计量经济学实验报告一元线性回归模型实验
计量经济学实验一 一元回归模型
实验二一元回归模型【实验目的】掌握一元线性、非线性回归模型的建模方法【实验内容】建立我国税收预测模型【实验步骤】【例1】建立我国税收预测模型。
表1列出了我国1985-1998年间税收收入Y和国内生产总值(GDP)x的时间序列数据,请利用统计软件Eviews建立一元线性回归模型。
一、建立工作文件⒈菜单方式在录入和分析数据之前,应先创建一个工作文件(Workfile)。
启动Eviews软件之后,在主菜单上依次点击File\New\Workfile(菜单选择方式如图1所示),将弹出一个对话框(如图2所示)。
用户可以选择数据的时间频率(Frequency)、起始期和终止期。
图1 Eviews菜单方式创建工作文件示意图图2 工作文件定义对话框本例中选择时间频率为Annual(年度数据),在起始栏和终止栏分别输入相应的日期85和98。
然后点击OK,在Eviews软件的主显示窗口将显示相应的工作文件窗口(如图3所示)。
图3 Eviews工作文件窗口一个新建的工作文件窗口内只有2个对象(Object),分别为c(系数向量)和resid(残差)。
它们当前的取值分别是0和NA(空值)。
可以通过鼠标左键双击对象名打开该对象查看其数据,也可以用相同的方法查看工作文件窗口中其它对象的数值。
⒉命令方式还可以用输入命令的方式建立工作文件。
在Eviews软件的命令窗口中直接键入CREATE命令,其格式为:CREATE 时间频率类型起始期终止期本例应为:CREATE A 85 98二、输入数据在Eviews软件的命令窗口中键入数据输入/编辑命令:DA TA Y X此时将显示一个数组窗口(如图4所示),即可以输入每个变量的数值图4 Eviews数组窗口三、图形分析借助图形分析可以直观地观察经济变量的变动规律和相关关系,以便合理地确定模型的数学形式。
⒈趋势图分析命令格式:PLOT 变量1 变量2 ……变量K作用:⑴分析经济变量的发展变化趋势⑵观察是否存在异常值本例为:PLOT Y X⒉相关图分析命令格式:SCAT 变量1 变量2作用:⑴观察变量之间的相关程度⑵观察变量之间的相关类型,即为线性相关还是曲线相关,曲线相关时大致是哪种类型的曲线说明:⑴SCAT命令中,第一个变量为横轴变量,一般取为解释变量;第二个变量为纵轴变量,一般取为被解释变量⑵SCAT命令每次只能显示两个变量之间的相关图,若模型中含有多个解释变量,可以逐个进行分析⑶通过改变图形的类型,可以将趋势图转变为相关图本例为:SCA T Y X图5 税收与GDP趋势图图5、图6分别是我国税收与GDP时间序列趋势图和相关图分析结果。
计量经济学上机实验
计量经济学上机实验上机实验一:一元线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参数估计并进行检验上机步骤:中国内地2011年中国各地区城镇居民每百户计算机拥有量和人均总收入一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y X2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y X2.相关图:键入命令 SCAT Y X 散点图:趋势图:上机结果:Yˆ11.958+0.003X=s (βˆ) 5.6228 0.0002t (βˆ) 2.1267 11.9826prob 0.0421 0.00002=0.831 R2=0.826 FR=143.584 prob(F)=0.0000上机实验二:多元线性回归模型实验目的:多元回归模型的建立、比较与筛选,掌握基本的操作要求并能根据理论对分析结果进行解释实验内容:对线性回归模型进行参数估计并进行检验上机步骤:商品的需求量与商品价格和消费者平均收入趋势图:散点图:上机结果:i Yˆ=132.5802-8.878007X1-0.038888X2s (βˆ) 57.118 4.291 0.419t (βˆ) 2.321 -2.069 -0.093prob 0.0533 0.0773 0.9286 R2=0.79 R2=0.73 F =13.14 prob(F)=0.00427三:非线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参上机步骤:我国国有独立核算工业企业统计资料一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y L K2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y K L2.相关图:键入命令 SCAT Y K L四.估计回归模型:键入命令LS Y C K L上机结果:Y =4047.866K1.262204L-1.227157s (βˆ) 17694.18 0232593 0.759696t (βˆ) 0.228768 5.426669 -1.615325prob 0.8242 0.0004 0.1407R2=0.989758 R2=0.987482 F=434.8689 prob(F)=0.0000上机实验四:异方差实验目的::掌握异方差的检验与调整方法的上机实现实验内容:我国制造工业利润函数行业销售销售行业销售销售实验步骤:一.检验异方差性1.图形分析检验:1) 观察Y、X相关图:SCAT Y X2) 残差分析:观察回归方程的残差图LS Y C X在方程窗口上点击Residual按钮;2. Goldfeld-Quant检验:SORT XSMPL 1 10LS Y C X(计算第一组残差平方和)SMPL 19 28LS Y C X(计算第二组残差平方和)计算F统计量,判断异方差性3.White检验:SMPL 1 28LS Y C X在方程窗口上点击:View\Residual\Test\White Heteroskedastcity 由概率值判断异方差性。
计量经济学实验报告范文
S .. . ..学生实验报告(经管类专业用)一、实验目的及要求:1、目的利用EVIEWS实验软件,使学生在实验过程中全面了解和熟悉计量经济学的基本概念,熟悉一元线性回归模型估计的基本程序和基本方法。
2、内容及要求(1).熟悉EVIEWS实验软件的基本操作程序和方法;(2)、掌握一元线性回归模型基本概念,了解其估计和检验原理(3)、提交实验报告二、仪器用具:三、实验结果与数据处理:1 经研究发现,家庭书刊消费受家庭收入几户主受教育年数的影响,表中为对某地区部分. . . 资料. .8家庭抽样调查得到样本数据:(1) 建立家庭书刊消费的计量经济模型; (2)利用样本数据估计模型的参数;(3)检验户主受教育年数对家庭书刊消费是否有显著影响; (4)分析所估计模型的经济意义和作用 答:(1)建立家庭书刊消费的计量经济模型: i i i i u T X Y +++=321βββ其中:Y 为家庭书刊年消费支出、X 为家庭月平均收入、T 为户主受教育年数 (2即 ii i T X Y 3703.5208645.00162.50ˆ++-= (49.46026)(0.02936) (5.20217)t= (-1.) (2.) (10.06702)R 2=0. 944732.02=R F=146.2974(3) 检验户主受教育年数对家庭书刊消费是否有显著影响:由估计检验结果, 户主受教育年数参数对应的t 统计量为10.06702, 明显大于t 的临界值131.2)318(025.0=-t ,同时户主受教育年数参数所对应的P 值为0.0000,明显小于05.0=α,均可判断户主受教育年数对家庭书刊消费支出确实有显著影响。
(4)本模型说明家庭月平均收入和户主受教育年数对家庭书刊消费支出有显著影响,家庭月平均收入增加1元,家庭书刊年消费支出将增加0.086元,户主受教育年数增加1年,家庭书刊年消费支出将增加52.37元。
计量经济学实验报告
一、实验目的及要求:1、目的利用EVIEWS 实验软件,使学生在实验过程中全面了解和熟悉计量经济学的基本概念,熟悉一元线性回归模型估计的基本程序和基本方法。
2、内容及要求(1) 熟悉EVIEWS实验软件的基本操作程序和方法; (2) 掌握一元线性回归模型基本概念,了解其估计和检验原理 (3) 提交实验报告二、仪器用具:三、实验结果与数据处理:1下面是利用1970-1980年美国数据得到的回归结果。
其中Y 表示美国咖啡消费(杯/日.人),X 表示平均零售价格(美元/磅)。
注:262.2)9(2/=αt ,228.2)10(2/=αt6628.006.42)()1216.0(4795.06911.2ˆ2===-=R t se X Y tt)(值1. 写空白处的数值。
12. 对模型中的参数进行显著性检验。
3. 解释斜率系数1β的含义,并给出其95%的置信区间。
解:(1)1308.221216.06911.2)(00===ββse t0114.006.424795.0)(11-=-==tse ββ(2)用t 检验法分别对模型中的参数0β1β进行显著性水平检验: 在5%的显著性水平下,模型的自由度为11-2=9,且262.2)9(025.0=t 由于262.21308.220>=βt ,故该模型的截距项在统计上是显著的; 同理 262.206.421>=βt ,即斜率系数在统计上也是显著的。
(3)斜率系数4795.01-=β,小于0,在其他条件不变的情况下,咖啡的平均零售价格每增加一个单位,美国咖啡的日消费将平均减少0.4795个单位,说明咖啡的消费量与其平均零售价格呈负相关关系。
1β的95%的置信区间为:]4537.0,5053.0[)]ˆ(ˆ),ˆ(ˆ[12/112/1--+-即ββββααse t se t2美国各航空公司业绩的统计数据公布在《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)上。
计量经济学实验报告及心得体会
1.建立模型
本例中我们假设拟建立如下一元回归模型Y=
Dependent Variable: Y
MethoLeabharlann : Least SquaresDate:04/07/12Time:11:19
Sample: 1978 2006
Included observations: 29
Variable
Coefficient
2、模型检验
从回归估计的结果来看,D.W= 1.931058模型拟合较好。可决系数R=0.901826,表明城镇居民人均消费支出的变化的90.1826%可由人均可支配收入的变化来解释。从斜率项的t检验值来看,大于5%显著性水平下自由度为n-2=29的临界值t(29)=2.05,且该斜率值满足0<0.674007<1,符合经济理论中边际消费倾向在0与1之间的绝对收入假说
【实验软件】EVIEWS软件
【实验要求】选择方程进行一元线性回归分析,经济,拟合优度,参数显著性,和方程显著性等检验。
【实验过程】
1.启用EVIEWS软件→file→new→workfile,选择workfile frequeney的类型为annaul,在start date中输入1978,在end date中输入2006,单击“ok”。
⑵导入数据:procs→import→ read text-lotus-excel→选择表2.6.1,单击“打开”在“upper-left date cell”中填写“B4”,在”name for series or number of series if names in file”中填“y”单击“ok”
2. 导入数据:procs→import→ read text-lotus-excel→选择表2.6.3,单击“打开”在“upper-left date cell”中填写“g3”,在”name for series or number of series if names in file”中填“x”单击“ok”
计量经济学模型实验报告
实验(实训)报告项目名称一元线性回归模型所属课程名称计量经济学项目类型验证性实验实验(实训)日期15年4月日班级学号姓名指导教师李杰浙江财经学院教务处制一、实验(实训)概述:【目的及要求】目的:掌握用OLSE估计一元线性回归方程并根据方程进行预测,掌握拟合度的分析,掌握t检验与F检验,会做相关系数的显著性检验,会画散点图并通过编辑散点图掌握画回归线、置信区间的计算等。
要求:运用软件进行一元线性回归模型的相关计算,按具体的题目要求完成实验报告。
并及时上传到给定的FTP!【基本原理】t检验,F检验置信区间等.【实施环境】(使用的材料、设备、软件)R软件二、实验(实训)内容:【项目内容】一元线性模型的估计、回归系数和回归方程的检验、预测、置信区间的计算等。
【方案设计】【实验(实训)过程】(步骤、记录、数据、程序等)附后【结论】(结果、分析)附后三、指导教师评语及成绩:评语:成绩:指导教师签名:李杰批阅日期:15年4月目,x 为每周签发的新保单数目,y 为每周加班工作时间(小时),数据如下:9:该公司预测下一周签发新保单 x0=1000,需要的加班10:分别给出置信水平为 95%的均值与个体预测区间;实验题目:一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。
经过 10 周时间,收集了每周加班工作时间的数据及签发的新保单数1:画散点图;2:x 与 y 之间是否大致成线性关系; 3:用最小二乘法估计回归方程; 4:求回归标准误差;5:求回归系数的置信度为 95%的区间估计; 6:计算 x 与 y 的决定系数; 7:对回归方程做方差分析; 8:做回归系数 β1 的显著性检验;时间是多少?11:请在散点图的基础上画出回归线,均值的预测区间图,个体的预测区间图。
分析报告:1:首先,读取 spass 数据:语言 read.spss("d:/huigui.sav"),读取数据$Y $Y[1] 3.5 1.0 4.0 2.0 1.0 3.0 4.5 1.5 3.0 5.0$X[1] 825 215 1070550 480 920 1350325 670 1215首先赋值 dat<- read.spss("d:/huigui.sav"),然后输入数据 plot(dat$Y,dat$X)画出 散点图ˆ 22:由散点图得,xy 成线性关系3:编辑语言 lm(dat$Y~dat$X)得出以下结果(注:如果做无截距,则程序为 lm(dat$Y~dat$X -1)) 程序如下 Call:lm(formula = dat$Y ~ dat$X)Coefficients: (Intercept)dat$X 0.1181290.003585Y = 0.1181291+ 0.0035851 X(0.3551477)(0.0004214)回归方程n = 10 R = 0.90054:编辑程序 lm.reg<-lm(formula=dat$Y~dat$X)summary(lm.reg)。
计量经济学综合实验报告
6、对ce为被解释变量,di为解释变量模型输出结果进行经济理论检验,拟合优度检验和t检验。
(1)经济意义检验:所估计参数β1=,β2=,说明可支配收入增加1元,平均说来可导致城市居民消费支出增加元。
(2)拟合优度检验:通过以上的回归数据可知,可决系数为,说明所建模型整体上对样本数据拟合度不是太好。
Akaike info criterion
Sum squared resid
Schwarz criterion
Log likelihood
Hannan-Quinn criter.
F-statistic
Durbin-Watson stat
Prob(F-statistic)
即CEi= +
(()
t=()()
两变量的散点图:
由上图可知两变量基本呈正相关关系,存在一定的线性相关性。但相关程度不大。
4、结合凯恩斯绝对收入假说的消费理论和图形分析,设定以le为被解释变量,ni为解释变量的一元线性城市居民消费总体回归模型,预计回归系数的符号;
模型:LEi=β1+β2NIi+ui
因支出一般随收入的增加而增加,预测回归系数β1、β2的符号都是正号。
7、当城市居民可支配收入在14500元时,支出的均值为元。
在95%的置信度下,预测某省辖市城市居民可支配收入在17500元时的消费支出的均值区间。计算后区间为( )
模型预测
农村居民:
1、打开Eviews工作文件,建立新的文件夹,在命令框中输入“data le ni”回车 ,从数据表中粘贴数据到Eviews数据表中即可。
在组对象窗口中选择下拉菜单view-- covariance analysis——balanced sample 即可出现以下图表:
3 计量经济学上机实验报告-简单线性回归
实验一 简单线性回归一、 实验名称:简单线性回归 二、实验目的掌握一元线性回归模型的估计与应用,熟悉EViews 的基本操作,并且给案例做一元回归并做预测。
三、实验中所需要掌握的知识点掌握一元回归及其预测四、实验前预备的情况说明(包括上机步骤、实验所涉及的基本原理知识的复习理解、 对实验结果的预期解释等)(1)最小二乘法估计的原理 (2) t 检验 (3)拟合优度检验(4)点预测和区间预测五、上机实验内容(填写本次上机的情况)1.上机步骤⑴统计结果,如图1所示,Y ,X 的均值分别为3081.158和22225.13,Y,X 的标准差为2212.591,和22024.6图1(2) 设定模型为 12i i i Y X u ββ=++,经运算的 Equation 界面如图2图3由图2的数据得:;2.上机结果(1)回归估计结果为:Dependent Variable: Y Method: Least SquaresDate: 04/09/14 Time: 18:53 Sample (adjusted): 1978 1997Included observations: 20 after adjustmentsVariable CoefficientStd. Errort-Statistic Prob. X 0.100036 0.002172 46.04910 0.0000 C857.837567.1257812.77955 0.0000R-squared 0.991583 Mean dependent var 3081.158 Adjusted R-squared 0.991115 S.D. dependent var 2212.591 S.E. of regression 208.5553 Akaike info criterion 13.61293 Sum squared resid 782915.7 Schwarz criterion 13.71250 Log likelihood -134.1293 F-statistic2120.520 Durbin-Watson stat0.864032 Prob(F-statistic)0.000000因此得到回归模型为: Y=857.8375+0.100036X斜率系数的经济意义为:GDP 增加1亿元,财政收入增加0.1亿元。
计量经济学实验二-一元线性回归模型的估计、检验和预测
目录一、加载工作文件 (7)二、选择方程 (7)1.作散点图 (7)2.进行因果关系检验 (9)三、一元线性回归 (10)四、经济检验 (12)五、统计检验 (13)六、回归结果的报告 (15)七、得到解释变量的值 (15)八、预测应变量的值 (17)实验二一元线形回归模型的估计、检验和预测实验目的:掌握一元线性回归模型的估计、检验和预测方法。
实验要求:选择方程进行一元线性回归,进行经济、拟合优度、参数显著性和方程显著性等检验,预测解释变量和应变量。
实验原理:普通最小二乘法,拟合优度的判定系数R2检验和参数显著性t检验等,计量经济学预测原理。
实验步骤:已知广东省宏观经济部分数据如表2-1所示,要根据这些数据研究和分析广东省宏观经济,建立宏观计量经济模型,从而进行经济预测、经济分析和政策评价。
实验二~实验十二主要都是用这些数据来完成一系列工作。
表2-1 广东省宏观经济数据续上表续上表一、加载工作文件广东省宏观经济数据已经制成工作文件存在盘中,命名为GD01.WF1,进入EViews后选择File/Open打开GD01.WF1。
二、选择方程根据广东数据(GD01.WF1)选择收入法国国内生产总值(GDPS)、财政收入(CS)、财政支出(CZ)和社会消费品零售额(SLC),分别把①CS作为应变量,GDPS作为解释变量;②CZ作为应变量,CS作为解释变量;③SLC作为应变量,GDPS作为解释变量进行一元线性回归分析。
1.作散点图从三个散点图(图2-1~图2~3)可以看出,三对变量都呈现线性关系。
图2-1 图2-2图2-3 2.进行因果关系检验从三个因果关系检验可以看出,GDPS是CS的因;CS不是CZ 的因;GDPS不是SLC的因。
但根据理论CS是CZ的因,GDPS是SLC的因,可能是由于指标设置问题。
所以还是把CS作为应变量,GDPS作为解释变量;CZ作为应变量,CS作为解释变量;SLC作为应变量,GDPD作为解释变量进行一元线性回归分析。
计量经济学实验一一元线性回归完成版
计量经济学实验⼀⼀元线性回归完成版实验⼀⼀元线性回归⽅程1.下表是中国2007年各地区税收Y和国内⽣产总值GDP的统计资料。
单位:亿元要求,运⽤Eviews软件:(1)作出散点图,建⽴税收随国内⽣产总值GDP变化的⼀元线性回归⽅程,并解释斜率的经济意义;解:散点图如下:得到估计⽅程为:0.07104710.62963=-y x这个估计结果表明,GDP 每增长1亿元,各地区税收将增加0.071047亿元。
(2) 对所建⽴的回归⽅程进⾏检验;解:从回归的估计的结果来看,模型拟合得较好。
可决系数20.7603R =,表明各地区税收变化的76.03%可由GDP 的变化来解释。
从斜率项的t 检验值看,⼤于5%显著性⽔平下⾃由度为229n -=的临界值0.025(29) 2.05t =,且该斜率满⾜0<0.071047<1,表明2007年,GDP 每增长1亿元,各地区税收将增加0.071047亿元。
(3) 若2008年某地区国内⽣产总值为8500亿元,求该地区税收收⼊的预测值及预测区间。
解:由上述回归⽅程可得地区税收收⼊的预测值:0.0710********.62963593.3Y =-= 下⾯给出税收收⼊95%置信度的预测区间:由于国内⽣产总值X 的样本均值与样本房差为()8891.126()57823134E X Var X ==于是,在95%的置信度下,0()E Y 的预测区间为593.3 2.045±593.3113.4761=±或(479.8239,706.7761)当GDP 为8500亿元时地区的税收收⼊的个值预测值仍为593.3。
同样的,在95%的置信度下,该地区的税收收⼊的预测区间为593.3 2.045593.3641.0421±=±或(-47.7,1234.3)。
资料来源:《深圳统计年鉴2002》,中国统计出版社解:(1)建⽴深圳地⽅预算内财政收⼊对GDP 的回归模型;得到回归⽅程:?0.134582 3.611151yx =-(2)估计所建⽴模型的参数,解释斜率系数的经济意义;X 的系数为0.314582,常数项为-3.611151。
计量经济学实验二 一元线性回归模型
实验二一元线性回归模型2.1 实验目的掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。
2.2 实验内容建立中国消费函数模型。
以表2.1中国的收入与消费的总量数据为基础,建立中国消费函数的一元线性回归模型。
表2.1数据来源:2004年中国统计年鉴,中国统计出版社2.3 实验步骤2.3.1 散点相关图分析将表1.1的GDP设为变量X,总消费设为Y,建立变量X和Y的相关图,如图2.1所示。
可以看X和Y之间呈现良好的线性关系。
可以建立一元线性回归模型。
2.3.2 估计线性回归模型在数组窗口中点击Proc\Make Equation ,如果不需要重新确定方程中的变量或调整样本区间,可以直接点击OK 进行估计。
也可以在EViews 主窗口中点击Quick\Estimate Equation ,在弹出的方程设定框(见图2.2)内输入模型:Y C X 或 Y = C (1) + C (2) * X图2.2图2.3还可以通过在EViews 命令窗口中键入LS 命令来估计模型,其命令格式为:LS 被解释变量 C 解释变量系统将弹出一个窗口来显示有关估计结果(如图2.3 所示)。
因此,我国消费函数的估计式为:ˆY2329.4010.547*X =+St 1191.923 0.014899t 1.95 36.71R 2=0.99 s.e.=2091s.e .是回归函数的标准误差,即σˆ=)216(ˆ2-∑t u。
R 2是可决系数。
R 2 = 0.99,说明上式的拟合情况好,y t 变差的99%由变量x t 解释。
因为t = 36.71> t 0.05 (15) = 2.13,所以检验结果是拒绝原假设β1 = 0,即总消费和GDP 之间存在线性回归关系。
上述模型的经济解释是,GDP 每增长1 亿元,我国消费将总额将增加0.547亿元。
图2.42.3.3 残差图在估计方程的窗口选择View\ Actual, Fitted,Residual\Actual, Fitted,Residual Table,得到相应的残差图2.4。
实验3计量经济学实验一元线性回归模型
ˆ1 ~N(1,,
2
) (Xi X)2
三、知识点回顾
n 4、最小二乘估计量的性质及分布
随机干扰项 i 的方差 2 的估计 ˆ 0 和 ˆ 1 的方差表达式中都包含随机干扰项 i 的方差 2
,由于随机干扰项 i 实际上是无法观察测量的,因此其
量 Y 的平均值。
三、知识点回顾
1、四种重要的关系式
(2)总体回归函数(方程): E(YXi)01Xi
其中总体回归参数真值 0 , 1 是未知的;总体回归方程也是 未知的。
(3)样本回归函数(方程): Yˆi ˆ0 ˆ1Xi
在实际应用中,从总体中抽取一个样本,进行参数估计,从 而获得估计的回归方程,系数 ˆ 0 , ˆ1 为估计的回归系数;用 这个估计的回归方程近似替代总体回归方程,其中估计的回 归系数 ˆ 0 , ˆ1 是总体参数真值 0 , 1 的估计值;基于估计方程 计算的 Y ˆ i 就为 E (Y X i ) 的估计值; 由于我们从来就无法知道真实的回归方程,因此计量经济学 分析注重的是这个估计的回归方程和估计的回归系数;
据;普通最小二乘法给出的判断拟合程度的标准是:残差平
方和最小,即:m in Q ne i2n(Y i Y ˆi)2n Y i (ˆ0ˆ1 X i) 2
i 1
i 1
i 1
最小二乘法就是:在使上述残差平方和Q 达到最小时,确定
模型中的参数 ˆ 0 和 ˆ 1 的值,或者说在给定观测值之下,选
择出 ˆ 0 , ˆ1 的值,使残差平方和Q 达到最小。
接近,这也说明OLS估计值是非常有价值的。
三、知识点回顾
n 4、最小二乘估计量的性质及分布
一元线性回归模型实验报告
⼀元线性回归模型实验报告⼭东轻⼯业学院实验报告成绩课程名称:计量经济学指导教师:刘海鹰实验⽇期: 2012年4⽉9⽇院(系):商学院专业班级⾦融10-1 实验地点:机电楼B座5楼学⽣姓名:张⽂奇学号: 201008021029 同组⼈⽆实验项⽬名称:⼀元线性回归⽅程的预测⼀、实验⽬的和要求掌握利⽤ EViews 建⽴⼀元线性回归模型的⽅法,并且进⾏参数估计,对其结果进⾏相关分析以及未来形势的预测。
⼆、实验原理⼀元线性回归模型的建⽴与参数估计及点预测、EViews 软件三、主要仪器设备、试剂或材料计算机、EViews 软件四、实验⽅法与步骤1、启动Eviews5软件,建⽴新的workfile.在主菜单中选择【File】--【New】--【Workfile】,弹出Workfile Create对话框,在Workfile structure type中选择Dated-regular frequency,然后在Frequency 中选择annual,Start date中输⼊1980,End date中输⼊1998,点击OK按钮。
2、在主菜单上依次单击Quick→Empty Group。
3、建⽴⼀个空组,输⼊数据。
4、为每个时间序列取序列名。
单击数据表中的SER01,在数据组对话框中的命令窗⼝输⼊该序列名称Y,回车后Yes。
采⽤同样的步骤修改序列名X。
数据输⼊操作完成。
5、数据输⼊完毕,单击⼯作⽂件窗⼝⼯具条的Save或单击菜单兰的File Save将数据存⼊磁盘,⽂件名为张⽂奇。
6、在主菜单上选Quick菜单,单击Estimate Equation项,屏幕出现Equation Specification估计对话框,在Estimation Settings 中选OLS估计,即Least Squares,输⼊:Y C X(其中C为Eviews固定的截距项系数)。
然后OK,出现⽅程窗⼝。
Eviews的估计结果。
计量经济学实验操作指导(完整版)--李子奈
计量经济学试验 (完整版)——李子奈目录实验一一元线性回归一实验目的:掌握一元线性回归的估计与应用,熟悉EViews的基本操作。
二实验要求:应用教材P61第12题做一元线性回归分析并做预测。
三实验原理:普通最小二乘法。
四预备知识:最小二乘法的原理、t检验、拟合优度检验、点预测和区间预测。
五实验内容:第2章练习12下表是中国2007年各地区税收Y和国内生产总值GDP 的统计资料。
单位:亿元安徽401.9 7364.2 甘肃142.1 2702.4 福建594.0 9249.1 青海43.3 783.6 江西281.9 5500.3 宁夏58.8 889.2 山东1308.4 25965.9 新疆220.6 3523.2 河南625.0 15012.5(1)作出散点图,建立税收随国内生产总值GDP变化的一元线性回归方程,并解释斜率的经济意义;(2)对所建立的回归方程进行检验;(3)若2008年某地区国内生产总值为8500亿元,求该地区税收收入的预测值及预测区间。
六实验步骤1.建立工作文件并录入数据:(1)双击桌面快速启动图标,启动Microsoft Office Excel, 如图1,将题目的数据输入到excel表格中并保存。
(2)双击桌面快速启动图标,启动EViews6程序。
(3)点击File/New/ Workfile…,弹出Workfile Create对话框。
在Workfile Create对话框左侧Workfile structuretype栏中选择Unstructured/Undated选项,在右侧DataRange中填入样本个数31.在右下方输入Workfile的名称P53.如图2所示。
图 1 图 2(4)下面录入数据,点击File/Import/Read Text-Lotus-Excel...选中第(1)步保存的excel表格,弹出Excel Spreadsheet Import对话框,在Upper-left data cell栏输入数据的起始单元格B2,在Excel 5+sheet name栏中输入数据所在的工作表sheet1,在Names for series or Number if named in file栏中输入变量名Y GDP,如图3所示,点击OK,得到如图4所示界面。
一元线性回归模型的参数估计实验报告
山西大学实验报告实验报告题目:计量经济学实验报告学院:专业:课程名称:计量经济学学号:学生姓名:教师名称:崔海燕上课时间:一、实验目的:掌握一元线性回归模型的参数估计方法以及对模型的检验和预测的方法。
二、实验原理:1、运用普通最小二乘法进行参数估计;2、对模型进行拟合优度的检验;3、对变量进行显著性检验;4、通过模型对数据进行预测。
三、实验步骤:(一)建立模型1、新建工作文件并保存打开Eviews软件,在主菜单栏点击File\new\workfile,输入start date 1978和end date 2006并点击确认,点击save键,输入文件名进行保存。
2输入并编辑数据在主菜单栏点击Quick键,选择empty\group新建空数据栏,先输入被解释变量名称y,表示中国居民总量消费,后输入解释变量x,表示可支配收入,最后对应各年分别输入数据。
点击name键进行命名,选择默认名称Group01,保存文件。
得到中国居民总量消费支出与收入资料:年份X Y19786678.83806.719797551.64273.219807944.24605.5198184385063.919829235.25482.4198310074.65983.21984115656745.7198511601.77729.2198613036.58210.9198714627.788401988157949560.5198915035.59085.5199016525.99450.9199118939.610375.8199222056.511815.3199325897.313004.7199428783.413944.2199531175.415467.9199633853.717092.5199735956.218080.6199838140.919364.119994027720989.3200042964.622863.92001 46385.4 24370.1 2002 51274 26243.2 2003 57408.1 28035 2004 64623.1 30306.2 2005 74580.4 33214.4 2006 85623.1 36811.2注:y 表示中国居民总量消费 x 表示可支配收入3、 画散点图,判断被解释变量与解释变量之间是否为线性关系在主菜单栏点击Quick\graph 出现对话框,输入 “x y ”,点击确定。
计量经济学实验报告(西安交通大学)
计量经济学实验报告姓名:何璐(交换生)班级:经济91学号:09182250实验报告1.第二章十二题1.1实验目的建立一元计量经济学模型并对方程进行检验和预测1.2实验内容1)做出散点图,建立税收随国内生产总值GDP变化的一元线性回归方程。
并解释斜率的经济意义。
2)对所建立的回归方程进行检验3)若2008某地区国内生产总值为8500亿元,求该地区税收的预测值及区间。
下表是中国2007年内地各地区税收Y和国内生产总值GDP的统计资料1.3实验过程与结论(1)做Y关于GDP 的散点图,按照如下步骤:在Eviews软件中,选择Quick/Graph(图1-1),出现Serise List(图1-2)对话框图1-1图1-2在Graph窗口的Graph Type栏中选择Scatter Diagram,点击OK按钮,即出现如图1-3所示的散点图。
图1-3在Eviews软件下,为了得到税收Y随GDP变化的一元线形回归方程,选择Quick/Estimate Equation(图1-4),得到如下结果:图1-4由此可知,Y随GDP变化的一元线形方程:Ý=-10.63+0.071GDP(-0.12) (9.59)R2=0.7603斜率的经济意义是:2007年,中国内地各省区GDP每增加1亿元时,税收平均增加0.071亿元。
(2)在α=5%的显著水平下,自由度为31-2=29的t分布的临界值位2.045,可由此判断,斜率项显著不为零,截距项显著为零.R2=0.7603,表明税收的76%的变化可以GDP的变化来解释,拟合度较好(3)通过Eviews操作得出Y在GDP=8500下的预测值(图1-5)为593.2667图1-52、第三章十一题2.1实验目的学习对二元回归方程进行估计,并进行F检验和t检验2.2实验内容1)估计回归方程的参数及随机干扰项的方差,计算可决系数和调整的可决系数。
2)对方程进行F检验,对参数进行t检验,并构造参数95%的置信区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-2014第1学期
计量经济学实验报告
实验(一):一元线性回归模型实验
学号姓名:专业:国际经济与贸易
选课班级:实验日期:2013年12月2日实验地点:K306
实验名称:一元线性回归模型实验
【教学目标】
《计量经济学》是实践性很强的学科,各种模型的估计通过借助计算机能很
方便地实现,上机实习操作是《计量经济学》教学过程重要环节。
目的是使学生
们能够很好地将书本中的理论应用到实践中,提高学生动手能力,掌握专业计量经济学软件EViews的基本操作与应用。
利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。
【实验目的】
使学生掌握
1.Eviews基本操作:
(1)数据的输入、编辑与序列生成;
(2)散点图分析与描述统计分析;
(3)数据文件的存贮、调用与转换。
2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和
区间预测
【实验内容】
1.Eviews基本操作:
(1)数据的输入、编辑与序列生成;
(2)散点图分析与描述统计分析;
(3)数据文件的存贮、调用与转换;
2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。
实验内容以下面1、2题为例进行操作。
1、为了研究深圳地方预算中财政收入与国内生产总值关系,运用以下数据:
(1)建立深圳的预算内财政收入对GDP的回归;
(2)估计模型的参数,解释斜率系数的意义;
(3)对回归结果进行检验;
(4)若2002年的国内生产总值为3600亿元,试确定2002年财政收入的预测值和预
α=)。
测区间(0.05
2、在《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)上,公布有美国各航空公司业绩的统计数据。
航班正点准时到达的正点率和此公司每10万名乘客中投诉1
(1)做出上表数据的散点图
(2)依据散点图,说明二变量之间存在什么关系?
(3)描述投诉率是如何根据航班正点率变化,并求回归方程。
(4)对回归方程的斜率作解释。
(5)假设航班正点率为80%,预测每10万名乘客投诉次数为多少?
【实验步骤】
1.
(1)创建工作文件
在主菜单上依次单击File→New→Workfile,选择数据类型和起止日期。
时间序列提供起止日期(年、季度、月度、周、日),非时间序列提供最大观察个数。
本题中在Start Data里输入1990,在End data 里输入2001。
单击OK后屏幕出现Workfile工作框,如图所示。
(2)输入和编辑数据
在命令窗口直接输入:Data Y GDP .屏幕出现数据编辑框,如下图所示。
(3)估计参数
利用地方预算内财政收入和国内生产总值的数据表,作散点图。
可看出深圳地方预算内财政收入和国内生产总值的关系近似直线关系可建立线性回归模型。
在主菜单命令行键入:“LS Y C GDP”,然后回车。
即可直接出现如下图所示的计算结果。
参数估计所建立的回归方程为:
i
Y=-3.611151 + 0.134582*GDP (4.161790) (0.003867)
t=(-0.867692) (34.80013) R2=0.991810
(4)模型检验
1、经济意义检验
这里所估计的参数β1=0.134582表示国内生产总值每增加1亿元,将会导
致地方预算内财政收入增加0.134582亿元。
这符合经济学中的常理。
2、拟合度和统计检验
由回归结果可知,本题中德可决定系数R 2
=0.991810,说明模型在整体上对数
据拟合很好。
解释变量“国内生产总值”对被解释变量“地方预算内财政收入”
的99.18%的变化做出了解释。
针对H 0:β1=0以及H 1:β1≠0,由图-回归方程窗口可以看出,回归系数β1的
标准误差和t 值分别为0.003867和34.80013;回归系数β0的标准误差和t 值
分别为4.161790和-0.867692。
在给定显著水平α=0.05时,t 2α(10)=2.228,1t > t 2α(n-2),这说明解释变量国内生产总值在95%的置信度下对地方预算内
财政收入的影响是显著的,即通过了变量的显著性检验。
同理,0t > t 2α(n-2),
说明截距项在95%的置信度下对地方预算内财政收入的影响是显著的。
(5)预测
得到回归函数后,给定2002年深圳国内生产总值为3600亿元,Eviews 预测2002
年地方预算内财政收入步骤为:
○1双击工作文件“range :1990 2001”。
在弹出的对话框的“End ”选择框中改为
“2002”,点击“OK ”,如下图所示。
○2双击工作文件“sample :1990 2001”区域。
在弹出的对话框的“Sample range
pairs ”选择框处把“2001”改为“2002”,如下图所示。
○3打开估计式eq01窗口,点击“forecast ”键。
在S. E 选择框处填入“yfse ”,表示需
要计算y f的预测值(用yf表示),也需要计算y f的预测标准差。
点击“OK”,
可得到如下图所示的预测图,实线代表各年的深圳地方预算内财政收入,其中包括2005年深圳地方预算内财政收入,虚线代表两个正负预测标准差的范围。
回到工作文件窗口,此时已经出现一个yf序列。
双击yf序列,可以看到y2002=480.8830。
○4为了作区间预测,在y 和gdp 的数据表中,点击“View ”选“Descriptive Stats \ Cmmon Sample ”,则得到y 和gdp 的描述统计结果,如下图所示。
通过上图所列出的各项统计数据(下面用X 表示GDP),可得: (X 1f --X )=(3600-917.5874)2
=7195337.357 给定显著性水平=α0.05,查表得t 2α(10)=2.228,
Y f 平均值置信度95%的预测区间为:
GDP 2005=3600时,480.8830-+2.228*7.5325*
494.3293728357.7195337121+ =480.8830-+25.2735(亿元)
Y f 个别值置信度95%的预测区间为:
494
.3793728)112(2686.587)1(222=-⨯=-=∑n x x i σ
即 480.8830-+2.228*7.5325*494.3293728357.71953371211++ =480.8830-
+30.3381
2.
美国各航空公司航班正点到达比率和每10万名乘客投诉次数的散点图为
由图形看出航班正点到达比率和每10万名乘客投诉次数呈现负相关关系,计算线性相关系数为-0.882607。
建立描述投诉率(Y )依赖航班按时到达正点率(X )的回归方程: i i i u X Y ++=21ββ
利用EViews 估计其参数结果为
即 i i X Y 070414.0017832.6ˆ-=
(1.017832)(-0.014176)
t=(5.718961) (-4.967254)
R 2=0.778996 F=24.67361
这说明当航班正点到达比率每提高1个百分点, 平均说来每10万名乘客投诉次数将下降0.07次。
如果航班按时到达的正点率为80%,估计每10万名乘客投诉的次数为
384712.080070414.0017832.6ˆ=⨯-=i Y (次)。