《等比数列》第一课时教学设计

合集下载

等比数列教学设计公开课优质课获奖版

等比数列教学设计公开课优质课获奖版

等比数列教学设计公开课优质课获奖版
§2.4等比数列(第一课时)
(人教A版.必修5)省优质课教案
本节课为人教A版高中数学教材必修模块五第二章第四节“等比数列”的第一课时.下面,我将从教材分析、学法分析、教法分析、教学过程、教学问题诊断、预期效果等六个方面对本课时的教学设计进行说明。

一、教材分析
教学内容
本课时的主要学习内容是:理解等比数列的定义、等比数列的通项公式和等比中项,并能运用所学知识解决相关问题。

教材特点
有了数列和等差数列、等差数列前n项和的学习经历,等比数列概念的引入,等比数列的通项公式和等比中项就相对容易了。

等比数列的概念是通过具体实例引入的,说明等比数列问题来自实践,便于学生接受。

教学中,学生往往容易忽略等比数列的项和公比的特点,要加强对项、公比的特点研究。

在理解等比数列的概念的基础上,掌握等比数列的通项公式和等比中项,是本节的重点,而理解等比数列的概念、通项公式和等比中项,让学生逐步挖掘等比数列内在的其它一些特点。

教材遵循“由特殊到一般”“观察比较”以及“归纳类比”的学习规律,引导学生自主、合作、交流、探究。

教材地位与作用
等比数列是学生学习了数列的概念与简单表示,等差数列,等差数列的前n想和之后的又一类特殊的数列,这类数列在今后学习过程中,特别是培养学生发现数的内在规律密不可分的,而且利用等比数列可以解决一些实际问题.例如:人。

高中数学选择性必修二 4 3 1(第1课时)等比数列的概念及通项公式 教案

高中数学选择性必修二 4 3 1(第1课时)等比数列的概念及通项公式 教案

等比数列的概念及通项公式教学设计
将一张很大的薄纸对折,对折30次后有多厚?
不妨假设这张纸的厚度为0.01毫米。

1 看一看纸的厚度的变化
提示:
折1次折2次折3次折4次 (30)
厚度2 (21)4 (22)8 (23)16 (24) (230)
反之,任给指数函数
f(x)=ka x (k,a为常数,k≠0,
a>0且 a≠1)
则f(1)=ka ,f(2)=ka2,⋯,f(n)=ka n,⋯
构成一个等比数列{ka n},其首项为ka,公比为a.
等比数列的单调性
由等比数列的通项公式与指数型函数的关系可得等比数列的单调性如下:
(1)当a1>0,q>1或 a1<0,0<q<1时,等比数列{a n}为递增数列;
(2)当a1>0,0<q<1或 a1<0,q>1时,等比数列{a n}为递减数列;
(3)当q=1时,数列{a n}为常数列;
(4)当q<0时,数列{a n}为摆动数列.
下面,我们利用通项公式解决等比数列的一些问题.
例1 若等比数列{a n}的第4项和第6项分别为。

高三数学《等比数列》教学设计[推荐五篇]

高三数学《等比数列》教学设计[推荐五篇]

高三数学《等比数列》教学设计[推荐五篇]第一篇:高三数学《等比数列》教学设计作为一名辛苦耕耘的教育工作者,通常会被要求编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。

教学设计应该怎么写才好呢?下面是小编为大家收集的高三数学《等比数列》教学设计,仅供参考,希望能够帮助到大家。

教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。

教学难点:遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。

教学过程:一.复习准备1.等差数列的通项公式。

2.等差数列的前n项和公式。

3.等差数列的性质。

二.讲授新课引入:1“一尺之棰,日取其半,万世不竭。

”2细胞分裂模型3计算机病毒的传播由学生通过类比,归纳,猜想,发现等比数列的特点进而让学生通过用递推公式描述等比数列。

让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式注意:1公比q是任意一个常数,不仅可以是正数也可以是负数。

2当首项等于0时,数列都是0。

当公比为0时,数列也都是0。

所以首项和公比都不可以是0。

3当公比q=1时,数列是怎么样的,当公比q大于1,公比q小于1时数列是怎么样的?4以及等比数列和指数函数的`关系5是后一项比前一项。

列:1,2,(略)小结:等比数列的通项公式三.巩固练习:1.教材P59练习1,2,3,题2.作业:P60习题1,4。

第二课时5.2.4等比数列(二)教学重点:等比数列的性质教学难点:等比数列的通项公式的应用一.复习准备:提问:等差数列的通项公式等比数列的通项公式等差数列的性质二.讲授新课:1.讨论:如果是等差列的三项满足那么如果是等比数列又会有什么性质呢?由学生给出如果是等比数列满足2练习:如果等比数列=4,=16,=?(学生口答)如果等比数列=4,=16,=?(学生口答)3等比中项:如果等比数列.那么,则叫做等比数列的等比中项(教师给出)4思考:是否成立呢?成立吗?成立吗?又学生找到其间的规律,并对比记忆如果等差列,5思考:如果是两个等比数列,那么是等比数列吗?如果是为什么?是等比数列吗?引导学生证明。

人教课标版高中数学必修五《等比数列(第1课时)》教案(1)-新版

人教课标版高中数学必修五《等比数列(第1课时)》教案(1)-新版

2.4.1等比数列第一课时一、教学目标1.核心素养通过学习等比数列提高从数学角度发现和提出、分析和解决问题的能力,锻炼数学抽象和逻辑推理能力.2.学习目标(1)由特殊到一般,理解并会判断等比数列.(2)掌握等比数列通项公式及证明.(3)应用等比数列知识解决相应问题.3.学习重点(1)等比数列定义及判断.(2)通项公式的推导.4.学习难点会用等比数列解决相应问题.二、教学设计(一)课前设计1.预习任务任务1阅读教材,思考:什么是等比数列?任务2观察等比数列,总结等比数列的规律,前后两项的比值可以是任意实数吗?任务3结合之前的探索,能写出其通项公式吗?等比数列何时递增,递减,或者变成等差数列?2.预习自测1.数列4,16,64,256…是什么数列?第五项是多少?答案:等比数列;1024.【知识点:等比数列】【解析】等比数列的通项公式是:11n n a a q -=2.在等比数列{}n a 中,472,16,a a ==则n a =________..23-n 答案:【知识点:等比数列通项公式】【解析】等比数列的通项公式是:11n n a a q -=,由题意求出n 和q 3.已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( ) A .-3 B .±3 C .-3 3 D .±3 3 答案:C【解析】∵-1,x,y,z ,-3成等比数列,∴2y =xz =(-1)×(-3)=3,且2x y =->0,即y”的什么条件?有都”是“对任意正整数是公比,则“是首项,等比数列中n n a a n q a q a >>>+111,1,0,.4答案:充分不必要条件.【知识点:等比数列通项公式,充要条件的判断;数学思想:推理论证能力】【解析】充分不必要条件.由q >1,得1n n q q ->,又10a >得111n n a q a q -⋅>⋅即1n a +>n a 反之不然.取11n n a a q -==)21(n-,可得 1n a +>n a ,但1a =21-(二)课堂设计 1.知识回顾 (1)等差数列概念.(2)等差数列通项公式及推导. 2.问题探究问题探究一 借助等差数列的定义,类比得到等比数列定义 ●活动一 回顾旧知,夯实基础.之前我们学习了等差数列,我们是怎样定义并且判断等差数列?如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:1n n a a d +-= (n ∈N *,d 为常数),或1n n a a d --= (2,n d ≥为常数). ●活动二 探索规律,发现新知. 类比于等差数列,观察以下几个数列2,4,8,16,32…;1,1,1,1,1…;1,-1,1,-1,1,-1…;1,0,1,0,1,0,…;3,9,27,81,243,…;它们都有着怎样的规律 ●活动二 新旧整合,得出结论.结合活动一与活动二,能给出等比数列定义吗?如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达式:1n n a q a -=(2,n ≥q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).问题探究二 类比等差数列通项公式及性质,结合等比数列定义得到等比数列通项公式和性质,●活动一 温故知新,迎难而上. 回忆等差数列,写出通项公式.通项公式:()11n a a n d =+-.推广:()n m a a n m d =+-(m,n ∈N *). ●活动二 类比旧知得出新知.在等比数列中,是否只需确定某些量就可以写出通项公式?只需确定首项与公比即可得到通项公式11n n a a q -=.推广: n m n m a a q -=,公比为非0常数.●活动三 思维谨慎,扎实前进. 能否给出通项公式证明?借助定义,a na n -1=q (n ≥2,q 为非0常数),列出n -1个式子,累乘后得到通项公式. ●活动四 夯实基础,勇于探索.等差数列中,公差大于0时,数列递增;反之递减.等比数列也有相似结论吗?请归纳总结.首相大于0,公比大于1时递增;公比大于0小于1时递减;首项小于0时,公比大于0小于1时递增,公比大于1时递减;首项不等于0,公比等于1时,既是等差又是等比;公比小于0时,为摆动数列.问题探究三●活动一 初步运用 基础知识的掌握例1.在等比数列{}n a 中,253618,9,1n a a a a a +=+==,则n =________. 【知识点:等比数列通项公式】 答案:6例2.在等比数列{}n a 中, 1a <0, 若对正整数n 都有1n n a a +<,那么公比q 的取值范围是?【知识点:等比数列通项公式】答案:由1n n a a +<得1111,,01n n n n a q a q q q q --<∴>∴<< ●活动二 能力提升 通项公式性质的运用例1. 数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =________.【知识点:等比数列性质】 答案:1.例2.在正项等比数列{}n a 中, 1n n a a +>,28466,5a a a a ⋅=+=,则57a a =( ) A.56 B.65 C.23D.32【知识点:等比数列性质】 答案:D 3.课堂总结 【知识梳理】(1)等比数列定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示. 数学语言表达式:1n n a q a -= (n ≥2,q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).(2)等比数列通项公式: 11n n a a q -=;通项公式的推广: n m n m a a q -=. 【重难点突破】(1)等比数列通项公式运用时为了减少计算量可以尝试使用其推广式. (2)公比0≠q 这是必然的,不存在公比为0的等比数列,还可以理解为等比数列中,不存在数值为0的项,各项不为0的常数列既是等差数列又是等比数列;至于等比数列的增减,则可以从首项与公比的正负及范围,通过列不等式进行确定. (3)等比数列的定义中有“从第二项起”“同一个常数”的描述应与等差数列中的描述理解一致.(4)等比数列的通项公式可以用迭代法累乘法推导,其中累乘法与累加法相似,可做一做比较,便于掌握. 4.随堂检测 一、选择题1.在等比数列{}n a 中,64,852==a a ,则公比q 为( ) A .2 B .3 C .4 D .8 答案:A.解析:【知识点:等比数列的通项公式】 二、解答题1.求下列各等比数列的通项公式: (1)21-=a ,83-=a . (2)51=a ,且12+n a n a 3-=. (3)51=a ,且11+=+n na a n n . 答案:(1)n n n n n n a a )2()2)(2(22)2(11-=--=-=-=--或.(2)1)23(5--⨯=n n a .(3)na n a n 311==.解析:【知识点:等比数列通项公式】 2.求以下等比数列的第4项与第5项: (1)5,-15,45,……. (2)1.2,2.4,4.8,…….(3)213,, (328).答案:(1)1354-=a ,4055=a . (2)6.94=a ,2.195=a . (3)4a =329,5a =12827. 解析:【知识点:等比关系的确定;数学思想:推理论证能力】3.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 答案:这四个数为0, 4, 8, 16或15, 9, 3, 1.解析:【知识点:等比关系的确定;数学思想:推理论证能力】 设四个数依次为x,y,12-y,16-x .依题意,有 x +(12−y )=2y ①()()21612y x y -=-②由①式得x =3y -12 ③将③式代入②式得y (16-3y +12)=(12-y )2,整理得y 2-13y +36=0,解得124,9y y ==,代入③式得120,15x x ==.从而得所求四个数为0,4,8,16或15,9,3,1. 5.(1)已知{}n a 是等比数列,且2435460,225n a a a a a a a >++=, 求53a a +.(2)c a ≠,三数c a ,1,成等差数列,22,1,c a 成等比数列,求22ca ca ++. 答案:(1) 3a +55=a . (2)3122=++c a c a .解析:【知识点:等差数列的性质,等比数列】(1)∵{}n a 是等比数列,∴()224354635225a a a a a a a a ++=+=.又0n a >, ∴355a a +=.(三)课后作业基础型自主突破 一、填空题1.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a = .答案: 1a =解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列{}n a 的公比为q ,∵ 2482a a a ⋅=211a a ==,∴ 1a =2.设数列{}n a 是首项为1,公比为-3的等比数列12345||||||a a a a a ++++=______. 答案:121.解析:【知识点:等比数列】∵数列{}n a 是首项为1,公比为-3的等比数列,∴()1113n n n a a q --==-,∴123451,3,9,27,81,a a a a a ==-==-=∴则12345||||||1392781121a a a a a ++++=++++=. 3.等比数列{}214n +的公比为 ______ . 答案:16.解析:【知识点:等比数列的通项公式】 等比数列的通项公式是:11n n a a q -=4.若1、a 、b 、c 、9成等比数列,则b = ______ . 答案:3.解析:【知识点:等比数列】利用等比数列通用公式11n n a a q -=求出相应的值421531,9,3a a q a q b ======,3b ∴=5.公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,则210log a = ______ . 答案:5.解析:【知识点:等比数列通项公式,对数的运算性质】∵公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,∴7a =4,∴1a •26=4,解得1a =42-,∴9495101222a a q -==⨯=,∴52102log log 25a ==. 故答案为:5.能力型师生共研 一、选择题1.在数列{}n a 中,1111,,4n n a a a +==则99a =________. A.125504B.2500C.124504D.2401 答案:B解析:【知识点:等比关系的确定;数学思想:推理论证能力】 二、填空题1.设{}n a 为公比1q >的等比数列,若2004a 和2005a 是方程24830x x ++=的两根,则=+20072006a a _________. 答案:-18解析:【知识点:等比数列,根与系数的关系】根据{}n a 为公比q >1的等比数列, 2004a 和2005a 是方程4x 2+8x +3=0的两根,可得2004a =-2005=2006+2007a =-18. 三、证明题1.已知:b 是a 与c 的等比中项,且c b a ,,同号,求证:3a b c ++等比数列答案:见解析解析:【知识点:等比数列】 由题设:ac b =2得:22333)3(333ca bc ab bc b ab b c b a abc c b a ++=++=⨯++=⨯++ ∴3,3,3abc ca bc ab c b a ++++也成等比数列.探究型多维突破一、选择题1.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( )A .1(0,2+B .C .D .)251,251(++- 答案:D.解析:【知识点:等比关系的确定,解三角形;数学思想:推理论证能力】 设三边:a 、qa 、2q a 、q >0则由三边关系:两短边和大于第三边a +b >c ,即 (1)当q ≥1时a +qa >2q a ,等价于解二次不等式:21q q --<0,由于方程2q q --(2)当q <1时,a 为最大边,qa +2q a >a 即得2q q --⎭故选D . 二、证明题1.设d c b a ,,,均为非零实数,()()0222222=+++-+c b d c a b d b a ,求证:c b a ,,成等比数列且公比为d答案:见解析解析:【知识点:等比关系的确定;数学思想:推理论证能力,运算求解能力,创新意识,应用意识】证明:证一:关于d 的二次方程()()0222222=+++-+c b d c a b d b a 有实根, ∴()()0442222≥+-+=∆b a c a b ,∴()022≥--ac b则必有:02=-ac b ,即ac b =2,∴c b a ,,成等比数列设公比为q ,则aq b =,2aq c =代入()()024********=+++-+q a q a d aq a aq d q a a∵()0122≠+a q ,即0222=+-q qd d ,即≠=q d证二:∵()()0222222=+++-+c b d c a b d b a ∴()()022222222=+-++-c bcd d b b abd d a∴()()022=-+-c bd b ad ,∴b ad =,且c bd =∵d c b a ,,,非零,∴d bca b == 自助餐 一、选择题1.等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根,则8a =( )A.2±B.答案:C.解析:【知识点:等比数列,根与系数的关系】等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根, 6106a a +=-,可得261082a a a ⋅==,6a 和10a 都是负数,可得8a =-2..故选:C .2.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a =( )A. 0.5B. 22答案:C.解析:【知识点:等比数列】设公比为q ,由已知得()22841112a q a q a q ⋅=,即q 2=2,又因为等比数列{}n a 的公比为正数,所以q =2.22=,故选C.2.等比数列{}n a 的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则10a =( )A.32 64.B C.512 D.1024 答案:C.解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列的项数为2n ,∵所有的奇数项之和为85,所有的偶数项之和为170, ∴S 奇:S 偶=1:2.∵S 奇=1321...n a a a -+++,S 偶=242...n a a a +++=q S 奇由题意可得,q =2,∴9910112512a a q ==⨯=.故选:C .3.在等比数列{}n a 中, 11,2,32n a q a ===,则n =( )A.5B.6C.7D.8 答案:B.解析:【知识点:等比数列的通项公式】11n n a a q -=,求得n =84.等比数列{}n a 中, 385,2a a ==,则数列{}lg n a 的前10项和等于( )A.2B.5C.1050D.lg答案:B.解析:【知识点:等比数列的通项公式,对数的运算性质】由题意得,等比数列{}n a 中, 385,2a a ==,所以385610,a a a a ⋅=⋅=,由等比数列的性质得, ()551231056...10a a a a a a ⋅⋅⋅=⋅=,所以数列{}lg n a 的前10项和1210l g l g ...l g 5n S a a a =+++=,故选:B . 6.数列{}n a 的首项1,数列{}n b 为等比数列且1n n na b a +=,若10112b b ⋅=,则21a =( ) A.20 B.512 C.1013 D.1024 答案.D.解析:【知识点:等比数列的通项公式】由1n n n a b a +=可知202120232121,,,a a b a a b a a b === ,所以202123122021a a a a a a b b b ⋅⋅⋅=⋅⋅⋅ ,又数列{}n b 为等比数列,所以1202191011b b b b b b ===L ,于是有121102a a =,即110212a a =,又11=a ,所以102421021==a ,故答案选D. 二、填空题1.已知数列{}n a 为等比数列,且5a =4,9a =64,则7a =____________. 答案:16.解析:【知识点:等比数列的通项公式】11n n a a q -=,由已知条件求出通项公式1124n n a -=⋅,所以716a =.2.数列{}n a 中, 112,n n a a a cn +==+(c 是常数,n =1,2,3,…),且123,,a a a 成公比不为1的等比数列.则c 的值是 ______ .答案:2.解析:【知识点:等比数列】∵112,n n a a a cn +==+,∴232,23,a c a c =+=+又∵123,,a a a 成公比不为1的等比数列,∴()()22c 223c +=+,即c 2-2c=0解得c=2,或c=0,故答案为23.若公比不为1的等比数列{}n a 满足()21213•13log a a a ⋯=,等差数列{}n b 满足77b a =,则1213b b b +⋯+的值为 ______ . 答案:26.解析:【知识点:等比数列通项公式,等差数列前n 项和】 ∵公比不为1的等比数列{a n }满足()21213•13log a a a ⋯=,∴()()()13212132727•1313log a a a log a log a ⋯===,解得7772,2,a b a ===,由等差数列的性质可得777121372,2,...1326a b a b b b b ===+++==,故答案为:26 三、解答题1.在等比数列{}n a 中, 5142-=15,-=6a a a a ,求3a 和q . 答案:见解析解析:【知识点:等比数列通项公式】,6=-,15=-}中中在等比数列{2415a a a a a n 答案:.4=,1=时,2=q 当31a a2.设{}n a 是一个公差为d (d ≠0)的等差数列,它的前10项和10110S =且124,,a a a 成等比数列,求数列{}n a 的通项公式. 答案: n a =2n .解析:【知识点:等差数列前n 项和,等比数列】∵124,,a a a 成等比数列,∴2214a a a =又∵{an}是等差数列,∴2141,3a a d a a d =+=+, ∴()()21113a d a a d +=+,即222111123a a d d a a d ++=+,化简可得1a d =,∵101101092110S a d =+⨯=,∴11045110a d +=.又∵1a d =,∴55d =110,∴d =2, ∴()112n a a n d n =+-=3.已知数列{}n a 的奇数项成等差数列,偶数项成等比数列,公差与公比均为2,并且2415798,a a a a a a a +=++=. (1)求数列{}n a 的通项公式;(2)求使得1212m m m m m m a a a a a a ++++⋅⋅=++成立的所有正整数m 的值. 答案:见解析解析:【知识点:等比数列,等比数列通项公式】31517142622,4,6,2,4a a a a a a a a a a =+=+=+==Q 2415798,a a a a a a a +=++=2211212124,2642a a a a a a a a ∴+=+++++=++121,2a a ∴==∴na =⎩⎨⎧为奇数为偶数n n n n,,22; (2)∵1212m m m m m m a a a a a a ++++⋅⋅=++成立, ∴由上面可以知数列{}n a 为:1,2,3,4,5,8,7,16,9,… 当m =1时等式成立,即1+2+3=-6=1×2×3;等式成立. 当m =2时等式成立,即2×3×4≠2+3+4;等式不成立. 当m =3、4时等式不成立; 当m ≥5时,∵12m m m a a a ++⋅⋅为偶数, 12m m m a a a ++++为奇数, ∴可得m 取其它值时,不成立, ∴m =1时成立.。

等比数列(第一课时:等比数列的概念)

等比数列(第一课时:等比数列的概念)

2.4等比数列(第一课时:等比数列的概念)--------高二数学组李丁丁教学目标1、知识与技能:理解等比数列的概念,推导并掌握通项公式。

2、过程与方法:通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析和逻辑推理能力。

3、情感、态度与价值观:通过等比数列概念的归纳,进一步培养学生严密的思维习惯以及实事求是的科学态度。

教学重点与难点重点:等比数列的定义、通项公式的推导。

难点:等比数列通项公式的初步应用。

教学过程一、问题情境首先请同学们看以下几个事例(幻灯片展示)情境1、国王奖赏国际象棋发明者的事例,发明者要求:第1个方格放1颗麦粒,第2个方格放2颗麦粒,第3个方格放4颗麦粒,第4个方格放8颗麦粒,以此类推,直到第64个方格,应该放多少颗麦粒,国王能否满足他的要求?情境2、“一尺之锤,日取其半,万世不竭。

”情境3、一种计算机病毒可以查找计算机中的地址簿,通过邮件进行传播。

如果把病毒制造者发送病毒称为第一轮。

邮件接收者发送病毒称为第二轮,以此类推,假设每一台计算机感染20台计算机,那么在不重复的情况下,这种病毒每一轮感染的计算机构成什么样的数列?问题1:上述例子可以转化为什么样的数学问题?问题2:上述例子有何共同特点?二、学生活动通过观察、联想、发现:1、上述例子可以与数列联系起来(有等差数列的学习做基础)2、得到以下3个数列:① 1,2,22,…,263② 1,,,4121…,n21⎪⎭⎫ ⎝⎛,… ③ 1,20,202,203,…,通过讨论,得到这些情境的共同特点是从第二项起,每一项与它前面一项的比都相等(等于同一个常数)三、 数学建构1、问题:①②③这样的数列和等差数列一样是一类重要的数 列,谁能试着给这样的数列取个名字?(学生通过联想、尝试、得出最恰当的命名:等比数列)2、归纳总结,形成等比数列的概念一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0)(引导学生经过类比等差数列的定义得出)3、对等比数列概念的深化理解问题1:上述三例的公比分别是什么?问题2、刚才我们得到了等比数列的概念,是用文字语言来表达的,但是在使用时往往需要符号化,请同学们类比等差数列,将等比数列定义的内容用数学表达式写出(由学生活动得出,判定方法:)(1为常数q q a a nn =+ 问题3、在学习等差数列时,我们可以用公差d ,项数n 以及首项1a 表示数列的任一项,也就是可以表示它的通项公式n a ,那么在等比数列中,要表示该数列,需先确定几个条件?怎样用这些条件表示这个等比数列的每一项?(启发引导,引导学生类比等差数列大胆尝试,讨论回答)归纳法:根据等比数列的定义:3134212312q q q a a a q a a a q a a =====,, ,…,∴11-=n n q a a (分析式子结构:1、只要知道q a ,1可求等比数列 中的任一项;2、任一项都可表示成q a 和1的形式,知三求一)四、 数学运用例3、一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项。

等比数列教学案

等比数列教学案

等比数列教学案篇一:等比数列第一课时教案等比数列的定义教案内容:等比数列教学目标:1.理解和掌握等比数列的定义;2.理解和掌握等比数列的通项公式及其推导过程和方法;3.运用等比数列的通项公式解决一些简单的问题。

授课类型:课时安排:1教学重点:等比数列定义、通项公式的探求及运用。

教学难点:等比数列通项公式的探求。

教具准备:多媒体课件教学过程:(一)复习导入1.等差数列的定义2.等差数列的通项公式及其推导方法3.公差的确定方法.4.问题:给出一张书写纸,你能将它对折10次吗?为什么?(二)探索新知1.引入:观察下面几个数列,看其有何共同特点?(1)-2,1,4,7,10,13,16,19,(2)8,16,32,64,128,256,(3)1,1,1,1,1,1,1,(4)1,2,4,8,16,263请学生说出数列上述数列的特性,教师指出实际生活中也有许多类似的例子,如细胞分裂问题.假设每经过一个单位时间每个细胞都分裂为两个细胞,再假设开始有一个细胞,经过一个单位时间它分裂为两个细胞,经过两个单位时间就有了四个细胞,,一直进行下去,记录下每个单位时间的细胞个数得到了一列数这个数列也具有前面的几个数列的共同特性,这就是我们将要研究的另一类数列——等比数列.2.等比数列定义:一般地,如果一个数列从第二项起,每一项与它的前一....项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列..的公比;公比通常用字母q表示(q0),3.递推公式:an1∶anq(q0)对定义再引导学生讨论并强调以下问题(1)等比数列的首项不为0;(2)等比数列的每一项都不为0;(3)公比不为0.(4)非零常数列既是等比数列也是等差数列;问题:一个数列各项均不为0是这个数列为等比数列的什么条件?3.等比数列的通项公式:【傻儿子的故事】古时候,有一个人不识字,他不希望儿子也像他这样,他就请了个教书先生来教他儿子认字,他儿子见老师第一天写“一”就是一划,第二天“二”就是二划,第三天“三”就是三划,他就跑去跟他父亲说:“爸爸,我会写字了,请你叫老师走吧!”这人听了很高兴,就给老师结算了工钱叫他走了。

《等比数列的前n项和》(第一课时)教学设计

《等比数列的前n项和》(第一课时)教学设计

《等比数列的前n项和》(第一课时)教学设计教学目标:知识与技能:了解等比数列的概念和性质,掌握等比数列通项公式和前n项和公式的推导和应用。

情感态度价值观:培养学生对数学的兴趣和探究精神,培养学生合作学习和独立思考的能力。

教学重点与难点:难点:等比数列的性质和推导的逻辑思维。

教学准备:教学设备:投影仪、黑板、白板、计算器。

教学材料:教材、习题集。

教学过程:一、导入(5分钟)教师通过投影仪播放一段视频或展示一组图片,引入等比数列的概念。

视频或图片可以选择一组不断增大或减小的元素,让学生观察并思考,引导学生思考每个元素之间是否存在某种关系。

教师可以提问:1. 观察这组元素,你们觉得它们之间是否存在某种规律?2. 这组元素是否有一个公共的特点或性质?3. 你能用一句话来概括这组元素的规律吗?教师通过上面的引导引入等比数列的概念和性质,给出等比数列的定义:如果一个数列的任意两个相邻的数之间的比值都相等,那么就称这个数列为等比数列。

接着,教师给出等比数列的通项公式:对于等比数列an,如果其首项是a1,公比是r,那么第n项an的计算公式为:an = a1 * r^(n-1)三、示例与讲解(15分钟)教师选择一些实际生活中的例子,如存款的利息、人口增长等,给出具体的数列,引导学生分析其中的规律,并用等比数列的公式来计算相关问题。

示例:某银行的存款利率为每年5%,小明决定每年将存款利息再投资进去,问他每年的存款金额是多少?解析:假设小明的初始存款为a1,第一年的存款金额为a2,第二年的存款金额为a3,依此类推,可以得到等比数列an = a1 * (1 + 0.05)^(n-1)。

通过计算,可以得到小明每年的存款金额。

四、练习与巩固(20分钟)教师提供一些练习题,让学生运用等比数列的通项公式计算。

练习题:1. 已知等比数列的首项是2,公比是3,求第8项的值。

2. 已知等比数列的首项是5,第4项是320,求公比。

3. 已知等比数列的首项是1,公比是0.5,求前10项的和。

等比数列的概念和通项公式课时教学设计-高中数学人教A版2019选择性必修第二册教案

等比数列的概念和通项公式课时教学设计-高中数学人教A版2019选择性必修第二册教案

第1课时等比数列的概念和通项公式(一)教学内容等比数列的概念、等比数列的通项公式(一)教学目标1.通过具体实例,能归纳出等比数列的概念,并形成符号化定义;能根据定义探索归纳出等比数列的通项公式,能解释公式的含义和限制条件;能根据等比中项的概念写出出对应等式,发展数学抽象素养.2.通过解析式、图象等,能说出等比数列的通项公式与指数函数之间的共性与差异;会用函数的观点解释等比数列,发展数学抽象、逻辑推理素养.3.通过解方程组求等比数列的基本量,能得出等比数列的一些性质,会利用通项公式解决一些简单问题,着重提升数学运算素养.(三)教学重点及难点1.重点:等比数列的定义及通项公式.2.难点:等比数列通项公式的推导.(四)教学过程设计问题1:在前面我们已经学习了等差数列,我们知道,等差数列的特征是“从第2项起,每一项与它的前一项的差都等于同一个常数”,类比等差数列的研究思路和方法,从运算的角度出发,你觉得还有怎样的数列是值得研究呢?师生活动:(1)独立思考后,让学生代表回答.类比等差数列的概念,从加、减、乘、除运算的角度,学生回答的可能有三种数列:等和、等积和等商(比)数列(仿照等差数列命名)。

(2)教师追问1:你能举岀相应的例子吗?(3)学生举例,如:1,4,1,4,1;0,1,0,3,0,5,…;1,2,4,8,…等数列.教师引学生了解:相对于等和与等积数列,等比数列的性质更为丰富,在生活中的应用更广泛,本节课我们将要研究等比数列.(4)教师追问2:类比差数列研究路径,你认为应该研究等比数列的哪些内容?按怎样的路径展开研究?主要的研究方法有哪些?(5)师生共研:提出本单元的研究路径:背景→概念一通项公式→性质→前n项和公式→应用.设计意图:学生利用常用的四则运算类型,可以类比等差数列得出等和、等积与等商(比)数列的名称,通过对比分析确定将要研究的对象.这样的设计可以避免先入为主,体现了研究逻辑的完整性,能提升学生发现和提出问题的能力.为了不冲淡主题,等和与等积数列可作为例1:若等比数列n 的第4项和第6项分别为48和12,求n 的第5项.例2:已知等比数列{}n a 的公比为q ,试用{}n a 的第m 项m a 表示n a .例3:数列{}n a 共有5项,前三项成等比数列,后三项成等差数列,第3项等于80,第2项与第4项的和等于136,第1项与第5项的和等于132.求这个数列.设计意图:让雪学生学会等比数列基本量的求解运算,体会等比数列的独特性,归纳出等比数列运算的方法以及策略.(五)目标检测设计当堂检测1.在等比数列{}n a 中,1336a a =,2460a a +=.求1a 和公比q .2.对数列{}n a ,若点(),*()n n a n N ∈都在函数x y cq =的图象上,其中c ,q 为常数,且0c ≠,0q ≠,1q ≠,试判断数列{}n a 是否是等比数列,并证明你的结论.课后作业1.判断下列数列是否是等比数列.如果是,写出它的公比.(1)3,9,15,21,27,33;(2)1,1.1,1.21,1.331,1.4641;(3)13,16,19,112,115,118;(4)4,8-,16,32-,64,128-.2.已知{}n a 是一个公比为q 的等比数列,在下表中填上适当的数.n 是等比数列.(1)3a ,5a ,7a 是否成等比数列?为什么?1a ,5a ,9a 呢?(2)当1n >时,1n a -,n a ,1n a +是否成等比数列?为什么?当0n k >>时,n k a -,n a ,n k a +是等比数列吗?设计意图:检测和巩固等比数列的概念和通项公式。

4 等比数列(第一课时)一等奖创新教案

4 等比数列(第一课时)一等奖创新教案

4 等比数列(第一课时)一等奖创新教案《等比数列》第一课时教学设计【教学内容】人教A版高中数学必修5第2章第四节【教学对象】高一年级(下)理科平行班学生【课时安排】一课时【教材分析】1.内容简析本节内容先由师生共同分析一系列日常生活中的实际问题,提炼出其中存在的特殊数列来引出等比数列的概念,再由教师引导学生与等差数列类比探索等比数列的通项公式,并将等比数列的通项公式与指数函数进行联系,体会等比数列与指数函数的关系,既让学生感受到等比数列是现实生活中大量存在的数列模型,也让学生经历了从实际问题抽象出数列模型的过程。

在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想。

2.教材的地位与作用本节内容在教材中起到承上启下的作用。

一方面,学法的承上,本节课之前学习了等差数列,而等比数列和等差数列具有相似性,可以让学生从已有的学习经验出发,将研究等差数列的方法类比到等比数列,促进学生在数学学习活动中获得更扎实的基本技能和基本思想;另一方面,为后续进一步研究等比数列的性质、等比数列前项和公式,求一般数列通项公式做好准备。

3.教学目标确定从知识结构来看,本节核心内容是等比数列的概念及通项公式,可从等比数列的“等比”的特点入手,结合具体的例子来学习等比数列的概念。

从而可以确定如下教学目标(三维目标):(1)知识与技能:理解等比数列、等比中项的概念,掌握等比数列的通项公式及公式的推导,并学会用定义法证明等比数列(2)过程与方法:在教学过程中渗透方程、函数、特殊到一般等数学思想,提高学生观察、归纳、猜想、证明等逻辑思维能力以及计算能力(3)情感、态度与价值观:通过对等比数列通项公式的推导,培养学生发现意识、创新意识4.教学重点与难点重点:等比数列的定义及通项公式及其应用难点:通项公式的推导和应用5.学情分析学生在之前已经学习过“等差数列”的内容,对数列已经有了初步的认识,并且具有一定的的观察、分析、归纳能力,和类比思想。

等比数列教学设计一等奖

等比数列教学设计一等奖

等比数列教学设计一等奖《等比数列教学设计一等奖》这是优秀的教学设计一等奖文章,希望可以对您的学习工作中带来帮助!第1篇教学设计教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。

教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。

教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n—1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。

而这个数列就是我们今天要研究的等比数列了。

)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

这个常数叫做公比。

师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

等比数列性质课程设计

等比数列性质课程设计

等比数列性质课程设计一、课程目标知识目标:1. 学生能理解并掌握等比数列的定义及通项公式。

2. 学生能运用等比数列的性质解决相关问题,如求和、求项等。

3. 学生能了解等比数列在实际问题中的应用,如人口增长、复利计算等。

技能目标:1. 学生能通过观察、分析等比数列的规律,培养逻辑思维和抽象思维能力。

2. 学生能运用等比数列的性质,解决具有一定难度的数学问题,提高解题能力。

3. 学生能运用等比数列知识,解决实际问题,培养数学应用能力。

情感态度价值观目标:1. 学生在学习等比数列的过程中,培养对数学的兴趣和热情,增强自信心。

2. 学生通过合作交流,培养团队精神和沟通能力,形成积极向上的学习态度。

3. 学生认识到数学与现实生活的联系,体会数学的价值,树立正确的价值观。

课程性质:本课程为数学学科课程,以等比数列性质为主要内容,注重知识掌握与实际应用。

学生特点:学生处于高中年级,具备一定的数学基础,逻辑思维能力逐渐成熟,但需加强抽象思维和数学应用能力的培养。

教学要求:教师应结合学生特点,运用多样化教学手段,激发学生学习兴趣,注重培养数学思维和实际应用能力。

在教学过程中,将课程目标分解为具体学习成果,便于教学设计和评估。

二、教学内容1. 等比数列的定义及基本性质- 等比数列的概念- 等比数列的通项公式- 等比数列的公比及其对数列的影响2. 等比数列的运算- 等比数列的求和公式- 等比数列的乘法法则- 等比数列的除法法则3. 等比数列的应用- 实际问题中的等比数列模型- 人口增长与衰减问题- 复利计算问题4. 等比数列的性质证明- 等比数列通项公式的推导- 等比数列求和公式的推导- 等比数列性质的证明方法5. 综合练习与拓展- 各类等比数列问题的解题方法与技巧- 等比数列与其他数列的结合问题- 等比数列在实际问题中的拓展应用教学大纲安排:第一课时:等比数列的定义及基本性质第二课时:等比数列的运算第三课时:等比数列的应用第四课时:等比数列的性质证明第五课时:综合练习与拓展教学内容进度:第一周:1、2课时第二周:3、4课时第三周:5课时三、教学方法为了提高等比数列性质课程的教学效果,充分激发学生的学习兴趣和主动性,本课程将采用以下多样化的教学方法:1. 讲授法:- 对于等比数列的基本概念、性质、公式等理论知识,采用讲授法进行教学,使学生明确知识点,为后续学习打下基础。

等比数列的概念(教案)

等比数列的概念(教案)

§2.4 等比数列第1课时等比数列的概念与通项公式一、教学内容《等比数列》是普通高中课程标准试验教科书《数学》必修5第二章《数列》第四节,内容较多,设置了两个课时,第1课时为等比数列的概念及通项公式.等比数列在我们的学习和生活中有着广泛的实际应用,例如:物理、化学、生物等均有涉及,通过该内容的学习,能够培养学生的多种数学能力。

而且它在教材中起着承前启后的作用,一方面,等比数列是一种特殊的数列,与等差数列既有区别,也有联系,另一方面,它又对进一步学习数列及其应用等内容作准备,且等比数列又是高考的考点之一。

所以本节内容比较重要,地位较突出.二、教学目标1.知识与技能:①通过学习,能说出等比数列的概念,并会使用符号语言表示;②初步掌握等比数列的通项公式及其推导过程和方法;③运用等比数列的通项公式解决一些简单的有关问题.2.过程与方法:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,培养学生观察、比较、概括、归纳等数学能力及思想方法,增强应用意识.3.情感、态度与价值观:通过对等比数列概念的归纳,培养学生科学严谨的思维习惯以及合作探究的精神,体会类比思想.三、教学重难点1.重点:等比数列、等比中项的概念的形成,通项公式的推导及运用.2.难点:等比数列通项公式推导方法的获取.四、学情分析高一学生已经初步形成了自己的学习习惯,好奇心强,有着自主的探究能力和思考辨别能力.但通过考试成绩的分析可以看出,学生基础薄弱,知识的引入及理解都应多加强调,在教学中,需要多设计问题,化难为易,循序渐进,以问题串为载体引导学生分析问题,解决问题.五、教法与学法教法:1.直观演示法:利用多媒体课件直观的展示数列,便于学生观察,发现数列特征.2.活动探究法:引导学生通过创设生活情境获取知识,以学生为主体,使学生的独立探索性得到充分的发挥,培养学生的自学能力、思维能力、活动组织能力.3.集体讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神.学法:等差数列的概念及通项公式启发我们,使用类比的方法,学习等比数列的概念,通项公式的两种推导方法.六、教学用具多媒体,三角板,彩色粉笔,电子笔七、授课类型新授课八、教学过程(一)课前复习1.等差数列的概念2.通项公式.(二)新授课1.课堂探究1课本48页4个实例.①细胞分裂个数构成的数列②“一尺之锤,日取其半,万世不竭”,将“一尺之锤”看成单位“1”,得到的数列③计算机每轮感染的数量构成的数列④银行存款中,每一年的本利和得到的数列思考:类比等差数列的定义,这4个数列项与项之间都有什么共同特征?试将共同特征用语言叙述出来,并用符号表示.【师生活动】教师引导学生从生活中的实例出发,借助等差数列的概念进行类比推理.【设计意图】以学生熟悉的等差数列的概念为背景,通过思考,引导学生进行分析,使学生形成“等比数列是后一项与前一项的比是同一常数的数列”的感知,从而流畅自然的引出等比数列的概念.2.等比数列的概念一般地,如果一个数列从第..2.项起..,每一项与它的前一项的比.等于同一常数....,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,用字母q )0(≠q 来表示.用数学符号表示为:}{n a 是等比数列⇔),2,0(1+-∈≥≠=N n n q q a a n n 且 【师生活动】在上一个环节的基础上,教师引导学生给出等比数列的概念.【设计意图】流畅的引出等比数列的概念,使学生理解等比数列.3.对概念的再认识(1)公比是否能等于0? 等比数列中有为0的项吗?(2)公比为1的数列是什么数列?(3)既是等差数列又是等比数列的数列存在吗?(4)公比q>0的等比数列有什么特征?公比q<0的等比数列有什么特征?【师生活动】教师引导学生,观察等比数列中的各项的要求.【设计意图】使学生很自然的对等差、等比数列的异同点进行初步认知. 例1.判断下列数列是否为等比数列?若是,找出公比;若不是,请说明理由.① 1, 4, 16, 32.② 0, 2, 4, 6, 8.③ 1,-10,100,-1000,10000.④ 81, 27, 9, 3, 1.⑤ a a a a a ,,,,【师生活动】学生根据等比数列的概念进行判断.【设计意图】1.让学生体会等比数列中公比可正可负,可以大于1,也可以小于1.2.让学生体会等比数列中不能出现0.3.体会非零常数列既是等差数列,又是等比数列.4.课堂探究2 等比数列的通项公式)(11+-∈=N n q a a n n方法:累乘法【师生活动】教师引导学生回顾等差数列的通项公式推导过程,引导学生类比推导等比数列的通项公式.【设计意图】培养学生小组合作,类比推理的学习能力.5.对通项公式的再认识① 等比数列通项公式11-=n n q a a 中,是公比的...1-n 次方... ② 写出通项公式需已知的量是首项..与公比..,它们均不为...0.【师生活动】教师引导学生从等比数列的定义,通项公式的形式,推导过程,对通项公式进行再认识.【设计意图】熟练掌握等比数列的通项公式以及常用变形式.(三)练习导学案上的练习题九、课堂小结1.等比数列的概念2.等比数列的通项公式及推导方法 11-=n n q a a3.本节课所运用的数学思想方法十、课后作业练习册2.4.1等比数列的概念和通项公式十一、板书设计十二、教学反思(附页)。

等比数列教学课程设计

等比数列教学课程设计

等比数列教学课程设计一、课程目标知识目标:1. 让学生掌握等比数列的定义、通项公式及性质,能够准确理解和运用相关数学符号;2. 使学生能够运用等比数列的知识解决实际问题,如求和、求项数等;3. 让学生了解等比数列在实际生活中的应用,如金融、科学计算等领域。

技能目标:1. 培养学生运用等比数列性质进行数列分析、推理和计算的能力;2. 培养学生通过观察、分析等比数列问题,提出解题策略并进行有效求解的能力;3. 培养学生运用等比数列知识解决实际问题的能力,提高学生的应用意识和实践能力。

情感态度价值观目标:1. 培养学生对数学学科的兴趣和热情,增强学生对等比数列知识点的学习动力;2. 培养学生团队合作精神,通过小组讨论、互助学习等方式,使学生学会倾听、尊重和接纳他人的意见;3. 培养学生严谨、细致的学习态度,养成独立思考、自主探究的良好习惯。

课程性质:本课程为数学学科的基础课程,是学生在学习数列知识过程中的重要环节。

学生特点:学生处于具备一定数学基础知识和逻辑推理能力的年级,对数列的概念有一定了解,但对等比数列的深入理解和应用尚需引导和培养。

教学要求:教师应注重启发式教学,引导学生主动参与课堂讨论,关注学生的个体差异,提高学生的数学素养和应用能力。

在教学过程中,将课程目标分解为具体的学习成果,以便进行有效的教学设计和评估。

二、教学内容1. 等比数列的定义与性质- 等比数列的概念及数学表示;- 等比数列的通项公式;- 等比数列的常见性质及证明。

2. 等比数列的应用- 求等比数列的前n项和公式;- 求等比数列的项数;- 等比数列在实际问题中的应用案例分析。

3. 等比数列与其他数列的关系- 等比数列与等差数列的区别与联系;- 等比数列与多项式数列的互化;- 等比数列在数学分析中的应用。

教学大纲安排:第一课时:等比数列的定义与性质- 引入等比数列的概念;- 探讨等比数列的通项公式;- 分析等比数列的常见性质及证明。

《等比数列的前n项和》(第一课时)教学设计

《等比数列的前n项和》(第一课时)教学设计

《等比数列的前n项和》(第一课时)教学设计【摘要】本文介绍了《等比数列的前n项和》(第一课时)的教学设计内容。

在首先介绍了背景和教学目标,然后具体描述了教学内容。

在详细阐述了等比数列的概念和前n项和公式推导,以及教学方法、教学步骤和教学案例。

在结论部分进行了知识回顾、评价反思和展望。

通过本文,读者可以全面了解该课程的教学内容和设计思路,有助于教师和学生更好地掌握等比数列的相关知识。

【关键词】等比数列、前n项和、教学设计、教学目标、教学内容、概念、公式推导、教学方法、教学步骤、教学案例、知识回顾、评价反思、展望。

1. 引言1.1 背景介绍等比数列作为数学中重要的概念之一,是数列的一种特殊形式,其在实际应用中有着广泛的应用。

等比数列的前n项和是在等比数列的基础上进一步推导得到的一个重要公式,在数学推导和解题过程中具有重要作用。

在学习等比数列的前n项和之前,学生需要先掌握等比数列的概念及其性质,这样才能更好地理解前n项和的推导过程。

通过学习等比数列的前n项和,学生不仅能够提升自己的数学运算能力,还能锻炼自己的逻辑推理能力,培养自己的解决问题的能力。

通过本课时的学习,学生将能够掌握等比数列的前n项和公式的推导方法,加深对等比数列的理解,提高数学解题的能力。

教师将采用生动实例和互动教学的方式,让学生在轻松的氛围中掌握知识,提高学生的学习兴趣和主动性。

通过本课时的教学,希望能够激发学生对数学的兴趣,培养学生的数学思维和解决问题的能力。

1.2 教学目标教学目标旨在帮助学生在学习本课时内容后,能够掌握等比数列的概念和前n项和的计算方法。

具体包括以下几个方面:1. 理解等比数列的定义和性质,能够区分等比数列与等差数列的区别;2. 掌握等比数列的通项公式和前n项和的计算公式,能够正确应用于实际问题中;3. 培养学生发现问题、分析问题、解决问题的数学思维能力;4. 提高学生的数学计算和推导能力,培养学生良好的数学学习习惯和方法;5. 激发学生对数学的兴趣,增强数学学习的自信心,为进一步学习数学打下基础。

等比数列的概念和通项公式教案

等比数列的概念和通项公式教案

等比数列的概念和通项公式教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其性质。

2. 引导学生推导等比数列的通项公式,并能灵活运用通项公式解决相关问题。

3. 培养学生的逻辑思维能力、运算能力及解决实际问题的能力。

二、教学内容1. 等比数列的概念:介绍等比数列的定义、性质及判定方法。

2. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。

3. 等比数列的求和公式:介绍等比数列前n项和的公式,并解释其推导过程。

三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式及求和公式。

2. 教学难点:等比数列通项公式的推导和应用。

四、教学方法1. 采用讲授法,讲解等比数列的概念、性质、通项公式及求和公式。

2. 利用案例分析,让学生通过实际问题理解等比数列的应用。

3. 开展小组讨论,引导学生探讨等比数列的性质和通项公式的推导过程。

五、教学安排1. 第一课时:介绍等比数列的概念和性质。

2. 第二课时:推导等比数列的通项公式,解释其意义。

3. 第三课时:讲解等比数列的求和公式,并进行案例分析。

4. 第四课时:开展练习,巩固等比数列的相关知识。

5. 第五课时:总结等比数列的概念、性质、通项公式及求和公式,进行拓展讲解。

六、教学策略与方法1. 案例分析:通过分析实际问题,让学生了解等比数列在生活中的应用,提高学生的兴趣和积极性。

2. 小组讨论:组织学生进行小组讨论,培养学生的团队合作意识和解决问题的能力。

3. 练习巩固:布置相关的练习题,让学生在实践中巩固等比数列的概念、性质和公式。

七、教学评价1. 课堂问答:通过提问,了解学生对等比数列概念、性质和公式的掌握情况。

2. 练习解答:检查学生练习题的完成情况,评估学生对等比数列知识的应用能力。

3. 小组讨论:评价学生在团队合作中的表现,包括分析问题、解决问题的能力。

八、教学拓展1. 探索等比数列的其他性质:引导学生深入研究等比数列的其他性质,如等比数列的项的符号规律、等比数列的项的绝对值规律等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等比数列 (第一课时)》教学设计
一、教学任务和目标
(一)教学任务分析:通过观察、分析、归纳、猜想、类比等思维活动,展示等比数列概念的形成与指数函数的对应等的深化过程;体会研究等比数列通项公式简单归纳方法:特殊到一般的过程。

(二)教学目标
知识与技能:理解并掌握等比数列的定义和通项公式,并加以初步应用。

过程与方法:通过概念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到一般的数学思想,培养观察、分析、归纳、猜想、概括等思维能力。

情感、态度与价值观:培养勇于探索、大胆尝试与创新的精神,养成科学、良好的学习习惯和品质。

(三)教学重、难点
教学重点:等比数列概念的形成与深化,等比数列通项公式的推导与应用
教学难点:等比数列概念的深化,等比数列的判定、证明和应用二、教法与学法
(一)教学方法分析:本节课是《等比数列》第一课时,核心任务是概念的本质理解,而概念教学应注重概念的形成过程,引导学生主动探索、发现、类比和归纳,因此本节课采用教为主导、学为主体、
练为主线的教学方法,培养学生的学习热情,发挥学生的主动性和创造性。

(二)学法分析:一方面,学生领会数学概念学习的一般过程,并主动探索概念的形成;另一方面,由于等比数列与等差数列在内容上是完全平行的,因此,学生可以将类比等差数列的概念形成和拓展过程,来构建等比数列的知识系统。

三、教学过程
(一)复习引新
等差数列与等比数列的内容平行,因此类比法是本节课学生学习过程中采用的主要数学方法。

学生已经学习过等差数列相关内容和思想方法,因此本节课先复习等差数列知识点,为类比思想的应用提供基础。

问题1:等差数列的定义是什么?
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

问题2:等差数列的通项公式是什么?如何推导该公式?
等差数列通项公式:1(1)
n
a a n d
推广公式:()
n m
a a n m d
推导过程:方法一:不完全归纳法:归纳、猜想。

方法二:累加法
问题3:等差数列的通项公式与相应的一次函数解析式之间有何
区别和联系?
等差数列通项公式是数列的项n a 关于项数n 的一次函数,它的定义域是正整数集或其子集,其图像是对应的一次函数图像上孤立的一群点。

(二)新课教学
1、等比数列概念的形成
教师呈现:在日常生活中,我们还会遇上下面一些特殊的数列: (1)2,4,8,16, 32… (2)1,111,,,24
8
(3)-1,2,-4,8,… (4)2,2,2,2,2,…
问题1:以上四个数列有什么共同特点?
从第2项起,每一项与前一项的比分别等于2,12
,-2,1,归纳为从第2项起,每一项与前一项的比都等于同一个常数。

问题2:类比等差数列的定义,试归纳出等比数列的定义? 一般地,如果一个数列从第2项起,每一项与前一项的比等于同一个常数,那么这个数列就叫做等比数列。

这个常数叫做等比数列的公比,通常用字母q 表示。

问题3:用数学符号语言怎么表示等比数列的定义呢?
1
2n
n a q n
a 或
11n n
a q n a
利用定义式可以证明或者判断一个数列是否为等比数列。

问题4:从上面具体的等比数列中我们看到公比q 可以为正数,
可以为负数,那么可以q=0吗?
不可以,因为q=0时,则根据定义,数列中必然会有0这一项,而这一项0又会做分母,导致没有意义,因此q ≠0,等比数列任意一项都不会为0.
问题5:既是等差数列又是等比数列的数列存在吗? 存在,非零常数列既是等差数列又是等比数列。

2、等比中项的概念
问题1:求下列各组数中插入怎样的数后是等比数列。

(1)1, ____ , 9 (2)-1,____ ,-4 (3)-12,____ ,-3 (4)1, _____ ,1
像这样,在两数之间插入一个数,使得这三个数成等比数列,我们把插入的这个数叫做这两个数的等比中项。

例如:在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项。

由此大家能够得到它们的数量关系:2
G ab ,所以G
ab ,显然a 与b 必定同号。

3、等比数列的通项公式
问题1:试写出案例中前三个等比数列的通项公式,并猜想等比数列通项公式的一般表达式?
(1)
11
2
12
n n
n a (2)
1
1
12
11
2
n n
n a (3)
1
1
121
2
n
n n
n a
因此等比数列n a 首项为1a ,公比为q ,猜想通项公式为11n n a a q 问题2:除了用不完全归纳法猜想得到通项公式外,你还有其他
办法来推导通项公式吗?可以类比等差数列的通项公式的推导过程。

等比数列{n a }首项为1a ,公比为q ,根据等比数列的定义,有:
2
1
a q a ,
32
a q a ,
43
a q a ,……,
1
n n a q a
类比累加的过程,我们可以将上式累乘得到:11
n n a q a
因此得到等比数列的通项公式11n n a a q 4、从函数角度理解等比数列的通项公式
问题1:完成教材50页探究中的(2)、(3),联系等差数列通项公式1
1n a a n d 与一次函数的关系,
来发现等比数列通项公式与我们学过的哪个函数模型有关系?
等比数列通项公式11n n a a q 与指数型函数x y c a 有关系。

(三)例题讲练
例1、已知在数列n a 中,1a =2,12n n a a ,求100a 的值。

证明或判断一个数列为等比数列,采用定义法即: 判断
1
2n
n a q n
a 或者
11n n
a q n a ,q 为与n 无关的非零常数。

例2、
(1)在等比数列n a 中,427a ,q=-3,求数列通项公式及7a 的值 (2)在等比数列n a 中,3620,120a a ,求n a
突出解决通项公式时方程思想的应用。

(四)应用与深化
学生完成教材53页1题4个小题,请四位同学板演,教师巡视其他同学的情况,然后由同学讲解过程,教师点评和纠错,强调解题的规范性。

(五)课堂小结
知识:等比数列的概念、通项公式及其应用
方法:类比思想、函数思想、方程思想的应用
(六)作业布置4
《导学案》等比数列第一课时
四、板书设计
五、教学反思
本堂课自我感到成功之处有:首先我自始至终坚持以学生为主体,除了课前的精心设计,在课堂上都由学生来完成,学生的配合度好,发言踊跃,体现了学生是课堂中学习的主体。

其次在整个课堂教学过程中,突出了对学生的思维训练和思维品质的培养,如对等比数列的定义的教学进行六个环节的深化,极大地训练了学生思维的全面性与深刻性。

相关文档
最新文档