浅析电网电力参数的采样与测量

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-54-

科技论坛

浅析电网电力参数的采样与测量

战媛

(哈尔滨第二电业局,黑龙江哈尔滨150000)

在频率偏离50Hz 时,非周期采样导致FFT 算法出现栅栏效应和频谱泄漏现象,致使测得的电流、电压幅值、频率和相角偏离实际值,测量精度难以满足实际需求。采用整周期采样,一方面能方便快速Fourier 分析,对周期性信号进行分析不会产生频谱泄漏现象;另一方面,和定时采样相比,整周期采样的数据量小,便于存储和处理。本文对实现整周期同步采样的两种方法:锁相环倍频技术和虚拟仪器软跟踪技术进行了讨论。1整周期采样目前,对测试信号进行时-频域变换的主要算法是快速傅里叶变换,其理论基础是傅里叶级数。一个周期信号,当满足Dirichlet 条件时,可以表示为一个傅里叶级数:

(1)式中ω0———基频圆频率。从傅里叶级数式中可知,任意一个周期函数,只要满足一定条件都可以分解为基频的谐波与整数倍基频的高次谐波之和;即周期函数的频谱实际上是由一系列与基频成整数倍关系的离散频谱构成。根据对离散Fourier 算法(DFT )的分析可知,对周期信号进行多段谱平均时,如果每段样本长度恰好等于信号周期长度的整数倍,则DFT 所得离散频谱与信号真实频谱完全相吻合;反之,由于样本截断长度的随机性,经过DFT 的周期延拓处理,将使信号产生较大的畸变,在所得离散频谱中产生许多不可知的虚假频率成分,当信号频域较宽且基频较低时,用多段平均的方法消除随机截断差效果并不明显。因此,对信号先进行整周期截断,再作谱平均,可从理论上消除随机截断误差。整周期采样就是指对周期信号采样时根据信号的基频选择相关的采样参数(采样频率、触发方式、截断长度),以便对时域信号进行无随机截断误差的FFT 和多段谱平均处理的采样方法。整周期采样的主要目的是为了满足在计算机上进行快速傅里叶变换时对数据点数的要求,因此整周期采样就保证采样所得离散数据每一段(进行FFT 处理的数据长度单位,必须等于2n ,n 为整数,一般取1024或2048)正好包含周期信号的一个完整周期或其整数倍。在现场工况下,随测试对象不同信号的周期也在变化,即使是同一对象,其信号的周期也是波动的。在这种情况下,整周期采样的实现有赖于两点:一是采样频率,采样频率必须是信号基频的整数倍;二是触发方式,采样触发点关系到信号样本的一致性,亦即分析结果的可比性;三是截断长度,采样所得信号样本应包含信号的一个完整周期或其整数倍。2锁相环倍频法利用锁相环倍频技术实现的整周期同步采样电路,通过测量电路(锁相环倍频)处理电网电压和电流取样信号,并利用整周期同步采样电路和A/D 转换器实现对被测信号的离散化和数字化采样。通过对采集到的时域信号作频谱分析处理获得电网电流和电压的总畸变率和各次谐波分量的值。锁相环主要由鉴相器(PD )、环路滤波器(LF )和压控振荡器(VCO )等三部分组成。锁相倍频,就是通过环路将压控振荡器(VCO)的输出频率锁定在输入信号的某次谐波频率上,倍频电路由锁相环和的N 进计数器构成,计数器插入在VCO 输出和鉴相器(PD)之间。

这样,当锁相环锁定时,计数器输出信号频率(f O /N)和锁相环输入信号频率(f i )相等,从而在计数器时钟输入端(即VCO 输出端)得到N 倍频输出信号f O =Nf i ,其原理框图如图l 所示。图1锁相环倍频电路原理框图整周期同步采样电路,首先对电网取样信号U i (t)进行带通滤波,取出电网基波信号(基波频率f i ),然后对它作整形处理,获得与基波信号频率一致的方波信号,将它进行锁相倍频,获得输出频率f O =Nf i 的方波信号,随后将此信号经过一个单稳电路获得整周期同步采样脉冲信号。3LabVIEW 频率软跟踪随着现代工业、交通的发展,影响电能质量的因素越来越复杂各种非线性电力负荷的增加严重影响了用电设备的正常使用,以及电力参数的准确计量和电能量参数测量仪器的准确校验。传统的电能量参数检测系统以硬件为核心,体积大功能单一,己无法满足日渐复杂的电力参数测试。近年来,计算机技木的迅猛发展为虚拟仪器(Virtual Instrument ,VI )的发展与应用奠定了基础,使仪器仪表发生了根本性的变革,传统的以硬件为主体的检测装置迅速向虚拟仪器方向发展。虚拟仪器充分利用计算机强大的图形界面和数据处理能力,提供对测量数据的分析和显示功能。它以信号处理为系统软件核心,用计算机显示器取代传统检测设备的面板,组建方便,网络功能强,开创了“软件即仪器”的先

河,迅速获得推广应用。为此,研制、开发基

于虚拟仪器技术的电力参数测量仪成为趋势。

该类仪器数据处理能力强,图形化显示直观,

保存与打印结果方便,系统功能更新便捷。

图2为仪器的构成框图。被测交流电压、

电流信号经仪器电压取样单元、电流取样单元

后,变成-5~+5V 交流测量信号,经测量模

块(包括滤波、采样保持、信号调理、整形电

路、鉴相电路等)处理后通过通信接口1送入

计算机系统,由计算机系统进行相应的分析处

理,显示电压、电流、频率、功率、相位、闪

变、谐波等电力参数的测量结果。通过通信接

口2,仪器可以实现与其它智能系统的信息交

换或打印输出信息。图2虚拟仪器频率软跟踪构成框图电网中的频率不是恒定不变的。为了保持在一个周期内采样点数恒定,就需要采用跟踪采样技术。前面论述了采用锁相环的硬件频率跟踪电路,其硬件成本较高,仪器灵活性低,为了解决这个问题,下面来讨论采用虚拟仪器实现频率跟踪。电力系统的频率变化主要受变化周期10s-3min 的脉动分量负荷及变化非常缓慢的持续分量的影响,因此,采用频率软跟踪的方法具有可行性。虚拟仪器系统首先使用数据采集卡对被测信号采样3次,每次采样几个工频周期,分别计算频率,最后取频率的平均值,以此来确定实际采样率。在测频部分,为了滤除可能会使一个电压周期含有多于两个的过零点的谐波、扰动、噪声等高频分量,在频率计算前加入一个低通滤波器。频率计算主要分为过零检测和频率计算两个部分,过零检测是从数字滤波器输出的基波数据中找出第一个大于或等于零的点,并将其置1,其余数据全部置0。频率测量由LabVIEW 中的布尔逻辑函数和移位寄存器、for 循环结构来实现,然后用峰值检测VI 找出过零点对应的索引值,并通过索引值之差以及实际采样时间间隔,计算出周期和频率的大小。周期的最大绝对误差取决于采样间隔。频率软跟踪技术在测量电流、电压和平均功率等电力参数时可以简化运算,有效地抑制由于频谱泄漏效应引起的误差,提高测量系统的精度。摘要:对电网电压和电流的基波幅值的测量分析,通常是采用快速Fourier 变换(FFT)实现的。随着冶金、化工和电气化铁路等换流设备及其它

非线性负载不断引入电力系统,大量谐波注入电网,造成电网系统中谐波含量急剧上升和电压波形严重

“畸变”,电网的频率往往是波动的,使得采样很难做到对被测信号进行整周期截断。为此,文章讨论了两种整周期采样实现方法:锁相环倍频法和虚拟仪器频率软跟踪法。

关键词:整周期采样;锁相环;LabVIEW

ÁÁÂ()cos()ÁÁÁf t a A n t w j ÃÄ=++å

相关文档
最新文档