x x)则不宜使用罗毕达法则。
典型题型二: 求非未定式的极限这类题通常要利用函数的连续性、极限的四则运算法则、定积分定义、夹逼定理、无穷小性质来完成。
微积分期末复习总结资料(精品)
微积分期末复习总结资料(精品)首先,就是要有正确的复习方法。
在这里,我们也给大家提供几种有效的方法以供参考:第一、大家首先要克服浮躁的毛病,养成看课本的习惯。
其实,所有的考试都是从课本知识中发散来的,所以在复习时就必须看课本,反复的看,细节很重要,特别是基本概念和定理。
详细浏览完课本之后,认真复习课本上的课后习题和学习指导上每章的复习小结,力争复习参考题每题都过关。
复习小结了然于心,然后再复习。
第二、制定复习计划,把时间合理分配到四个章节,尤其是第二章极限尤为重点,是整个上学期微积分理论的基础。
学好极限,对于理解连续还有导数有着重要意义,很多同学觉得越学越吃力的原因还是在于学期初没有扎实的打好知识基础。
第三、理清知识结构网络图(极限、连续、导数、不定积分),然后根据知识结构网络图去发散、联想基础概念和基本定理和每个知识点的应用计算题,对本章节的内容有个清晰的思路,这样就可以在整体上把握书本知识。
从整体上把握书本知识有利于我们对于试卷中的一些基本的题目有一个宏观的把握,对于试卷中的问答题,可以从多角度去理解和把握,这样就能够做到回答问题的严密性。
第四、将课上老师所讲授的典型例题及做习题过程遇到的难题还有易错的题归纳整理,分析。
数学当中很容易出现同一个问题有几种不同的解决方法的情况,但是经过总结归纳之后在应试时可以选取一个最简单而且效率最高的解法。
比如,求极限的13种方法要分别练习,还有求导、求微分及求不定积分公式表要经常回顾。
第五、有条件的话可以看看往年的考试真题,针对出现较频率较高的题型,适当的做些有针对性的模拟试题。
另外,应该多做那些自己认为知识点理解、应用薄弱的题,对一些难题可在自己思考的基础上加强与同学、老师的交流,对于那些偏题、怪题笑而弃之。
其次,有了好的复习方法,还要注意复习内容,也就是复习要点。
微积分上学期的主要内容及基本要求经过详细整理分类主要包括以下三个部分,希望能够对大家的复习起到事半功倍的效果:函数、极限与连续(一)基本概念1.函数:常量与变量,函数的定义2.函数的表示方法:解析法,图示法、表格法3.函数的性质:函数的单调性、奇偶性、有界性和周期性4.初等函数:基本初等函数,复合函数,初等函数,分段表示的函数,建立函数关系5.极限:数列极限、函数极限、左右极限、极限四则运算,无穷小量与无穷大量,无穷小量的性质,无穷小量的比较,两个重要极限6.连续:函数在一点连续,左右连续,连续函数,间断点及其分类,初等函数的连续性,闭区间上连续函数性质的叙述重点:函数概念,基本初等函数,极限的计算难点:建立函数关系,极限概念(二)基本要求1. 理解函数的概念,了解分段函数。
微积分复习及解题技巧.docx
《微积分》复习及解题技巧第一章函数一、据定义用代入法求函数值:典型例题:《综合练习》第二大题之2二、求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示)对于用数学式子来表示的函数,它的定义域就是使这个式子有意义的自变量X的取值范围(集合)主要根据:①分式函数:分母H0②偶次根式函数:被开方式20③对数函数式:真数式>0④反正(余)弦函数式:自变量W1在上述的函数解析式中,上述情况有几种就列出几个不等式组成不等式组解之。
典型例题:《综合练习》第二大题Z1补充:求y=、巨的定义域。
(答案:-2<^<|)]ll-2x 2三、判断函数的奇偶性:典型例题:《综合练习》第一大题之3、4第二章极限与连续式(用罗彼塔法则)求极限主要根据:1、常见的极限:lim 占=()(。
>0)X->COXlimlim/(x)= /(x o ) XT%初等函数在其定义域上都连续。
例:lim*TXT1兀3、求极限r ‘⑴ 1 lim —- = 1—a gO )的思路:lim/W= ci (ci 工0常数)X —可考虑以下9种可能:00①彳型不定式(用罗彼塔法则)④5=00⑦汁limgU ) x->a②冷⑤牙<C 2(C 2^O 常数)③2=000@ —=000⑨丝型不定00X丿特别注意:对于f (X )、g (X )都是多项式的分式求极限吋,解法见 教材P70下总结的“规律”。
以上解法都必须贯穿极限四则运算的法则典型例题:《综合练习》第二大题之3. 4;第三大题之1、3、5. 7、81砂[而+而+而+」(2-1畑+ 1)『1]更寸一3+3丐+」右一冇丿补充4:2型一匚 limf = iXT1 丄(此题用了 “罗彼塔法则”)补充1: 洛lim x-»lsin 2(x-l)广 + ax+补充厶 limX —>00 \2x^lim 12/? +1 丿lim XT1lnxx-1贝 ij a= ~2X 4- Px — \)第三章导数和微分一、根据导数定义验证函数可导性的问题:典型例题:《综合练习》第一大题之12二、求给定函数的导数或微分:求导主耍方法复习:1、求导的基本公式:教材P1232、求导的四则运算法则:教材P110—1113、复合函数求导法则(最重要的求导依据)4、隐函数求导法(包括对数函数求导法)6、求高阶导数(最高为二阶)7、求微分:dy=y z dx即可典型例题:《综合练习》第四大题之1、2、7、9补充:设\ + (arctgx)2,求dy.解:岛…右話十,丿 / X 2arctgx、右+K)dx第四章中值定理,导数的应用一、关于罗尔定理及一些概念关系的识别问题: 典型例题:《综合练习》第一大题之16、19二、利用导数的几何意义,求曲线的切、法线方程: 典型例题:《综合练习》第二人题之5二、函数的单调性(增减性)及极值问题:典型例题:《综合练习》第一大题之18,第二大题之6,第六大题之2第五章不定积分第六章定积分I理论内容复习:1、原函数:F f(x) = /(x)则称F (x)为f (x)的二±原函数。
考研数学微积分题型与技巧全解
考研数学微积分题型与技巧全解在考研数学中,微积分占据着至关重要的地位。
它不仅是考试的重点,也是许多同学感到棘手的部分。
为了帮助大家更好地应对考研数学中的微积分问题,本文将对常见的题型和解题技巧进行全面的梳理和分析。
一、极限问题极限是微积分的基础,也是考研数学中常见的考点之一。
1、求函数的极限直接代入法:对于一些简单的函数,当自变量趋近于某个值时,可以直接将该值代入函数中计算极限。
化简法:通过约分、通分、有理化等方式对函数进行化简,然后再求极限。
等价无穷小替换:当函数中涉及到无穷小量时,可以利用等价无穷小的性质进行替换,从而简化计算。
洛必达法则:当函数满足一定条件时,可以使用洛必达法则,对分子分母分别求导来计算极限。
2、数列的极限单调有界准则:若数列单调递增且有上界,或单调递减且有下界,则数列收敛。
夹逼准则:若存在两个数列,它们的极限相同,且所求数列被夹在这两个数列之间,则所求数列的极限也相同。
二、导数与微分问题导数和微分是微积分中的核心概念,在考研数学中经常出现。
1、求导数基本公式法:熟练掌握常见函数的导数公式,如幂函数、指数函数、对数函数、三角函数等。
复合函数求导法则:对于复合函数,要按照“由外到内”的顺序,依次对每一层函数进行求导。
隐函数求导:当函数由方程给出,且无法直接表示为显函数时,通过对方程两边同时求导来求解。
2、导数的应用切线与法线方程:已知函数在某点的导数,即可求得该点处的切线斜率,从而写出切线方程和法线方程。
函数的单调性与极值:通过求导判断函数的单调性,进而找出极值点和极值。
函数的凹凸性与拐点:通过求二阶导数来判断函数的凹凸性,找出拐点。
三、积分问题积分是微积分的重要组成部分,包括不定积分和定积分。
1、不定积分基本积分公式:牢记常见函数的不定积分公式。
换元积分法:包括第一类换元法(凑微分法)和第二类换元法。
分部积分法:适用于被积函数是两个函数乘积的情况。
2、定积分牛顿莱布尼茨公式:利用不定积分求出原函数,再代入上下限计算定积分的值。
微积分复习及解题技巧
《微积分》复习及解题技巧第一章 函数一、据定义用代入法求函数值: 典型例题:《综合练习》第二大题之2二、求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示)对于用数学式子来表示的函数,它的定义域就是使这个式子有意义的自变量x 的取值范围(集合) 主要根据: ①分式函数:分母≠0 ②偶次根式函数:被开方式≥0 ③对数函数式:真数式>0④反正(余)弦函数式:自变量 ≤1在上述的函数解析式中,上述情况有几种就列出几个不等式组成不等式组解之。
典型例题:《综合练习》第二大题之1补充:求y=xx 212-+的定义域。
(答案:212<≤-x )三、判断函数的奇偶性:典型例题:《综合练习》第一大题之3、4第二章 极限与连续求极限主要根据: 1、常见的极限:2、利用连续函数:初等函数在其定义域上都连续。
例:3、求极限的思路:可考虑以下9种可能:①00型不定式(用罗彼塔法则) ②20C =0 ③∞0=0④01C =∞ ⑤21C C ⑥∞1C =0⑦0∞=∞ ⑧2C ∞=∞ ⑨∞∞型不定式(用罗彼塔法则)1sin lim 0=→x xx e x xx =⎪⎭⎫⎝⎛+∞→11lim )0(01lim >=∞→ααxx )()(0lim 0xf x f x x =→11lim 1=→x x 1)()(lim =→x g x f x α⎪⎩⎪⎨⎧∞≠=→)0(0)(11lim 常数C C x f x α⎪⎩⎪⎨⎧∞≠=→)0(0)(22lim 常数C C x g x α特别注意:对于f (x )、g (x )都是多项式的分式求极限时,解法见教材P70下总结的“规律”。
以上解法都必须贯穿极限四则运算的法则!典型例题:《综合练习》第二大题之3、4;第三大题之1、3、5、7、8补充1:若1)1(sin 221lim =++-→bax x x x ,则a= -2 ,b= 1 . 补充2:21221211111lim lim e x x x x xx x xx =⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+-∙-∞→∞→补充3:21121121121121...513131121)12)(12(1...751531311lim lim lim =⎪⎭⎫ ⎝⎛+-=⎪⎭⎫⎝⎛+--++-+-=⎥⎦⎤⎢⎣⎡+-++⨯+⨯+⨯∞→∞→∞→n n n n n n n n 补充4:1ln lim 1-→x xx 111lim 1=→x x (此题用了“罗彼塔法则”)型0第三章 导数和微分一、根据导数定义验证函数可导性的问题: 典型例题:《综合练习》第一大题之12 二、求给定函数的导数或微分: 求导主要方法复习:1、求导的基本公式:教材P1232、求导的四则运算法则:教材P110—1113、复合函数求导法则(最重要的求导依据)4、隐函数求导法(包括对数函数求导法) 6、求高阶导数(最高为二阶) 7、求微分:dy=y / dx 即可典型例题:《综合练习》第四大题之1、2、7、9 补充:设y=22)(1arctgx x ++,求dy. 解:∵222212111221121x arctgxxx x arctgx x x y +++=+⋅+⋅+⋅=' ∴dy=)121(22xarctgx x x dx y +++=⋅'dx第四章中值定理,导数的应用一、关于罗尔定理及一些概念关系的识别问题:典型例题:《综合练习》第一大题之16、19二、利用导数的几何意义,求曲线的切、法线方程:典型例题:《综合练习》第二大题之5二、函数的单调性(增减性)及极值问题:典型例题:《综合练习》第一大题之18,第二大题之6,第六大题之2第五章 不定积分 第六章 定积分Ⅰ理论内容复习: 1、原函数:)()(x f x F ='则称F (x )为f (x )的一个原函数。
微积分下册复习要点(共5篇)
微积分下册复习要点(共5篇)第一篇:微积分下册复习要点微积分下册复习要点第七章多元函数微分学1.了解分段函数在分界点连续的判别;2.掌握偏导数的计算(特别是抽象函数的二阶偏导数)必考3.掌握隐函数求导(曲面的切平面和法线),及方程组求导(曲线的切线和法平面方程)必考。
4.方向导数的计算,特别是梯度,散度,旋度的计算公式;必考。
5.可微的定义,分段函数的连续性及可微性,偏导数及偏导数的连续性。
6.多元函数的极值和最值:无条件极值和条件极值(拉格朗日乘数法),实际问题的最值。
必考。
第八章重积分1.二重积分交换积分次序;必考。
2.利用合适的坐标系计算(特别是极坐标)3.三重积分中三种坐标系的合理使用(直角坐标系,柱坐标系,球坐标系)在使用时特别注意“先二后一法”的运用。
必考。
4.重积分的应用中曲面面积、重心、转动惯量、引力的公式,曲面面积为重点。
第九章曲线曲面积分1.第一、二类曲线积分的计算公式(特别是参数方程);2.第一、二类曲面积分的计算公式(常考第一类曲面积分,第二类曲面积分一般用高斯公式)3.三个公式的正确使用(格林公式、高斯公式、斯托克斯公式)必考。
可以参考期中考试卷中最后三个题。
4.格林公式中有“奇点”的使用条件及积分与路径无关的条件(可能和全微分方程结合)必考。
第10章级数1.数项级数的敛散性的判别:定义,收敛的必要条件,比较判别法及极限形式,比值判别法,根值判别法,莱布尼兹判别法,条件收敛和绝对收敛的概念。
2.幂级数的收敛域及和函数的计算。
(利用逐项求导和逐项积分)必考。
3.将函数展成幂级数。
(一般利用间接法)必考。
4.将函数展成傅里叶级数,系数的计算公式;狄利克雷收敛定理;几个词的理解(周期延拓、奇延拓、偶延拓、变量替换)第11章常微分方程1.各种一阶微分方程的计算:可分离变量、齐次方程、可化为齐次方程的方程、一阶线性微分方程、伯努利方程、全微分方程。
2.可降阶的微分方程三种形式,特别注意不显含x 这种情形。
高数微积分的求解技巧总结
高数微积分的求解技巧总结高数微积分是大学数学中的重要课程,涉及到很多重要的概念和方法。
在学习过程中,我们需要具备一些求解技巧和方法,以帮助我们更好地理解和应用微积分知识。
以下是一些高数微积分的求解技巧的总结。
1. 掌握基本公式和定理:在学习微积分的过程中,我们需要熟练掌握常用的基本公式和定理,如导数的基本计算法则、函数的导数公式、积分的基本计算法则等。
熟练掌握这些公式和定理对于解题和计算都有很大帮助。
2. 运用导数和微分的定义:导数和微分的定义是微积分的基础概念,我们需要理解和掌握这两个定义,并灵活运用它们。
例如,对于一些难以使用基本公式求解的函数,可以通过导数的定义或微分的定义来求解。
3. 利用函数的性质进行求解:函数的性质是微积分中重要的求解技巧之一。
我们可以利用函数的对称性、周期性、奇偶性等性质,简化计算和求解过程。
例如,当函数具有对称性或周期性时,可以将函数的积分范围缩小,简化计算。
4. 使用换元积分法:换元积分法是微积分中的重要方法之一。
通过对被积函数中自变量的替换,可以将原来的积分转化成更简单的形式。
在使用换元积分法时,需要灵活选取适当的替换变量,并注意变限积分的处理。
5. 运用分部积分法:分部积分法是微积分中常用的方法之一,在求解一些特殊函数的积分和广义积分时非常有效。
通过将被积函数中各项分别作为导数和微分的乘积,可以将原来的积分转化成更容易求解的形式。
6. 利用定积分的性质:定积分具有很多重要的性质,如可加性、均值定理等。
利用这些性质可以简化计算和求解过程。
例如,利用定积分的可加性,可以将一个复杂的定积分分解成若干个简单的定积分相加。
7. 使用拉格朗日中值定理和柯西中值定理:拉格朗日中值定理和柯西中值定理是微积分中的重要定理,能够帮助我们研究函数的性质和证明一些结论。
在应用这两个定理时,需要注意选择合适的函数和区间,并理解这些定理的几何意义。
8. 运用级数展开和泰勒展开:级数展开和泰勒展开是微积分中的重要工具,可以将一个函数表示成无穷级数的形式。
高考数学一轮总复习微积分应试技巧总结
高考数学一轮总复习微积分应试技巧总结微积分是高考数学中的重要内容之一,也是考生们容易出现困惑的部分。
为了帮助大家更好地复习微积分,下面将总结一些应试技巧,希望能对大家备战高考有所帮助。
一、掌握基础概念和公式在应试中,掌握基础的微积分概念和公式是非常重要的。
首先要熟悉微积分的基本定义和常用的公式,如导数的定义、反函数的导数关系、积分的定义和性质等。
只有对这些基础知识牢记于心,才能够更好地理解和解决微积分题目。
二、多做题,掌握解题方法做题是学习微积分的重要环节,通过大量的练习可以加深对知识点的理解和掌握解题的方法。
在做题过程中,要注意每一步的推导和计算,尽量做到简洁清晰。
可以先从简单的题目开始,循序渐进地提高解题能力。
三、注意函数的可导性和连续性在应试中,经常会涉及到函数的可导性和连续性的问题。
要注意判断函数在某一点的可导性和连续性,可以通过导数的定义和极限的性质来进行推导。
同时,还需要掌握一些常见函数的可导性和连续性的特点,如多项式函数、指数函数、对数函数等。
四、熟悉微积分的应用微积分的应用题是高考中常见的题型之一。
在应试过程中,要熟悉微积分的应用,如求函数的极值、最值、曲线的切线方程、区间的积分等。
熟练掌握这些应用技巧,可以帮助解答一些实际问题。
五、重点复习典型例题在复习微积分的过程中,可以选择一些典型的例题进行重点复习。
通过分析和解答这些典型例题,可以更好地掌握微积分的知识点和解题技巧。
可以结合教材或者相关的复习资料进行选择。
总之,复习微积分需要有持之以恒的学习态度,多做题、多思考,在解题过程中逐渐提高解题能力和应对考试的技巧。
希望以上的技巧总结能够对广大考生在高考数学微积分复习中有所帮助,实现优异的成绩。
祝愿大家都能取得好成绩,实现理想的高考目标!。
高中数学必考知识点微分与积分应用题解析及解题技巧总结
高中数学必考知识点微分与积分应用题解析及解题技巧总结微积分是高中数学中的重要部分,其中微分和积分是其核心概念。
在高考中,微积分应用题往往是必考的内容,需要掌握一定的解题技巧。
本文将从微分与积分的基本概念开始,详细解析应用题,并总结解题技巧。
1. 微分微分是函数与变量之间的关系在某一点附近的局部变化情况。
常用的微分符号是dy/dx或y',表示函数f(x)关于x的导数。
微分的应用包括切线与法线、最值问题、极值问题等。
【例题1】已知函数f(x) = x^2,求函数f(x)在x = 2处的切线方程。
解析:首先,求函数f(x)在x = 2处的导数:f'(x) = 2x代入x = 2,得到f'(2) = 2 * 2 = 4切线方程的斜率为4,过点(2, f(2)) = (2, 4)由斜截式方程y - y1 = k(x - x1)可得切线方程为y - 4 = 4(x - 2)2. 积分积分是求函数曲线下的面积,也可以认为是微分的逆运算。
积分的应用包括定积分求面积、曲线长度、体积等问题。
【例题2】已知函数f(x) = x^2在区间[0, 2]上的图形与x轴围成的图形面积为多少?解析:根据定积分的定义,函数f(x) = x^2在[0, 2]上的图形与x轴围成的面积可以表示为:∫[0, 2] x^2 dx使用不定积分求解:∫x^2 dx = x^3 / 3代入上限2和下限0,得到面积为2^3 / 3 - 0^3 / 3 = 8 / 3。
3. 解题技巧解题过程中,我们需要掌握一些常用的解题技巧,以便更好地应用微分与积分。
3.1 利用导数法求解最值问题在求解最值问题时,可以利用导数的性质来简化计算。
例如求解函数f(x)在某个区间上的最大值或最小值,我们可以先求出导数f'(x) = 0的所有实根,然后确定最大值或最小值。
【例题3】求函数f(x) = 2x^3 - 3x^2 - 12x在区间[-2, 3]上的最大值和最小值。
微积分知识及答题技巧
定积分部分一、第一积分中值定理【定理】:设f(x)、g(x)在[a,b]上连续,g(x)在[a,b]上不变号,则至少存在一点ξ∈(a,b ),使得⎰⎰=babadx x g f dx x g x f )()()()(ξ。
注意取g(x)=1即可以得到我们熟悉的积分中值定理。
【用途】:处理一些定积分证明题可以用上。
二、一种含变量x 的积分上限函数的求导公式)()()()(])()([x f x g dt t f x g dt x g t f xax a+'='⎰⎰三、函数和原函数之间的关系1、周期函数的原函数不一定是周期函数 【举例】:y=cosx+1的原函数是y=sinx+x ,不是周期函数。
【推论】周期奇函数的原函数一定是周期函数。
(证明略)。
2、奇函数的原函数组(即不定积分C 取任何值)都是偶函数,但偶函数的原函数组中只有一个是奇函数。
四、几个重要的广义积分结论1、)0(10>=⎰+∞-p p dx e px 2、⎰+∞-+=022sin wp w wxdx e px(p>0;w>0) 2、22π=⎰∞+-dx ex < 1 4、()!1)ln 10n dx x nn -=⎰(五、周期函数的定积分技巧(可用来快速解决课本上一道较难的周期定积分题)设周期函数周期为T ,周期函数为f(x)有: 1、⎰⎰+=Ta a Tdx x f dx x f 0)()((周期函数任意一个周期内的积分是不变的)2、⎰⎰=nTTdx x f n dx x f 0)()((n 是正整数)3、设)(x f 是以周期T 为周期的周期函数,则它的积分上限函数F(x)=⎰xadt t f )(也是以T为周期的周期函数的充要条件是:⎰=Tdx x f 00)((即函数在一个周期长上的定积分为0)六、一个非常OP 的定积分变换等式(处理一些复杂问题时常用)定理:⎰⎰-+=babadx x b a f dx x f )()(几何解释:曲线y=f(x)和y=f(a+b-x)关于直线2)(b a +对称。
微积分常见题型与解题方法归纳(1)中级版
微积分常见题型与解题方法归纳(1)中级版微积分是数学中的重要学科,常见的题型主要包括函数求导、函数积分和曲线拟合等。
通过研究和掌握常见的解题方法,可以帮助我们更好地理解微积分的概念和应用。
函数求导题型1. 常函数求导:常函数的导函数为零,即 $y = c$,导数 $y' =0$。
常函数求导:常函数的导函数为零,即 $y = c$,导数 $y' = 0$。
2. 一次函数求导:一次函数 $y = ax + b$,导数 $y' = a$。
一次函数求导:一次函数 $y = ax + b$,导数 $y' = a$。
3. 幂函数求导:对幂函数 $y = x^n$,当 $n \neq 0$ 时,导数$y' = nx^{n-1}$。
幂函数求导:对幂函数 $y = x^n$,当 $n \neq0$ 时,导数 $y' = nx^{n-1}$。
4. 指数函数求导:对指数函数 $y = a^x$,导数 $y' = a^x \ln(a)$。
指数函数求导:对指数函数 $y = a^x$,导数 $y' = a^x \ln(a)$。
5. 对数函数求导:对对数函数 $y = \log_a{x}$,导数 $y' =\frac{1}{x\ln(a)}$。
对数函数求导:对对数函数 $y = \log_a{x}$,导数 $y' = \frac{1}{x\ln(a)}$。
函数积分题型1. 常函数积分:常函数的积分为常数乘以自变量加上一个常数,即 $\int{c}dx = cx + C$。
常函数积分:常函数的积分为常数乘以自变量加上一个常数,即 $\int{c}dx = cx + C$。
2. 一次函数积分:一次函数的积分为一次函数的系数乘以自变量的平方再除以2,即 $\int{ax + b}dx = \frac{a}{2}x^2 + bx + C$。
一次函数积分:一次函数的积分为一次函数的系数乘以自变量的平方再除以2,即 $\int{ax + b}dx = \frac{a}{2}x^2 + bx + C$。
高考微积分解题技巧和方法综合
高考微积分解题技巧和方法综合微积分在高考数学中占据着重要的地位。
掌握好微积分的解题技巧和方法,对于高考考生来说至关重要。
本文将综合介绍几种常见的高考微积分解题技巧和方法。
1. 函数的导数与积分在微积分中,函数的导数和积分是最基本的概念之一。
理解和运用函数的导数和积分可以帮助我们解决各种微积分题目。
- 导数的性质:掌握导数的四则运算法则和链式法则等性质,可以轻松求解函数的导数。
导数的性质:掌握导数的四则运算法则和链式法则等性质,可以轻松求解函数的导数。
- 分段函数的导数:对于分段函数,可以利用函数在不同区间内的导数性质来求解导数。
分段函数的导数:对于分段函数,可以利用函数在不同区间内的导数性质来求解导数。
- 不定积分的求解:通过积分的基本公式、换元法、分部积分法等方法,可以求解不定积分。
不定积分的求解:通过积分的基本公式、换元法、分部积分法等方法,可以求解不定积分。
2. 极值与最值的求解求解函数的极值和最值是微积分题中常见的题型之一。
掌握求解特定函数的极值和最值的方法,可以快速解决此类题目。
- 极值的求解:通过对函数的导数进行求解,找出函数的临界点,判断函数在这些临界点的取值情况,从而求解极值。
极值的求解:通过对函数的导数进行求解,找出函数的临界点,判断函数在这些临界点的取值情况,从而求解极值。
- 最值的求解:通过对函数在给定区间上的取值进行比较,找出函数在该区间上的最大值或最小值。
最值的求解:通过对函数在给定区间上的取值进行比较,找出函数在该区间上的最大值或最小值。
3. 曲线的图像分析微积分中,曲线的图像分析是对函数图像进行全面了解的重要方法。
通过曲线的图像分析,可以推测函数的性质,从而解决相关题目。
- 函数的单调性:通过导数的正负性来推测函数的单调性,从而帮助我们判断函数的增减情况。
函数的单调性:通过导数的正负性来推测函数的单调性,从而帮助我们判断函数的增减情况。
- 函数的凸凹性:通过函数的二阶导数来推测函数的凸凹性,帮助我们判断函数的凸凹区间。
大一“微积分”期末复习资料指导
大一“微积分”期末复习资料指导第一章节 函数一.本章节要点复合函数及分解,初等函数的概念。
二.复习基本要求1、 理解函数的简单性质,知道它们的几何特点。
2、能熟练地求函数定义域;会求函数的值域。
3、 牢记常函数、幂函数、指数函数、对数函数、三角函数、反三角函数等六类基本初等函数的表达式,知道它们的定义域、值域、性质及图形特点。
其中⑴. 对于对数函数ln y x =不仅要熟记它的运算性质,还能熟练应用它与指数函数 xy e=互为反函数的关系,能熟练将幂指函数作如下代数运算: ln vu v ue =⑵.对于常用的四个反三角函数,不仅要熟习它们的定义域、值域及简单性质,还要熟记它们在特殊点的函数值.4、 掌握复合函数,初等函数的概念,能熟练地分解复合函数为简单函数的组合。
5、 知道分段函数,隐函数的概念。
. 三.参考示例例1. 试分析下列函数为哪几个简单函数(基本初等函或基本初等函数的线性函数)复合而成的? ⑴.2sin x y e = ⑵.21arctan()1y x =+ 分析:分解一个复合函数的复合过程应由外层向里层进行,每一步的中间变量都必须是基本初等函数或其线性函数(即简单函数)。
解:⑴.2,,sin u y e u v v x===⑵.21arctan ,, 1.y u u v x v===+例 2. cot y arc x =的定义域、值域各是什么?cot1arc =? 答:cot y arc x = 是cot ,(0,)y x x π=∈的反函数,根据反函数的定义域是原来函数的值域,反函数的值域是原来函数的定义域,可知cot y arc x =的定义域是(,)f D =-∞+∞,值域为(0,)f Z π=. cot14arc π=四.练习题及参考标准答案1. ()arctan f x x =则f (x )定义域为 ,值域为f (1) = ;(0)f = .2.()arcsin f x x =则f (x )定义域为 ,值域为f (1) =;f = .3.分解下列函数为简单函数的复合: ⑴.3x y e -=⑵.3ln(1)y x =-标准答案:1.(-∞ +∞), (,)22ππ-,,04π2. []1,1,,,,2223ππππ⎡⎤--⎢⎥⎣⎦.3. ⑴.,3u y e u x ==-⑵.3ln ,1.y u u x ==-自我复习:习题一.(A )55.⑴、⑵、⑶; 习题一.(B ).11.第二章节 极限与连续一.本章节要点极限的计算;函数的连续及间断的判定;初等函数的连续性。
(完整版)微积分复习资料
基本知识复习一、 不定积分1. 不定积分概念,第一换元积分法(1) 原函数与不定积分概念设函数()F x 与()f x 在区间(),a b 内有定义,对任意的(),x a b ∈,有()()'F x f x =或()()dF x f x dx =,就称()F x 是()f x 在(),a b 内的一个原函数。
如果()F x 是函数()f x 的一个原函数,称()f x 的原函数全体为()f x 的不定积分,记作()(),f x dx F x C =+⎰(2) 不定积分得基本性质1.()()df x dx f x dx=⎰2。
()()'F x dx F x C =+⎰ 3。
()()()().Af x Bg x dx A f x dx B g x dx +=+⎡⎤⎣⎦⎰⎰⎰(3)基本不定积分公式表一()()122222(1)2)1,13ln C,x (4)arctan ,1(5)arcsin ,(6)cos sin ,(7)sin cos ,(8)sec tan ,cos (9)csc cot ,sin (10)sec t kdx kx C k x x dx C dx x dx x C x x C xdx x C xdx x C dx xdx x C x dxxdx x C x x μμμμ+=+=+≠-+=+=++=+=+=-+==+==-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰是常数,(1()22an sec ,(11)csc cot csc ,(12),ln (13),(14),1(15),1(16).xxxdx x C x xdx x C a a dx C ashxdx chx C chxdx shx C dx thx C ch x dx cthx C sh x =+=-+=+=+=+=+=-+⎰⎰⎰⎰⎰⎰⎰(3) 第一换元积分法(凑微分法)设()f u 具有原函数, ()u x ϕ=可导,则有换元公式()()()()'.u x f x x dx f u du ϕϕϕ=⎡⎤=⎡⎤⎣⎦⎣⎦⎰⎰2. 第二换元积分法,分部积分法(1) 第二换元积分法设()x t ψ=是单调的、可导的函数,并且()'0t ψ≠.又设()()'f t t ψψ⎡⎤⎣⎦具有原函数,则有换元公式()()()()1',t x f x dx f t t dt ψψψ-=⎡⎤=⎡⎤⎣⎦⎣⎦⎰⎰其中()1x ψ-是()x t ψ=的反函数.(2) 分部积分法设函数()u u x =及()v v x =具有连续导数,那么,()''',uv u v uv =+移项,得 ()'''.uv uv u v =-对这个等式两边求不定积分,得''.uv dx uv u vdx =-⎰⎰这个公式称为分部积分公式.它也可以写成以下形式:.udv uv vdu =-⎰⎰(3) 基本积分公式表二(2222(17)tan ln cos )cot ln sin ,sec ln sec tan C,(20)csc ln csc cot ,1(21)arctan ,1(22)ln ,2(23)arcsin ,(24)ln ,(2xdx x C xdx x C xdx x xdx x x C dx x C a x a a dx x adx C x a a x a xC a x C =-+=+=++=-+=++-=+-+=+=++⎰⎰⎰⎰⎰⎰,(18(19)5)ln .x C =+ (3)有理函数的积分,三角函数有理式的积分,某些简单无理式的积分一、有理函数的积分 两个多项式的商()()P x Q x 称为有理函数,又称为有理分式.我们总假定分子多项式()P x 与分母多项式()Q x 之间是没有公因式的.当分子多项式()P x 的次数小于分母多项式()Q x 的次数时,称这有理函数为真分式,否则称为假分式.利用多项式的除法,总可以将一个假分式化成一个多项式与一个真分式之和的形式,由于多项式的积分容易求,故我们将重点讨论真分式的积分方法.对于真分式()()n m P x Q x ,首先将()m Q x 在实数范围内进行因式分解,分解的结果不外乎两种类型:一种是()kx a -,另外一种是()2lx px q ++,其中,k l 是正整数且240p q -<;其次,根据因式分解的结果,将真分式拆成若干个分式之和.具体的做法是:若()m Q x 分解后含有因式()kx a -,则和式中对应地含有以下k 个分式之和:()()()122,k kA A A x a x a x a +++---L 其中:1,,k A A L 为待定常数.若()m Q x 分解后含有因式()2lx px q ++,则和式中对应地含有以下l 个分式之和:()()()11222222,l l l M x N M x N M x N x px q x px q x px q ++++++++++++L 其中:(),1,2,,i i M N i l =L 为待定常数.以上这些常数可通过待定系数法来确定.上述步骤称为把真分式化为部分分式之和,所以,有理函数的积分最终归结为部分分式的积分.二、可化为有理函数的积分举例 例4 求()1sin .sin 1cos xdx x x ++⎰解 由三角函数知道,sin x 与cos x 都可以用tan2x的有理式表示,即 222222222tan 2tan22sin 2sin cos ,22sec 1tan 221tan 1tan 22cos cos sin .22sec 1tan 22x x x x x x xx xx x x x x ===+--=-==+如果作变换()tan2xu x ππ=-<<,那么 22221sin ,cos ,11u u x x u u -==++ 而2arctan ,x u =从而22.1dx du u =+ 于是()22222221sin sin 1cos 2211121111112212ln 2211tan tan ln tan .42222xdx x x u du u u u u u u u du u u u u C x x xC ++⎛⎫+ ⎪++⎝⎭=⎛⎫-+ ⎪++⎝⎭⎛⎫=++ ⎪⎝⎭⎛⎫=+++ ⎪⎝⎭=+++⎰⎰⎰例5求. 解u =,于是21,2,x u dx udu =+=从而所求积分为()222222111212arctan 12.u u dx udu dux u u du u u C u C =⋅=++⎛⎫=-=-+ ⎪+⎝⎭=+⎰⎰⎰⎰ 例6求解u =,于是322,3,x u dx u du =-=从而所求积分为223113113ln 13ln 1.2u duu u duu u u u C C =+⎛⎫=-+ ⎪+⎝⎭⎛⎫=-+++=+ ⎪⎝⎭⎰⎰例7 求解 设6x t =,于是56,dx t dt =从而所求积分为()()52223266111616arctan 16arctan .t t dt dt t t tdt t t C t C ==++⎛⎫=-=-+ ⎪+⎝⎭=+⎰⎰⎰例8求.解t =,于是()2222112,,,11x tdtt x dx x t t +===---从而所求积分为 ()()()22222222*********ln 1122ln 1ln 12ln 1ln .t t t t dt dtt t t dt t Ct t t t t C x C -=-⋅=----⎛⎫=-+=--+ ⎪-+⎝⎭=-++--+⎫=-++⎪⎪⎭⎰⎰⎰二、 定积分(1) 定积分概念,微积分基本定理,定积分得基本性质 (1) 定积分的概念1。
考研数学微积分知识点与技巧全解
考研数学微积分知识点与技巧全解考研数学中,微积分占据着至关重要的地位。
它不仅是后续课程的基础,也是考研数学中的重点和难点。
为了帮助广大考研学子更好地掌握微积分的知识和技巧,本文将对其进行全面的解析。
一、函数、极限与连续函数是微积分的基础概念之一。
要理解函数的定义、性质(奇偶性、周期性、单调性等)以及常见的函数类型(如幂函数、指数函数、对数函数、三角函数等)。
极限是微积分的核心概念之一。
极限的计算方法有很多,比如利用极限的四则运算法则、两个重要极限、等价无穷小替换、洛必达法则等。
在计算极限时,需要注意极限的存在性以及左右极限的情况。
连续是函数的一个重要性质。
要掌握函数在某点连续的定义以及连续函数的性质(如局部有界性、局部保号性等)。
判断函数的连续性通常需要从函数在该点的定义、左右极限以及函数值是否相等来考虑。
二、导数与微分导数是函数的变化率,反映了函数的单调性和极值情况。
导数的定义式要牢记,同时要掌握常见函数的求导公式(如基本初等函数的导数公式)以及求导法则(如四则运算求导法则、复合函数求导法则)。
微分是导数的一种应用,它可以近似计算函数的增量。
要理解微分的定义以及微分与导数的关系。
在求导数和微分时,要注意复合函数的层次,逐步进行求导。
对于一些复杂的函数,可以通过适当的变形或者换元来简化求导过程。
三、中值定理与导数的应用中值定理是微积分中的重要定理,包括罗尔定理、拉格朗日中值定理和柯西中值定理。
这些定理在证明等式和不等式、判断函数的单调性和极值、求曲线的凹凸性和拐点等方面有着广泛的应用。
利用导数判断函数的单调性,当导数大于零,函数单调递增;导数小于零,函数单调递减。
求函数的极值需要先求导数为零的点和导数不存在的点,然后通过判断这些点左右两侧导数的符号来确定是极大值还是极小值。
曲线的凹凸性和拐点可以通过二阶导数来判断。
二阶导数大于零,曲线凹;二阶导数小于零,曲线凸。
拐点是曲线凹凸性发生改变的点。
四、不定积分不定积分是求导的逆运算。
高中数学中的微积分解题技巧与实例分析
高中数学中的微积分解题技巧与实例分析微积分作为高中数学中的难点之一,是高中数学的重点和难点。
其在数学中有着重要的地位,它是研究变化的一个分支,从而深刻揭示了许多自然现象和科学规律。
本文将介绍一些高中数学中微积分解题的技巧,并给出一些实例进行分析。
一、导数与微分1. 导数的概念和几何意义函数在一点处的导数定义为函数在该点处的变化率,即函数曲线在该点处的切线斜率。
导数的几何意义是函数曲线在该点处的局部变化率,它可以描述变化速度的大小和方向。
2. 导数的求法和性质导数可以通过极限的方法求解,一般通过基本的导数公式和运算法则进行求解。
导数有几个基本性质:乘法法则、除法法则、链式法则、反函数求导法则等。
3. 微分的概念和几何意义微分是刻画函数局部变化的一种工具,它可以将函数在某一点的变化量与函数在该点的导数联系在一起。
微分在几何上表示为切线与函数曲线之间的距离。
4. 微分的求法和性质微分可以通过导数进行求解,一般通过微分定义式和微分运算法则进行求解。
微分有两个基本性质:可加性和可减性。
二、微积分中解题的技巧1. 信任定理技巧信任定理的本质是微积分中的中值定理,它可以将一个函数在两个点间的平均值与在这两个点间某点的函数取值联系起来。
在解题时,可以利用这个技巧来求函数在某个区间的平均值。
2. 变限积分技巧变限积分是微积分中一种重要的概念,它可以用来描述曲线下面与x轴之间的面积。
在解题时,变限积分可以用来求某个函数的定积分。
3. 求导与求极值技巧对于一些函数,求导可以帮助我们找到其极值点。
可以通过对导数进行求导,或利用导数的一阶和二阶条件进行求解。
在解题时,可以结合求导的求解方法,确定某函数的最值或其它极值。
三、微积分中实例的分析1. 线性变换函数的导数对于一个线性变换函数f(x)=ax+b,通过求导可以得出其导数为a。
这个结论在微积分的许多实例中都具有普遍适用性。
2. 一元函数的定积分对于一元函数的定积分,可以通过变限积分的方法求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分复习附解题技巧本页仅作为文档封面,使用时可以删除
This document is for reference only-rar21year.March
《微积分》复习及解题技巧
第一章 函数
一、据定义用代入法求函数值: 典型例题:《综合练习》第二大题之2
二、求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示)
对于用数学式子来表示的函数,它的定义域就是使这个式子有意义的自变量x 的取值范围(集合) 主要根据: ①分式函数:分母≠0 ②偶次根式函数:被开方式≥0 ③对数函数式:真数式>0
④反正(余)弦函数式:自变量 ≤1
在上述的函数解析式中,上述情况有几种就列出几个不等式组成不等式组解之。
典型例题:《综合练习》第二大题之1
补充:求y=x
x
212-+的定义域。
(答案:2
12<≤
-x )
三、判断函数的奇偶性:
典型例题:《综合练习》第一大题之3、4
第二章 极限与连续
求极限主要根据: 1、常见的极限:
2、利用连续函数:
初等函数在其定义域上都连续。
例:
3、求极限
的思路:
可考虑以下9种可能:
①0
0型不定式(用罗彼塔法则) ②
2
0C =0 ③∞
0=0
④01
C =∞ ⑤21C C ⑥∞
1C =0
⑦0
∞
=∞ ⑧
2C ∞=∞ ⑨∞
∞
型不定式(用罗彼塔法则)1sin lim 0
=→x x
x e x x
x =⎪⎭⎫
⎝
⎛+∞→11lim )0(01
lim >=∞→αα
x
x )
()(0
lim 0
x
f x f x x =→11
lim 1
=→x x 1)
()
(lim =→x g x f x α⎪⎩
⎪⎨⎧∞
≠=→)0(0
)(11lim 常数C C x f x α⎪⎩
⎪⎨⎧∞
≠=→)0(0)(22lim 常数C C x g x α
特别注意:对于f (x )、g (x )都是多项式的分式求极限时,解法见教材P70下总结的“规律”。
以上解法都必须贯穿极限四则运算的法则!
典型例题:《综合练习》第二大题之3、4;第三大题之1、3、5、7、8
补充1:若1)
1(sin 2
21lim =++-→b
ax x x x ,则a= -2 ,b= 1 . 补充2:21
221211111lim lim e x x x x x
x x x
x =⎪
⎪⎪⎪⎭⎫ ⎝
⎛-+=⎪⎭⎫ ⎝⎛-+-•-∞→∞→
补充3:
21121121121121...513131121)12)(12(1...751531311lim lim lim =
⎪⎭⎫ ⎝
⎛+-=
⎪⎭⎫
⎝⎛+--++-+-=⎥⎦⎤⎢⎣⎡+-++⨯+⨯+⨯∞→∞→∞→n n n n n n n n 补充4:
1ln lim 1
-→x x
x 1
11
lim 1
=→x x (此题用了“罗彼塔法则”)
型0
第三章 导数和微分
一、根据导数定义验证函数可导性的问题: 典型例题:《综合练习》第一大题之12 二、求给定函数的导数或微分: 求导主要方法复习:
1、求导的基本公式:教材P123
2、求导的四则运算法则:教材P110—111
3、复合函数求导法则(最重要的求导依据)
4、隐函数求导法(包括对数函数求导法) 6、求高阶导数(最高为二阶) 7、求微分:dy=y / dx 即可
典型例题:《综合练习》第四大题之1、2、7、9 补充:设y=22)(1arctgx x ++,求dy. 解:∵2222
1211122112
1x arctgx
x
x x arctgx x x y +++=+⋅
+⋅+⋅=' ∴dy=)121(2
2
x
arctgx x x dx y ++
+=⋅'dx
第四章中值定理,导数的应用
一、关于罗尔定理及一些概念关系的识别问题:
典型例题:《综合练习》第一大题之16、19
二、利用导数的几何意义,求曲线的切、法线方程:
典型例题:《综合练习》第二大题之5
二、函数的单调性(增减性)及极值问题:
典型例题:《综合练习》第一大题之18,第二大题之6,第六大题之2
第五章 不定积分 第六章 定积分
Ⅰ理论内容复习: 1、原函数:)()(x f x F ='
则称F (x )为f (x )的一个原函数。
2、不定积分:
⑴概念:f (x )的所有的原函数称f (x )的不定积分。
⎰+=C x F dx x f )()(
注意以下几个基本事实:
())()(x f dx x f ='⎰ ⎰+='C x f dx x f )()(
⎰=dx x f dx x f d )()( ⎰+=C x f x df )()(
⑵性质:⎰⎰≠=⋅)0()()(a dx x f a dx x f a 注意 []⎰⎰⎰±=±dx x g dx x f dx x g x f )()()()( ⑶基本的积分公式:教材P206 3、定积分: ⑴定义 ⑵几何意义
⑶性质:教材P234—235性质1—3 ⑷求定积分方法:牛顿—莱布尼兹公式 Ⅱ习题复习:
一、关于积分的概念题:
典型例题:《综合练习》第一大题之22、24、25、第二大题之11、14
二、求不定积分或定积分: 可供选用的方法有——
⑴直接积分法:直接使用积分基本公式
⑵换元积分法:包括第一类换元法(凑微分法)、第二类换元法 ⑶分部积分法
典型例题:《综合练习》第五大题之2、3、5、6 关于“换元积分法”的补充题一:
⎰⎰++=++=+C x x d x x dx 12ln 21
)12(1212112 关于“换元积分法”的补充题二:⎰-3
x xdx
解:设x -3=t 2,即3-x =t , 则dx=2tdt.
∴⎰
-3
x xdx
=⎰⋅+dt t t t 2)3(2=C t t +++⋅+612121
2 =C t t ++63
23=C x x +-+-36)3(3
23
关于“换元积分法”的补充题三:
⎰+8
031x
dx
解:设x=t 3,即
t =3
x ,则dx=3t 2dt.
当x=0时,t=0; 当x=8时,t=2. 所以
⎰+8
031x dx =0
21ln )1(21313)1(313202
202⎰⎰⎥⎦⎤⎢⎣⎡++-=⎥⎦⎤⎢⎣⎡++-=+t t dt t t t dt t =3ln3
(此题为定积分的第二类换元积分法,注意“换元必换限”,即变量x 换成变量t 后,其上、下限也从0、8变为0、2) 关于“分部积分法”的补充题一:
⎰⎰⎰
+-=-==C e x dx e xe xde dx xe x
x x x x )1( 关于“分部积分法”的补充题二:
C x arctgx dx x
x xarctgx arctgxdx ++-=+⋅
-=⎰⎰2
2
1ln 2111 关于“分部积分法”的补充题三:
⎰
e
xdx x 1
ln
=⎪⎪⎭⎫ ⎝
⎛-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=⎰⎰⎰121211ln 21ln 1ln 21ln 21221212212e x e xdx e x x x d x e x x xdx e
e e =)1(41)2121(211212122222+=+-=⎪⎪⎭
⎫ ⎝⎛-e e e e x e (此题为定积分的分部积分法)
三、定积分的应用(求曲线围成的平面图形面积): 典型例题:《综合练习》第六大题之4
注意:此题若加多一条直线y=3x ,即求三线所围平面图形的面积,则解法为——(草图略)
S=⎰⎰-+-31210)3()3(dx x x dx x x =⎰⎰-+3
1210)3(2dx x x dx x =13312301212322⎪⎭⎫ ⎝⎛-+⨯x x x =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛⨯-⨯+3123273192
31 =3
13(平方单位)
使用指南——本复习参考资料应当与人手一册的《综合练习题》配套使用并服从于《综合练习题》。
另外,请注意如下几点:
①本复习参考资料中的蓝色字体的“补
充”题是以往年级的部分应试复习题,对今年
9月份考试的同志来说,仅仅作为参考补充。
②《综合练习题》是我们复习重点中的重点,请
对照答案将所有
..题目
..完整地做一遍(使题目与答案相结合而不要相分离,以便需要时加快
查找的速度和准确度)。
③请将上述做好的
...《综合练习题》随身携带,经常复习、记忆,为应试作好准备;
④考试时请注意审题,碰到实在不会做的大题,
如果你发现只是《综合练习题》上的题目改变
了数字,那么请将你能够知道的、原来那个题
目的解法步骤完整地写出来,也能获得该题一
部分的分数。
对于填空、选择这样的小题,尽
你所能去做,不要留下空白!。