地铁供电系统概述
地铁列车辅助供电系统介绍
地铁列车辅助供电系统介绍一、地铁列车辅助供电系统概要目前从我国地铁列车的供电系统来看,我国大部分地铁列车辅助供电系统都是以输入电路、逆变器、输出电路、控制模块以及电池组成。
(一)输入电路辅助供电输入电路主要包括电路熔断器、输入虑波器等构成,其中荣电器负责当地铁列车后极电路产生过载或者出现短路的情况下及时断电的一种装置。
虑波器其主要作用在于控制以及过滤前极电路产生的共模高频干扰信号。
(二)逆变器逆变器中包括一个具有转变电压的受控三项电桥,通过该电桥将电压转地铁列车接触网电压转变成为列车工作需要的三项交流380V并且运用并联的方式进行电流输出,逆变器通常情况下一固定的频率进行工作。
受控三项电桥安装在一个具有散热功能的散热器上,散热器中装有开关、二极管以及驱动板等相应设备。
主控制器产生的驱动信号接入到驱动板,从而通过控制设备进行逆变器380V输出。
二极管用来关断瞬间输出变压器自感电动势反加到直流环节造成电源污染。
(三)输出电路在地铁列车的辅助输出电路中,辅助输出电路包括辅助输出变压器、正弦滤波器以及熔断器等相应设备组成。
其供电的过程是,列车接触网电压经过输出变压器后,将接触网电压转变成为列车使用电压,将输出电压经由正弦滤波器后,在经由输出接触器以及熔电器进行供电。
通常情况下,地铁列车通常都是将滤波器固定在变频器与电机之间,。
当系统检测到逆变器的输出电压同列车所用的380V 电压在同一频率之后,那么输出电路中的接触器将会闭合。
而熔断器主要负责电压过高以及过流等保护工作。
(四)控制模块地铁列车的辅助供电系统的控制模块主要包含主控制器、模块控制器以及输入输出节点等设备注重。
控制模块在辅助供电系统中负责对供电系统进行全方位控制,同时也负责上级控制通讯以及对不同变流器进行电压以及电流的控制与调节。
当控制模块检测到地铁列车发生辅助供电系统故障时,那么控制模块将下达关闭辅助逆变器的命令。
主模块控制器通常情况下配备两个微处理器。
地铁车站低压配电与照明配电系统
低压配电系统设备简介 1.低压开关柜
图5-5 开关柜的组成示意图
35
低压配电系统设备简介 1.低压开关柜
(4)低压开关柜的组成部分
①柜体 柜体包括开关柜的外壳骨架及内部的安装、 支撑件。 ②母线 母线包括一种可与几条电路分别连接的低阻抗导体。
36
低压配电系统设备简介
1.低压开关柜
(4)低压开关柜的组成部分
45
低压配电系统设备简介 3.低压配电其他设备
(6)电源配电箱、 电源切换箱 电源配电箱、电源切换箱即动力配电箱,安装于车站各动力用 电设备(如自动扶梯、水泵、 信号设备、 通信设备、自动售检票 设备) 附近, 提供设备所需要的电源。下页图5-9所示为空气 处理机电源箱, 上方各按钮分别控制相关的风机、 风阀等设备。
11
低压配电与照明配电系统概述 2.低压配电与照明配电系统的作用
(3)合理性 保证重点负荷的供电,经 济运行,节约用电。
12
2
低压配电系统
低压配电系统的组成和分布 低压配电负荷的分类 低压配电设备的供电方式 低压配电设备的控制
低压配电系统 1.低压配电系统的组成和分布
(1)低压配电系统的组成 供、配电系统均由三个部分组成,分别为电源(即来源)、输电线路 和负荷。相应的,低压配电系统对应的三个具体的组成分别为低压配电 室开关柜、低压电缆线路和设备配电箱。变电所内设有低压开关柜,各 级设备的负荷电源都从低压开关柜接引,通过低压电缆线路流向各个用 电设备,如下页图5-2所示。
25
低压配电系统 4.低压配电设备的控制
图5-3 自动扶梯的控制按钮
26
低压配电系统 4.低压配电设备的控制
(2)综合控制
综合控制是指在车站综合控制室由 BAS 实现对风机、 空调、 水泵等设备的控制与监视, 并将采集的信息送至中 央控制室。
地铁供电系统简介.
置的牵引变电所、降压变电所供电并形成环网。
3.混合供电方式:指一条轨道交通线路,一部分采用集中 供电方式,另一部分采用分散供电方式。
地铁供电系统简介
1 . 供电方式分类
目录
2 . 供电系统构成及功能
3 . 供电系统运行方式
4 . 变电设备简介
一、
供电方式分类
供电分散供电方式 混合供电方式
一、 供电方式分类
1.集中供电方式:在线路的适当位置,根据总容量要求设
主变电所,由城市电网区域变电所以高压(如110kV)向
三、 供电系统运行方式
牵引所整流机组故障
故障运行
牵引所一套整流机组退出,另一套整流机组继续运行的运行方式: 牵引变电所一套整流机组故障时,考虑整流机组具有2小时、 150%的过负荷能力,允许牵引变电所整流机组单机组运行。 整流机组负荷等级应满足GB10411-2005规定,即: 100%额定负荷──连续 150%额定负荷──2小时 300%额定负荷──1分钟
三、 供电系统运行方式
主所 每座主变电所的两路电 源进线和两台主变压器同时 分列运行,负担各自供电分 区的牵引负荷和动力照明负 荷。
正常运行
三、 供电系统运行方式
牵引变电所
正常运行
牵引变电所中的两套整流机组并联工作组成等效24脉波整流方 式;正线相邻牵引变电所对正线牵引网实行双边供电。
三、 供电系统运行方式
主 变 电 站
中 压 网 络
接 触 网
石家庄地铁直流牵引供电系统继电保护
石家庄地铁直流牵引供电系统继电保护1. 直流牵引供电系统概述直流牵引供电系统是地铁列车动力系统的核心部件之一,主要由直流电源装置、继电保护装置、输电线路、接触网等组成。
其基本工作原理是通过将交流电源转换为直流电源供给地铁列车,以实现地铁列车的牵引和制动。
由于地铁运行环境的特殊性,直流牵引供电系统的稳定性和可靠性对地铁的安全运行至关重要。
继电保护是直流牵引供电系统中的重要组成部分,其作用是在系统发生故障时及时切除故障点,保护设备和线路不受进一步损坏,保障地铁列车的安全运行。
典型的继电保护装置包括过流保护、接地保护、短路保护等。
目前石家庄地铁直流牵引供电系统的继电保护系统相对较为完善,采用了先进的数字化继电保护装置,能够实现对直流牵引供电系统的各项参数进行精准监测和保护。
石家庄地铁还建立了完善的继电保护管理体系,对继电保护装置进行定期检测和维护,确保其稳定性和可靠性。
尽管石家庄地铁直流牵引供电系统的继电保护系统现状较为完善,但仍然存在一些问题需要解决。
随着地铁线路的不断延伸和运营里程的增加,对直流牵引供电系统的负荷也在不断增加,继电保护系统的容量和功能也需要不断改进和提升。
地铁运营中可能出现的异常情况和人为因素也对继电保护系统提出了更高的要求,需要通过技术手段和管理手段提高继电保护系统的智能化和可靠性。
5. 解决方案针对石家庄地铁直流牵引供电系统继电保护存在的问题,可以提出如下解决方案。
加强对继电保护系统的技术更新和升级,引入先进的数字化继电保护装置,提高系统的容量和功能,以满足地铁运营的需求。
加强对继电保护系统的管理,建立健全的维护体系,定期对继电保护装置进行检测和维护,确保其稳定性和可靠性。
加强对地铁运营人员的培训和管理,提高运营人员对继电保护系统的操作和维护意识,减少人为因素对继电保护系统的影响。
6. 结语地铁的安全运行对于城市的交通和社会稳定具有重要意义,而直流牵引供电系统作为地铁的核心设备之一,其继电保护系统的稳定性和可靠性对地铁的运行安全至关重要。
地铁供电系统
地铁供电系统供电系统为地铁的列车和各种用电设备提供电能,是保证地铁正常运行的重要组成部分,通常由供电电源、主变电所(集中供电方式时)、中压供电网络、牵引供电系统、动力照明配电系统、牵引网系统、电力监控(SCADA)系统、杂散电流腐蚀防护及接地系统和供电车间等组成。
(1)主变电所:集中供电方式下,负责向地铁沿线的各种用电设备提供电源。
每座主变电所从城市电网引入两路独立可靠的110kV电源,经主变压器降压后通过中压供电网络向地铁沿线的牵引变电所和降压变电所供电。
东延线工程利用地铁1号线续建工程的白石洲主变电所、地铁1号线的文化中心主变电所、城市广场主变电所一起供电。
(2)中压供电网络:负责将主变电所的中压馈电回路以分区环网方式向地铁沿线的牵引变电所和降压变电所提供两路可靠的电源。
(3)牵引变电所:负责将中压交流电降压整流为1500V直流电,并向沿线的牵引网提供电源。
全线正线设牵引变电所6座,停车场设1座。
(4)降压变电所:负责将中压交流电降压为0.4kV交流电,并通过低压开关柜和电缆馈出,向地铁各种用电设备提供电源。
东延线工程每个车站设1座降压所和1座跟随式降压所,全线共设16座降压变电所和15座跟随所,其中7座降压所与同站的牵引所合建为牵引降压混合变电所。
(5)牵引网系统:负责将牵引变电所提供的直流1500V牵引电源通过受流器供给地铁列车,并利用走行轨回流。
牵引网系统覆盖整个东延线正线以及停车场需要电化的股道,授流方式采用刚性悬挂,由支持结构及接触悬挂等部分组成。
本工程电化里程约48条公里。
(6)动力照明配电系统:负责将降压变电所馈出的0.4kV交流电源配给地铁沿线车站、区间、停车场等处所的动力及照明设备。
(7)电力监控(SCADA)系统:负责实施对地铁供电系统的主要电气设备的实时遥测、遥信、遥控和遥调,从而实现供电系统的远程集中调度管理,提高供电系统的自动化水平。
东延线工程按电力监控系统集成入综合监控系统中设计。
地铁车站动力照明供配电系统介绍
地铁车站动力照明供配电系统介绍地铁车站是现代城市交通系统的重要组成部分,为了保障乘客的安全和舒适,地铁车站的动力照明供配电系统起到了至关重要的作用。
本文将详细介绍地铁车站动力照明供配电系统的组成和功能。
一、供电系统地铁车站的供电系统主要包括两部分:总线供电和备用供电。
总线供电是指通过地铁网供电系统向车站提供电力,并通过配电柜将电力分配到各个用电设备。
备用供电则是为了应对紧急情况而设置的备用电源,如发电机组等。
这样,即使主电源发生故障,车站的照明系统也能正常运行,保障乘客的安全。
二、照明系统地铁车站的照明系统主要包括室内照明和室外照明。
室内照明主要用于车站大厅、站台、通道等区域,以确保乘客在车站内部能够清晰地看到周围的环境。
室外照明主要用于车站出入口、候车亭、楼梯等区域,以提供良好的视觉导向和安全保障。
为了节约能源,地铁车站的照明系统通常采用LED灯具,具有高效节能、寿命长等特点。
三、动力系统地铁车站的动力系统主要包括电梯、扶梯、自动售票机等设备的供电。
电梯和扶梯是地铁车站重要的乘客运输工具,它们的正常运行对于乘客的出行至关重要。
而自动售票机则是为了方便乘客购票,减少人工操作。
为了保证这些设备的正常运行,地铁车站的动力系统需要提供稳定可靠的电力。
四、安全系统地铁车站的安全系统主要包括监控系统、报警系统等。
监控系统通过安装在车站各个角落的摄像头,实时监控车站内外的情况,以提供安全保障。
报警系统则通过设置报警装置,及时发出警报,以应对突发事件。
这些安全系统的正常运行离不开稳定的电力供应。
为了确保地铁车站动力照明供配电系统的正常运行,需要进行定期检查和维护。
一旦发现故障或异常,应及时采取措施进行修复。
此外,地铁车站的动力照明供配电系统还需要与其他系统进行协调,如通信系统、自动控制系统等,以实现整个地铁车站的正常运行。
地铁车站的动力照明供配电系统是地铁运营安全和乘客舒适的重要保障。
通过供电系统、照明系统、动力系统和安全系统的有机组合,地铁车站能够提供稳定可靠的电力供应,确保乘客在车站内部的安全和便利。
城市轨道交通-供电系统
问题导入
• 城市轨道交通采用电力牵引,由于电动车组本身 无原动力装置,因此在城市轨道交通沿线必须设 置一套完善的、不间断地向电动车组供电的设备, 即城市轨道交通的牵引供电系统。
• 牵引供电系统是城市轨道交通供电系统的最重要 部分。 • 城市轨道交通供电系统是如何起到作用的呢?
城市轨道交通设备
第5章 供电系统
第一节
概述
第二节
第三节牵引供电系统来自电力监控系统一、供电系统概述
• 城市轨道交通供电系统负责提供其正常运营提供 所需电能,包括列车的电力牵引以及为运营服务 的辅助设施消耗的电能。 • 城市轨道交通供电为一级负荷,由两路独立的电 源供电。 • 城市轨道交通供电系统包括高压供电源系统、牵 引供电系统和动力照明供电系统。
二、牵引变电所
• 由于城市轨道交通列车是以一定的速度沿区间运 行的,供给一定区段内牵引电能的变电所称为牵 引变电所。 • 牵引变电所从城市轨道交通主变电所中获得电能, 经过降压和整流,变成车辆所需的直流电。
城市轨道交通设备
二、牵引变电所
• 牵引变电所设置
–牵引变电所的数量、设置地点、以及馈电线数 目要由供电计算确定。 –一般设置在沿线若干车站及车辆段附近。相邻 牵引变电所之间距离在2~4km。
四、动力照明供电系统
• 动力照明供电系统提供车站和区间各类照明、扶 梯、风机、水泵等动力机械设备电源和通信、信 号、自动化等设备电源。
• 动力照明供电系统由降压变电所及动力照明组成。
城市轨道交通设备
四、动力照明供电系统
• 每个车站应设降压变电所,车站动力照明采用 380/220V三相五线制系统配电。
• 车站设备负荷分三类:
– 一类负荷:事故风机、消防泵、主排水站、售检票机、 防灾报警、通信信号、事故照明 – 二类负荷:自动扶梯、普通风机、排污泵、工作照明 – 三类负荷:空调、冷冻机、广告照明、维修电源
地铁供电系统
地铁供电系统供电系统是地铁所有用电用户的电能源泉,是机车和机电系统运行的动力保证。
一旦供电系统发生故障,将使整条线路失去运营能力,造成重大经济损失。
随着地铁线路的不断增多,地铁供电系统复杂程度越来越高,出现事故的可能性和故障波及的范围、造成的损失也不断增大。
供电系统能否安全可靠运行将直接关系到地铁的安全、稳定运营,为了保证地铁安全可靠地运行,探讨其供电系统安全措施是极其有意义的。
1 地铁供电系统分析1.1高压供电系统。
一般地,城市电网对城市轨道交通进行供电的方式有三种:集中式供电、分散式供电和混合式供电。
1.1.1集中供电方式。
沿城市轨道交通线路,根据用电量和线路的长短,建设城市轨道交通专用主变电所。
主变电所应有两路独立的110KV电源。
再由主变电所变压为城市轨道交通内部供电系统所需的电压级(35KV或10KV等)。
由主变电所构成的供电方案为集中式供电。
1.1.2分散供电方式。
分散供电方式是指不设主变电所,而直接由城市电网区域变电所的35(33)KV或10KV中压输电线直接向城市轨道交通沿线设置的牵引变电所、降压变电所供电并行车环网。
采用这种方式的环境必须是城市电网比较发达,在有关车站附近有符合可靠性要求的供电电源。
其中压网络的电压等级应与城市电网相一致。
在这种方式下,可设置电源开闭所,并可与车站变电所合建。
1.1.3混合供电方式。
即前两种供电方式的结合,以集中式供电方式为主,个别地段引入城市电网电源作为集中供电的补充,使供电系统更加完善和可靠。
武汉轨道交通、北京地铁1号线和环线即为此种供电方式。
1.2牵引供电系统及其运行方式。
1.2.1牵引供电系统组成。
在城市轨道交通牵引供电系统中,电能从牵引变电所经馈电线、接触网输送给电动列车,再从电动列车经钢轨(称轨道回路)、回流线流回牵引变电所。
由馈电线、接触网、轨道回路及回流线组成的供电网络称为牵引网。
牵引供电系统即由牵引变电所和牵引网组成,其中牵引变电所和接触网是牵引供电系统的主要组成部分。
城市轨道交通供电系统
城市轨道交通供电系统一、城市轨道交通供电系统介绍城市轨道交通供电系统是为城市轨道交通运营提供所需电能的系统,不仅为城市轨道交通电动列车提供牵引用电,而且还为城市轨道交通运营服务的其他设施提供电能,如照明、通风、空调、给排水、通信、信号、防灾报警、自动扶梯等,应具备安全可靠、技术先进、功能齐全、调度方便和经济合理等特点。
在城市轨道交通的运营中,供电一旦中断,不仅会造成城市轨道交通运输系统的瘫痪,还会危及乘客生命与财产安全。
因此,高度安全可靠而又经济合理的电力供给是城市轨道交通正常运营的重要保证和前提。
城市轨道交通的用电负荷按其功能不同可分为两大用电群体。
一是电动客车运行所需要的牵引负荷。
二是车站、区间、车辆段、控制中心等其他建筑物所需要的动力照明用电,诸如:通风机、空调、自动扶梯、电梯、水泵、照明、AFC系统、FAS、BAS、通信系统、信号系统等。
在上述用电群体中,有不同电压等级直流负荷、不同电压等级交流负荷,有固定负荷、有时刻在变化的运动负荷。
每种用电设备都有自己的用电要求和技术标准,而且这种要求和标准又相差甚远。
城市轨道供电系统就是要满足这些不同用户对电能的不同需求,以使其发挥各自的功能与作用。
二、城市轨道交通供电系统的组成城市轨道交通供电系统一般包括外部电源、主变电所(或电源开闭所)、牵引供电系统、动力照明供电系统、电力监控系统。
其中,牵引供电系统包括牵引变电所和牵引网,动力照明供电系统包括降压变电所和动力照明配电系统。
城市轨道交通供电系统中一般设置三类变电所,即主变电所(分散式供电方式为电源开闭所)、降压变电所及牵引降压混合变电所。
主变电所是指采用集中供电方式时,接受城市电网35kV及以上电压等级的电源,经其降压后以中压供给牵引变电所和降压变电所的一种地铁变电所,是专为城市轨道交通系统提供能源的枢纽。
降压变电所:从主变电所(电源开闭所)获得电能并降压变成低压交流电,为车站、隧道动力照明负荷提供电源。
城市轨道交通供电系统
城市轨道交通供电系统概述城市轨道交通供电系统是城市轨道交通运营的重要基础设施之一。
它负责为城市的地铁、轻轨等轨道交通提供稳定可靠的电力供应。
供电系统的设计与运营对于轨道交通系统的正常运行和乘客的出行安全至关重要。
本文将重点介绍城市轨道交通供电系统的组成和原理、供电方式以及相关设备和技术等内容。
组成和原理城市轨道交通供电系统主要由以下几个组成部分组成:电源系统是城市轨道交通供电系统的核心组成部分,负责为整个供电系统提供稳定的电力。
常见的电源系统包括接触网供电系统和第三轨供电系统。
•接触网供电系统:通过架设在轨道上方的接触网,通过配电设备提供电力给列车供电。
•第三轨供电系统:在轨道的一侧或两侧铺设一根导电轨,列车通过集电装置与导电轨接触,实现电能传递。
2. 配电系统配电系统负责将电源系统提供的电能,在整个轨道交通线路上进行合理分配。
配电系统通常包括变电站、变压器、开关设备等,在供电过程中起到调节电能和保护设备的作用。
线路系统是城市轨道交通供电系统的输电线路,包括主干线、支线和馈电线等。
这些线路通过导线将电能输送到不同的供电区域,确保整个供电系统的稳定性和可靠性。
4. 集电装置集电装置是连接列车和供电系统的关键设备,由于列车在运行过程中需要实时获得电力供应,因此集电装置可以通过与接触网或第三轨建立导电接触来获取电能,并将其传送到列车的牵引设备中。
供电方式根据城市轨道交通供电系统的不同设计和实际情况,可以有以下几种常见的供电方式:1.直供直流供电方式(常用于地铁):以直流电方式供电,电压较高,通常为600V、750V或1500V,通过第三轨或接触网提供电能。
2.直供交流供电方式(常用于轻轨):以交流电方式供电,电压较低,通常为380V或750V,通过接触网提供电能。
3.高速铁路供电方式:通常使用交流电方式供电,电压较高,通常为25kV,通过接触网提供电能。
相关设备和技术城市轨道交通供电系统涉及到的设备和技术非常多样化,其中一些关键的设备和技术包括:•变电站:用于将电网的高压电能转换为供电系统所需的低压电能。
地铁供电系统概述
仪 表 继 保 工 区
微 电 子 工 区
6.2 供电车间维修对象
为了保障供电系统设备的正常运行,需要在本线设置供电设备维护机构,该 机构的主要任务是承担本线供电系统(主变电所、牵引系统、电力监控、接 触网)设备的运行管理、日常维护检修及事故发生后的现场抢修等工作,其 职能是保证供电设备安全可靠地供电。
为保证旅客和工作人员的人身安全,正线每座车站设 钢轨电位限制装置。
2.6 2号线一期工程变电所分布图
3、供电系统运行方式
3.1 正常运行方式
每座主变电所的两路电源进线和 两台主变压器同时分列运行,负 担各自供电分区的牵引负荷和动 力照明负荷。
3、供电系牵引变电所中的两套整流机组并联工作组成等效24脉 波整流方式;正线相邻牵引变电所对正线牵引网实行双边 供电。黄兴车辆段内牵引网由黄兴车辆段牵引变电所供电。
3.2 故障运行方式
当正线任一座牵引变电所解列时(不含汽车西站牵引变 电所和光达牵引变电所),由相邻的两座牵引变电所越 区构成“大双边”供电。
3.2 故障运行方式
当望城坡站牵引变电所解列时,由西湖公园牵引 变电所单边供电支援;待二期投入运营后,可由 新建的相邻牵引变电所和西湖公园牵引变电所实 现双边供电支援。
3.混合供电方式:指一条轨道交通线路,一部分采用集中供 电方式,另一部分采用分散供电方式。
2、供电系统构成及功能
2.1 供电系统构成
地铁供电系统包括给地铁 运行主体的车辆及辅助系统 (如通信、信号、动力照明 、环境控制等)提供电能的 牵引供电和变配电系统。
供电系统包括: 主变电站 供电系统中压网络 牵引及降压变电所 接触网 电力监控(综合自动化) 杂散电流腐蚀防护 供电车间
(3)系统电压大大下降,破坏工作稳定性或影响产品 质量;
城市轨道交通供电系统及电力技术分析
城市轨道交通供电系统及电力技术分析随着城市发展和人口增长,城市交通问题日益突出。
轨道交通作为城市公共交通的重要组成部分,对于缓解城市交通拥堵、改善环境质量、提高出行效率具有重要意义。
而轨道交通供电系统和电力技术是确保轨道交通安全、高效运行的关键。
本文将从城市轨道交通供电系统和电力技术的角度进行分析,探讨其在城市轨道交通发展中的重要作用和发展趋势。
一、城市轨道交通供电系统概述城市轨道交通供电系统是指为城市地铁、轻轨、有轨电车等轨道交通提供电力的系统,主要包括牵引供电系统和辅助供电系统两部分。
1. 牵引供电系统牵引供电系统是为轨道交通列车提供牵引电力的系统,一般采用直流750V或交流1500V/3000V供电。
其主要包括接触网、供电设备、牵引变流器等组成部分。
接触网是牵引供电系统的核心,通过接触网与列车上的受电弓实现电能传输,为列车提供所需的牵引电力。
供电设备一般包括变电所、配电设备等,用于将电能从电网输送至接触网。
牵引变流器则是将接触网提供的直流或交流电能转换为适合列车牵引用的电能。
二、城市轨道交通电力技术分析城市轨道交通电力技术是保障轨道交通设备安全、高效运行的关键。
随着城市轨道交通的快速发展,相关电力技术也在不断创新和完善,主要体现在以下几个方面。
牵引电力技术是影响轨道交通列车动力性能和运行效率的关键技术。
传统的牵引电力技术主要包括直流牵引和交流牵引两种。
在直流牵引技术中,采用直流电机驱动列车运行,具有良好的启动和加速性能,适用于地铁等短途快速运行的轨道交通系统;在交流牵引技术中,采用交流感应电动机或交流同步电动机驱动列车运行,具有较大的功率范围和较高的效率,适用于城市轨道交通系统中的长途高速运行。
随着磁悬浮技术的不断进步,利用磁悬浮技术实现牵引动力已成为轨道交通发展的新趋势,具有运行速度快、噪音低、能耗低等优势。
供电系统技术是保障轨道交通列车牵引供电的关键技术。
随着轨道交通系统的不断完善和扩建,其供电方式也在不断创新和优化。
城市轨道交通供变电技术第一章城市轨道交通供电系统概述 文档全文预览
第一节 城市轨道交通供电系统的组成及功能
3.牵引供电系统 将交流中压经降压整流变成直流1500V或直流750V
电压 ,为城轨电动列车提供牵引供电 。牵引供电系统 包括牵引变电所与牵引网两个部分 。
城轨牵引供电系统示意图
第一节 城市轨道交通供电系统的组成及功能
4.动力照明供电系统 将交流中压(35kV或10kV) 降压变成交流
220/380V电压 , 为运营需要的各种机电设备提供电源。 它包括降压变电所(站) 、动力照明配电系统。
城轨动力照明供电系统
第一节 城市轨道交通供电系统的组成及功能
5.杂散电流腐蚀防护系统 在城市轨道交通中由于采用直流牵引供电, 电流有
牵引变电所的正极出发 ,经由接触网、电动列车、钢 轨、回流线返回牵引变电所负极 。 由于钢轨与隧道或 道床等结构之间的绝缘电阻不是无穷大 ,不可避免地 将造成部分电流不从钢轨回流,而是通过沿线的道床钢 筋、隧道、高架桥或建筑物的结构钢筋或土壤回流到 牵引变电所(甚至不回流而散入大地) ,这一部分电流 就是杂散电流,也叫迷流。
第二节 城市轨道交通的供电系统的制式
二 、电压等级
世界各国城市轨道交通的供电电压均在 550~1500V之间 ,其中间档级很多 , 这 是由各种不同交通形式 、不同发展历史 时期造成的 。现国际电工委员会拟定的 电压标准为:600V、750V、1500V三种, 后两种电压为推荐值 。我国国标亦规定 为750V和1500V , 不推荐600V电压等级 。
第二节 城市轨道交通的供电系统的制式
三 、馈电方式 牵引网的馈电方式有架空接触网和接触
城市轨道交通供配电系统
五、降压变电所
将区域变电所或主变电 所所输出的中压等级电 压降压变成低压交流电, 并通过配电所(室)分 配给各种设备用电。
电压V
直流 系统
标准 750 1500
最低 500 1000
最高 900 1800
3000
2000 3600
2.交流制:一般多用于电气化铁路牵引供电方式(距 离远、需装车载整流装置)
地铁变电所(室)一般是在地铁沿线设置 的,地铁变电所(室)可以建在地下,也可 以建在地面,地铁变电所(室)尤其是地下 变电所(室)在防火方面都有一定的要求。 地铁变电所(室)根据不同类型分为三种基 本类型: 高压主变电所(室)、牵引变电所 (室)和降压变电所(室)。地铁变电所 (室)是由各种不同用途的电气设备按照一 定的电气主结线联结而构成的。
变电所和接触网是城市轨道交通供电系 统中最重要的组成部分。
三、城市轨道交通供电制式简介
轨道交通采用直流供电, 因为直流电适合 于电气牵引的调速要求, 而且直流牵引接 触网结构简单, 建设投资少, 电压质量高。
我国国家标准采用DC750V和DC1500V两种。
1.直流制:采用IEC国际电工委员会标准,见表,如上 海为1500V
母线常用颜色标记识别,在三相交流系统中:黄线——A相,绿 线——B相,红线——C相;
在直流系统中:红色——正极,蓝色——负极,黑色——零线 及接地线。
5.熔断器:是一种过负荷和短路电流导致熔体发 热熔断的保护电器。
6.电压互感器:又称压变,是电气测量,控制和 保护回路用的变压器。
地铁供电系统
地铁供电系统第一节概述一、地铁供电方式地铁的供电电源要求安全可靠,通常由城市电网供给。
目前,国内各城市对地铁及城市轨道交通的供电一般有三种方式,即分散供电方式、集中供电方式、分散与集中相结合的混合供电方式。
分散供电方式是指沿地铁线路的城市电网(通常是10KV电压等级)分别向各沿线的地铁牵引变电所和降压变电所供电。
其前提条件是城市电网在地铁沿线有足够的变电站和备用容量,并能满足地铁牵引供电的可靠性要求。
如早期的北京地铁采取的就是这种供电方式。
集中供电方式是指城市电网(通常是110KV或66KV电压等级)向地铁的专用主变电所供电,主变电所再向地铁的牵引变电所和降压变电所供电,地铁自身组成完整的供电网络系统。
近几年新建的地铁系统多采用集中供电方式,如上海、广州、深圳地铁等。
分散与集中相结合的供电方式是上述两种供电方式的结合,可充分利用城市电网的资源,节约投资,但供电可靠性不如集中供电方式,管理亦不够方便。
集中和分散两种不同供电方式的比较如表1-3-1所示,分散与集中相结合的供电方式优缺点介于两者之间。
表1-3-1 地铁供电方式的比较供电方式优 点 缺 点集中供电方式l 供电可靠性高,受外界因素影响较小;l 主变电所采用110/35KV 有载自动调压变压器,并有专用供电回路,供电质量好;l 地铁供电可独立进行调度和运营管理;检修维护工作相对独立方便;l 可提高地铁供电的可靠性和灵活性;l 牵引整流负荷对城市电网的影响小;l 只涉及城市电网几个220KV 变电站的增容改造,工程量较小,相对易于实现。
l 投资较大。
分散供电方式l 投资较小;l 便于城市电网进行统一规划和管理。
l 因同时受110KV 和10KV 电网故障影响,故受外界因素影响较多;l 10KV 电网直接向一般用户供电,引起的故障几率大,可靠性较低;l 与城市电网的接口多,调度和运营管理环节增多,故障状态下的转电不方便;l 牵引整流机组产生的高次谐波直接进入10KV 电网对其他用户的影响较大;l 要求城市电网的变电所应具有足够的备用容量,以满足地铁牵引供电的要求;涉及较多110KV 变电站的增容改造,工程量较大。
城市轨道交通-供电系统
不间断电源(UPS)
作用
不间断电源是城市轨道交通供电系统中的重要设备,主要负责在市电中断或异常情况下, 为轨道交通车辆提供不间断的电力供应。
组成
不间断电源通常由整流器、逆变器和蓄电池等组成。
工作原理
不间断电源在市电正常时将市电整流成直流电,然后逆变成交流电供给轨道交通车辆;在 市电中断或异常情况下,蓄电池将为车辆提供电力供应,确保车辆正常运行。
供电设备的维护保养
定期维护
制定维护计划,定期对供电设备进行清洁、检查和保养。
预防性维护
根据设备磨损规律和运行状态,进行预防性维护,延长设备使用 寿命。
维修记录与档案管理
建立设备维修档案,记录维修过程和结果,为后续维护提供参考。
供电系统的故障处理与应急预案
故障诊断与定位
快速诊断供电系统故障,准确定位故障点,为抢修提供支持。
配电网
将电能从变电所分配给各个车 站、车辆段等用电负荷。
供电方式及其特点
01
集中供电
由城市电网建设专用变电站,通过输电线路将电能输送到轨道交通沿线
的牵引变电所。该方式具有便于管理和维护、可靠性高的优点,但需要
建设专用变电站和输电线路,投资较大。
02
分散供电
在轨道交通沿线建设多个小型变电站,直接向牵引变电所和车站供电。
使用的低压电。
类型
变压器通常分为油浸式变压器和 干式变压器两种类型。
工作原理
变压器通过电磁感应原理,将输 入的高压电转换成低压电输出, 以满足城市轨道交通车辆的用电
需求。
高压开关柜
作用
高压开关柜是城市轨道交通供电系统中的重要设 备,主要负责控制和保护高压电的输配。
组成
高压开关柜通常由断路器、隔离开关、电流互感 器等组成。
地铁供电原理
地铁供电原理
地铁供电原理是通过直流电将电能传输到车辆上,实现车辆的运行。
地铁供电系统由三部分组成:电源系统、供电系统和接触网系统。
电源系统是地铁供电的核心,主要由变电所和配电装置组成。
变电所将市电的交流电转换成直流电,并提供给地铁供电系统使用。
配电装置则将电能分配到各个供电系统。
供电系统包括集电装置和集电靴。
集电装置安装在地铁车辆顶部,通过接触网系统与集电靴连接。
当地铁车辆行驶时,集电装置与接触网产生接触,并从接触网上获得电能。
接触网系统是地铁供电的传输通道。
它由钢索和悬挂装置组成,沿地铁线路悬挂在上方。
钢索上通有直流电,并与地铁车辆的集电装置接触。
当地铁车辆行驶过接触网时,集电装置接触钢索,从而获取电能。
地铁供电原理的关键是直流电的传输和接触网系统的悬挂与接触。
通过科学、安全、可靠地进行供电,地铁车辆得以持续运行,为城市的交通出行提供便利。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、变电设备简介
变电二次系统
6、综合自动化系统的概念 变电所综合自动化系统是一个利用计算机技术、通信 技术、网络技术、控制技术将变电所传统的二次设备 (包括测量仪表、信号系统、继电保护、自动装置和远 动装置等)经过功能的组合和优化设计,实现对变电所 各供电设备进行故障保护、运行控制、状态采集、实时 测量、与调度通信的微机化、网络化的智能保护测控系
5.5架空刚性接触网
5.5.1 刚性悬挂 组成
支持结构
汇流排
支持结构 绝缘子 定位线夹 汇流排 接触线 架空地线
绝缘子
定位线夹 架空地线
接触线
5.5架空刚性接触网
5.5.1 刚性悬挂组成
汇流排是刚性悬挂的关键 部件截面积:2213mm2 制造长度:12m 高度:85、110mm两种。 铜当量截面:约1400mm2 材质:铝合金
统 。
5、接触网简介
5.1、接触网的定义
接触网是沿线路架设的没有备用的电力机车供电设施, 其主要功能是:
传输电能 弓网授流
5、接触网简介
5.2、城轨接触网的特点
与电气化铁路接触网相比: 位于城市内,主城区以地下线路运输为主,郊区以高架或地 面为主。 一般最高行车速度为80km/h,国内最高运行时速120km/h (广州3号线)。 行车密度大,一般远期运行对数为30对/h,40万弓架次/年, 初期一般为25万弓架次/年。 一般采用DC1500V、DC750V电压等级。 传输电流大,一般额定电流为3000A。
地铁供电系统概述
2014年8月
目录
1 供电方式分类 2 供电系统构成及功能 3 供电系统运行方式 4 变电设备简介
5 接触网简介
6 供电车间简介
1、供电方式分类
供电系统分为:集中供电方式、分散供电方式、混合供电方式
长沙2号线供电系统图
1、供电方式分类
1.集中供电方式:在线路的适当位置,根据总容量要求设主 变电所,由城市电网区域变电所以高压(如110kV)向主 变电所供电,经降压并在沿线结合牵引变电所、降压变 电所形成中压环网,向轨道交通各系统供电。
承力索 架空地线
接触线
吊弦 腕臂 定位装置 支柱
5.6架空柔性悬挂
5.6.3 简单悬挂 组成
支柱 架空地线 腕臂
Hale Waihona Puke 接触线 架空地线 定位装置 腕臂 支柱 基础
接触线
定位装置
5.6架空柔性悬挂
5.6.4 接触线与承力索
接触线:
截面积:120mm2 尺寸截面 C=9.76mm(2%) E=6.80mm H=511 A=12.9mm(1%) K=4.35mm D=7.24mm(2%) G=271 R=0.4mm B=12.9mm(2%)
(2)膨胀元件
5.6架空柔性悬挂
在受电弓抬升力下,接触线有抬高,故称为“柔性悬挂”。
5.6架空柔性悬挂
5.6.1 柔性悬挂的分类及组成 柔性悬挂分类 全补偿简单链型悬挂
全补偿简单悬挂
5.6架空柔性悬挂
5.6.2 简单链型悬 挂组成 承力索 接触线 吊弦 架空地线 辅助馈线 定位装置 腕臂 支柱 基础
4、变电设备简介
35kV GIS开关柜
4、变电设备简介
1500V直流 开关柜
4、变电设备简介
1500V直流开关柜
硅整流柜和负极柜
柜内接线
负极柜内电缆安装
柜内布线情况
4、变电设备简介
低压柜、环控柜
4、变电设备简介
电缆敷设
电缆垂直敷设
4、变电设备简介
变电二次系统 1、变电二次专业的主要研究内容 变电所各种变电及输配电单元的保护、控制、测量、监视、 闭锁。 2、供电系统继电保护的设置 35kV进/出线保护、35kV母联保护、35kV馈线保护、 1500V直流保护、配电变压器本体保护、整流机组本体保护、 0.4kV进线保护、0.4kV母联保护等。
仪 表 继 保 工 区
微 电 子 工 区
6.2 供电车间维修对象
为了保障供电系统设备的正常运行,需要在本线设置供电设备维护机构,该 机构的主要任务是承担本线供电系统(主变电所、牵引系统、电力监控、接 触网)设备的运行管理、日常维护检修及事故发生后的现场抢修等工作,其 职能是保证供电设备安全可靠地供电。
长沙地铁运营管理公司
2号线车辆段综合基地
2号线供电车间
运营室
技术室
调度室
检修室
电 力 工 区
主 变 电 所 工 区
接 触 网 工 区
变 电 巡 检 工 区
电 力 监 控 工 区
电 气 试 验 车
变 电 模 拟 教 学 装 置
复 示 终 端 系 统
电 修 试 验 工 区
杂 散 电 流 防 护 区
电 缆 工 区
4、变电设备简介
变电二次系统
3、供电系统继电保护的任务 自动、迅速、有选择性地将故障元件从系统中切除, 保证其它无故障部分迅速恢复正常运行,使故障元件免 于继续遭到破坏; 反应电气元件的不正常运行状态,并根据运行维护的 条件(如有无经常值班人员),而动作于发信号或跳闸。 此时一般不要求保护迅速动作,而是带有一定的延时, 以保证选择性。 4、继电保护的基本要求 动作于跳闸的继电保护,技术上应满足“四性”要求: 可靠性、选择性、灵敏性、速动性。
2、供电系统构成及功能
2.4 中压环网
长沙2号线
2、供电系统构成及功能
2.5 直流牵引供电系统
2.5直流牵引供电系统
直流牵引供电系统主要由牵引变电所中的整流机组、 直流正负极开关设备、馈线、接触网、钢轨、回流线、 均流电缆和钢轨电位限制装置等组成。 每座牵引变电所设两套整流机组(整流变压器-整流 器单元),整流变压器一次侧并接于同一段35kV母线, 两台整流机组并列运行并组成等效24脉波方式,通过接 触网向列车供电,然后再经钢轨、回流电缆至牵引变电 所负极柜。 为保证旅客和工作人员的人身安全,正线每座车站设 钢轨电位限制装置。
2.6 2号线一期工程变电所分布图
3、供电系统运行方式
3.1 正常运行方式
每座主变电所的两路电源进线和 两台主变压器同时分列运行,负 担各自供电分区的牵引负荷和动 力照明负荷。
3、供电系统运行方式
3.1 正常运行方式
牵引变电所中的两套整流机组并联工作组成等效24脉 波整流方式;正线相邻牵引变电所对正线牵引网实行双边 供电。黄兴车辆段内牵引网由黄兴车辆段牵引变电所供电。
供电系统包括:
主变电站 供电系统中压网络 牵引及降压变电所 接触网 电力监控(综合自动化) 杂散电流腐蚀防护 供电车间
2、供电系统构成及功能
2.2 主变电所主接线
桥断路 器
桥型接线方式
线路变压器组接线方式
2、供电系统构成及功能
2.3 牵引(降压)变电所主接线
牵引变电所
降压变电所
牵引降压混合变电所
承力索(辅助馈线):
标称截面mm2 : 绞线计算外径mm: 绞线股数×根数 : 150 15.8 37x1
6.1 供电车间组织结构
供电车间隶属于车辆段综合基地,其运营管理体制要求:一要机构精简, 减少管理层次;二要分工明确,便于管理和检修。从运营维护体制来讲,目前 实行的既有的维护体制大多数是实行四级管理制,即地铁公司(运营部)―― 车辆段综合基地――供电车间――维护班组(工区)。供电车间的管理机构分 为三级,车间下设运行、维修、技术、生产电力调度等室;室下设各专业运行、 维护、抢修、巡视检查和值班等工区。
结构高度
5.4名词解释及专业术语
承力索
接触线高度(以轨面为 基准) 结构高度(刚性悬挂无) 拉出值 跨距 锚段长度 侧面限界(刚性悬挂无) 坡度
接触线
导高
支柱
跨距
侧面限界 拉出值
受电弓或线路中心线
5.5架空刚性接触网
受电弓具有一定的抬升力,在受电弓与接触线接触时, 由于刚性悬挂的刚度,接触线没有抬高,故称为“刚性 悬挂”。
2.分散供电方式:不设主变电所,而直接由城市电网区域变 电所的35kV或10kV中压输电线直接向轨道交通沿线设置 的牵引变电所、降压变电所供电并形成环网。 3.混合供电方式:指一条轨道交通线路,一部分采用集中供 电方式,另一部分采用分散供电方式。
2、供电系统构成及功能
2.1 供电系统构成
地铁供电系统包括给地铁 运行主体的车辆及辅助系统 (如通信、信号、动力照明 、环境控制等)提供电能的 牵引供电和变配电系统。
3.2 故障运行方式
当牵引降压混合变电所或降压变电所任一路35kV进线电 缆故障退出运行时,合上该所的35kV母联断路器,由另 一路电缆负责本所全部负荷的供电。
3.2 故障运行方式
当一台动力变压器故障退出运行时,切除该所的三级负 荷,合上400V侧的母联断路器,由另一台动力变压器负 担本所范围内的动力照明一、二级负荷。
4、变电设备简介
车站变电所布局
4、变电设备简介
110kV油浸式 变电器
4、变电设备简介
4、变电设备简介
干式变 压器
4、变电设备简介
110kV GIS
(SF6气体绝缘隔离开关站:断路器、隔离开关、母线、接地 开关、互感器、出线套管或电缆终端头等分别装在各自密封间中集中组成一 个整体外壳充以六氟化硫气体作为绝缘介质。)
4、变电设备简介
变电二次系统 5、供电故障的危害 供电系统在运行中,可能发生各种故障和不正常运 行状态,最常见同时也是最危险的故障是发生各种型式 的短路,发生短路时可能会产生以下后果: (1)通过故障点大的短路电流和电弧使故障元件遭到 破坏; (2)短路电流通过非故障元件,由于发热和电动力作 用损坏非故障元件或缩短其使用寿命; (3)系统电压大大下降,破坏工作稳定性或影响产品 质量; (4)电力系统220kV以上的系统短路如不及时清除, 可能破坏电力系统并列运行的稳定性,引起系统振荡, 甚至使整个系统瓦解。