实数与向量的乘积

合集下载

向量知识点与公式总结

向量知识点与公式总结

向量知识点与公式总结向量知识点与公式总结篇1考点一:向量的概念、向量的基本定理了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。

注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。

考点二:向量的运算向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会推断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积推断两个平面向量的垂直关系。

命题形式重要以选择、填空题型显现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。

考点三:定比分点掌握线段的定比分点和中点坐标公式,并能娴熟应用,求点分有向线段所成比时,可借助图形来帮忙理解。

重点考查定义和公式,重要以选择题或填空题型显现,难度一般。

由于向量应用的广泛性,常常也会与三角函数,解析几何一并考查,若显现在解答题中,难度以中档题为主,偶然也以难度略高的题目。

考点四:向量与三角函数的综合问题向量与三角函数的综合问题是高考常常显现的问题,考查了向量的知识,三角函数的知识,实现了高考中试题的掩盖面的要求。

命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。

考点五:平面向量与函数问题的.交汇平面向量与函数交汇的问题,重要是向量与二次函数结合的问题为主,要注意自变量的取值范围。

命题多以解答题为主,属中档题。

考点六:平面向量在平面几何中的应用向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,很多平面几何问题中较难解决的问题,都可以转化为大家熟识的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,给予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.命题多以解答题为主,属中等偏难的试题。

8.0.2实数与向量的乘积(附录2)

8.0.2实数与向量的乘积(附录2)

一、实数与向量的乘积(向量的数乘) 可以验证,向量数乘满足下面的运算律: 设 , R ①
( a) ()a
(a b) a b (分配律)
② ( )a a a(分配律)

例1.计算: (1) (3) 4a 12a (2) 3(a b) 2(a b) a 5b
例5. 对于任意两个非零向量a, b 已知 OA 4b ,求
解:AB OB OA b 证
A, B, C 三点共线.
C
B A
AC OC OA 3b AC 3AB AC ∥ AB
O
一般地, A, B, C三点共线
The Vector Multiplied by a Real Number
一、实数与向量的乘积(向量的数乘) 定义:实数 和向量 a 的乘积是一个向量 记作 a , 它的长度与方向规定如下: (1) | a | | || a |
0 时, a 与 a 同方向 (2) a(a 0) 的方向 0 时, a 与 a 反方向 0 时, 0a 0 ;
. .
1 a0 a a 1 b0 a a
例 3.在 ABC 中,G 是中线 AD, BE 的
交点,若 AB a , AC b ,试用 a , b 表 示 BC, AD, AG, CG
A
a
G B
D
b
E
C
例4.已知P 1P 3PP2 ,
1若 P1P2 P2 P, 则
.
2若 P2 P1 P1P, 则
.
二、向量平行的条件 平行向量基本定理
(1)非零向量 a , b ,若 a b ,则 a // b ;

向量的加减法实数与向量的乘积

向量的加减法实数与向量的乘积

高中学生学科素质训练高一数学同步测试(9)—向量的加减法、实数与向量的乘积一、选择题(每小题5分,共60分,请将所选答案填在括号内)1.如图,已知四边形ABCD 是梯形,AB ∥CD ,E 、F 、G 、H 分别是AD 、BC 、AB 与CD 的中点,则EF 等于( )A .BC AD +B .DC AB +C .DH +D .GH +2.下列说法正确的是 ( ) A .方向相同或相反的向量是平行向量 B .零向量的长度为0C .长度相等的向量叫相等向量D .共线向量是在同一条直线上的向量3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于( )A .B .4C .4D .4 4.已知向量与反向,下列等式中成立的是( ) A .||||||b a b a -=- B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+5.在 ABCD 中,设====,,,,则下列等式中不正确的是( ) A .=+ B .=-C .=-D .=-6.下列各量中是向量的是( ) A .质量 B .距离C .速度D .电流强度7.在矩形ABCD 中,O 是对角线的交点,若OC e DC e BC 则213,5=== ( )A .)35(2121e e + B .)35(2121e e - C .)53(2112e e - D .)35(2112e e - 8.若),,(,,,R ∈=+μλμλ不共线则( )A .==,B .o ==μ,C .o ==,λD .o o ==μλ, 9.化简)]24()82(21[31b a b a --+的结果是( )A .-2B .-2C .-D .-10.下列三种说法:①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底 ②一个平面内有无数对不共线向量可作为该平面的所有向量的基底 ③零向量不可作为基底中的向量。

实数与向量的乘法

实数与向量的乘法
实数与向量的乘积
一、引入: 三个非零向量 相加的和,可记作 a 3a 。3a表示与 方向相同的向量,它 a 的模是a的模的3倍。
二、实数与向量的乘积 1.定 义 : 一 般 地 , 实 数 λ 与 非 零 量a的 乘 积 向 是 一 个 向 量 , 记 作λ .λ 的 模 和 方 向 : a a 规定如下:
D
A
( 2) 用 、 表 示 。 CA CB
B
C
E
例3:如图,在ΔAB C中,已知M,N 分别为AB,AC的中 点,用向量 1 方法证明:MN//B C且MN= BC 2
A
M B N C
例4:如图,已知 =kOA1,OB OB1 OA =k
∽ OC=kOCБайду номын сангаас,求证:ΔABC ΔA1B1C 1
C1 C B B1
F B A G E
D
C
2.已知正六边形AB CDEF,且 =a, AE BC=b,试用a , 表示EF ,CD , DE , b AB ,AC , . CE
A F E
D
B
C
3.已 知 四 边 形 ABC 梯 形 , AD//B D为 C , E, F分 别 是 AB, CD的 中 点 , 求 证 1 EF//BC且 EF=( AD BC) 2
充分非必要 (2)0 b 0是a//b的____条件。 a
练习: ( 1) 如 图 , AD, E, CF分 别 是 Δ AB B C 的 中 线 , G是 Δ ABC 重 心 , 且 =m 的 AD BC=a,用 向 量m , 示 : a表 (1) AB (2) CA (3) BE (4) CF
(1) a λa λ
(2)当λ>0时,λ a的方向相同; a与

教案平面向量的数乘运算

教案平面向量的数乘运算

平面向量的数乘运算教学目标:1. 理解平面向量的数乘运算概念。

2. 掌握平面向量的数乘运算规则。

3. 能够运用数乘运算解决实际问题。

教学内容:一、平面向量的数乘运算概念1. 引入实数与向量的乘积,即数乘运算。

2. 讲解数乘运算的定义及性质。

二、平面向量的数乘运算规则1. 讲解数乘运算的分配律。

2. 讲解数乘运算的结合律。

3. 讲解数乘运算的单位向量。

三、数乘运算在坐标系中的应用1. 讲解二维坐标系中向量的数乘运算。

2. 讲解三维坐标系中向量的数乘运算。

四、数乘运算与向量长度的关系1. 讲解数乘运算与向量长度的关系。

2. 讲解数乘运算在求向量长度中的应用。

五、数乘运算在向量运算中的应用1. 讲解数乘运算在向量加法中的应用。

2. 讲解数乘运算在向量减法中的应用。

教学方法:1. 采用讲授法,讲解数乘运算的概念、规则及应用。

2. 利用多媒体演示,直观展示数乘运算在坐标系中的应用。

3. 引导学生通过练习,巩固数乘运算的知识。

教学评估:1. 课堂练习:布置有关数乘运算的题目,检查学生掌握情况。

2. 课后作业:布置有关数乘运算的综合题目,要求学生在规定时间内完成。

3. 单元测试:进行有关数乘运算的测试,了解学生对知识的掌握程度。

教学资源:1. 教学PPT:展示数乘运算的概念、规则及应用。

2. 练习题库:提供丰富的数乘运算题目,供学生练习。

3. 坐标系软件:辅助展示数乘运算在坐标系中的应用。

教学建议:1. 在讲解数乘运算概念时,注意与实数的乘法进行对比,帮助学生理解。

2. 在讲解数乘运算规则时,举例说明,让学生更好地掌握。

3. 在数乘运算的应用部分,注重引导学生思考,提高解决问题的能力。

4. 针对不同程度的学生,合理安排课堂练习和课后作业,提高教学效果。

5. 及时进行教学评估,针对学生的薄弱环节进行有针对性的讲解和辅导。

平面向量的数乘运算教学内容:六、数乘运算与向量坐标的关系2. 举例说明数乘运算在坐标系中的应用。

7.2 数乘向量课件-2023届广东省高职高考数学第一轮复习第七章平面向量

7.2 数乘向量课件-2023届广东省高职高考数学第一轮复习第七章平面向量
-y)b=(4y-7)a+2xb,求实数 x、y 的值. 【分析】 依题意,以向量 a、b 为单位向量建立坐标系(或一定角度,
不一定是直解) 【解】 因为 3xa+(10-y)b=(4y-7)a+2xb
所以(3x,10-y)=(4y-7,2x),联立方程组31x0=-4yy=-27x,解得yx==43. 故 x=3,y=4.
二、填 空 题
9.向量 a∥b 且|a|=3|b|,则向量 a、b 的关系式是__a_=__3_b_或__a_=__-__3_b___. 【解析】 由两向量平行知 a=3b 或 a=-3b.
10.若向量 a=e1+e2,b=e1-e2,则 2a+3b=__5_e_1_-__e_2 __. 【解析】 2a+3b=2(e1+e2)+3(e1-e2)=5e1-e2.
11.在四边形 ABCD 中,A→D=12B→C,则四边形 ABCD 是___梯___形. 【解析】 由A→D=12B→C得A→D∥B→C,A→D=12B→C.
12.如果 a=-2b(b≠0),则 a 与 b 的位置关系是_平__行__且__反__向___. 【解析】 由向量平行的概念可知 a 与 b 平行,又 λ=-2<0,∴a 与 b 反向.
6.(1)(-2)×12 a=__-__a__;(2)2(a+b)-3(a-b)=__-__a_+__5_b__. 【解析】 (1)(-2)×12a=(-2)×12a=(-1)a=-a;
(2)2(a+b)-3(a-b)=2a+2b-(3a-3b)=2a+2b-3a+3b=-a+5b.
一、选 择 题
5.已知向量 e1、e2 不共线,实数 x、y 满足(3x-4y)e1+(2x-3y)e2=6e1
+3e2,则 x-y=( A )

沪教版数学九年级上册24.6《实数与向量相乘》(第1课时)教学设计

沪教版数学九年级上册24.6《实数与向量相乘》(第1课时)教学设计

沪教版数学九年级上册24.6《实数与向量相乘》(第1课时)教学设计一. 教材分析沪教版数学九年级上册24.6《实数与向量相乘》是本册教材中的一个重要内容,主要让学生了解实数与向量相乘的定义和性质。

本节课的内容对于学生来说是比较抽象的,需要通过具体实例和实际操作来理解和掌握。

教材中通过丰富的例题和练习题,帮助学生逐步掌握实数与向量相乘的方法和应用。

二. 学情分析九年级的学生已经具备了一定的实数和向量的基础知识,对于实数与向量的乘法有一定的了解。

但是,对于实数与向量相乘的定义和性质,以及其在实际问题中的应用,还需要进一步的引导和培养。

因此,在教学过程中,需要注重学生的实际操作和思考,通过具体的实例和问题,引导学生理解和掌握实数与向量相乘的概念和方法。

三. 教学目标1.了解实数与向量相乘的定义和性质。

2.能够运用实数与向量相乘的方法解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.实数与向量相乘的定义和性质。

2.实数与向量相乘的方法和应用。

五. 教学方法1.实例教学法:通过具体的实例,引导学生理解和掌握实数与向量相乘的概念和方法。

2.问题驱动法:通过提出实际问题,引导学生运用实数与向量相乘的方法解决问题。

3.小组合作法:通过小组合作讨论,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.教材和教学参考书。

2.教学PPT或者黑板。

3.练习题和测试题。

七. 教学过程1.导入(5分钟)通过一个实际问题,如一个人在平面上向右移动3个单位,向上移动2个单位,引导学生思考如何用数学语言来描述这个人的移动。

2.呈现(15分钟)介绍实数与向量相乘的定义和性质,通过具体的实例来解释和展示实数与向量相乘的方法。

3.操练(15分钟)让学生分组进行实际操作,利用实数与向量相乘的方法解决实际问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生独立完成教材中的练习题,检验学生对实数与向量相乘的理解和掌握程度。

向量数乘运算及其几何意义

向量数乘运算及其几何意义

2.2.3向量数乘运算及其几何意义学习目标1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题.知识点一 向量数乘的定义实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,其长度与方向规定如下: (1)|λa |=|λ||a |.(2)λa (a ≠0)的方向⎩⎪⎨⎪⎧当λ>0时,与a 方向相同;当λ<0时,与a 方向相反.特别地,当λ=0或a =0时,0a =0或λ0=0. 知识点二 向量数乘的运算律 1.λ(μa )=(λμ)a . 2.(λ+μ)a =λa +μa . 3.λ(a +b )=λa +λb . 知识点三 向量共线定理 1.向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 2.向量的线性运算向量的加、减、数乘运算统称为向量的线性运算,对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b . 思考 共线向量定理中为什么规定a ≠0?答案 若将条件a ≠0去掉,即当a =0时,显然a 与b 共线. (1)若b ≠0,则不存在实数λ,使b =λa . (2)若b =0,则对任意实数λ,都有b =λa .1.若向量b 与a 共线,则存在唯一的实数λ使b =λa .( × ) 提示 当b =0,a =0时,实数λ不唯一. 2.若b =λa ,则a 与b 共线.( √ ) 提示 由向量共线定理可知其正确. 3.若λa =0,则a =0.( × ) 提示 若λa =0,则a =0或λ=0.题型一 向量的线性运算例1 (1)3(6a +b )-9⎝⎛⎭⎫a +13b =________. 考点 向量的线性运算及应用 题点 向量的线性运算答案 9a解析 3(6a +b )-9⎝⎛⎭⎫a +13b =18a +3b -9a -3b =9a . (2)若3(x +a )+2(x -2a )-4(x -a +b )=0,则x =______. 考点 向量的线性运算及应用 题点 向量的线性运算 答案 4b -3a解析 由已知得3x +3a +2x -4a -4x +4a -4b =0, 所以x +3a -4b =0,所以x =4b -3a . 反思感悟 向量线性运算的基本方法(1)类比法:向量的数乘运算类似于代数多项式的运算,例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是这里的“同类项”、“公因式”是指向量,实数看作是向量的系数.(2)方程法:向量也可以通过列方程来解,把所求向量当作未知数,利用解方程的方法求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算. 跟踪训练1 计算:(a +b )-3(a -b )-8a . 考点 向量的线性运算及应用 题点 向量的线性运算解 (a +b )-3(a -b )-8a =(a -3a )+(b +3b )-8a =-2a +4b -8a =-10a +4b .题型二 向量共线的判定及应用命题角度1 判定向量共线或三点共线 例2 已知非零向量e 1,e 2不共线.(1)若a =12e 1-13e 2,b =3e 1-2e 2,判断向量a ,b 是否共线.考点 向量共线定理及其应用 题点 利用向量共线定理判定向量共线 解 ∵b =6a ,∴a 与b 共线.(2)若AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A ,B ,D 三点共线.考点 向量共线定理及其应用 题点 利用向量共线定理判定三点共线证明 ∵AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →, ∴AB →,BD →共线,且有公共点B , ∴A ,B ,D 三点共线.反思感悟 (1)向量共线的判断(证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线.(2)利用向量共线定理证明三点共线,一般先任取两点构造向量,从而将问题转化为证明两向量共线,需注意的是,在证明三点共线时,不但要利用b =λa (a ≠0),还要说明向量a ,b 有公共点.跟踪训练2 已知非零向量e 1,e 2不共线,如果AB →=e 1+2e 2,BC →=-5e 1+6e 2,CD →=7e 1-2e 2,则共线的三个点是________. 考点 向量共线定理及其应用 题点 利用向量共线定理判定三点共线 答案 A ,B ,D解析 ∵AB →=e 1+2e 2,BD →=BC →+CD → =-5e 1+6e 2+7e 1-2e 2=2(e 1+2e 2)=2AB →, ∴AB →,BD →共线,且有公共点B , ∴A ,B ,D 三点共线.命题角度2 利用向量共线求参数值例3 已知非零向量e 1,e 2不共线,欲使k e 1+e 2和e 1+k e 2共线,试确定k 的值. 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 解 ∵k e 1+e 2与e 1+k e 2共线, ∴存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎪⎨⎪⎧k -λ=0,λk -1=0,∴k =±1.反思感悟 利用向量共线定理,即b 与a (a ≠0)共线⇔b =λa ,既可以证明点共线或线共线问题,也可以根据共线求参数的值.跟踪训练3 设两个不共线的向量e 1,e 2,若a =2e 1-3e 2,b =2e 1+3e 2,c =2e 1-9e 2,问是否存在实数λ,μ,使d =λa +μb 与c 共线? 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 解 d =λ(2e 1-3e 2)+μ(2e 1+3e 2) =(2λ+2μ)e 1+(3μ-3λ)e 2,要使d 与c 共线,则存在实数k ,使得d =k c , 即(2λ+2μ)e 1+(-3λ+3μ)e 2=2k e 1-9k e 2. 因为e 1与e 2不共线,所以⎩⎪⎨⎪⎧2λ+2μ=2k ,-3λ+3μ=-9k ,得λ=-2μ.故存在实数λ和μ,使得d 与c 共线,此时λ=-2μ. 题型三 用已知向量表示其他向量例4 在△ABC 中,若点D 满足BD →=2DC →,则AD →等于( ) A.13AC →+23AB → B.53AB →-23AC →C.23AC →-13AB → D.23AC →+13AB → 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 示意图如图所示,由题意可得AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →.跟踪训练4 如图所示,四边形OADB 是以向量OA →=a ,OB →=b 为邻边的平行四边形.又BM =13BC ,CN =13CD ,试用a ,b 表示OM →,ON →,MN →.考点 向量共线定理及其应用 题点 用已知向量表示未知向量解 因为BM →=13BC →=16BA →=16(OA →-OB →)=16(a -b ),所以OM →=OB →+BM →=b +16a -16b =16a +56b .因为CN →=13CD →=16OD →,所以ON →=OC →+CN →=12OD →+16OD →=23OD →=23(OA →+OB →)=23(a +b ). MN →=ON →-OM →=23(a +b )-16a -56b =12a -16b .向量的综合应用典例 如图,设O 是△ABC 内一点,且满足OA →+2OB →+3OC →=0,则△ABC 与△AOC 的面积之比为________.答案 3解析 如图所示,分别取BC ,AC 边的中点D ,E ,则OB →+OC →=2OD →,① OA →+OC →=2OE →,② 由①×2+②可得OA →+2OB →+3OC →=2(2OD →+OE →). 又因为OA →+2OB →+3OC →=0, 所以2OD →+OE →=0,即OE →=-2OD →, 所以OD →,OE →共线,且|OE →|=2|OD →|.所以S △AOC =2S △COE =2×23S △CDE =2×23×14S △ABC =13S △ABC ,所以S △ABC S △AOC=3.[素养评析] 本题主要考查向量共线条件的应用,解题时需充分利用好几何图形,借助几何直观使问题得解,这正体现了数学中直观想象的核心素养.1.下列各式计算正确的有( ) (1)(-7)6a =-42a ; (2)7(a +b )-8b =7a +15b ; (3)a -2b +a +2b =2a ; (4)4(2a +b )=8a +4b .A .1个B .2个C .3个D .4个 考点 向量的线性运算及应用 题点 向量的线性运算 答案 C解析 (1)(3)(4)正确,(2)错,7(a +b )-8b =7a +7b -8b =7a -b . 2.在△ABC 中,M 是BC 的中点,则AB →+AC →等于( ) A.12AM → B.AM → C .2AM → D.MA → 考点 向量的线性运算及应用 题点 向量的线性运算 答案 C解析 如图,作出平行四边形ABEC ,因为M 是BC 的中点,所以M 也是AE 的中点,由题意知,AB →+AC →=AE →=2AM →,故选C.3.设e 1,e 2是两个不共线的向量,若向量m =-e 1+k e 2 (k ∈R )与向量n =e 2-2e 1共线,则( ) A .k =0 B .k =1 C .k =2D .k =12考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 D解析 当k =12时,m =-e 1+12e 2,n =-2e 1+e 2.∴n =2m ,此时m ,n 共线.4.已知P ,A ,B ,C 是平面内四点,且P A →+PB →+PC →=AC →,则下列向量一定共线的是( ) A.PC →与PB → B.P A →与PB → C.P A →与PC →D.PC →与AB → 考点 向量共线定理及其应用 题点 利用向量共线定理判定向量共线 答案 B解析 因为P A →+PB →+PC →=AC →, 所以P A →+PB →+PC →+CA →=0, 即-2P A →=PB →,所以P A →与PB →共线.5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.考点 向量共线定理及其应用 题点 用已知向量表示未知向量 解 OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.1.实数与向量可以进行数乘运算,但不能进行加减运算,例如λ+a ,λ-a 是没有意义的. 2.λa 的几何意义就是把向量a 沿着a 的方向或反方向扩大或缩小为原来的|λ|倍.向量a|a |表示与向量a 同向的单位向量.3.向量共线定理是证明三点共线的重要工具,即三点共线问题通常转化为向量共线问题.一、选择题1.下列说法中正确的是( ) A .λa 与a 的方向不是相同就是相反 B .若a ,b 共线,则b =λa C .若|b |=2|a |,则b =±2a D .若b =±2a ,则|b |=2|a | 考点 向量数乘的定义及运算 题点 向量数乘的定义及几何意义 答案 D解析 显然当b =±2a 时,必有|b |=2|a |. 2.3(2a -4b )等于( ) A .5a +7b B .5a -7b C .6a +12bD .6a -12b考点 向量的线性运算及应用 题点 向量的线性运算 答案 D解析 利用向量数乘的运算律,可得3(2a -4b )=6a -12b ,故选D.3.已知a ,b 是不共线的向量,AB →=λa +2b ,AC →=a +(λ-1)b ,且A ,B ,C 三点共线,则实数λ的值为( ) A .-1 B .2 C .-2或1D .-1或2考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 D解析 因为A ,B ,C 三点共线, 所以存在实数k 使AB →=kAC →. 因为AB →=λa +2b ,AC →=a +(λ-1)b , 所以λa +2b =k [a +(λ-1)b ].因为a 与b 不共线,所以⎩⎪⎨⎪⎧λ=k ,2=k (λ-1),解得λ=2或λ=-1.4.如图,△ABC 中,AB →=a ,AC →=b ,DC →=3BD →,AE →=2EC →,则DE →等于( )A .-13a +34bB.512a -34b C.34a +13b D .-34a +512b考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 DE →=DC →+CE →=34BC →+⎝⎛⎭⎫-13AC → =34(AC →-AB →)-13AC →=-34AB →+512AC →=-34a +512b ,故选D.5.如图,AB 是⊙O 的直径,点C ,D 是半圆弧AB 上的两个三等分点,AB →=a ,AC →=b ,则AD →等于( )A .a -12bB.12a -b C .a +12bD.12a +b 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 连接CD ,OD ,如图所示.∵点C ,D 是半圆弧AB 上的两个三等分点, ∴AC =CD ,∠CAD =∠DAB =12×60°=30°. ∵OA =OD ,∴∠ADO =∠DAO =30°. 由此可得∠CAD =∠ADO =30°,∴AC ∥DO . 由AC =CD ,得∠CDA =∠CAD =30°, ∴∠CDA =∠DAO ,∴CD ∥AO , ∴四边形ACDO 为平行四边形, ∴AD →=AO →+AC →=12AB →+AC →=12a +b .6.已知m ,n 是实数,a ,b 是向量,则下列说法中正确的是( ) ①m (a -b )=m a -m b ;②(m -n )a =m a -n a ; ③若m a =m b ,则a =b ;④若m a =n a ,则m =n . A .②④ B .①② C .①③ D .③④ 考点 向量数乘的定义及运算 题点 向量数乘的运算及运算律 答案 B解析 ①和②属于数乘对向量与实数的分配律,正确;③中,若m =0,则不能推出a =b ,错误;④中,若a =0,则m ,n 没有关系,错误.7.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD交于点F .若AC →=a ,BD →=b ,则AF →等于( ) A.14a +12b B.13a +23b C.12a +14b D.23a +13b 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 ∵△DEF ∽△BEA , ∴DF AB =DE EB =13,∴DF =13AB , ∴AF →=AD →+DF →=AD →+13AB →.∵AC →=AB →+AD →=a ,BD →=AD →-AB →=b , 联立得AB →=12(a -b ),AD →=12(a +b ),∴AF →=12(a +b )+16(a -b )=23a +13b .二、填空题8.(a +9b -2c )+(b +2c )=________. 考点 向量的线性运算及应用 题点 向量的线性运算 答案 a +10b9.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又∵向量λa +b 与a +2b 平行,则存在唯一的实数μ, 使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.10.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________.(用a ,b表示)考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 14b -14a解析 如图,MN →=MB →+BA →+AN →=-12b -a +34AC →=-12b -a +34(a +b )=14b -14a .11.若非零向量a 与b 不共线,k a +2b 与3a +k b 共线,则实数k 的值为________. 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 ±6解析 ∵k a +2b 与3a +k b 共线, ∴存在实数λ,使得k a +2b =λ(3a +k b ), ∴(k -3λ)a +(2-λk )b =0, ∴(k -3λ)a =(λk -2)b .∵a 与b 不共线,∴⎩⎪⎨⎪⎧k -3λ=0,λk -2=0,∴k =±6.12.如图,在△ABC 中,延长CB 到D ,使BD =BC ,当点E 在线段AD 上移动时,若AE →=λAB→+μAC →,则t =λ-μ的最大值是________.考点 向量共线定理及其应用题点 向量共线定理在平面几何中的应用 答案 3解析 设AE →=kAD →,0≤k ≤1,则AE →=k (AC →+2CB →)=k [AC →+2(AB →-AC →)]=2kAB →-kAC →, ∵AE →=λAB →+μAC →,且AB →与AC →不共线,∴⎩⎪⎨⎪⎧λ=2k ,μ=-k ,∴t =λ-μ=3k .又0≤k ≤1,∴当k =1时,t 取最大值3. 故t =λ-μ的最大值为3. 三、解答题 13.计算:(1)6(3a -2b )+9(-2a +b );(2)12⎣⎡⎦⎤(3a +2b )-23a -b -76⎣⎡⎦⎤12a +37⎝⎛⎭⎫b +76a ; (3)6(a -b +c )-4(a -2b +c )-2(-2a +c ). 考点 向量的线性运算及应用 题点 向量的线性运算解 (1)原式=18a -12b -18a +9b =-3b . (2)原式=12⎝⎛⎭⎫3a -23a +2b -b -76⎝⎛⎭⎫12a +12a +37b=12⎝⎛⎭⎫73a +b -76⎝⎛⎭⎫a +37b =76a +12b -76a -12b =0. (3)原式=6a -6b +6c -4a +8b -4c +4a -2c =(6a -4a +4a )+(8b -6b )+(6c -4c -2c ) =6a +2b .14.在平行四边形ABCD 中,M ,N 分别是DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →和AD →.考点 向量的线性运算及应用 题点 用已知向量表示未知向量 解 如图,设AB →=a ,AD →=b . ∵M ,N 分别是DC ,BC 的中点,∴BN →=12b ,DM →=12a .∵在△ADM 和△ABN 中, ⎩⎪⎨⎪⎧AD →+DM →=AM →,AB →+BN →=AN →,即⎩⎨⎧ b +12a =c , ①a +12b =d . ②①×2-②,得b =23(2c -d ), ②×2-①,得a =23(2d -c ). ∴AB →=43d -23c ,AD →=43c -23d .15.已知在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,求证:四边形ABCD为梯形.考点 向量共线定理及其应用题点 向量共线定理在平面几何中的应用证明 如图所示.→=AB→+BC→+CD→∵AD=(a+2b)+(-4a-b)+(-5a-3b)=-8a-2b=2(-4a-b),→=2BC→.∴AD→与BC→共线,且|AD→|=2|BC→|.∴AD又∵这两个向量所在的直线不重合,∴AD∥BC,且AD=2BC.∴四边形ABCD是以AD,BC为两条底边的梯形.。

常见的数乘定义

常见的数乘定义

常见的数乘定义
数乘也叫做数与向量的乘法,是线性代数中的基本运算之一。

常见的数乘定义有以下几种:
1. 实数与向量的乘法:给定一个实数k和一个n维向量v,实数k与向量v的乘积kv定义为一个n维向量,其每个元素都等于k 乘以v对应元素的值。

2. 复数与向量的乘法:给定一个复数a+bi和一个n维向量v,复数a+bi与向量v的乘积(a+bi)v定义为一个n维向量,其每个元素都等于(a+bi)乘以v对应元素的值。

3. 矩阵与向量的乘法:给定一个m×n的矩阵A和一个n维向量v,矩阵A与向量v的乘积Av定义为一个m维向量,其每个元素都等于A的第i行与v的内积。

4. 向量与向量的乘法:给定两个n维向量u和v,向量u与向量v的乘积uv定义为一个n×n的矩阵,其(i,j)元素等于u的第i 个元素乘以v的第j个元素。

以上是常见的数乘定义,它们在线性代数中有着广泛的应用。

- 1 -。

实数与向量的乘积

实数与向量的乘积
实数与向量的乘积可以改变向量 的大小和方向,从而实现向量的 缩放、旋转等操作。
实数与向量的应用
实数与向量的乘积在物理、工程 等领域有着广泛的应用,如力的 合成与分解、速度的计算等。
03
实数与向量的乘积运算
乘积的运算规则
结合律
对于任意实数λ、μ和向量a,有λ(μa) = (λμ)a。
分配律
对于任意实数λ、μ和向量a、b,有(λ + μ)a = λa + μa,λ(a + b) = λa + λb。
来得到。
在工程中的应用
结构力学
在工程学中,实数与向量的乘积被广泛应用 于结构力学。例如,桥梁或建筑物的结构分 析需要考虑各种力的作用,这些力可以用向 量表示,并通过实数与向量的乘积进行计算 和分析。
电气工程
在电气工程中,电流、电压和电场强度等物 理量都是向量。实数与向量的乘积可以用来 计算电路中的功率、能量等参数。
03
代数性质
实数与向量的乘积满足一系列代数性 质,如结合律、分配律等,这些性质 使得向量运算更加灵活和方便。
对未来研究的展望
拓展应用领域
实数与向量的乘积作为一种基础的数学工具,在物理、工程、计算机图形学等领域有广泛的应用。未来可以进一步探 索其在其他领域的应用,如机器学习、数据分析等。
高维向量空间的研究
目前对实数与向量的乘积的研究主要集中在二维和三维向量空间。未来可以拓展到更高维度的向量空间,研究高维空 间中实数与向量的乘积的性质和应用。
与其他数学概念的结合
实数与向量的乘积可以与其他数学概念相结合,如矩阵、张量等,产生更丰富的数学结构和性质。未来 可以探索这些结合所带来的新的数学理论和应用。
THANKS

实数与向量相乘

实数与向量相乘

实数与向量‎相乘1.实数与向量‎相乘的意义‎一般的,设为正整数‎n ,a 为向量,我们用表示‎ann 个a 相加;用表示个相‎a n -n a -加.又当为正整‎m 数时,a m n 表示与同向‎a 且长度为的‎a mn 向量. 要点诠释:设P 为一个‎正数,P 就是将的‎a a 长度进行放‎缩,而方向保持‎不变;—P 也就是将‎a a 的长度进行‎放缩,但方向相反‎. 2.向量数乘的‎定义 一般地,实数与向量‎k a 的相乘所得‎的积是一个‎向量,记作ka,它的长度与‎方向规定如‎下:(1)如果k 0,a 0且≠≠时,则:①ka 的长度:||||||ka k a = ;②ka 的方向:当0k >时,ka 与a 同方向;当0k <时,ka 与a反方向;(2)如果k 0,a=0=或时,则:0ka = ,ka 的方向任意‎.实数与向量‎k a 相乘,叫做向量的‎数乘. 要点诠释:(1)向量数乘结‎果是一个与‎已知向量平‎行(或共线)的向量; (2)实数与向量‎不能进行加‎减运算; (3)ka表示向量的‎数乘运算,书写时应把‎实数写在向‎量前面且省‎略乘号,注意不要将‎表示向量的‎箭头写在数‎字上面; (4)向量的数乘‎体现几何图‎形中的位置‎关系和数量‎关系. 3.实数与向量‎相乘的运算‎律 设m n 、为实数,则:(1)()()m na mn a =(结合律);(2)()m n a ma na +=+(向量的数乘‎对于实数加‎法的分配律‎);(3)m (+b )=m a a mb +(向量的数乘‎对于向量加‎法的分配律‎)4.平行向量定‎理(1)单位向量:长度为1的‎向量叫做单‎位向量. 要点诠释:任意非零向‎量与它同方‎a 向的单位向‎量0a 的关系:0a a a = ,01a a a=.(2)平行向量定‎理:如果向量与‎b 非零向量平‎a 行,那么存在唯‎一的实数m ,使b ma =.要点诠释:(1)定理中,bm a =,m 的符号由与‎b a 同向还是反‎向来确定.(2)定理中的“a 0≠ ”不能去掉,因为若a 0= ,必有b 0=,此时可以取‎m 任意实数,使得b ma =成立.(3)向量平行的‎判定定理:a 是一个非零‎向量,若存在一个‎实数m ,使b m a =,则向量与非‎b 零向量平行‎a .(4)向量平行的‎性质定理:若向量与非‎b 零向量平行‎a ,则存在一个‎实数m ,使b ma =.(5)A 、B 、C 三点的共‎线若存在实‎⇔AB//BC ⇔数λ,使 AB BC λ=.要点五、向量的线性‎运算 1.向量的线性‎运算定义 向量的加法‎、减法、实数与向量‎相乘以及它‎们的混合运‎算叫做向量‎的线性运算‎. 要点诠释:(1)如果没有括‎号,那么运算的‎顺序是先将‎实数与向量‎相乘,再进行向量‎的加减. (2)如果有括号‎,则先做括号‎内的运算,按小括号、中括号、大括号依次‎进行. 2.向量的分解‎平面向量基‎本定理:如果是同一‎12,e e 平面内两个‎不共线(或不平行)的向量,那么对于这‎一平面内的‎任一向量a ,有且只有一‎对实数12,λλ,使得1122a e e λλ=+.要点诠释:(1)同一平面内‎两个不共线‎(或不平行)向量叫做这‎12,e e 一平面内所‎有向量的一‎组基底.一组基底中‎,必不含有零‎向量.(2) 一个平面向‎量用一组基‎底表示为形‎12,e e 1122a e e λλ=+ 式,叫做向量的‎分解,当相互垂直‎12,e e时,就称为向量‎的正分解.每家都会装‎修,我们可以用‎一根电线将‎一盏电灯吊‎在天花板上‎,为了保险我‎们也可以用‎两根绳将这‎盏电灯吊在‎同一位置。

实数与向量相乘

实数与向量相乘

实数与向量相乘1.实数与向量相乘的意义一般的,设n 为正整数,a 为向量,我们用a n 表示n 个a 相加;用a n -表示n 个a -相加.又当m 为正整数时,a m n 表示与a 同向且长度为a mn的向量. 要点诠释:设P 为一个正数,P a 就是将a 的长度进行放缩,而方向保持不变;—P a 也就是将a 的长度进行放缩,但方向相反. 2.向量数乘的定义一般地,实数k 与向量a 的相乘所得的积是一个向量,记作ka ,它的长度与方向规定如下:(1)如果k 0,a 0且≠≠时,则:①ka 的长度:||||||ka k a =;②ka 的方向:当0k >时,ka 与a 同方向;当0k <时,ka 与a 反方向; (2)如果k 0,a=0=或时,则:0ka =,ka 的方向任意.实数k 与向量a 相乘,叫做向量的数乘. 要点诠释:(1)向量数乘结果是一个与已知向量平行(或共线)的向量; (2)实数与向量不能进行加减运算;(3)ka 表示向量的数乘运算,书写时应把实数写在向量前面且省略乘号,注意不要将表示向量的箭头写在数字上面;(4)向量的数乘体现几何图形中的位置关系和数量关系. 3.实数与向量相乘的运算律 设m n 、为实数,则:(1)()()m na mn a =(结合律);(2)()m n a ma na +=+(向量的数乘对于实数加法的分配律);(3)m (+b)=m a a mb + (向量的数乘对于向量加法的分配律) 4.平行向量定理(1)单位向量:长度为1的向量叫做单位向量. 要点诠释:任意非零向量a 与它同方向的单位向量0a 的关系:0a a a =,01a a a=.(2)平行向量定理:如果向量b 与非零向量a 平行,那么存在唯一的实数m ,使b ma =. 要点诠释: (1)定理中,b m a=,m 的符号由b 与a 同向还是反向来确定.(2)定理中的“a 0≠”不能去掉,因为若a 0=,必有b 0=,此时m 可以取任意实数,使得b ma =成立.(3)向量平行的判定定理:a 是一个非零向量,若存在一个实数m ,使b ma =,则向量b 与非零向量a 平行.(4)向量平行的性质定理:若向量b 与非零向量a 平行,则存在一个实数m ,使b ma =. (5)A 、B 、C 三点的共线⇔AB //BC ⇔若存在实数λ,使 AB BC λ=.要点五、向量的线性运算 1.向量的线性运算定义向量的加法、减法、实数与向量相乘以及它们的混合运算叫做向量的线性运算. 要点诠释:(1)如果没有括号,那么运算的顺序是先将实数与向量相乘,再进行向量的加减. (2)如果有括号,则先做括号内的运算,按小括号、中括号、大括号依次进行. 2.向量的分解平面向量基本定理:如果12,e e 是同一平面内两个不共线(或不平行)的向量,那么对于这一平面内的任一向量a ,有且只有一对实数12,λλ,使得1122a e e λλ=+. 要点诠释:(1)同一平面内两个不共线(或不平行)向量12,e e 叫做这一平面内所有向量的一组基底.一组基底中,必不含有零向量.(2) 一个平面向量用一组基底12,e e 表示为1122a e e λλ=+形式,叫做向量的分解,当12,e e 相互垂直时,就称为向量的正分解.每家都会装修,我们可以用一根电线将一盏电灯吊在天花板上,为了保险我们也可以用两根绳将这盏电灯吊在同一位置。

《向量的数乘运算及其几何意义》教学设计(优质课比赛教案)

《向量的数乘运算及其几何意义》教学设计(优质课比赛教案)

《向量的数乘运算及其几何意义》教学设计一、教学分析向量具有丰富的实际背景和几何背景,向量既有大小,又有方向.本节学习向量的数乘运算及其几何意义.向量数乘运算以及加法、减法统称为向量的三大线性运算,向量的数乘运算其实是加法运算的推广及简化.教学时从加法入手,引入数乘运算,充分体现了数学知识之间的内在联系.实数与向量的乘积仍然是一个向量,既有大小,又有方向.特别是方向与已知向量是共线向量,进而引出共线向量定理.这样平面内任意一条直线l 就可以用点A和某个向量a 表示了.共线向量定理是本章节的重要的内容,应用相当广泛,且容易出错,尤其是定理的前提条件:向量a 是非零向量.共线向量的应用主要用于证明点共线或线平行等,且与后学的知识有着密切的联系.二、教学目标1、知识与技能通过经历探究数乘运算法则及其几何意义的过程,掌握实数与向量积的定义;理解实数与向量积的几何意义;掌握实数与向量积的运算律.2、过程与方法通过师生互动理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行,进而判定点共线或直线平行.3、情感态度与价值观通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法(从特殊到一般、分类讨论、转化化归、观察、猜想、归纳、类比、总结等);培养创新能力和积极进取精神;通过解决具体问题,体会数学在实际生活中的重要作用.四、教学重难点教学重点:1.实数与向量积的意义及其几何意义; 2.实数与向量积的运算律;3.两个向量共线的等价条件及其运算. 教学难点:对向量共线的等价条件的理解以及运用. 五、教具选取三角板、投影仪、多媒体辅助教学. 六、教学过程 1、导入新课:一条细绳东西方向摆放,一只蚂蚁在细绳上做匀速直线运动,若蚂蚁向东方向一秒钟的位移对应的向量为a,那么它在同一方向上3秒钟的位移对应的向量怎样表示?是a 3吗?若蚂蚁向西3秒钟的位移对应的向量又怎样表示?是a3-吗?你能用图形表示吗?学生活动:独立思考.教师活动:提问、引导学生作答.设计意图:向量具有丰富的实际背景和几何背景,并且兼具“数”与“形”的特点,它在物理和几何中具有广泛的应用,故本节通过位移的实际背景引入新课. 2、推进新课:探究:已知非零向量a ,试作出a a a ++和)()()(a a a-+-+-,你能说明它的几何意义吗?学生活动:独立观察、思考、总结. 教师活动:提问、引导学生.设计意图:认识和理解向量数乘的几何意义必须从几何直观入手,即通过学生自己作出向量a a a++和)()()(a a a-+-+-,以及独立观察、思考,让学生对向量的伸缩有一个初步的感性认识,进而为下一步对向量的数乘的定义及其几何意义的理性aa a认识做好铺垫.问题1:你能通过上述的具体实例总结出更具一般性的向量数乘的定义吗? 从而推广到一般的向量数乘的定义.我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作aλ,它的长度与方向规定如下:(1)a aλλ=;(2)当0>λ时,a λ的方向与a 一致;当0<λ时,a λ的方向与a的方向相反.由(1)可知当0=λ时,0=a λ.设计意图:通过引出向量的数乘的定义,让学生体会从特殊到一般的思想方法. 问题2:你能说明它的几何意义吗? 学生活动:小组合作交流,学生单独作答.设计意图:从数学学科这个整体来看,数学的高度抽象性造就了数学的难懂、难学,解决这一问题的基本途径是顺应学习者的认知规律,在可能的情况下,尽量做到从直观入手,从具体开始,逐步抽象.通过师生互动,得到向量数乘的几何意义是把向量a 沿a 的方向或a的反方向放大λ倍或缩小λ倍.问题3:C 在线段AB 上,且25=CB AC ,则=AC AB ;=BC AB . 学生活动:独立思考并踊跃回答. 教师活动:评价.设计意图:通过简单口答题来巩固学生对向量数乘定义的理解及运用.通过活动过程的成功体验提高学生学习的积极性.问题4:数的运算和运算律是紧密相连的,运算律可以有效地简化运算.类比数的乘法的运算律,你能说出数乘向量的运算律吗?归纳总结: (1)a a)()(λμμλ=(2)a a aμλμλ+=+)((3)b a b aλλλ+=+)(问题5:你能解释上述运算律的几何意义吗?归纳总结:)()(a a a-=-=-λλλ, b a b a λλλ-=-)(.问题6:你能从形式上描述向量数乘运算律与思考向量线性运算与以前学习过的哪些运算相类似?师生活动:通过类比得到向量数乘运算律;并且通过师生活动得到向量数乘运算、向量的加法、减法可以进行综合运算;实数运算中去括号、移项、提取公因式等可类比进行向量的线性运算.设计意图:数学中引进一个新的量,自然要看看它的运算及其运算律的问题.向量运算可以与学生熟悉的数的运算进行类比,从中得到启发.而数的运算和运算律是紧密相连的,运算律可以有效地简化运算.类比数的乘法的运算律引出数乘向量的运算律.向量具有明显的几何背景,所以向量的运算及运算律也具有明显的几何意义,尤其是涉及到长度、夹角的几何问题可以通过向量及其运算得到解决.这样了解向量数乘运算律的几何意义就有必要了. 3、例题讲解:例1.计算: 1.a 4)3(⨯-;2.)23()32(c b a c b a +---+. 变式练习:(1)计算:---+)(2)(3;(2)已知:0)(4)2(2)(3 =+---++b a x a x a x 求x.学生活动:独立完成,学生单独回答. 教师活动:提问、及时评价.设计意图:心理学认为:概念一旦形成,必须及时加以巩固,通过例1及巩固练习加深学生对数乘向量运算律的理解.解以向量作为未知数的方程可与求解实数方程类比.归纳总结:向量的加、减、数乘运算统称为向量的线性运算.对于任意的向量b a ,,以及任意实数21,,μμλ,恒有b a b a2121)(λμλμμμλ±=±.设计意图:向量的加、减、数乘运算统称为向量的线性运算.本节作为向量线性运算的最后一节,有必要综合认识向量线性运算.问题7:引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗? 师生活动:(分析总结)对于向量)0(≠a a 、b ,如果有一个实数λ,使a b λ=,那么由向量数乘的定义知a与b 共线,且向量b 是向量)0( ≠a a 模的λ倍,而λ的正负由向量)0( ≠a a 、b 的方向所决定.反过来,已知向量a 与b 共线,0 ≠a ,且向量b 的长度是向量a的长度的μ倍,即a b μ=,那么当a 与b 同方向时,有a b μ=;当a与b 反方向时,有a b μ-=.从上述两方面可知归纳总结:共线向量定理:向量)0(≠a a 、b 共线,当且仅当有一个实数λ,使得a b λ=.问题8:1) a为什么要是非零向量?2) b可以是零向量吗?3) 怎样理解向量平行?与两直线平行有什么异同? 学生活动:合作交流,独立作答. 教师活动:提问、引导、及时评价.设计意图:师生共同活动引出向量共线的定理;引导学生理解向量共线只需看这两个向量的方向相同或是相反,在向量)0( ≠a a 的前提下,向量)0(≠a a 、b 共线,当且仅当有一个实数λ,使得a b λ=;且实数λ的唯一性是由向量a和b 的模和方向同时决定.通过学生合作交流,促进学生合作的集体意识;通过学生独立作答,提高学生分析问题、解决问题的能力. 例2.如图,ABCD 的两条对角线相交于点M ,且b a==,,你能用b a ,表示,,,吗?师生互动:利用向量共线的定理及平行四 边形的性质定理,即平行四边形的对角线互相平分.∵b a AC AB AC+=+=, .b a-=-=结合平行四边形的性质:b a b a AC MA2121)(2121--=+-=-=,,212121b a +==.212121b a+-=-=-=设计意图:综合运用向量的加、减、数乘等向量的线性运算.尤其是应当注意到-=,-=从而可简化解题过程,并且在实际的解题中做到举一反三、融会贯通;通过例3的教学使学生明确:有了向量的线性运算,平面中的点、线段(直线)就可以得到向量表示,这是利用向量解决几何问题的重要步骤. 4、课堂作业(1).在△ABC 中,已知D 是AB 边上的一点,若DB AD 2=,CB CA CD λ+=31,则λ的值为( )32.A31.B31.-C32.-D ,2121)(2121b a b a -=-==Aa(2.)计算:=⎥⎦⎤⎢⎣⎡--+)24()82(2131b a b a.(3).若向量方程0)2(32 =--a x x ,则向量=x.(4).根据下列各小题中的条件,分别判断四边形ABCD 的形状,并给出证明.(1)=; (2)BC AD 31=; (3)==,5、课堂小结一、①aλ的定义及运算律;②向量共线定理)0( ≠a ,⇔=a b λ 向量a与b 共线.二、定理的应用:(1)证明向量共线;(2)证明三点共线:⇒=λA 、B 、C 三点共线; (3)证明两直线平行. 三、你体会到了那些数学思想.特殊到一般,归纳,猜想,类比,分类讨论,等价转化等数学思想. 设计意图:1.知识性内容的总结,可以把课堂教学传授的知识尽快转化为学生的素质.2.运用数学方法,创新素质的小结能让学生更系统,更深刻地理解数学理想方法在解题中的地位和作用,并且逐渐培养学生的良好个性品质.3.由学生口头表述,不仅可以提高学生的综合概括能力,还能提高学生的口头表达能力. 6、课后作业P92 A 组习题11、12题。

2021年数学向量知识点10篇

2021年数学向量知识点10篇

2021年数学向量知识点10篇数学向量知识点1数乘向量实数和向量a的乘积是一个向量,记作a,且∣a∣=∣∣∣a∣。

当0时,a与a同方向;当0时,a与a反方向;当=0时,a=0,方向任意。

当a=0时,对于任意实数,都有a=0。

注:按定义知,如果a=0,那么=0或a=0。

实数叫做向量a的系数,乘数向量a的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣∣1时,表示向量a的有向线段在原方向(0)或反方向(0)上伸长为原来的∣∣倍;当∣∣1时,表示向量a的有向线段在原方向(0)或反方向(0)上缩短为原来的∣∣倍。

数与向量的乘法满足下面的运算律结合律:(a)b=(ab)=(ab)。

向量对于数的分配律(第一分配律):(+)a=a+a.数对于向量的分配律(第二分配律):(a+b)=a+b.数乘向量的消去律:①如果实数0且a=b,那么a=b。

②如果a0且a=a,那么=。

数学向量知识点21、平面向量基本概念有向线段:具有方向的线段叫做有向线段,以A为起点,B 为终点的有向线段记作或AB;向量的模:有向线段AB的长度叫做向量的模,记作|AB|;零向量:长度等于0的向量叫做零向量,记作或0。

(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆);相等向量:长度相等且方向相同的向量叫做相等向量;平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a;单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示,平行于坐标轴的单位向量习惯上分别用i、j表示。

相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,—(—a)=a,零向量的相反向量仍然是零向量。

2、平面向量运算加法与减法的代数运算:(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2)。

向量加法与减法的几何表示:平行四边形法则、三角形法则。

向量加法有如下规律:+=+(交换律);+(+c)=(+)+c (结合律);实数与向量的积:实数与向量的积是一个向量。

向量的运算的乘法公式

向量的运算的乘法公式

向量的运算的乘法公式一、向量的点乘(数量积)向量的点乘是指两个向量相乘得到一个标量的运算。

用符号"."表示,表示为A·B,并且满足以下运算规律:1.结合律:(A·B)·C=A·(B·C)2.分配律:A·(B+C)=A·B+A·C3.交换律:A·B=B·A4.数乘结合律:k(A·B)=(kA)·B=A·(kB),其中k为实数点乘的计算方法:如果A=(x1,y1,z1)和B=(x2,y2,z2)是两个三维向量,那么A·B=x1x2+y1y2+z1z2,即各个分量乘积的和。

点乘的意义:1.判断两个向量是否垂直:如果A·B=0,那么向量A与向量B垂直。

2.求解向量的模:A·A=,A,^2,其中,A,表示A的模。

3. 计算两个向量的夹角:cosθ = A·B / (,A,·,B,),其中θ是向量A和向量B之间的夹角。

二、向量的叉乘(向量积、叉积)向量的叉乘是指两个向量相乘得到一个新的向量的运算。

用符号"×"表示,表示为A×B,并且满足以下运算规律:1.分配律:A×(B+C)=A×B+A×C2.反交换律:A×B=-B×A3.数乘结合律:k(A×B)=(kA)×B=A×(kB),其中k为实数叉乘的计算方法:如果A=(x1,y1,z1)和B=(x2,y2,z2)是两个三维向量,那么A×B=(y1z2-z1y2,z1x2-x1z2,x1y2-y1x2),即各个分量分别计算。

叉乘的意义:1.求解平行四边形的面积:平行四边形的面积等于两个边的模的乘积乘以它们之间的夹角的正弦值。

2.判断向量的方向:A×B的方向垂直于A和B的平面,其方向遵循右手定则。

向量的运算法则

向量的运算法则

向量的运算法则(1)实数与向量的运算法则:设λ、μ为实数,则有:1)结合律:a a )()(λμμλ=。

2)分配律:a a μλμλ+=+)(,b a b a λλλ+=+)(。

(2)向量的数量积运算法则: 1)ab ba••=。

2))()()(b a b a b a ba λλλλ===•••。

3)cb c a cb a •••+=+)(。

(3)平面向量的基本定理。

21,e e 是同一平面内的两个不共线向量,则对于这一平面内的任何一向量a ,有且仅有一对实数21,λλ,满足2211e e a λλ+=。

(4)a 与b 的数量积的计算公式及几何意义:θcos ||||b a b a =•,数量积b a •等于a 的长度||a 与b 在a 的方向上的投影θcos ||b 的乘积。

(5)平面向量的运算法则。

1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++。

2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --。

3)设点A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x yy =-=--。

4)设a =(,),x y λ∈R ,则a λ=(,)x y λλ。

5)设a =11(,)x y ,b =22(,)x y ,则a •b =1212()x x y y +。

(6)两向量的夹角公式:121222221122cos x y x yθ+⋅+(a =11(,)x y ,b =22(,)x y )。

(7)平面两点间的距离公式:,A Bd =||AB AB AB =⋅222121()()x x y y -+-A 11(,)x y ,B 22(,)x y )。

(8)向量的平行与垂直:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则有:1)a ||b ⇔b =λa 12210x yx y ⇔-=。

实数与向量的乘积2014

实数与向量的乘积2014

(1)( )a a a
(2) ( a) ( )a
(3) (a b ) a b
例1、如图所示,已知向量 a、 b 试画出下列向量。
(1) 2a; (2) 3b; (3) 2a 3b
a
b
例2、化简:
2(a 3b) 3(a b)
例3、填空
(1)已知平行四边形 ABCD 中, AC a,BD b, 则 AB _________, BC __________ (2)已知 ABC 中,D 是 BC 上的中点, AB a, AC b, 则 AD __________ (3)已知三角形 ABC 中, D 为 BC 中点, AC a,BC b,则 DA _________
实数与向量的乘积
一般地,对于正整数
n,
相同,
na 是一个向量,方向与 a 且 na n a 一般地,对于负整数 m , ma 是一个向量,方向与 a 且 ma m a
相反,
1、实数与向量的乘积的定义 一般地,实数 与非零向量 a 的乘积 是一个向量,记作 a a 的模和方向规定如下:
一般地: ( a ) ( ) a
a
a b
b
2(a b )
2(a b ) 2a 2b
2b
2a
一般地: ( a b ) a b
4、实数与向量乘法的运算律 设 、 R ,则
a、 b 是两个非零向量,
则 a 与 b 平行的充要条件是: 存在非零实数 ,使得 b a 其中

b a
a
2a
5a 3a
(2 3)a 2a 3a

人教版高中数学必修2《向量的数乘运算》PPT课件

人教版高中数学必修2《向量的数乘运算》PPT课件

)
2.4(a-b)-3(a+b)-b等于(
)
A.a-2b B.a
C.a-6b D.a-8b
答案 D
解析 原式=4a-4b-3a-3b-b=a-8b.
1
3.在△ABC 中,D 是 AB 边上一点.若 = , = +λ,则
2
λ=
.
1
答案
2
解析 ∵ = ,∴D 是 AB 的中点.
|| ||


,则是以 A 为起点,向量

所在线段为邻边的菱形对角线对应
|| ||
的向量,即在∠BAC 的平分线上.
∵=λ,∴, 共线.
∴点 P 的轨迹一定通过△ABC 的内心.
方法点睛 (1)三角形的内心:三角形内切圆的圆心,三角形三条角平分线的
交点,内心到三角形三边的距离相等.
=x+y 且 x+y=1.
2.利用向量共线求参数的方法
判断、证明向量共线问题的思路是根据向量共线定理寻求唯一的实数λ,
使得b=λa(a≠0).而已知向量共线求λ,常根据向量共线的条件转化为相应向
量系数相等求解,利用待定系数法建立方程,从而解方程求得λ的值.若两向
量不共线,必有向量的系数为零.
(2)三角形的外心:三角形外接圆的圆心,三角形三条边的中垂线的交点,外
心到三角形三个顶点的距离相等.若M是△ABC内一点,且满足
||=| |=| |,则点 M 为△ABC 的外心.
(3)三角形的垂心:三角形三条高线的交点.
(4)三角形的重心:三角形三条中线的交点.若 G 是△ABC 内一点,且满足 +
C.b-a D.a-b
(2)已知2a-b=m,a+3b=n,那么a,b用m,n可以表示为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数与向量的乘积1.实数与向量的乘积:设λ为任意实数,a r 为任意的非零向量。

λ与a r的乘积是一个向量,记作______模:a λr 的模等于||a r 的_____倍,即||a λ=r_____方向:(1)当0λ>时,规定a λr 与a r的方向______ (2) 当0λ=时,规定a λ=r ______(3)当0λ<时,规定a λr 与a r的方向______由于规定了a λr 的模||a λr与a λr 的方向,这样a λr 就能确定了。

4.根据实数与向量的乘积的定义,可知a λr 与a r是____________的向量 5.两个非零向量a r 与b r 平行的充要条件是:存在非零实数λ,使b =r______6. 实数与向量的乘积满足以下运算律:设,R λμ∈,则(1)()a a a λμλμ+=+r r r (2)()()a a λμλμ=r r (3)()a b a b λλλ+=+r r r r7.已知非零向量a r 的单位向量0a =u u r ______,方向与向量a r______例2下列结论中⑴,a b r r 是两向量,则a b r r 与的关系必为,,a b a b a b >=<r r r r r r三者中的一个.⑵两个相等的向量,当它们的起点不同时,终点也一定不同. ⑶平行向量就是共线向量,共线向量就是平行向量. ⑷温度有零上与零下,因此温度是向量. 其中正确的序号为__________实数与向量的乘积 教学目标:1.理解实数与向量乘积的意义,知道λa ρ的大小、方向与a ρ的大小、方向之间的关系。

2.掌握实数与向量积的结合律和两条分配律。

3.掌握两个非零向量a ,b 平行的充要条件是a =λb ,解决简单的几何问题。

4.掌握两个向量a ,b 平行的充要条件是λa +μb =0教学重点:1.理解实数与向量乘积的意义,知道λa ρ的大小、方向与a ρ的大小、方向之间的关系。

2.掌握实数与向量积的结合律和两条分配律。

3.掌握两个非零向量a ,b 平行的充要条件是a =λb ,解决简单的几何问题。

教学难点:对向量平行的充要条件的理解和运用 教学过程:一、复习:向量的加法、减法的定义、运算法则。

二、1.引入新课:已知非零向量a ρ 作出a ρ+a ρ+a ρ和(-a ρ)+(-a ρ)+(-a ρ)OC =++=a ρ+a ρ+a ρ=3a ρ=MN QM PQ ++=(-a ρ)+(-a ρ)+(-a ρ)=-3a ρ讨论:1︒3a ρ与a ρ方向相同且|3a ρ|=3|a ρ| 2︒-3a ρ与a ρ方向相反且|-3a ρ|=3|a ρ|2.从而提出课题:实数与向量的积实数λ与向量a ρ的积,记作:λa ρa ρa ρa ρa ρOABCa -a ρ-a ρ-aρ-NMQP定义:实数λ与向量a ρ的积是一个向量,记作:λa ρ1︒|λa ρ|=|λ||a ρ|2︒λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ=0 3.特别地,当0a =r r 时,我们规定R λ∈,都有0a λ=r r当1λ=时,规定1a a =r r ;当1λ=-时,规定(1)a -r与向量a r 的大小相等且方向相反,即(1)a a -=-r r4.运算定律:结合律:λ(μa ρ)=(λμ)a ρ①第一分配律:(λ+μ)a ρ=λa ρ+μa ρ②第二分配律:λ(a ρ+b ρ)=λa ρ+λb ρ ③结合律证明:如果λ=0,μ=0,a ρ=0至少有一个成立,则①式成立如果λ≠0,μ≠0,a ρ≠有:|λ(μa ρ)|=|λ||μa ρ|=|λ||μ||a ρ||(λμ)a ρ|=|λμ|| a ρ|=|λ||μ||a ρ| ∴|λ(μa ρ)|=|(λμ)a ρ|如果λ、μ同号,则①式两端向量的方向都与a ρ同向; 如果λ、μ异号,则①式两端向量的方向都与a ρ反向。

从而λ(μa ρ)=(λμ)a ρ第一分配律证明:如果λ=0,μ=0,a ρ=0至少有一个成立,则②式显然成立 如果λ≠0,μ≠0,a ρ≠当λ、μ同号时,则λa ρ和μa ρ同向, ∴|(λ+μ)a ρ|=|λ+μ||a ρ|=(|λ|+|μ|)|a ρ||λa ρ+μa ρ|=|λa ρ|+|μa ρ|=|λ||a ρ|+|μ||a ρ|=(|λ|+|μ|)|a ρ| ∵λ、μ同号 ∴②两边向量方向都与a ρ同向 即:|(λ+μ)a ρ|=|λa ρ+μa ρ|当λ、μ异号,当λ>μ时 ②两边向量的方向都与λa ρ同向 当λ<μ时 ②两边向量的方向都与μa ρ同向还可证:|(λ+μ)a ρ|=|λa ρ+μa ρ|∴②式成立 第二分配律证明:如果a ρ=0,b ρ=0中至少有一个成立,或λ=0,λ=1则③式显然成立 当a ρ≠,b ρ≠且λ≠0,λ≠1时1︒当λ>0且λ≠1时在平面内任取一点O ,作=OA a ρ =AB b ρ =1OA λa ρ=11B A λb ρ 则=OBa ρ+b ρ =1OB λa ρ+λb ρ由作法知:AB ∥11B A 有∠OAB=∠OA 1B 1 ||=λ|11B A | ==111λ ∴△OAB ∽△OA 1B 1=||1OB λ ∠AOB=∠ A 1OB 1因此,O ,B ,B 1在同一直线上,|1OB |=|λ| 1OB 与λ方向也相同λ(a ρ+b ρ)=λa ρ+λb ρ当λ<0时 可类似证明:λ(a ρ+b ρ)=λa ρ+λ∴ ③式成立例1、计算(1)(-3)×4a (2) OABB 1A 11()()ab a b a ---+23例2、已知向量a r 与b r 为任意向量,化简:12126()4()3()2323a b a b a b -++-+r r r r r r三、非零向量平行的充要条件(向量共线定理)1.若有向量a ρ(a ρ≠)、b ρ,实数λ,使a =λb 则由实数与向量积的定义知:a ρ与b ρ为平行向量若a ρ与b ρ平行(a ρ≠0)且||:||=μ,则当a ρ与b ρ同向时a =μb当a ρ与b ρ反向时a =-μb从而得:非零向量a ρ,b ρ平行的充要条件是:有且只有一个非零实数λ使 a =λb 定理:非零向量a ρ,b ρ平行的充要条件是:有且只有一个非零实数λ使 a =λb例3、已知AB AD 3=,BC DE 3=,试判断AC 与AE 是否共线。

解: ∵DE AD AE +=BC AB 33+=E)(3+= A CAC 3= B D∴AC 与AE 共线。

例4、在ABC ∆中,已知N M ,分别是AC AB ,的中点,用向量的方法证明:BC MN 21//例5、已知111,,OC k OC OB k OB OA k OA ===,求证:ABC ∆相似111C B A ∆实数与向量的乘积作业一、选择题1、下面给出四个命题:① 对于实数m 和向量a 、b 恒有:()b m a m b a m -=-;②对于实数m,n 和向量a ,恒有:B AC OA 1B 1C 1()a n a m a n m -=-;③若b m a m =(m ∈R),则有:b a =;④若a n a m =(m 、n ∈R ,0≠a ),则m=n .其中正确命题的个数是 ( )A .1B .2C .3D .42、设1e 和2e 为两个不平行的向量,则a =21e -2e 与b =1e +λ2e (λ∈R )平行的充要条件是 ( ) A .λ=0 B .λ=-1 C .λ=-2 D .λ=-213、下列各式或命题中:① →→→=-BC AC AB ② →→→=+0BA AB ③ →→=•00AB ④若两个非零向量a 、b 满足 b k a = (k ≠0),则a 、b 同向. 正确的个数为 ( )A .0B .1C .2D .34、点G 是△ABC 的重心,D 是AB 的中点,则GA +GB GC -等于 ( ) A .4GD B .-4GD C .6GD D .-6GD5、在矩形ABCD 中,O 为AC 中点,若 →BC =3a , →DC =2b , 则→AO 等于 ( ) A .21(3a +2b ) B .21(3a -2b ) C .21(2b -3a ) D .21(3b +2a ) 6、若向量方程2x -3(x -2a )=0,则向量x ( )A .56a B .-6a C .6a D .-56a 二、填空题7、已知向量j i a 32-=,j i b -=5,则4a -3b =_____________. 8、在ABCD 中,→AC = a ,→BD =b ,则→AB =_____ __,→AD =______ ___.9、梯形ABCD ,AB ∥CD ,且||2||CD AB =,M 、N 分别是 DC 和AB 的中点,如图,若AB =a ,AD =b ,用a ,b 表示 BC 和MN ,则BC = ;=MN . 10、若ABCD 的中心为O ,P 为该平面上一点,a PO =,那么NA BDM C=+++PD PC PB PA .11、设a 、b 为二不平行向量,如果k a +b 与a +k b 平行,那么k= . 12、已知M 、N 是线段AB 的三等分点,对平面上任一点O ,用OB OA ,来表示ON OM ,,=OM ;=ON .三、解答题13、如图所示,在任意四边形ABCD 中,E 为AD 的中点,F 为BC的中点,求证:EF DC AB 2=+.14、ΔABC 中,AB =a ,AC =b ,点D 、E 分别在线段AB 、AC 上,AD :DB=AE :EC ,证明:DE 与BC 平行.15、如图,ABCD 中,点M 是AB 的中点,点N 在BD 上,且BN=31BD ,求证:M 、N 、C 三点共线.参考答案 一、选择题1.C2.D3.C4.A5. A6.C二、填空题7.j i 97-- 8.()b a AB -=21;()b a AD +=21. 9.b a BC +-=21;b a MN -=41. 10.PO 4.11.1±=k . 12.OB OA OM 3132+=;3231+=.三、解答题13.解:∵BF AB EA EF ++=,CF DC ED EF ++=, ∴ DC AB EF +=2. 14. 解:∵EC AE DB AD =,∴ k ACAEAB AD ==, ∵ ()BC k AB AC k AD AE DE =-=-=,∴ BC DE //. 15.解:∵ CB CD BD -=,∴ ()CD CB BD CB CN +=+=23131, ∵ ()CN CD CB CD CB BM CB CM 2322321=+=+=+=,∴ CM CN //,即:M 、N 、C 三点共线.。

相关文档
最新文档