电容滤波原理 桥式整流RC滤波电路
总结桥式整流 电容滤波电路的特点
总结桥式整流电容滤波电路的特点桥式整流电容滤波电路是一种常见的电力转换电路,在电源设计和电子设备中被广泛使用。
它由桥式整流器和电容器组成,可以将交流电转换为直流电,并通过电容器对输出电流进行滤波,以实现稳定的直流电源供应。
本文将总结桥式整流电容滤波电路的特点。
桥式整流电路是一种通过4个二极管实现的电流方向控制器件。
它克服了半波整流电路仅能利用交流电的正半波的限制,能够同时利用正负半周期交流电进行整流。
这使得桥式整流电路在整流效率和电能利用方面具有明显的优势。
相对于半波整流电路,桥式整流电路有效提高了整流效率,降低了功率损耗。
与桥式整流器相结合,电容滤波器在整流电路的输出端起到了平滑输出电流的作用。
它通过对交流纹波进行有效的滤波,可以使输出电流更加稳定,减小纹波幅度。
电容器的容值大小决定了滤波效果的好坏,较大的容值能够更好地减小纹波幅度,但同时会引入较长的充电时间常数,影响整流电路的动态响应。
另外,桥式整流电容滤波电路还具有一定的输出电压调节能力。
通过控制电容器的容值和电路负载的选择,可以在一定程度上调节电路的输出电压。
这在许多电源设计和电子设备中是非常有用的特性。
然而,需要注意的是,电容器的容值和电压承受能力必须与实际需求相匹配,以避免电容器的过度耗损或破裂。
此外,桥式整流电容滤波电路还具有较好的直流电流稳定性。
通过合理的滤波设计,可以有效降低输出电流的纹波幅度,使得输出电流更加稳定。
而较小的纹波幅度可以减小对后续电路的干扰,提高系统的稳定性和可靠性。
这对于需要稳定直流电源供应的场景非常重要,例如计算机、通讯设备等领域。
总结桥式整流电容滤波电路的特点,它具有高效率、低功率损耗的优势;可以平滑输出,减小纹波幅度;具有一定的输出电压调节能力;并且保持较好的直流电流稳定性。
这些特点使得桥式整流电容滤波电路成为广泛应用的电力转换电路之一,为电子设备的正常运行提供稳定可靠的直流电源。
简易滤波电路
RC 滤波电路及其改进——有源滤波电路段新文(青海师范大学 物理系,青海 西宁 810008)摘 要:本文较为全面地分析了简单RC 滤波电路、π型RC 滤波电路的滤波特点,指出了此两种电路在设备小型化和直流损失等方面所遇到的困难和问题,提出了改进型电路——有源RC 滤波电路。
关键词:简单RC 滤波电路 π型RC 滤波电路 改进 有源滤波电路 中图分类号:0453 文献标识码:A1 简单RC 滤波电路1.1 简单RC 滤波电路的工作原理滤波电路是直流电源的重要组成部分,它一般是由电容等储能元件组成,用来滤除单向脉动电压中的谐波分量,从而得到比较平滑的直流电压。
图1所示为桥式整流简单RC 滤波电路。
由图可以看出,滤波电容C 并联于整流电路的输出端,即C 与R L 并联,整流电路的负载为容性。
其工作原理为:设t=0时接通电源,当2v 由零逐渐上升时,二极管D 1、图1 桥式整流电容滤波的原理电路 图2 工作波形D 3导通,D 2、D 4截止,电流方向如图中箭头所示。
电流一路流过负载R L ,一路向电容C 充电,充电极性为上正、下负。
由于电源内阻及二极管导通电阻均很小,即充电时间常数很小,所以充电进行的很快,C 两端的电压随2v 很快上升到峰值,即m c V v 2 。
当2v 由峰值开始下降时,充电过程结束。
由于电容C 两端的电压c v >2v ,这时,四只二极管均被反偏截止,电容C 向负载R L 放电,从而使通过负载R L 的电流得以维持。
放电时间常数R L C 取值愈大,R L 两端的电压下降愈缓慢,输出波形愈平滑,直到下一个半周到来,且2v >c v 时,D 2、D 4才正偏道通(D 1、D 3仍截止),放电过程结束,2v 又开始给C 充电。
如此周而复始的充电、放电,在负载R L 上便得到如图2所示的输出电压。
1.2 简单RC 滤波电路的外特性和脉动特性电容滤波的外特性是指O v 与O i 的关系,脉动特性是指S 与O i 的关系。
电容滤波原理
电容滤波原理滤波电容的作用简单讲是使滤波后输出的电压为稳定的直流电压,其工作原理是整流电压高于电容电压时电容充电,当整流电压低于电容电压时电容放电,在充放电的过程中,使输出电压基本稳定。
滤波电容容量大,因此一般采用电解电容,在接线时要注意电解电容的正、负极。
电容滤波电路利用电容的充、放电作用,使输出电压趋于平滑。
★当u2为正半周并且数值大于电容两端电压uC时,二极管D1和D3管导通,D2和D4管截止,电流一路流经负载电阻RL,另一路对电容C充电。
当uC>u2,导致D1和D3管反向偏置而截止,电容通过负载电阻RL放电,uC按指数规律缓慢下降。
★当u2为负半周幅值变化到恰好大于uC时,D2和D4因加正向电压变为导通状态,u2再次对C充电,uC上升到u2的峰值后又开始下降;下降到一定数值时D2和D4变为截止,C 对RL放电,uC按指数规律下降;放电到一定数值时D1和D3变为导通,重复上述过程。
RL、C对充放电的影响电容充电时间常数为rDC,因为二极管的rD很小,所以充电时间常数小,充电速度快;RLC为放电时间常数,因为RL较大,放电时间常数远大于充电时间常数,因此,滤波效果取决于放电时间常数。
电容C愈大,负载电阻RL愈大,滤波后输出电压愈平滑,并且其平均值愈大,如图所示。
整流电路是将交流电变成直流电的一种电路,但其输出的直流电的脉动成分较大,而一般电子设备所需直流电源的脉动系数要求小于0.01.故整流输出的电压必须采取一定的措施.尽量降低输出电压中的脉动成分,同时要尽量保存输出电压中的直流成分,使输出电压接近于较理想的直流电,这样的电路就是直流电源中的滤波电路。
常用的滤波电路有无源滤波和有源滤波两大类。
无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。
有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。
直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。
RC电路和滤波电路
RC电路的应用RC电路在模拟电路、脉冲数字电路中得到广泛的应用,由于电路的形式以及信号源和R,C元件参数的不同,因而组成了RC电路的各种应用形式:微分电路、积分电路、耦合电路、滤波电路及脉冲分压器。
关键词:RC电路。
微分、积分电路。
耦合电路。
在模拟及脉冲数字电路中,常常用到由电阻R和电容C组成的RC电路,在些电路中,电阻R和电容C的取值不同、输入和输出关系以及处理的波形之间的关系,产生了RC电路的不同应用,下面分别谈谈微分电路、积分电路、耦合电路、脉冲分压器以及滤波电路。
1. RC微分电路如图1所示,电阻R和电容C串联后接入输入信号VI,由电阻R输出信号VO ,当RC 数值与输入方波宽度tW之间满足:RC<<tW,这种电路就称为微分电路。
在R两端〔输出端〕得到正、负相间的尖脉冲,而且发生在方波的上升沿和下降沿,如图2 所示。
在t=t1时,VI由0→Vm,因电容上电压不能突变〔来不及充电,相当于短路,V C =0〕,输入电压VI全降在电阻R上,即VO=VR=VI=V m 。
随后〔t>t1〕,电容C的电压按指数规律快速充电上升,输出电压随之按指数规律下降〔因VO =VI-VC=Vm-VC〕,经过大约3τ〔τ=R ×C〕时,VCVm,VO0,τ〔RC〕的值愈小,此过程愈快,输出正脉冲愈窄。
t=t2时,VI由Vm→0,相当于输入端被短路,电容原先充有左正右负的电压Vm开场按指数规律经电阻R放电,刚开场,电容C来不及放电,他的左端〔正电〕接地,所以VO =-Vm,之后VO随电容的放电也按指数规律减小,同样经过大约3τ后,放电完毕,输出一个负脉冲。
只要脉冲宽度tW >〔5~10〕τ,在tW时间内,电容C已完成充电或放电〔约需3 τ〕,输出端就能输出正负尖脉冲,才能成为微分电路,因而电路的充放电时间常数τ必须满足:τ<〔1/5~1/10〕tW,这是微分电路的必要条件。
由于输出波形VO 与输入波形VI之间恰好符合微分运算的结果[VO=RC〔dVI/dt〕],即输出波形是取输入波形的变化局部。
整流电路 滤波电容
整流电路滤波电容滤波电容是整流电路中重要的元件之一,它的作用是对电路中的脉动信号进行滤波,使得输出信号更加稳定。
下面将详细介绍滤波电容的原理、作用以及选型等方面内容。
一、滤波电容的原理滤波电容的原理基于电容器的充电和放电特性。
在整流电路中,电容器被连接在负载电阻的并联分支上,通过充电和放电过程来实现对信号的滤波。
当整流电路中的交流信号经过整流后变为脉动信号,这些脉动信号会通过电容器充电过程中的电流变化而被滤除,从而实现对直流信号的提取。
因此,滤波电容在整流电路中起到了平滑输出信号的作用。
二、滤波电容的作用1. 平滑输出信号:滤波电容可以将整流电路中的脉动信号滤除,使得输出信号更加平滑稳定。
这对于一些对电压稳定性要求较高的设备来说非常重要,如电子设备、通信设备等。
2. 提高整流电路的效率:由于滤波电容能够平滑输出信号,可以减小电路中的波动,从而提高整流电路的效率。
这对于功率转换电路来说尤为重要,可以减少能量损耗。
3. 保护负载:滤波电容具有一定的能量存储能力,可以在电压波动时为负载提供短暂的能量支持,保护负载免受过大的电压冲击。
三、滤波电容的选型滤波电容的选型需要考虑以下几个因素:1. 容值大小:滤波电容的容值决定了滤波效果的好坏。
一般来说,容值越大,滤波效果越好。
但是过大的容值会增加电容器的成本和体积,因此需要根据具体应用来选择合适的容值。
2. 工作电压:滤波电容的工作电压需要大于整流电路中的最大电压,以确保电容器能够正常工作且不会受到损坏。
3. ESR:ESR是指电容器的等效串联电阻,它会影响电容器的性能。
一般来说,ESR越小,电容器的性能越好。
在选型时需要考虑ESR 的大小。
4. 体积和成本:滤波电容的体积和成本也是选型的考虑因素之一。
需要根据实际需求来选择合适的电容器。
滤波电容在整流电路中起到了平滑输出信号、提高效率和保护负载的重要作用。
通过合理选型和使用,可以有效提升整流电路的性能和稳定性。
电容滤波电路 电感滤波电路作用原理
以上过程电容器的放电时间常数为
电容滤波一般负载电流较小,可以满足 td 较大的条件,所以输出电压波形 的放电段比较平缓,纹波较小,输出脉动系数 S 小,输出平均电压 UO(AV)大, 具有较好的滤波特性。
(a)电路图
(b)
波形图
图5带载时桥式整流滤波电路
以上滤波电路都有一个共性,那就是需要很大的电容容量才能满足要求,这
图2电感滤波电路 838电子在桥式整流电路中,当 u2正半周时,D1、D3导电,电感中的电流 将滞后 u2不到90°。当 u2超过90°后开始下降,电感上的反电势有助于 D1、 D3继续导电。当 u2处于负半周时,D2、D4导电,变压器副边电压全部加到 D1、D3两端,致使 D1、D3反偏而截止,此时,电感中的电流将经由 D2、D4 提供。由于桥式电路的对称性和电感中电流的连续性,四个二极管 D1、D3; D2、D4的导电角θ都是180°,这一点与电容滤波电路不同。
--------------------------------------------------------------------------------
2、电感滤波电路
电感滤波电路的原理也和电容器滤波差不多,也是因为电感器的通直阻交特性和 储能特性。从储能方面来解释的话和电容器是一样的原理,从通直阻交特性方面 来解释电感器的滤波电路时,电感器是把单向脉动性直流电压分解出来的交流电 压部分进行阻碍,而电容器却是短路接地。电感量越大滤波效果越好,由电感器 单独作滤波电路的情况很少,一般会和电容一起组合使用。
整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直 流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电 压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤 除整流电路输出电压中的脉动成分以获得直流电压。
(整理)电容滤波电路、电感滤波电路原理分析
电容滤波电路、电感滤波电路原理分析整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉,称为纹波。
为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路整流电路输出电压中的脉动成分以获得直流电压。
常用的滤波电路有无源滤波和有源滤波两大类。
无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。
有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。
直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。
脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。
对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。
(T为整流输出的直流脉动电压的周期。
)电阻滤波电路RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。
如图1(B)RC滤波电路。
若用S 表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。
由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。
在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。
而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。
这种电路一般用于负载电流比较小的场合.电感滤波电路根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。
因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。
电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。
(A)电容滤波(B) C-R-C或RC-π型电阻滤波脉动系数S=(1/ωC2R')S'(C) L-C电感滤波(D)π型滤波或叫C-L-C 滤波图1 无源滤波电路的基本形式并联的电容器C在输入电压升高时,给电容器充电,可把部分能量存储在电容器中。
电容滤波电路(桥式电路)
10
(a) 输出电压 平均值Uo与时间常数 RLC 有关
RLC 愈大 电容器放电愈慢 Uo(平均值)愈大 T 一般取 RLC ( 3 ~ 5 ) ( 1.5 ~ 2.5 )T 2 近似估算: Uo(AV)≈1.2U2 (b) 流过二极管瞬时电流很大
UC 2 U 2 UC 1 2 2U 2
即二倍压电压。
输出端的电压: U O UC 2 2 2U 2
22
2、多倍压整流电路
2U 2 C1 + –
C3 D3 D4 C4
C5 D5
D6 C6
u1
u2
D1
D2
+C2– 2 2U 2
u2的第一个正半周:u2、C1、D1构成回路,C1 充电到: 2U 2
uo的脉动系数S与uo1的脉动系数S´的关系:
U o1m U'o1m 1 1 S S' 2 2 Uo 1 LC U'o 1 LC
20
3、LC – 型滤波电路
L
uo1
u1
u2
C1
C2
RL
uo
显然, LC – 型滤波电路输出电压的脉动系 数比只有LC滤波时更小,波形更加平滑;由 于在输入端接入了电容,因而较只有LC滤波 时,提高了输出电压。 请自行分析LC – 型滤波电路的输出 电压和脉动系数等基本参数。
u2上升, u2大于电容 上的电压uc,u2对电容充电, uo= uc u2
5
u1
u1
u2
D4
D3 b u2
只有整流电路输出 电压大于uc时,才 有充电电流。因此 二极管中的电流是 脉冲波。
整流滤波电路桥式整流滤波电路
整流滤波电路桥式整流滤波电路一:[整流滤波电路]几种滤波整流电路的介绍总结(一)一、有源滤波电路为了提高滤波效果,解决π型RC滤波电路中交、直流分量对R的要求相互矛盾的问题,在RC电路中增加了有源器件-晶体管,形成了RC有源滤波电路。
常见的RC有源滤波电路如图Z0716所示,它实质上是由C1、Rb、C2组成的π型RC滤波电路与晶体管T组成的射极输出器联接而成的电路。
该电路的优点是:1.滤波电阻Rb 接于晶体管的基极回路,兼作偏置电阻,由于流过Rb 的电流入很小,为输出电流Ie的1/(1+β),故Rb可取较大的值(一般为几十k Ω),既使纹波得以较大的降落,又不使直流损失太大。
2.滤波电容C2接于晶体管的基极回路,便可以选取较小的电容,达到较大电容的滤波效果,也减小了电容的体积,便于小型化。
如图中接于基极的电容C2 折合到发射极回路就相当于(1+β)C2的电容的滤波效果(因ie = (1+ β )ib之故)。
3.由于负载凡接于晶体管的射极,故RL上的直流输出电压UE≈UB,即基本上同RC无源滤波输出直流电压相等。
这种滤波电路滤波特性较好,广泛地用于一些小型电子设备之中。
二、复式滤波电路复式滤波电路常用的有LCГ型、LCπ型和RCπ 型3种形式,如图Z0715所示。
它们的电路组成原则是,把对交流阻抗大的元件(如电感、电阻)与负载串联,以降落较大的纹波电压,而把对交流阻抗小的元件(如电容)与负载并联,以旁路较大的纹波电流。
其滤波原理与电容、电感滤波类似,这里仅介绍RCπ型滤波。
图Z0715(c)为RCπ型滤波电路,它实质上是在电容滤波的基础上再加一级RC滤波电路组成的。
其滤波原理可以这样解释:经过电容C1滤波之后,C1两端的电压包含一个直流分量与交流分量,作为RC2滤波的输入电压。
对直流分量而言,C2 可视为开路,RL上的输出直流电压为:对于交流分量而言,其输出交流电压为:若满足条件则有由式可见,R愈小,输出的直流分量愈大;由式可见,RC2愈大,输出的交流分量愈小。
桥式整流电容滤波电路
桥式整流电容滤波电路
桥式整流电容滤波电路是利用电势与电流的平衡来抑制由电路
中间元件带来的一些不可避免的电压降低和瞬时变化,以达到滤波的作用。
在电子系统中,桥式整流电容滤波电路的应用极为广泛,可以用来抑制瞬态电压或电流的波动,减少纹波电压,实现对稳定供电电压的保护。
桥式整流电容滤波电路是一种结构简单,能够抑制瞬态电压或电流波动,减少纹波电压,实现对稳定供电电压的保护的电路。
桥式整流电容滤波电路原理十分简单,它由桥接电容、整流元件(晶体管、整流二极管、双极二极管)和滤波电容组成。
其原理是,由于这种整流电路中的整流元件可以把输入的交流电源转换成直流电源,桥式电容将电流的波动抑制,滤波电容产生的电压就会在输出端产生一个相对恒定的电压,使输出更加平稳和稳定。
在电子系统中,桥式整流电容滤波电路可以作为稳压元件,以满足电路对输出电压的稳定性要求,并使内部纹波的大小符合稳定电压的要求。
此外,它还可以抑制元件的瞬态电压或电流波动,减小纹波电压,使电子系统的漏电变小,从而降低系统的故障率。
在电源负载的恒定条件下,桥式整流电容滤波电路的抑制对输出电压的调整很小,具有良好的稳定性、可靠性和变化小的特点,因此在电子系统中得到广泛应用。
结论:桥式整流电容滤波电路是一种结构简单,能够抑制电路中间元件带来的瞬态电压或电流波动,减少纹波电压,实现稳定供电电
压保护的电路。
它具有良好的稳定性、可靠性和变化小等特点,在电子系统中得到广泛应用。
电容滤波电路(桥式电路)
26
(2)稳压管的选择
UZ=UO
IZM-IZ > Iomax- Iomin
IZM ≥ Iomax +IZ
(3)限流电阻的选择 UI UZ 由 I
R
U Imin U Z Rmax I Z U Z /R Lmin U Imax U Z UZ U Imax U Z I ZM R min R RLmax I ZM U Z /R Lmax 2 P I 限流电阻的功率: R Rmax Rmax (空载时)
+ IR UI -
R IZ DZ
IZ RL
~220V
+ UO 19
i UZ IZmin
从稳压管的特性可知,在电
u
IZmax
路中若能使稳压管始终工作 在稳压区内,即:使稳压管 的电流IZ满足条件: IZmin≤ IZ≤ IZmax,则输出电 压UO基本上保持不变,约为 UZ。
所以稳压二极管的稳压作用是利用稳压管中 电流的调节实现稳压目的。电路中R必不可少, 其作用是限流和电压、电流补偿。
常用滤波电路
交流 电压
整流
脉动 直流电压
滤波
直流 电压
1
一.滤波电路的作用、滤波元件和电路类型
交流 电压
整流
脉动 直流电压
滤波
直流 电压
1.作用
滤除______成分,使输出电压变得______
2.滤波元件
电容和电感
3.类型
电容滤波、电感滤波、复式滤波( L-C 型、 LC – 型、 RC– 型)
2
二.常用滤波电路
(一)、电容滤波电路 1.电路组成 a u1
u1
u2
D4
电容电感滤波原理
电容电感滤波原理整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。
为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。
常用的滤波电路有无源滤波和有源滤波两大类。
无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。
有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。
直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。
脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。
对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。
(T为整流输出的直流脉动电压的周期。
)电阻滤波电路RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。
如图1(B)RC滤波电路。
若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。
由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。
在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。
而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。
这种电路一般用于负载电流比较小的场合.电感滤波电路根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。
因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。
电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。
(A)电容滤波(B)C-R-C或RC-π型电阻滤波脉动系数S=(1/ωC2R')S'(C)L-C电感滤波(D)π型滤波或叫C-L-C滤波图1 无源滤波电路的基本形式并联的电容器C在输入电压升高时,给电容器充电,可把部分能量存储在电容器中。
仿真实验11:桥式整流电容滤波电路
《模拟电子技术》演示实验库实验11:桥式整流电容滤波电路一、教学目的1. 演示桥式整流输出电压的波形并与变压器次级波形作比较。
2. 演示加有电容滤波的输出电压的波形,负载变化后对输出电压波形的影响。
3. 测试各种情况下的输出电压,演示当一支二极管开路、短路后输出电压的变化,加深理解桥式整流电路的应用。
二、演示内容1. 创建单相桥式整流、电容滤波实验电路(1)启动Multisim进入Multisim工作界面。
(2)按图11.1在电路工作区连接电路图11.1 单相全波整流电容滤波实验电路◆安放元器件(或仪器)单击打开相应元器件库(或仪器库),将所需元器件(或仪器)拖拽至相应位置。
利用工具栏的旋转、水平翻转、垂直翻转等按钮使元器件符合电路的安放要求。
◆连接电路(3)按图11.1所示,给元器件标识、赋值(或选择模型)双击元器件打开元件特性对话框,进行相应设置。
全波整流波形电源电压波形(示波器面板波形显示框)图11.2 电源与全波整流波形◆信号源u s单击Label,键入单相交流电源Us。
单击Value,设置Vo1tage:200V,Frequency:50Hz,Phase:0。
◆变压器Tr单击“Label”,键入Tr 10:1。
单击Mode1s,选中Library 中的default和Model中的ideal,单击“Edit”按钮打参数设置对话框,在“primary to Secondary tums ratio”框键入“10”,单击“确定”。
◆整流桥堆D×4单击Labe1,键入D×4,单击Models,选中Library中的general1和Model中的BYM10.100,单击“确定”。
◆电容C单击Labe1,键入滤波电容C。
单击V alue,将“Capacitance”设置为20μF,单击“确定”。
◆开关K单击Label,键入K,单击确定。
由于只有一个开关,故控制键可采用其缺省设置的“Space”(空格键)。
详解4种整流、5种滤波电路
详解4种整流、5种滤波电路1、变压电路通常直流稳压电源使用电源变压器来改变输入到后级电路的电压。
电源变压器由初级绕组、次级绕组和铁芯组成。
初级绕组用来输入电源交流电压,次级绕组输出所需要的交流电压。
通俗的说,电源变压器是一种电→磁→电转换器件。
即初级的交流电转化成铁芯的闭合交变磁场,磁场的磁力线切割次级线圈产生交变电动势。
次级接上负载时,电路闭合,次级电路有交变电流通过。
变压器的电路图符号见图2-3-1。
2、整流电路经过变压器变压后的仍然是交流电,需要转换为直流电才能提供给后级电路,这个转换电路就是整流电路。
在直流稳压电源中利用二极管的单项导电特性,将方向变化的交流电整流为直流电。
(1)半波整流电路半波整流电路见图2-3-2。
其中B1是电源变压器,D1是整流二极管,R1是负载。
B1次级是一个方向和大小随时间变化的正弦波电压,波形如图 2-3-3(a)所示。
0~π期间是这个电压的正半周,这时B1次级上端为正下端为负,二极管D1正向导通,电源电压加到负载R1上,负载R1中有电流通过;π~2π期间是这个电压的负半周,这时B1次级上端为负下端为正,二极管D1反向截止,没有电压加到负载R1上,负载R1中没有电流通过。
在2π~3π、3π~4π等后续周期中重复上述过程,这样电源负半周的波形被“削”掉,得到一个单一方向的电压,波形如图2-3-3(b)所示。
由于这样得到的电压波形大小还是随时间变化,我们称其为脉动直流。
设B1次级电压为E,理想状态下负载R1两端的电压可用下面的公式求出:整流二极管D1承受的反向峰值电压为:由于半波整流电路只利用电源的正半周,电源的利用效率非常低,所以半波整流电路仅在高电压、小电流等少数情况下使用,一般电源电路中很少使用。
(2)全波整流电路由于半波整流电路的效率较低,于是人们很自然的想到将电源的负半周也利用起来,这样就有了全波整流电路。
全波整流电路图见图2-3-6。
相对半波整流电路,全波整流电路多用了一个整流二极管D2,变压器B1的次级也增加了一个中心抽头。
电容滤波原理
电容滤波原理滤波电容的作用简单讲是使滤波后输出的电压为稳定的直流电压,其工作原理是整流电压高于电容电压时电容充电,当整流电压低于电容电压时电容放电,在充放电的过程中,使输出电压基本稳定。
滤波电容容量大,因此一般采用电解电容,在接线时要注意电解电容的正、负极。
电容滤波电路利用电容的充、放电作用,使输出电压趋于平滑。
★当u2为正半周并且数值大于电容两端电压uC时,二极管D1和D3管导通,D2和D4管截止,电流一路流经负载电阻RL,另一路对电容C充电。
当uC>u2,导致D1和D3管反向偏置而截止,电容通过负载电阻RL放电,uC按指数规律缓慢下降。
★当u2为负半周幅值变化到恰好大于uC时,D2和D4因加正向电压变为导通状态,u2再次对C充电,uC上升到u2的峰值后又开始下降;下降到一定数值时D2和D4变为截止,C 对RL放电,uC按指数规律下降;放电到一定数值时D1和D3变为导通,重复上述过程。
RL、C对充放电的影响电容充电时间常数为rDC,因为二极管的rD很小,所以充电时间常数小,充电速度快;RLC为放电时间常数,因为RL较大,放电时间常数远大于充电时间常数,因此,滤波效果取决于放电时间常数。
电容C愈大,负载电阻RL愈大,滤波后输出电压愈平滑,并且其平均值愈大,如图所示。
整流电路是将交流电变成直流电的一种电路,但其输出的直流电的脉动成分较大,而一般电子设备所需直流电源的脉动系数要求小于0.01.故整流输出的电压必须采取一定的措施.尽量降低输出电压中的脉动成分,同时要尽量保存输出电压中的直流成分,使输出电压接近于较理想的直流电,这样的电路就是直流电源中的滤波电路。
常用的滤波电路有无源滤波和有源滤波两大类。
无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。
有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。
直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电容滤波原理桥式整流RC滤波电路
如下图所示为电容滤波电路,滤波电容容量大,因此一般采用电解电容,在接线时要注意电解电容的正、负极。
电容滤波电路利用电容的充、放电作用,使输出电压趋于平滑。
一、滤波原理
★当u2为正半周并且数值大于电容两端电压uC时,二极管D1和D3管导通,D2和D4管截止,电流一路流经负载电阻RL,另一路对电容C充电。
当uC>u2,导致D1和D3管反向偏置而截止,电容通过负载电阻RL放电,uC按指数规律缓慢下降。
★当u2为负半周幅值变化到恰好大于uC时,D2和D4因加正向电压变为导通状态,u2再次对C充电,uC上升到u2的峰值后又开始下降;下降到一定数值时D2和D4变为截止,C对RL放电,uC按指数规律下降;放电到一定数值时D1和D3变为导通,重复上述过程。
RL、C对充放电的影响
电容充电时间常数为rDC,因为二极管的rD很小,所以充电时间常数小,充电速度快;
RLC为放电时间常数,因为RL较大,放电时间常数远大于充电时间常数,因此,滤波效果取决于放电时间常数。
电容C愈大,负载电阻RL愈大,滤波后输出电压愈平滑,并且其平均值愈大,如右上图所示。