1.1-探索勾股定理(第1课时)教学设计

合集下载

《探索勾股定理》教学设计

《探索勾股定理》教学设计

《探索勾股定理》教学设计一、教学分析(一)教学内容分析本节课是北师大版数学八年上册第一章《勾股定理》第一节第1课时的内容,勾股定理是几何中极重要的一个定理, 它揭示了直角三角形三边之间的一种美妙关系,将数与形密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数、学习三角函数的基础,充分体现了数学知识承前启后的紧密相关性和连续性.此外,历史上勾股定理的发现反映了人类的杰出智慧,其中蕴含着丰富的科学和人文价值.本节课内容渗透了数形结合、转化、从特殊到一般等数学思想方法,教材中关于勾股定理的多种验证及勾股定理的推广等,都可供学生探究与挖掘,是渗透研究性学习,培养学生探究能力和创新精神的极好素材.(二)教学对象分析本节课所教学生是沈阳市博才中学八年级四班学生,学生数学基础较好,思维活跃,自主学习和小组合作的能力较强;学生对多媒体大屏幕环境下的课堂环境非常熟悉,对数学上常用的几何画板比较了解;学生已经掌握了直角三角形的有关性质,并且已经对图形的探索、验证有了一定的推理能力,因此学生对勾股定理的学习会有较浓厚的兴趣.(三)教学环境分析选择多媒体教室进行授课.使用相关的教学软件:FLASH、几何画板等来完成各种图形的制作.二、教学目标(一)知识与技能1.使学生在探索勾股定理的过程中,掌握直角三角形三边之间的数量关系.2.学会初步运用勾股定理进行简单的计算,并解决实际问题.(二)过程与方法让学生经历用面积法探索勾股定理的过程,体会数形结合的思想,体验从特殊到一般的逻辑推理过程.(三)情感、态度与价值观1.通过对勾股定理历史的了解,感受数学文化,激发学习热情.2.在探索勾股定理的过程中体验获得成功的快乐.三、教学重点难点(一)教学重点探索和验证勾股定理及简单应用.(二)教学难点通过计算面积的方法探索勾股定理及简单应用.四、教法与学法分析(一)教法分析我采用探究发现式的教学方法,安排了两探究活动,通过方格纸为学生设计一个合适的学习铺垫,通过观察、计算、多媒体辅助演示,使学生在教师的引导下达到知识的顺利迁移和综合内化.(二)学法分析在教师的组织引导下,采用自主探索、合作交流方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动口、动脑的能力,使学生真正成为学习的主体.五、教学过程根据新课程改革的教学理念,本节课我采用如下的教学模式来组织教学,力求着眼于学生探究能力和创造性思维能力的培养.“创设情境引入新课----师生互动探究新知----验证结论得到定理----回归生活应用新知----感悟收获巩固拓展---归纳总结布置作业”至此,使各个教学目标在整个教学过程中,逐步得到落实.(五)感悟收获巩固拓展1.如图,受台风麦莎影响,一棵树在离地面4米处断裂,树的顶部落在离树跟底部3米处,这棵树折断前有多高?2.在平静的湖面上,有一支红莲,高出水面1尺红莲被风一吹,花朵刚好与水面平齐,已知红莲移动的水平距离是2尺问这里水深是多少?讲练结合法为了检验学生是否完成了学习目标,及时反馈学生掌握知识情况,给出以上两题进一步体会勾股定理在实际生活中的应用,还渗透了方程思想.设计意图这两题立足于巩固,着眼于发展,使学生进一步巩固所学内容,增强学生学数学、用数学的意识.图片演示,立体直观.(六)归纳总结布置作业归纳总结1.这节课你学到了什么知识?2.运用“勾股定理”应注意什么问题?3.你还有什么疑惑或没有弄懂的地方?作业1.探索勾股定理还有那学方法?2.查找有关勾股定理相关的历史知识.送给同学们一副对联(flash).设计意图反思总结、布置作业学生们对本节课的知识认真的加以梳理,并为学习新知做好准备.内化知识,培养能力.与情境引入交相呼应,也为下节课学习做好铺垫 .视频对联4米3米六、教学过程反思1.本节课的教学流程体现了知识发生,形成和发展过程,让学生体会到观察,猜想,归纳,验证的思想和数形结合的思想.2.本节课最大的亮点是:始终把学生的探索与验证活动放在首位,整个教学过程我采用动画、几何画板、图片等多媒体形式引导学生主动参与课堂活动,借助信息技术手段适时呈现问题情境,以丰富学生的感性认识,增强直观效果,提高课堂教学效率,建立平等、民主、和谐的师生关系,意在创设一种学生乐学的课堂气氛,让学生真正成为课堂的主体,最终实现知识的建构.七、板书设计。

探索勾股定理教学设计一

探索勾股定理教学设计一

探索勾股定理教学设计一第一篇:探索勾股定理教学设计一第一课时探索勾股定理(一)教学目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:重点:了结勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现教学过程一、创设问题的情境,激发学生的学习热情,导入课题出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2(书中的P2 图1—2)并回答:1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:3、图1—2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C 的关系呢?二、做一做出示投影3(书中P3图1—4)提问:1、图1—3中,A,B,C 之间有什么关系?2、图1—4中,A,B,C 之间有什么关系?3、从图1—1,1—2,1—3,1|—4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、议一议1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?2、你能发现直角三角形三边长度之间的关系吗?在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。

这就是著名的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c 那么a2+b2=c2我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

1.1探索勾股定理(第1课时)教学设计.doc

1.1探索勾股定理(第1课时)教学设计.doc

第一章勾股定理1.探索勾股定理(第1课时)一、学生起点分析二、教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时.勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.为此本节课的教学目标是:1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.2.让学生经历观察一猜想一归纳一验证”的数学思想,并体会数形结合和特殊到一般的思想方法.3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.三、教学过程设计本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.第一环节:创设情境,弓I入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:第1页第2页会标中央的图案是一个与 勾股定理”有关的图形,数学家曾建议 用 勾股定理”的图来作为与 外星人”联系的信号.今天我们就来一同 探索勾股定理.(板书课题)意图:紧扣课题,自然引入,同时渗透爱国主义教育 效果:激发起学生的求知欲和爱国热情.第二环节:探索发现勾股定理1. 探究活动一内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗? 学生通过观察,归纳发现:结论1以等腰直角三角形两直角边为边长的小正方形的面积的和, 长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过 对特殊情形的探究得到结论1,为探究活动二作铺垫.效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力; 2•通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望 .2. 探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢? (1)观察下面两幅图:等于以斜边为边(2)填表:师应给予充分肯定.)学生的方法可能有:方法一: A的面积(单位面积)B的面积(单位面积)C的面积(单位面积)左图右图(3)你是怎样得到正方形C的面积的?与同伴交流. 去四个直角三角形的面积, (学生可能会做出多种方法,教如图1 ,将正方形C分割为四个全等的直角三角形和一个小正方形,第4页效果:学生通过充分讨论探究,在突破正方形 C 的面积计算这一难点后得出结论 2. 3. 议一议内容:(1)你能用直角三角形的边长a ,b ,c 来表示上图中正方形的面积吗? (2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方 .如果用a ,b ,c 分别表示 直角三角形的两直角边和斜边,那么 a 2+b 2=c 2.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形 中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,勾股定 理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)意图:议一议意在让学生在结论2的基础上,进一步发现直角三 角形三边关系,得到勾股定理.效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力; 过作图培养学生的动手实践能力.第三环节:勾股定理的简单应用内容:例题 如图所示,一棵大树在一次强烈台风中于离地面 10m 处折断倒下,树顶落在离树根24m 处.大树在折断之前高多少?(教师板演解题过程) 练习:1基础巩固练习:求下列图形中未知正方形的面积或未知边的长度(口答):2.生活中的应用:2.通2.观察下图,探究图中三角形的三边长是否满足a 2 +b 2 =c 2 ?小明妈妈买了一部29 in (74 cm )的电视机.小明量了电视机的屏幕后,发现屏幕只有 58 cm 长和46 cm 宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什 么吗?意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活, 意在培养学生用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容第四环节:课堂小结内容: 教师提问:1.这一节课我们一起学习了哪些知识和思想方法?2.对这些内容你有什么体会?与同伴进行交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用 a ,b ,c分别表示直角三角形的两直角边和斜边,那么a 2 +b 2 =c 22.方法:(1)观察一探索一猜想一验证一归纳一应用;(2) 割、补、拼、接”法.3.思想:(1) 特殊一一般一特殊; 意图: 效果: 结的意识.数形结合思想.鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总 第五环节:布置作业内容:布置作业:1.教科书习题1.1.意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.五、教学设计反思(一)设计理念依据学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时, 进行引导或组织学生通过讨论来突破难点.(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.少年智则国智,少年富则国富,少年强则国强,少年独立则国独立,少年自由则国自由,少年进步则国进步,少年胜于欧洲,贝恫胜于欧洲,少年雄于地球,则国雄于地球。

《探索勾股定理》第一课时说课稿(完整版)

《探索勾股定理》第一课时说课稿(完整版)

《探索勾股定理》第一课时说课稿相信勾股定理大家都很熟悉,但是让你说课你应该觉得很难。

下面是整理的《探索勾股定理》第一课时说课稿,请阅读,上,发现学习。

一、教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)根据课程标准,本课的教学目标是:1、能说出勾股定理的内容。

2、会初步运用勾股定理进行简单的计算和实际运用。

3、在探索勾股定理的过程中,让学生经历观察猜想归纳验证的数学思想,并体会数形结合和特殊到一般的思想方法。

4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

(三)本课的教学重点:探索勾股定理本课的教学难点:以直角三角形为边的正方形面积的计算。

二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。

引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题实验操作归纳验证问题解决课堂小结布置作业六部分。

学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

三、教学过程设计(一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是已知一直角三角形的两边,如何求第三边? 的问题。

1.1 探索勾股定理(第1课时)教学设计

1.1 探索勾股定理(第1课时)教学设计

第一章勾股定理1. 探索勾股定理(第1课时)一、学生起点分析八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.二、教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时. 勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.为此本节课的教学目标是:1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.2.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.三、教学过程设计第一环节:创设情境,引入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)意图:紧扣课题,自然引入,同时渗透爱国主义教育.第二环节:探索发现勾股定理1.探究活动一内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗? 学生通过观察,归纳发现:结论 1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫. 2.探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢? (1)观察下面两幅图:(2)填表:(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)图1 图2 图3 学生的方法可能有: 方法一:如图1,将正方形C 分割为四个全等的直角三角形和一个小正方形,13132214=+⨯⨯⨯=C S .方法二:如图2,在正方形C 外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,133221452=⨯⨯⨯-=C S .方法三:如图3,正方形C 中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,13542=+⨯=C S .(4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出:结论 2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C 的面积计算是一个难点,为此设计了一个交流环节. 3.议一议内容:(1)你能用直角三角形的边长a ,b ,c 来表示上图中正方形的面积吗? (2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.第三环节:勾股定理的简单应用内容:例题 如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少?(教师板演解题过程) 练习:1.基础巩固练习:求下列图形中未知正方形的面积或未知边的长度(口答):2.生活中的应用:小明妈妈买了一部29 in (74 cm )的电视机. 小明量了电视机的屏幕后,发现屏幕只有58 cm 长和46 cm 宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.第四环节:课堂小结内容: 教师提问:弦股勾?225100x15171.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?与同伴进行交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c分别表示直角三角形的两直角边和斜边,那么222c b a =+.2.方法:(1) 观察—探索—猜想—验证—归纳—应用; (2)“割、补、拼、接”法.3.思想:(1) 特殊—一般—特殊; (2) 数形结合思想.意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.第五环节:布置作业内容:布置作业:1.教科书习题1.1.2.观察下图,探究图中三角形的三边长是否满足222c b a =+?意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.五、教学设计反思 (一)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.a bcabc(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.。

1.1探索勾股定理+教学设计2023—2024学年北师大版数学八年级上册

1.1探索勾股定理+教学设计2023—2024学年北师大版数学八年级上册

教师引导学生发现三边关系并提出猜想:a 2+ b2=c2教师引导学生对我们的猜想进行验证,所以给定了几组以a,b为直角边的直角三角形,用我们的猜想计算斜边c的长度。

再次引导学生用工具画出满足上图给定直角边的直角三角形,并用刻度尺测量出斜边的长度,检验和公式算出的数值是否一致从而提出猜想。

猜想公式后尝试应用公式计算,求出斜边的长度作图满足条件的直角三角形,并进行测量,发现测量出的斜边和用公式计算出的斜边在误差允许的范围内保持一致。

设计意图:让学生经历作图——测量——猜想——作图——测量——验证的过程,培养学生的动手实践能力和数学探究能力。

并且,作图和测量是数学操作中的两项基本技能,在此环节中得以多次训练,教学结构完整而统一。

同时,也引导传授学生遇到陌生的问题时,要先进行尝试,再大胆猜想,最后进行验证的数学学习思路。

本环节运用了数形结合的思想和从特殊到一般的思想,让学生感受数学探究的方法与乐趣。

环节三.严谨证明,欣赏教师活动:引导学生使用赵爽弦图对勾股定理进行证明,并强调数形结合的思想方法。

同时,展示第二十四届数学家大会的会徽,再次渗透数学文化。

教师继续带领大家欣赏刘徽的“青朱出入图”、欧几里得《几何原本》中的证明,和达芬奇的证明。

并在课件中展示相应的人物简历、文化科普,激发学生兴趣的同时补充数学文化知识。

学生活动:利用“赵爽弦图”尝试证明勾股定理,并在教师的引导下完成定理的证明。

欣赏其他名人的证法,感受数形结合之美。

体会“算两次”和割补法在勾股定理证明中的妙用。

思考讨论是否还有其他的证明方法,激发数学思教师继续带领学生欣赏其他美妙的证法,并且告诉学生勾股定理有500多种证明方法,是证法最多的定理之一,从而引发学生强烈的求知欲望,想要去查找或探索其他证明方法。

考和潜能设计意图: 通过严谨的数学证明教导学生“先猜后证”是数学之道,一个定理的提出除了猜想和尝试外,还需要逻辑严谨的数学证明.定理的证明可以使本节课的思路更加严谨和清晰。

《探索勾股定理》教学设计

《探索勾股定理》教学设计

《探索勾股定理》教学设计竞存中学数学组甄伟伟【教学内容】北师大版八年级数学上册第一章第一节《探索勾股定理》第一课时【教材分析】本节课的主要内容是勾股定理的探索及简单应用,勾股定理是几何中的重要定理之一,揭示的是直角三角形的三边关系,通过探索勾股定理的过程可以加深对直角三角形的认识和理解,很大程度上影响后续课时的学习。

【学情分析】八年级学生已经具备了一定的生活经验和动手实践能力,并且对直角三角形的概念有了初步的认识,因而能够在教师的引导下,通过操作、观察、猜想、验证的过程,掌握勾股定理,并加以应用。

【教学目标】一、知识与技能目标通过测量数格子的方法探索勾股定理,掌握勾股定理,并能简单运用。

二、过程与方法目标通过操作、观察、猜想、发现勾股定理的过程,发展学生的合情推理和归纳概括能力,渗透数形结合的思想。

三、情感、态度与价值观目标经历积极交流讨论,探索勾股定理的数学活动过程,发展学生的合作意识,把实际问题转化为数学问题,让学生感受到数学就在日常生活中。

【教学重点】勾股定理的探索和理解。

【教学难点】在探索勾股定理的过程中如何计算具体图形的面积,以及勾股定理的简单运用。

【课时划分】本课共两课时,本设计为第一课时【教学过程】一、板书课题二、出示学习目标三、出示自学指导:认真看课本1--2页内容,注意;1.任意画两个直角三角形,通过测量发现三边的平方存在怎样的关系.2.数图1-2和图1-3中的格子数(即面积)发现具有什么关系.3.熟记勾股定理的内容.(六分钟后检测)四、学生自学,教师巡视。

五、检测与指导问题一:在纸上画若干个直角三角形,分别测量它们的三条边,看看三边长的平方之间有怎样的关系?(学生展示)师:基于测量值的计算,肯定有些误差,因此,我们需借助格子图进一步验证。

问题二:出示图1-2,你能发现下面图中分别以直角三角形的三边长为边所做的正方形面积之间有怎样的关系。

(兵教兵,学生展示讲解)①直接数出正方形内部所包含的完整小方格的个数,而将不足一个方格的部分都算半个(结果也恰好相等,这时教师可以给予学生适当的鼓励,并进一步追问其中的道理,使得学生明确这个方法的缺陷,甚至使学生可能对这个方法进行完善,并得到方法②);②将不足一个方格的部分进行适当的拼凑,以拼凑出若干个完整的小方格;③将斜边上的正方形划分为若干个边长都是整数的直角三角形,再利用三角形面积公式得出其面积;④在斜边上的正方形的各边上补一个直角三角形,得到一个大的正方形。

《探索勾股定理》八年级(上)

《探索勾股定理》八年级(上)

1.1探索勾股定理(一)教学设计李兴林铁厂中学八年级 2013年11月11日一、教材分析本节课所学内容是北师大版八年级数学上册第一章第1节《探索勾股定理》第一课时。

勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用。

本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性。

此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。

二、教学目标1、知识与技能目标:掌握勾股定理,并学会用符号表示;会初步运用勾股定理进行简单的计算和实际运用;进一步发展学生的动手操作能力和简单的推理能力。

2、过程与方法目标:让学生经历“观察—猜想—归纳—验证”的探索过程,领悟“数形结合”的思想方法,体验“从特殊到一般”的逻辑推理过程。

3、情感态度与价值观目标:在勾股定理的探索过程中中穿插勾股定理的数学史和数学故事,激发学生学数学、爱数学、做数学的情感;感受数学之美,探究之趣。

三、教学重点、难点1、重点:用面积法探索勾股定理,理解并掌握勾股定理。

2、难点:计算以斜边为边长的大正方形C面积及割补思想的理解与应用。

四、教学方法以“学生主体,教师为主导”的自主探究、小组合作学习。

五、教学准备多媒体课件、三角板、导学案。

六、教学过程本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业。

(一)创设情境,引入新课:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。

那勾股定理到底是一个什么样的定理呢?今天我们就来一同探索勾股定理。

(板书课题) (二)探索发现:1、等腰直角三角形观察图5,对于等腰直角三角形,将正方形A 、正方形B 和已计算的正方形C 的面积填入下表,它们的面积有什么关系?发现:正方形A 面积 + 正方形B 面积 = 正方形C 面积 问题:你是怎样得到的呢?(数格子) 2、一般直角三角形观察图6,对于一般直角三角形,正方形A 、正方形B 、正方形C 面积又有什么关系呢?发现:正方形A 面积 + 正方形B 面积 = 正方形C 面积 问题:你是怎样得到的呢?(分割法)3、正方形面积与直角三角形三边的关系(分组讨论,交流并发言)若我们设两条直角边长分别为a 、b ,斜边为c ,你能用三角形的边长来表示这三个正方形的面积吗?结论:由于 正方形A 面积 + 正方形B 面积 = 正方形C 面积,所以222c b a =+.即:两条直角边的平方和等于斜边的平方。

八年级数学上册1.1探索勾股定理第1课时认识勾股定理教案 新版北师大版

八年级数学上册1.1探索勾股定理第1课时认识勾股定理教案 新版北师大版

八年级数学上册1.1探索勾股定理第1课时认识勾股定理教案新版北师大版一. 教材分析《新版北师大版八年级数学上册》第1.1节“探索勾股定理”是学生在学习了平面几何基本概念和性质的基础上进一步学习的。

本节内容主要让学生通过探究、推理、验证等过程,理解和掌握勾股定理,培养学生的逻辑思维能力和探究能力。

教材通过丰富的背景材料,引导学生参与探究活动,从而激发学生的学习兴趣,提高学生的学习积极性。

二. 学情分析八年级的学生已经具备了一定的数学基础,对平面几何的基本概念和性质有所了解。

但学生在学习过程中,可能对勾股定理的理解停留在死记硬背上,缺乏对定理形成的探究过程。

因此,在教学过程中,教师需要引导学生参与课堂活动,激发学生的学习兴趣,提高学生的学习积极性。

三. 教学目标1.让学生通过观察、探究、推理、验证等过程,理解并掌握勾股定理。

2.培养学生的逻辑思维能力和探究能力。

3.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.重点:理解和掌握勾股定理。

2.难点:对勾股定理的探究过程和方法的理解。

五. 教学方法1.引导探究法:教师引导学生通过观察、实验、推理、验证等方法,自主探究勾股定理。

2.案例分析法:教师通过提供具体的背景材料,引导学生运用勾股定理解决实际问题。

3.小组合作法:教师学生进行小组合作交流,培养学生的团队合作精神。

六. 教学准备1.准备相关的背景材料和案例,用于引导学生探究和分析。

2.准备多媒体教学设备,用于展示和解释勾股定理。

3.准备练习题和测试题,用于巩固和评价学生的学习效果。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾平面几何基本概念和性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示相关的背景材料,引导学生关注勾股定理在实际问题中的应用。

同时,教师提出探究任务,让学生思考并尝试解决。

3.操练(10分钟)教师学生进行小组合作交流,让学生通过观察、实验、推理、验证等方法,自主探究勾股定理。

探索勾股定理(教案)

探索勾股定理(教案)

北师大版数学八年级上册1.1.1 探索勾股定理教学设计课题 1.1.1 探索勾股定理单元第一单元学科数学年级八学习目标知识与技能:经历用测量法和数格子的方法探索勾股定理的过程,发展合情推理能力,体会数形结合的思想.过程与方法:经历“测量—猜想—归纳—验证”等一系列过程,体会数学定理发现的过程. 情感态度与价值观:通过让学生参加探索与创造,获得参加数学活动成功的经验.重点勾股定理的探索及应用.难点勾股定理的探索过程.教学过程教学环节教师活动学生活动设计意图导入新课师:让我们看一看下面的几幅图片图一是希腊为纪念一个重要数学定理而发行的邮票图二是2002年国际数学家大会会标——弦图图三:华罗庚教授建议向外太空发射与外星人联系的图案学生观看图片通过看图片,激发学生的学习兴趣,为下面的学习做好铺垫。

讲授新课师:如图所示,从电线杆离地面8 m处向地面拉一条钢索,如果这条钢索在地面的固定点距离电线杆底部6 m,那么需要多长的钢索?怎么解决这个问题?在直角三角形中,任意两条边确定了,第三条边也就随之确定,三边之间存在着一种特定的数量关系。

事实上,古人发现,直角三角形的三条边长度的平方存在一种特殊的关系.让我们一起去探索吧!【做一做】任意画一个直角三角形,分别测量三条边长,把长度标在图形中,观察表格,有什么发现?a2+b2=c2怎样验证直角三角形三边之间的平方关系呢?【思考】如图,直角三角形三边的平方分别是多少,它们满足上面所猜想的数量关系吗?你是如何计算的? 学生思考回答问题。

学生任意画三角形,教师选取典型的几个三角形进行讲解。

学生回答自己的发现。

观察图中的正方形,猜想是创设问题情境,造成学生的认知冲突,激发学生的求知欲望.1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.探究活动二意在让学生通过观求直角三角形三边的平方就是求三个正方形的面积。

八年级数学上册1.1探索勾股定理第1课时认识勾股定理教学设计 (新版北师大版)

八年级数学上册1.1探索勾股定理第1课时认识勾股定理教学设计 (新版北师大版)

八年级数学上册1.1探索勾股定理第1课时认识勾股定理教学设计(新版北师大版)一. 教材分析《八年级数学上册1.1探索勾股定理第1课时认识勾股定理》这一节内容,主要让学生了解勾股定理的定义、证明和应用。

通过这一节的学习,使学生能够理解并掌握勾股定理,能够运用勾股定理解决一些实际问题。

二. 学情分析八年级的学生已经具备了一定的几何知识,对一些基本的几何图形和性质有一定的了解。

但是,对于勾股定理的证明和应用可能还比较陌生,因此,在教学过程中,需要引导学生通过观察、思考、探究来理解勾股定理。

三. 教学目标1.让学生了解勾股定理的定义、证明和应用。

2.培养学生观察、思考、探究的能力。

3.培养学生运用数学知识解决实际问题的能力。

四. 教学重难点1.勾股定理的证明。

2.运用勾股定理解决实际问题。

五. 教学方法采用问题驱动法、探究法、案例教学法等,引导学生通过观察、思考、探究来理解勾股定理。

六. 教学准备1.PPT课件。

2.相关教学案例和习题。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容:在一个直角三角形中,已知两条直角边的长度分别是3cm和4cm,求斜边的长度。

让学生思考如何解决这个问题,从而引出勾股定理。

2.呈现(10分钟)通过PPT课件,介绍勾股定理的定义、证明和应用。

让学生了解勾股定理的背景和意义。

3.操练(10分钟)让学生通过观察、思考、探究,尝试证明勾股定理。

可以分组讨论,每组给出自己的证明方法。

教师在过程中给予引导和指导。

4.巩固(10分钟)通过一些相关的例题和练习题,让学生运用勾股定理解决问题。

教师在过程中给予解答和指导。

5.拓展(10分钟)让学生思考:勾股定理在实际生活中有哪些应用?可以举例说明。

教师在过程中给予引导和指导。

6.小结(5分钟)让学生总结本节课所学的内容,包括勾股定理的定义、证明和应用。

教师在过程中给予补充和指导。

7.家庭作业(5分钟)布置一些相关的练习题,让学生课后巩固所学内容。

《探索勾股定理》第一课时说课稿

《探索勾股定理》第一课时说课稿

《探索勾股定理》第一课时说课稿《探索勾股定理》第一课时说课稿作为一名辛苦耕耘的教育工作者,往往需要进行说课稿编写工作,借助说课稿可以有效提升自己的教学能力。

说课稿应该怎么写才好呢?下面是小编精心整理的《探索勾股定理》第一课时说课稿,欢迎大家分享。

一、教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)根据课程标准,本课的教学目标是:1、能说出勾股定理的内容。

2、会初步运用勾股定理进行简单的计算和实际运用。

3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

(三)本课的教学重点:探索勾股定理本课的教学难点:以直角三角形为边的正方形面积的计算。

二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。

引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。

学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

三、教学过程设计(一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?”的问题。

北师大版八年级数学上册1.1探索勾股定理教学设计

北师大版八年级数学上册1.1探索勾股定理教学设计
4.学会运用勾股定理进行图形的拼接、分割与计算,提高空间想象能力和逻辑思维能力。
(二)过程与方法
1.通过观察、猜想、验证等环节,引导学生自主发现勾股定理,培养其观察、分析、解决问题的能力。
2.采用小组合作、讨论交流等形式,让学生在合作中学习,提高沟通能力和团队协作精神。
3.运用数形结合、分类讨论等数学方法,培养学生的逻辑思维和解决问题的策略。
2.学生通过实际测量、计算,验证勾股定理的正确性。
3.教师给出勾股定理的数学表达式:a² + b² = c²,并解释其含义。
4.教师讲解勾股定理的证明过程,如欧几里得的证明方法、我国古代数学家的证明方法等。
讲授新知环节旨在让学生掌握勾股定理的基本概念,理解其数学表达和证明过程。
(三)学生小组讨论,500字
c.三边长分别为9cm、12cm、15cm。
2.提高题:
(1)已知直角三角形的斜边长度为13cm,一条直角边长为5cm,求另一条直角边的长度。
(2)一个直角三角形的两直角边分别为x和y(x < y),且满足x² + y² = 41,求这个直角三角形的斜边长度。
3.拓展题:
(1)在直角三角形中,如果将两直角边的长度分别增加1,斜边的长度会增加多少?
1.激发学生的学习兴趣,通过生动有趣的实例,引导学生主动参与课堂活动,提高其学习积极性。
2.关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。
3.加强对学生逻辑思维的训练,培养其运用数学知识解决问题的能力。
4.注重知识间的联系,帮助学生构建完整的知识体系,提高其综合运用能力。
三、教学重难点和教学设想
北师大版八年级数学上册1.1探索勾股定理教学设计
一、教学目标

探索勾股定理—教学设计及点评(获奖版)

探索勾股定理—教学设计及点评(获奖版)

探索勾股定理—教学设计及点评(获奖版)第十一届初中青年数学教师优秀课展示与培训活动探索勾股定理(第1课时)一、教材内容和内容分析一)教学内容本节课是XXX版教材《数学八年级(上)》第一章勾股定理第一节的内容,主要研究勾股定理的探究、证明及简单应用。

二)教学内容分析勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方。

它揭示了直角三角形三边之间的数量关系,把有一个角是直角这个形的特征转化成数量关系,搭建起了几何图形和数量关系之间的一座桥梁,体现了数形结合的思想方法。

它也是反映自然界基本规律的一条重要结论,勾股定理启发了人类对数学的深入思考,促成了三角学、解析几何学的建立,对数学进一步的发展拓宽了道路。

因此,可以这样说,勾股定理是数学发展的重要根基之一。

它不仅被认为是平面几何中最重要的定理之一,也被认为是数学中最重要的定理之一。

教学重点:探究并证明勾股定理二、教学目标和目标解析一)教学目标1.经历探索,验证勾股定理的过程,初步掌握勾股定理,进一步了解等面积法的应用;2.通过不同证明方法的探究,进一步发展空间观念和推理能力,体会数形结合的数学思想;3.借助勾股定理丰富的文化背景,培养学生的人文底蕴和科学精神的核心素养。

二)教学目标解析达成目标1:学生通过分析以特殊的直角三角形三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表达勾股定理的结论。

通过割补法构造图形验证勾股定理,从而理解直角三角形三边的数量关系。

达成目标2:以赵爽弦图和青朱出入图为载体,了解勾股定理各种证明方法之间的内在联系,即实质都是运用等面积法加以证明。

使学生感受多角度分析问题,多种方法解决问题。

同时,在图形的性质转化成数量关系的过程中,感受数形结合的思想。

达成目标3:通过了解勾股定理发展史,感受勾股定理所蕴含的厚重文化。

同时,增强学生的民族自豪感,感受数学对人类文明的发展所起的积极的推动作用。

三、教学问题诊断分析因为勾股定理反映的内容图形直观,甚至被XXX建议作为与外星人联系的信号。

1.1探索勾股定理(第1课时)(教案)

1.1探索勾股定理(第1课时)(教案)
难点解析:学生在解决实际问题时,可能难以将问题转化为直角三角形的边长关系,需要教师引导学生分析问题,建立正确的数学模型。
(3)灵活运用勾股定理进行计算,特别是在涉及到无理数和近似值的情况下。
难点解析:学生在计算过程中可能对无理数的处理和近似值的取舍感到困惑,教师应教授相应的计算技巧,并强调计算准确性。
4.通过实际操作,探索勾股定理的证明方法,增强学生的空间想象力和逻辑思维能力。
5.了解勾股定理在实际生活中的应用,提高学生的应用意识。
本节课将结合教材内容,以实际问题引入勾股定理,引导学生通过观察、思考和讨论,探索并掌握勾股定理。
二、核心素养目标
《探索勾股定理》核心素养目标:
1.培养学生的逻辑推理能力,通过观察、分析和推理,理解并掌握勾股定理及其证明过程。
举例:通过实际案例,如房屋建筑中直角三角形的边长计算,强调勾股定理在实际生活中的应用。
2.教学难点
(1)理解勾股定理的证明过程,尤其是通过几何图形推导出定理的表达式。
难点解析:学生可能难以理解如何从直角三角形的性质推导出勾股定理,需要教师通过直观的图形演示和详细的步骤讲解,帮助学生理解。
(2)在实际问题中,如何正确运用勾股定理建立数学模型,解决实际问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表达式和证明过程这两个重点。对于难点部分,我会通过举例和步骤分解来帮助大家理解。

北师大版八年级数学上册:1.1《探索勾股定理 》教学设计1

北师大版八年级数学上册:1.1《探索勾股定理 》教学设计1

北师大版八年级数学上册:1.1《探索勾股定理》教学设计1一. 教材分析《探索勾股定理》是北师大版八年级数学上册的第一节内容。

本节课的主要内容是通过探究直角三角形的边长关系,引导学生发现并证明勾股定理。

教材通过丰富的背景材料,激发学生的学习兴趣,培养学生探索数学规律的能力。

二. 学情分析学生在七年级时已经学习了相似三角形的性质,对三角形的边长关系有一定的了解。

但勾股定理的证明较为抽象,需要学生具有较强的逻辑思维能力。

此外,学生对于证明方法的多样性可能不够了解,需要在教学中进行引导。

三. 教学目标1.了解勾股定理的背景,理解勾股定理的含义。

2.学会用多种方法证明勾股定理。

3.培养学生的探索精神,提高逻辑思维能力。

四. 教学重难点1.重难点:证明勾股定理。

2.难点:如何引导学生发现并证明勾股定理。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索。

2.运用多媒体辅助教学,直观展示勾股定理的证明过程。

3.采用分组合作学习,培养学生团队协作能力。

六. 教学准备1.多媒体教学设备。

2.直角三角形模型。

3.勾股定理相关背景材料。

七. 教学过程1.导入(5分钟)通过展示古代数学家探索勾股定理的故事,激发学生的学习兴趣。

引导学生思考:为什么勾股定理如此重要?2.呈现(10分钟)展示直角三角形的模型,引导学生观察并总结直角三角形边长之间的关系。

呈现勾股定理的定义:直角三角形两条直角边的平方和等于斜边的平方。

3.操练(10分钟)学生分组讨论,尝试用不同方法证明勾股定理。

教师巡回指导,引导学生发现证明过程中的关键步骤。

4.巩固(10分钟)选取几种典型的证明方法,让学生在黑板上展示并进行讲解。

其他学生听讲并提问,教师适时给予点评。

5.拓展(10分钟)引导学生思考:勾股定理在其他领域的应用。

举例说明勾股定理在工程、建筑等方面的应用。

6.小结(5分钟)学生总结本节课的学习收获,教师进行点评并强调勾股定理的重要性。

7.家庭作业(5分钟)布置一道关于勾股定理的应用题,让学生课后思考。

八年级数学上册探索勾股定理(第一课时)教案

八年级数学上册探索勾股定理(第一课时)教案

探索勾股定理教学设计第(一)课时教学设计思想:本节内容需三课时讲授;勾股定理是反映自然界基本规律的一条重要结论.本节意图让学生自己经过观察、归纳、猜想和验证,发现勾股定理.初中学生思维活跃,求知欲强,好奇心浓,所以处理教材内容上尽量发挥学生的学习主动性.设计方格纸上计算面积,用拼图的方法验证等活动,以真正实现学生在知识、智力、能力和全面提高.为面向全体学生,进行小组合作学习,通过交流、议论、取长补短,引导学生团结协作,互帮互学,从而达到共同提高的目的.教学目标:(一)知识与技能1.体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理.2.会利用勾股定理解释生活中的简单现象.(二)过程与方法1.在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的思想.2.在探索勾股定理的过程中,发展学生归纳、概括和有条理地表达活动过程及结论的能力.(三)情感、态度与价值观1.培养学生积极参与、合作交流的意识.2.在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气.教学重点探索和验证勾股定理.教学难点在方格纸上通过计算面积的方法探索勾股定理.教学方法交流—探索—猜想.在方格纸上,同学们通过计算以直角三角形的三边为边长的三个正方形的面积,在合作交流的过程中,比较这三个正方形的面积,由此猜想出直角三角形的三边关系.教具准备学生每人课前准备若干张方格纸、投影片教学安排3课时.教学过程Ⅰ.创设问题情境,引入新课[师]上面三个小问题是我们以前讨论过的,我们简单的回忆一下.[生](1)三角形按角的大小来分类可分为:直角三角形、锐角三角形、钝角三角形;(2)对于一般三角形来说,我们可以用SAS(边角边)、ASA(角边角)、AAS (角角边)、SSS(边边边)来判断两个三角形全等;而对于直角三角形来说,除以上四种方法外,还可以用HL(即有斜边和一条直角边对应相等的两个直角三角形全等).(3)两个直角三角形,有两边对应相等,有两种情况:第一种情况:两条直角边对应相等,这时,我们可注意到它们的夹角也对应相等,利用SAS可判断它们全等.第二种情况:一条直角边和斜边对应相等,利用HL公理即可判断它们全等.综上所述,两个直角三角形,如果有两边对应相等,则这两个直角三角形全等.[师]我们可以注意到直角三角形有它独有的一些特征.在我们学习和生活中,你是否还发现直角三角形的其他特征呢?这节课,我们就来继续研究直角三角形.Ⅱ.讲述新课1.问题串[师][生]在图1中,正方形A含1个小方格,所以它的面积是1个单位面积;正方形B 含1个小方格,所以B的面积也是1个单位面积;正方形C含2个小方格,所以C的面积是2个单位面积.[师]如何求得正方形C的面积呢?[生]正方形C可划分为四个直角边长都为1个单位的四个全等的等腰直角三角形,所以C的面积为4×(×1×1)=2个单位面积.[生]我们观察可发现,这四个等腰直角三角形重新拼摆,刚好可拼摆成2个小方格,所以C的面积为2个单位面积.[生]正方形C还可以看成边长为2个单位的正方形面积的一半,即C的面积为×22=2个单位面积.[师]同学们能够不拘一格地积极思考问题,用多种方法去求得图1中C的面积,值得发扬广大,那么图2,图3中的A,B,C的面积是否可借鉴图1中的A,B,C的求法获得呢?请与你的同学们讨论、交流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1-探索勾股定理(第
1课时)教学设计
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
第一章勾股定理
1. 探索勾股定理(第1课时)
一、学生起点分析
八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.
二、教学任务分析
本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时. 勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.为此本节课的教学目标是:
1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.
2.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.
3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.
4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.
三、教学过程设计
本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.
第一环节:创设情境,引入新课
内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:
会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议
用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同
探索勾股定理.(板书课题)
意图:紧扣课题,自然引入,同时渗透爱国主义教育.
效果:激发起学生的求知欲和爱国热情.
第二环节:探索发现勾股定理
1.探究活动一
内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:
问:你能发现各图中三个正方形的面积之间有何关系吗?
学生通过观察,归纳发现:
结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.
效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望. 2.探究活动二
内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?
(1)观察下面两幅图:
(2)填表:
(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,
图1 图2 图3 学生的方法可能有: 方法一:
如图1,将正方形C 分割为四个全等的直角三角形和一个小正方形,
131322
1
4=+⨯⨯⨯=C S .
方法二:
如图2,在正方形C 外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,13322
1452=⨯⨯⨯-=C S .
方法三:
如图3,正方形C 中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,
13542=+⨯=C S .
(4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出:
结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C 的面积计算是一个难点,为此设计了一个交流环节.
效果:学生通过充分讨论探究,在突破正方形C 的面积计算这一难点后得出结论2. 3.议一议
内容:(1)你能用直角三角形的边长a ,b ,c 来表示上图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?
(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?
勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.
数学小史:勾股定理是我国最早发现的,中国古代把直角三角
形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)
意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.
效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力.
第三环节:勾股定理的简单应用
内容:
例题 如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少?
(教师板演解题过程) 练习:
弦股

1.基础巩固练习:
求下列图形中未知正方形的面积或未知边的长度(口答):
2.生活中的应用:
小明妈妈买了一部29 in (74 cm )的电视机. 小明量了电视机的屏幕后,发现屏幕只有58 cm 长和46 cm 宽,他觉得一定是售货员搞错了.你同意他的想法吗你能解释这是为什么吗
意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.
效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.
第四环节:课堂小结
内容: 教师提问:
1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?与同伴进行交流. 在学生自由发言的基础上,师生共同总结:
1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,
c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.
2.方法:(1) 观察—探索—猜想—验证—归纳—应用;
?
225100
x
17
(2)“割、补、拼、接”法.
3.思想:(1) 特殊—一般—特殊; (2) 数形结合思想.
意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.
效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.
第五环节:布置作业
内容:布置作业:1.教科书习题1.1.
2.观察下图,探究图中三角形的三边长是否满足222c b a =+
意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.
效果:学生进一步加强对本课知识的理解和掌握.
五、教学设计反思 (一)设计理念
a b
c
a
b
c
依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.
(二)突出重点、突破难点的策略
为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.。

相关文档
最新文档