PKPM钢结构计算实例培训资料

合集下载

PKPM钢结构实用教程

PKPM钢结构实用教程

*****钢结构软件应用培训手稿****一、门式刚架设计部分1、平面刚架设计:1.1、截面的分类和定义:注意定义截面类型,是轧制边还是焰切边。

1.2、抗风柱可以兼做摇摆柱输入;可以在框架输入时输入抗风柱,并考虑抗风柱平面外的风荷载(但不能考虑墙面荷载偏心带来的平面外弯矩)。

抗风柱和框架可以兼做摇摆柱或者仅做抗风柱(内力图不一样),可以修改抗风柱平面外(在框架平面)计算长度(加系杆或者隅撑)并生产施工图和相应节点图。

1.3、框架恒载输入必须输入吊车梁系统给柱带来的偏心力。

1.4、吊车参数:偏心指吊车梁中心相对钢柱中心的距离;加载高度为“吊车梁高+轨道高+垫板等厚度”。

注意:采用框架优化计算并读入时,要查看钢柱截面高度是否变大,因为可能导致荷载偏心值的变化。

然后再截面导入。

1.5、吊车梁计算书中的Rmax,Rmin,Tmax不包括吊车梁重的影响,Tmax已经为钢柱节点所有水平力之和(包括左右轮轨)。

1.6、构件自重放大系数:考虑的是钢结构计算截面外的附着物(如焊缝、油漆、防火涂料、节点板等导致的自重增加部分)。

1.7、净截面和毛截面的比值:考虑螺栓孔等削弱,当所有连接全部采用节点板连接或者局部加强时,可以取1.0。

1.8、活载不利布置对框架计算结果的影响:A、对单跨影响不大,挠度不变;B、对双跨中柱刚接:中柱影响最大,与中柱刚接的梁次之,边柱再次之,挠度变化比较大;C、对多跨中柱铰接:中柱影响最小,边柱次之,梁和挠度以及水平位移变化比较大。

1.9、独立基础设计输入:考虑常规基础设计,能计入基础梁传来的墙荷载和偏心(注意是设计值,否则结果偏差比较大)。

1.10、附加重的定义和输入:比如吊车梁的偏心集中力;砖墙维护(和钢柱有效拉结)带来的水平地震力增大(计入质点上下各一半),并有提示是否参加水平地震力计算。

1.11、构件验算规范的选择:对单层钢结构厂房框架计算输出的平面内外计算长度系数有误(按框架梁柱刚度比确定),按门式刚架输出图正确;所以出计算书要修改。

PKPM钢结构知识库word资料32页

PKPM钢结构知识库word资料32页

带夹层门式刚架结构采用STS软件如何设计日期:2011-6-13 点击:58门式刚架规程所规定的计算长度确定方法是针对单层轻型钢结构房屋,仅适用于单层门式刚架结构。

实际工程中可能存在局部带夹层或下层整层夹层情况(如下图)。

对于这类夹层梁与柱刚接形成局部二层或整体二层的结构,建议计算长度的确定方法可以采用钢结构设计规范线刚度比方法确定的计算长度系数,采用STS软件的设置为:第一,计算参数设置:门式刚架类型;按钢结构设计规范验算;有侧移框架。

其他控制参数可以按门规要求输入。

第二,修改构件的验算规范,与夹层相连的柱、夹层梁建议设计规范指定为钢结构设计规范,轻钢屋面梁验算规范指定为门规。

再进行结构计算时,计算长度确定就是按总体计算参数中的钢结构设计规范线刚度比方法确定计算长度,总体控制按门规控制,夹层部分构件按钢结构设计规范校核,轻钢屋面按门规校核。

门式刚架柱、梁平面外计算长度如何选取?日期:2011-6-13 点击:47采用平面分析程序,由于没有平面外信息,程序自身无法正确判断平面外计算长度的选取,程序默认取的平面外计算长度为杆件自身的长度,工程设计人员应对平面外计算长度进行确认和修改。

平面外的计算长度应取平面外有效支撑之间的间距。

门式刚架类型,对于边柱和屋面梁,当采用压型钢板屋面、墙面,且压型钢板与檩条有可靠连接时,墙梁和檩条设置隅撑的情况下,隅撑能起到边柱和屋面梁的平面外支撑作用,则边柱和屋面梁的平面外计算长度可以取设置隅撑的间距。

对于有吊车或跨度较大的厂房,柱平面外计算长度建议按柱间支撑选取。

檩条计算方法如何选择?日期:2011-6-13 点击:89 STS程序对于冷弯薄壁檩条提供了按门规设计、与按冷弯薄壁型钢规范设计选项,如果选择门规进行檩条验算时,风吸力下翼缘稳定验算程序提供按门规附录E计算与按式(6.3.7-2)验算两个选择。

选择原则如下:1、压型钢板屋面(厚度>0.66mm),屋面与檩条有可靠连接(自攻螺钉等紧固件),设置单层拉条靠近上翼缘,选择按门规附录E计算;2、刚度较弱的屋面(塑料瓦材料等)、非可靠连接的压型钢板(扣合式等),应选择6.3.7-2式或冷弯规范计算,拉条的约束作用应根据实际拉条设置情况选择。

PKPM钢结构计算实例

PKPM钢结构计算实例

PKPM钢结构计算实例PKPM是一种常用的钢结构计算软件,广泛应用于房屋建筑、工业厂房、桥梁和高层建筑等领域。

下面将通过一个实际的钢结构计算实例来介绍PKPM的使用。

假设我们需要设计一个用于工业厂房建筑的钢结构。

首先,我们需要给出建筑的设计参数,包括建筑的类型、使用情况、结构形式和尺寸等。

在PKPM软件中,我们可以选择“新建工程”来创建一个新的项目。

然后,在“模型”选项卡中,我们可以输入建筑的基本参数,例如建筑类型为工业厂房,使用要求为普通状况,结构形式为框架结构。

接下来,我们需要输入建筑的尺寸参数。

在PKPM软件中,可以使用“节点”和“荷载”选项卡来输入节点和荷载信息。

首先,在“节点”选项卡中,我们可以输入建筑的节点坐标和节点类型。

可以通过手动输入或导入自动绘图软件生成的节点坐标文件来完成节点的输入。

然后,在“荷载”选项卡中,我们可以输入建筑的荷载参数。

可以输入自重荷载、活荷载、风荷载和温度荷载等参数。

需要注意的是,建筑的荷载参数需要根据工程实际情况进行合理估计。

PKPM软件提供了自动计算荷载的功能,可以根据建筑尺寸和使用要求自动计算出荷载参数。

完成节点和荷载信息的输入后,我们就可以开始进行结构的分析和计算。

在PKPM软件中,我们可以选择“分析”选项卡,然后选择“线性分析”或“非线性分析”来进行结构的分析计算。

线性分析适用于小荷载和较简单的结构,而非线性分析适用于大荷载和复杂的结构。

在分析计算过程中,PKPM软件会根据输入的节点和荷载信息自动生成结构的刚度矩阵和荷载矩阵,并进行相应的求解和计算。

分析完成后,我们可以查看和分析计算结果。

PKPM软件提供了丰富的结果展示功能,可以生成结构的受力图、变形图和应力图等,帮助工程师直观地了解和评估结构的受力性能。

最后,根据结果分析和评估,我们可以对结构进行优化设计。

在PKPM软件中,我们可以通过修改节点坐标、荷载参数或材料参数等来进行设计优化。

并且,PKPM软件提供了多种设计规范和标准的支持,可以根据工程要求选择不同的设计规范进行设计。

PKPM钢结构计算实例

PKPM钢结构计算实例

PKPM钢结构计算实例钢结构计算是指通过应用力学原理和相关设计规范,对钢结构进行受力分析、计算和设计的过程。

钢结构计算是确保钢结构安全可靠的重要环节,也是建筑工程中的核心内容之一、本文将以PKPM钢结构计算软件为例,介绍钢结构计算的主要内容和步骤。

1.设计输入在进行钢结构计算之前,首先需要进行设计输入。

设计输入包括工程的基本信息、结构的几何尺寸和截面尺寸、材料的力学性质和工况等。

PKPM软件提供了直观简便的图形用户界面,可以方便地输入设计参数。

2.结构受力分析在设计输入完成后,需要进行结构的受力分析。

受力分析是指根据工况和结构的初始状态,对结构的受力情况进行计算和分析。

PKPM软件提供了静力分析、动力分析和地震分析等功能,可以对结构的受力情况进行全面的分析。

3.构件设计和验算钢结构中的构件包括梁、柱、悬挑梁、桁架等。

在进行构件设计和验算时,需要根据受力分析的结果和设计规范,计算构件的强度和稳定性。

PKPM软件提供了钢结构构件的设计和验算功能,可以快速准确地计算构件的承载力和变形。

4.钢结构整体设计和验算完成构件的设计和验算后,需要进行钢结构整体的设计和验算。

钢结构的整体设计和验算是指对结构的整体强度、稳定性和刚度进行计算和分析。

PKPM软件提供了钢结构整体的设计和验算功能,可以对结构的整体安全性进行评估。

5.结果分析和优化设计完成结构的计算和分析后,需要对计算结果进行分析和评估。

结果分析是指对结构的强度、刚度、稳定性和变形进行评价和分析。

PKPM软件提供了强度验算、变形分析和稳定性分析等功能,可以帮助工程师进行结构优化设计。

6.结果输出和工程报告最后,需要将结构的计算结果进行输出和整理,编写工程报告。

PKPM 软件提供了结果输出和报表功能,可以将计算结果导出为Excel表格和Word文档,方便整理和交流。

总结起来,PKPM钢结构计算软件是一款专业的钢结构计算和设计工具,能够帮助工程师进行结构受力分析、构件设计和整体设计等工作。

PKPM钢结构实用教程[za]

PKPM钢结构实用教程[za]

*****钢结构软件应用培训手稿****一、门式刚架设计部分1、平面刚架设计:1.1、截面的分类和定义:注意定义截面类型,是轧制边还是焰切边。

1.2、抗风柱可以兼做摇摆柱输入;可以在框架输入时输入抗风柱,并考虑抗风柱平面外的风荷载(但不能考虑墙面荷载偏心带来的平面外弯矩)。

抗风柱和框架可以兼做摇摆柱或者仅做抗风柱(内力图不一样),可以修改抗风柱平面外(在框架平面)计算长度(加系杆或者隅撑)并生产施工图和相应节点图。

1.3、框架恒载输入必须输入吊车梁系统给柱带来的偏心力。

1.4、吊车参数:偏心指吊车梁中心相对钢柱中心的距离;加载高度为“吊车梁高+轨道高+垫板等厚度”。

注意:采用框架优化计算并读入时,要查看钢柱截面高度是否变大,因为可能导致荷载偏心值的变化。

然后再截面导入。

1.5、吊车梁计算书中的Rmax,Rmin,Tmax不包括吊车梁重的影响,Tmax已经为钢柱节点所有水平力之和(包括左右轮轨)。

1.6、构件自重放大系数:考虑的是钢结构计算截面外的附着物(如焊缝、油漆、防火涂料、节点板等导致的自重增加部分)。

1.7、净截面和毛截面的比值:考虑螺栓孔等削弱,当所有连接全部采用节点板连接或者局部加强时,可以取1.0。

1.8、活载不利布置对框架计算结果的影响:A、对单跨影响不大,挠度不变;B、对双跨中柱刚接:中柱影响最大,与中柱刚接的梁次之,边柱再次之,挠度变化比较大;C、对多跨中柱铰接:中柱影响最小,边柱次之,梁和挠度以及水平位移变化比较大。

1.9、独立基础设计输入:考虑常规基础设计,能计入基础梁传来的墙荷载和偏心(注意是设计值,否则结果偏差比较大)。

1.10、附加重的定义和输入:比如吊车梁的偏心集中力;砖墙维护(和钢柱有效拉结)带来的水平地震力增大(计入质点上下各一半),并有提示是否参加水平地震力计算。

1.11、构件验算规范的选择:对单层钢结构厂房框架计算输出的平面内外计算长度系数有误(按框架梁柱刚度比确定),按门式刚架输出图正确;所以出计算书要修改。

PKPM2008钢结构讲义

PKPM2008钢结构讲义

2 STS-门式刚架二维设计——
2.1.3 构件定义,抗风柱考虑
形式一:只承担山墙风 荷载,不承担屋面竖向 荷载; 形式二:不但承担山墙 风荷载,还承担屋面竖 向荷载(兼作摇摆柱) 应将抗风柱传递给刚架 梁的力,传递给屋面支 撑系统,避免刚架梁受 扭。
2 STS-门式刚架二维设计——
横向立面
纵向立面
整体模型
通过横向、纵向立面编辑、系杆布置来形成整体模型
1 STS-门式刚架三维设计——
1.2.1 三维建模-屋面墙面布置形成
1、在平面网格上,通过二维建模 方式,建立立面二维模型 2、通过立面复制,建立三维模型 3、通过墙面布置,输入柱间支撑 4、通过楼层布置,输入屋面支撑和系杆 形成整体三维模型
单层厂房,门式刚架取0.05 ≤12层;取0.035 >12层;取0.02
验算规范
根据所计算的结构适用那本规范采用,综合考虑。 控制参数,门式刚架不按抗震规范控制高厚比,长细比。
摇摆柱设计内力放大系数(考虑铰接端实际有嵌固作用)
2 STS-门式刚架二维设计——
2.1.5 参数输入
1.6 三维效果图
绘制三维效果图、渲染图
GIF
2 STS-门式刚架二维设计——
2.1.1 二维模型方法
二维模型方法:
计算檩条,墙梁,吊车梁等构件 计算柱间支撑,屋面支撑 计算抗风柱 单榀刚架建模,截面优化,结构计算 节点设计与绘制施工图
2 STS-门式刚架二维设计——
2.1.2 构件定义,截面分类
2 STS-门式刚架二维设计——
2.1.7 契形构件变化率与腹板高厚比
9.1、当腹板高度变化mm/m时,
按 hw / tw 250 235 / f y 来控制:

2024最新PKPM钢结构计算经验全集

2024最新PKPM钢结构计算经验全集

2024最新PKPM钢结构计算经验全集1.设计前的准备工作在进行PKPM钢结构计算前,需要进行一些准备工作。

首先要明确设计要求和标准,如国家标准、建筑规范等。

其次要对设计的结构进行充分的了解,包括结构形式、截面形状、荷载情况等。

还要了解PKPM软件的使用方法和计算原理。

2.结构模型的建立在PKPM软件中建立结构模型时,应按照实际结构的情况进行准确的建模。

要选择合适的材料性能参数,包括钢材的弹性模量、屈服强度、抗拉强度等。

3.荷载的施加在进行钢结构计算时,首先要施加正确的荷载。

应根据实际使用情况,包括静载、动载和温度荷载等,合理设置荷载参数。

对于地震作用的计算,应根据规范要求选择设计地震动参数。

4.结果的分析与判断在PKPM软件中进行结构计算后,应仔细分析计算结果。

要对结构内力进行检查,确保结构的强度、刚度和稳定性等满足设计要求。

如果结构存在问题,如局部屈曲、应力过大等,要重新优化设计。

5.设计注意事项钢结构计算过程中需要注意以下几个方面。

首先是梁的计算,应根据梁的受力特点选择合适的截面形式和尺寸。

其次是柱的计算,应根据柱的轴力和弯矩确定合适的截面尺寸。

还要注意钢构件的连接方式和节点设计,确保连接处的强度和刚度。

6.设计案例分析为了更好地理解PKPM钢结构计算的应用,可以通过一些实际的设计案例进行分析。

可以选择一些具有代表性的钢结构项目,如钢框架、钢桥梁、钢屋面等,分析其受力情况、结构设计和计算结果等。

通过实例分析,可以更加直观地了解PKPM软件在钢结构计算中的应用。

7.设计中的常见问题及解决方法在使用PKPM软件进行钢结构计算过程中,可能会遇到一些常见的问题。

如其中一构件出现不平衡荷载、模型收敛失败等。

对于这些问题,可以通过调整荷载设置、优化结构模型和调整参数等方式解决。

通过以上的经验全集,可以帮助工程师更好地应用PKPM软件进行钢结构计算。

这些经验可以帮助工程师提高计算的准确性和效率,同时保证结构的安全性和可靠性。

PKPM钢结构实用教程

PKPM钢结构实用教程

PKPM钢结构实用教程第一部分:软件介绍与基本操作1.PKPM钢结构简介:介绍PKPM钢结构软件的背景和功能,以及它在钢结构工程中的应用。

第二部分:基本建模与加载1.建模:介绍如何使用PKPM钢结构进行基本建模,包括结构的几何模型、截面的定义和材料的属性设置等。

2.荷载:介绍如何在PKPM钢结构中添加荷载,包括静力荷载、动力荷载和温度荷载等,并说明每种荷载所需的参数和设置方法。

第三部分:静力分析和设计1.静力分析:介绍如何进行静力分析,包括结构的初始位移分析、静力反应分析和结构的内力计算等。

2.设计检验:介绍如何进行基于强度和稳定性的设计检验,包括钢材的截面验算、构件的抗弯和抗剪验算等。

第四部分:动力分析和稳定性1.动力分析:介绍如何进行动力分析,包括地震分析、风载分析和动力响应分析等,并说明相应的参数和输入要求。

2.稳定性分析:介绍如何进行稳定性分析,包括局部稳定性和整体稳定性的判定与验算,以及相应的安全系数要求。

第五部分:结果输出与报表生成1.结果输出:介绍如何查看和输出分析结果,包括应变图、位移图、内力图和反力图等,并说明如何进行结果的动态演示。

2.报表生成:介绍如何生成分析报表和荷载报表,以及如何导出相关数据以供后续设计和施工使用。

第六部分:应用案例分析1.实例一:钢结构大厦的分析与设计过程,从模型建立到最终结果的输出与验算。

2.实例二:钢桥的动力响应分析,从动力荷载的输入到稳定性的判定与调整过程。

总结:对本教程内容进行总结和回顾,并展望PKPM钢结构在未来的发展和应用前景。

通过阅读本教程,读者将能够掌握PKPM钢结构的基本操作和应用技巧,能够熟练地进行钢结构的建模、分析和设计,并能够根据实际工程需要进行相应的参数设置和结果输出。

同时,通过实例的分析和讨论,读者也可以更好地理解PKPM钢结构的工作原理和应用方法,从而提高工程设计的效率和质量。

PKPM钢结构计算书

PKPM钢结构计算书

####### ### ### ###### ## ######## ## #### #### ## #### ## ######### ## ### ## ###### ## ## ######## ## # ## ## ######## #### ## ## ####### ## ## ##============================================================================== BUILDING STRUCTURE ANALYSIS PROGRAMVersion 7.0Institute of Building Structure,China Academy of Building Research.Copyright (C) 1997-2011. All rights reserved.Address : 30,Bei San Huan Dong Road,Beijing,P.R.China. Post : 100013Telephone : (010)84276262,64517586Project Name : 大壳TBOutput File Name : 大壳TB.JSSCurrent Date : 2016/ 4/25Current Time : 21: 4:35PMSAP 计 算 书 目 录________________________(ITEM001) 系统总信息(ITEM002) 本工程中各工况的设定(ITEM003) 构件内力基本组合系数(ITEM004) 结构质量分布表(吨)(ITEM005) 各楼层各类构件数量及材料统计(ITEM006) 各层弹性楼板面积统计(ITEM007) 各层风荷载(ITEM008) 各工况外载力系向O(x0,y0,z0)点的静力等效力矢(ITEM009) 按高规附录(E.0.1)条计算的楼层侧向剪切刚度比(ITEM010) 按高规附录(E.0.2)条计算的楼层侧向剪弯刚度比(ITEM011) 按[楼层剪力/层间位移]计算的楼层刚度比(ITEM012) 各地震方向参与振型的有效质量系数(ITEM013) 各振型的基底地震力(按抗规5.2.5调整前)(ITEM014) 按抗规(5.2.5)条计算的地震力放大系数(ITEM015) 各楼层的总剪力和总弯矩(ITEM016) 结构周期及振型方向(ITEM017) 适用于不规则结构的楼层水平位移及位移角统计(ITEM018) 单塔多塔通用的框架0.2V0(0.25V0)调整系数(ITEM019) 水平荷载作用下的楼层位移及位移比(ITEM020) 风荷载作用下结构顶点最大加速度(m/s**2)(ITEM021) 结构分塔剪重比(ITEM022) 各楼层抗剪承载力及与上层承载力的比值(ITEM023) 大震下弹塑性层间位移角(简化方法)(ITEM024) 抗倾覆验算(ITEM025) 整体稳定刚重比验算(ITEM026) 剪力墙底部加强区范围(ITEM027) 结构时程响应汇总第 1 页(ITEM028) 各层框架剪力及倾覆弯矩百分比(ITEM029) 框支框架地震剪力及倾覆力矩百分比(ITEM030) 高位转换时转换层上部与下部结构的剪弯刚度比(ITEM031) 框架承担的倾覆力矩百分比(用V*H求和方法计算)(ITEM001) 系统总信息________________________1.总信息建筑物所在地区 (0全国1上海) IAREA= 0 (全国) 材料(0=砼1/2=钢+砼3=钢4=砌体) IEARTHFCE= 3 (无填充墙的钢结构)结构类型(1框架2框剪3框架筒...) KIND_TB= 1 (框架结构)结构规则性(0规则1立2平3立平) IREGULAR= 0 (立面平面均规则)多层或高层(0=高层1=多层) MULTI_HEI= 0 (高层结构)是否复杂高层结构(1/0) ICOMPLICATED= 0 (非复杂高层结构)地震作用方向数 NEDIR= 2是否考虑竖向地震作用(1/0) I_EZ_EZZ= 0 (不考虑竖向地震作用)是否考虑双向地震效应(1/0) IEQUAKE_XY= 0 (不考虑双向地震效应)是否考虑P-DELT效应(1/0) IPDELT= 0 (不考虑P-DELTA效应)是否自动考虑梁柱刚域(1/0) IAUTORIGID= 0 (不考虑梁柱交接部位刚域)考虑施工影响标志(0/1/2/3) IIISGYX= 1 (施工模拟算法1)特征值算法选择(1=Guyan 2=Mritz) IEIGEN= 1 (Guyan 方法)刚度阵存储(1=双精度0=单精度) IREADWRITE= 0 (单精度计算模式)混凝土容重(kN/m**3) ROU_CONCRETE= 25钢材容重(kN/m**3) ROU_STEEL= 78.500结构是否按中/大震不屈服设计(1/0) IMIDEAR= 0 (否)框架梁端配筋考虑受压钢筋 NGB_CONSIDERED= 0 (框架梁端配筋不考虑受压钢筋)楼层刚度算法(1剪切2剪弯3抗规) ISTIFRATIO= 3 (楼层刚度比采用层间剪力比层间位移算法)梁和弹性楼板的竖向定位 BEAM_EZ= 0 (梁和弹性楼板的中性面与柱顶对齐)开洞墙梁转框架梁的跨高比 WBTOBEAM= 0 (不启用墙梁转框架梁功能)钢构件净毛面积比 RNET= 0.900钢柱长度系数计算方式 ICLEN_COEF= 0 (钢柱计算长度系数采用有侧移算法)结构是否按中/大震弹性设计 IMIDEAR_ELA= 0 (否)第 2 页2.剪力墙信息剪力墙模型(0:细分1:简化) IWALLMODEL= 1 (简化模型)墙水平边界细分尺寸(m) WSIDE_LENX= 1墙垂直边界细分尺寸(m) WSIDE_LENY= 1墙侧节点是否预先消去(1/0) IWPRESOLVE= 1 (墙侧节点预先消去)判断边缘构件时考虑轴压比(1/0) K646TAB= 03.楼板信息自动形成刚性楼板假定(2/1/0) IRIGIDSLAB= 2 (考虑自然刚性楼板假定)计算楼板应力和配筋(2/1/0) IPOLY_REIN= 1 (计算楼板应力和配筋)楼板网格类型(0/1/2/3) IPOLY_MESH= 1 (非规则网格)采用强制刚性楼板假定(1/0) JRIGIDSLAB= 0 (不采用强制刚性楼板假定)4.温度荷载信息温度荷载工况数 NTCASE= 0温度荷载组合系数 T_COM= 0混凝土弹性模量折减系数 E_REDUCE= 1温度场类型(0=CONTINUOUS;1=STEP) ITEMTYPE= 0 (连续型温差场)砼构件温度效应折减系数 TEM_REDUCE= 0.3005.地震反应谱分析信息地震分组(0,1,2代表1,2,3组) NEARFAR= 0 (第一组)地震烈度 LIEDU= 7场地类型 IGRDTYPE= 2振型效应组合方式(0=CQC;1=SRSS) ICOMTYPE= 0 (CQC 组合方式)框架抗震等级 IEFR= 1剪力墙抗震等级 IEW= 2振型阻尼比 DAMP= 0.050参与振型个数 NMODE= 15周期折减系数 REDUCET= 1地震作用放大系数 ELDCOEF= 1活荷载质量折减系数 RLOAD_MASS_LIVE= 0.500是否考虑偶然偏心地震(0不考虑) NEDIRA= 0 (不考虑偶然偏心地震)自动计算最不利地震方向(1/0) IAUTOEANGLE= 0 (程序不自动考虑最不利地震工况EXO和EYO)水平地震影响系数最大值 (g) ALFMAX= 0.080特征周期 (s) TG= 0.350结构阻尼类型(0/1/2/3/4) KDAMP= 0确定结构阻尼的第一频率序号指定 IOMIGA1= 0确定结构阻尼的第二频率序号指定 IOMIGA2= 0是否采用抗规5.2.5条的剪重比调整 IAUTO525= 2 (考虑抗规 5.2.5 条的剪重比调整)自定义地震设计谱插值点数 NPSPEC= 0 (采用抗第 3 页震规范地震设计谱)钢框架抗震等级 IE_STS= 1抗震构造措施抗震等级提高 NDEGREE_GZ= 0竖向地震作用系数底线值 EV_COEF_MIN= 06.风荷载信息风荷载数 NWINDLOAD= 2第 1 风荷载工况号 LDN= 3第 1 风荷载作用角度(度) ALF= 0第 1 风荷载基本风压(kN/m**2) W0= 0第 1 风荷载体型系数 RMUS= 1.300第 1 风荷载地面粗糙度类别 ISMOOTH= 3第 1 风荷载作用方向结构周期(s) T= 0.200第 2 风荷载工况号 LDN= 4第 2 风荷载作用角度(度) ALF= 90第 2 风荷载基本风压(kN/m**2) W0= 0第 2 风荷载体型系数 RMUS= 1.300第 2 风荷载地面粗糙度类别 ISMOOTH= 3第 2 风荷载作用方向结构周期(s) T= 0.200竖向风荷载数 NZWINDLOAD= 0风荷载作用下结构的阻尼比 DAMP_WIND= 0.050舒适度验算采用的结构风压(kN/m**2) W0ACC= 0舒适度验算采用的结构阻尼比 DAMP_WIND_SSD= 0.0207.活荷信息梁活荷不利布置考虑至几层 LIVE23_LEV= 0折减墙柱设计活荷(1/0) IREDUCE_CWLL= 0 (不折减墙、柱设计活荷)折减传给基础的活荷(1/0) IREDUCE_BASELL= 0 (不折减传给基础的活荷)1层折减系数 REDUCE_LL1= 12-3层折减系数 REDUCE_LL23= 0.8504-5层折减系数 REDUCE_LL45= 0.7006-8层折减系数 REDUCE_LL68= 0.6509-20层折减系数 REDUCE_LL920= 0.60020层以上折减系数 REDUCE_LL20UP= 0.550梁活荷折减的临界从属面积(m**2) B_ATT_A= 25梁活荷折减系数 BEAM_COEF_LL= 0.900 (当梁的从属面积超过临界从属面积时起作用)8.地下室信息地下室层数 NBASEMENT0= 0地面Z坐标(m) Z_GROUND= 63.885X向回填土刚度系数 (KN/m/m**2) SOILKX= 0Y向回填土刚度系数 (KN/m/m**2) SOILKY= 0地下室沿X向的宽度(m) WIDTH_X= 113.422地下室沿Y向的宽度(m) WIDTH_Y= 113.422回填土高度(m) [结构底面到地面的距离] SH= 0回填土X向总刚度值(KN/m) RKX= 0回填土Y向总刚度值(KN/m) RKY= 0X向受回填土约束的节点总数 NPOINTX= 0Y向受回填土约束的节点总数 NPOINTY= 0顶部回填土刚度折减系数 TSOIL_FACTOR= 1第 4 页竖向人防荷载工况号 LDN= 0横向人防荷载工况号 LDNLAT= 0人防等级 NDEGREE= 5人防层数 NST= 0外墙荷载(KN/M**3) QLAT= 0顶板荷载(KN/M**2) QTOP= 0水土压力工况号 LDN= 0墙面外保护层厚度(M) DS_WALL= 0.035回填土密度 (t/m**3) ROU_SOIL= 1.800室外地坪标高(M) HSOIL= -0.350地下水位标高(M) HWATER= -20回填土侧压力系数 PCOEF= 0.500室外地面附加荷载(KN/M**2) Q_GROUND= 09.计算调整信息0.2V0剪力调整分段数 NSEG02Q= 0塑性梁端负弯矩调幅系数 CBL= 0.850梁设计弯矩放大系数 CLL= 1连梁刚度折减系数 BEC= 0.700梁刚度放大系数下限值 BEZ_MIN= 1梁刚度放大系数上限值 BEZ_MAX= 3梁扭矩折减系数下限值 BET_MIN= 0.400梁扭矩折减系数上限值 BET_MAX= 1转换层层号 ITFLOOR= 0结构重要性系数 STRU_IMPORTANCE= 1强制指定的薄弱层个数 NWEAKST= 0指定的底部加强区起算层号ISUB0_STRENGTHEN= 1指定的底部加强区终止层号ISUB1_STRENGTHEN= 0薄弱层地震效应调整系数 COEF_WEAKST= 1.250考虑结构使用年限的活荷调整系数FLIVE_COEF= 1风荷载内力放大系数 FWIND_COEF= 1墙刚度折减系数 SHEARWALL_STIF_COEF= 1柱轴压比按纯框架结构控制 IACR_TO_FRAME= 0强制指定的约束层个数 NRES_FLOOR= 0强制指定的过渡层个数 NGD_FLOOR= 0嵌固端所在层号 ISUB_FIX= 0按抗规6.1.14条调整地下室顶板梁内力 K6114= 0加强层个数 NJQ= 0框支柱剪力调整系数上限 COEF_KZZ02Q_MAX= 5框架0.2V0调整系数上限 COEF_KJ02Q_MAX= 210.配筋设计信息柱主筋级别 AGCB= 3柱箍筋级别 AVCB= 3墙主筋级别 AGW= 3墙水平分布筋级别 AVW= 3墙竖向分布筋配筋率 UTW= 0.003楼板钢筋级别 AGP= 3梁箍筋加密区间距(mm) BGUJM= 100柱箍筋加密区间距(mm) CGUJM= 100墙水平筋间距(mm) WGUJM= 200柱箍筋类型(0普通1复合2...) IGUJIN_TYPE= 0 (普通箍)柱配筋算法(0=双偏压1=单偏压) IUNIMOMENT= 1 (柱主筋第 5 页计算采用单偏压算法)梁保护层厚度(mm) DS_BEAM= 35柱保护层厚度(mm) DS_COLU= 35板保护层厚度(mm) DS_SLAB= 20剪力墙边缘构件箍筋级别 AVBMEM= 3实配钢筋超配系数 GJCPCOEF= 1.150墙竖向分布筋级别 AVW_VER= 3梁主筋级别 AGBB= 3梁箍筋级别 AVBB= 311.时程分析信息时程分析标志(1考虑0不考虑) IDYN= 0 (不考虑时程分析计算)地震波作用方向数 NDDIR= 2地震波条数 NWAVE= -312.荷载分项系数及组合值系数永久荷载分项系数(永久荷载控制) GAMA_G1= 1.350永久荷载分项系数(可变荷载控制) GAMA_G2= 1.200活荷载分项系数 GAMA_L = 1.400活荷载组合值系数 PSI_L = 0.700风荷载分项系数 GAMA_W = 1.400风荷载组合值系数(不与地震组合) PSI_W1 = 0.600风荷载组合值系数(与地震组合) PSI_W2 = 0.200水平地震作用分项系数 GAMA_EH= 1.300竖向地震分项系数(不组合水平地震)GAMA_EV1= 1.300竖向地震分项系数(组合水平地震) GAMA_EV2= 0.500活荷载准永久值系数 PSIQ_L= 0.500风荷载准永久值系数 PSIQ_W= 0地震荷载准永久值系数 PSIQ_E= 0活荷载频遇值系数 PSIF_L= 0.600风荷载频遇值系数 PSIF_W= 0.400地震荷载频遇值系数 PSIF_E= 0.100温度荷载准永久值系数 PSIQ_TEM= 0温度荷载频遇值系数 PSIF_TEM= 0温度荷载组合值系数(与风组合) PSI_TEMW= 0温度荷载组合值系数(与地震风组合)PSI_TEME= 013.砌体结构信息砌块种类(0=烧结砖1=蒸压砖2=砼砌块)MBLOCK= 0 (烧结砖)砌块容重(KN/M**3) ROU_BLOCK= 0构造柱刚度折减系数 RCON= 0托砖墙的梁的恒活内力放大系数 RCONBEAM= 0底部框架层数 NFST= 0砌块种类变化起始层号 MFST= 0第一种砌块弹性模量(N/MM**2) EBLOCK1= 0第一种砌块抗压设计强度(N/MM**2) FCBLOCK1= 0第一种砌块抗拉设计强度(N/MM**2) FTBLOCK1= 0第一种砌块抗剪设计强度(N/MM**2) FVBLOCK1= 0第二种砌块弹性模量(N/MM**2) EBLOCK2= 0第二种砌块抗压设计强度(N/MM**2) FCBLOCK2= 0第二种砌块抗拉设计强度(N/MM**2) FTBLOCK2= 0第 6 页第二种砌块抗剪设计强度(N/MM**2) FVBLOCK2= 0(ITEM002) 本工程中各工况的设定__________________________________工况 1: DL 恒荷载工况 2: LL 活荷载工况 3: WX ( 0.0度) X向风载工况 4: WY ( 90.0度) Y向风载工况 5: EZ Z向地震(抗震规范)工况 6: WZX X正向风载工况 7: WZY Y正向风载工况 8: WFX X负向风载工况 9: WFY Y负向风载工况10: S 用户自定义荷载工况11: LX ( 0.0度) X静震 (对应于EX 地震的静力工况)工况12: PX ( 0.0度) X静震P (对应于EX 地震的正偏心静力工况)工况13: MX ( 0.0度) X静震M (对应于EX 地震的负偏心静力工况)工况14: LY ( 90.0度) Y静震 (对应于EY 地震的静力工况)工况15: PY ( 90.0度) Y静震P (对应于EY 地震的正偏心静力工况)工况16: MY ( 90.0度) Y静震M (对应于EY 地震的负偏心静力工况)工况17: EX ( 0.0度) X向地震工况18: EY ( 90.0度) Y向地震(ITEM003) 构件内力基本组合系数__________________________________基本组合系数表:1 1.35*DL 0.98*LL2 1.20*DL 1.40*LL 0.84*WX3 1.20*DL 1.40*LL -0.84*WX4 1.20*DL 1.40*LL 0.84*WY5 1.20*DL 1.40*LL -0.84*WY6 1.20*DL 0.98*LL 1.40*WX7 1.20*DL 0.98*LL -1.40*WX8 1.20*DL 0.98*LL 1.40*WY9 1.20*DL 0.98*LL -1.40*WY10 1.00*DL 0.98*LL11 1.00*DL 1.40*LL 0.84*WX12 1.00*DL 1.40*LL -0.84*WX13 1.00*DL 1.40*LL 0.84*WY14 1.00*DL 1.40*LL -0.84*WY第 7 页15 1.00*DL 0.98*LL 1.40*WX16 1.00*DL 0.98*LL -1.40*WX17 1.00*DL 0.98*LL 1.40*WY18 1.00*DL 0.98*LL -1.40*WY19 1.20*DL 0.60*LL 0.28*WX 1.30*EX20 1.20*DL 0.60*LL -0.28*WX 1.30*EX21 1.20*DL 0.60*LL 0.28*WY 1.30*EY22 1.20*DL 0.60*LL -0.28*WY 1.30*EY23 1.20*DL 0.60*LL 0.28*WX -1.30*EX24 1.20*DL 0.60*LL -0.28*WX -1.30*EX25 1.20*DL 0.60*LL 0.28*WY -1.30*EY26 1.20*DL 0.60*LL -0.28*WY -1.30*EY27 1.00*DL 0.50*LL 0.28*WX 1.30*EX28 1.00*DL 0.50*LL -0.28*WX 1.30*EX29 1.00*DL 0.50*LL 0.28*WY 1.30*EY30 1.00*DL 0.50*LL -0.28*WY 1.30*EY31 1.00*DL 0.50*LL 0.28*WX -1.30*EX32 1.00*DL 0.50*LL -0.28*WX -1.30*EX33 1.00*DL 0.50*LL 0.28*WY -1.30*EY34 1.00*DL 0.50*LL -0.28*WY -1.30*EY35 1.20*DL 1.40*LL 0.84*WZX36 1.20*DL 1.40*LL 0.84*WFX37 1.20*DL 1.40*LL 0.84*WZY38 1.20*DL 1.40*LL 0.84*WFY39 1.20*DL 0.98*LL 1.40*WZX40 1.20*DL 0.98*LL 1.40*WFX41 1.20*DL 0.98*LL 1.40*WZY42 1.20*DL 0.98*LL 1.40*WFY43 1.00*DL 1.40*LL 0.84*WZX44 1.00*DL 1.40*LL 0.84*WFX45 1.00*DL 1.40*LL 0.84*WZY46 1.00*DL 1.40*LL 0.84*WFY47 1.00*DL 0.98*LL 1.40*WZX48 1.00*DL 0.98*LL 1.40*WFX49 1.00*DL 0.98*LL 1.40*WZY50 1.00*DL 0.98*LL 1.40*WFY51 1.20*DL 0.60*LL 0.28*WZX 1.30*EX52 1.20*DL 0.60*LL 0.28*WFX 1.30*EX53 1.20*DL 0.60*LL 0.28*WZY 1.30*EY54 1.20*DL 0.60*LL 0.28*WFY 1.30*EY55 1.20*DL 0.60*LL 0.28*WZX -1.30*EX56 1.20*DL 0.60*LL 0.28*WFX -1.30*EX57 1.20*DL 0.60*LL 0.28*WZY -1.30*EY58 1.20*DL 0.60*LL 0.28*WFY -1.30*EY59 1.00*DL 0.50*LL 0.28*WZX 1.30*EX60 1.00*DL 0.50*LL 0.28*WFX 1.30*EX61 1.00*DL 0.50*LL 0.28*WZY 1.30*EY62 1.00*DL 0.50*LL 0.28*WFY 1.30*EY63 1.00*DL 0.50*LL 0.28*WZX -1.30*EX64 1.00*DL 0.50*LL 0.28*WFX -1.30*EX65 1.00*DL 0.50*LL 0.28*WZY -1.30*EY66 1.00*DL 0.50*LL 0.28*WFY -1.30*EY (ITEM004) 结构质量分布表(吨)________________________________第 8 页层号 Xc Yc Zc 层质量 累积层质量 层扭转质量矩 累积层扭转质量矩1 0.286 -0.025 77.263 84.68 84.68 159491.19 159491.19结构的楼层质量比--------------------层号 层质量 本层质量/下层质量 超限提示1 84.685 1.00结构总质量 = 84.7 Ton结构总质心绝对坐标 (XCG,YCG,ZCG) = 0.286 -0.025 77.263结构总质心相对坐标 (XCR,YCR,ZCR) = 0.503 0.500 0.535结构在X向的抗倾覆力矩 X-MOM = 41749.5结构在Y向的抗倾覆力矩 Y-MOM = 41949.0(ITEM005) 各楼层各类构件数量及材料统计__________________________________________层号 塔号 构件 材料 数量 层高(m)1 1 柱单元 Q345 1672 24.737层号 柱纵筋 柱箍筋 梁纵筋 梁箍筋 墙主筋 墙水平分布筋 墙竖向分布筋 边缘构件箍筋 墙竖筋率(%) 楼板钢筋1 3 3 3 3 3 3 3 3 0.300 3(ITEM006) 各层弹性楼板面积统计__________________________________层号 四边形板 三角形板 多边形板 本层面积1 0.000 0.000 0.000 0.000整体结构弹性楼板总面积 = 0.000######## 结构主控自由度总数 = 3246######## 结构出口自由度总数 = 3246######## 结构独立自由度总和 = 3246第 9 页(ITEM007) 各层风荷载________________________*风载* WX 工况 3 方向角 0.0 结构类型1 地面粗糙度3 体型系数 1.30 基本风压 0.00地区0 层数 1 周期 0.20层号 标高 迎风面积 风压 本层风荷 层剪力 层弯矩1 24.737 2805.720 0.000 0.000 0.000 0.000该方向总风载= 0.0 kN 总迎风面积= 2805.720 m**2 总附加扭矩= 0.0 kN*m 次方向总风载= 0.0 kN*风载* WY 工况 4 方向角 90.0 结构类型1 地面粗糙度3 体型系数 1.30 基本风压 0.00地区0 层数 1 周期 0.20层号 标高 迎风面积 风压 本层风荷 层剪力 层弯矩1 24.737 2805.720 0.000 0.000 0.000 0.000该方向总风载= 0.0 kN 总迎风面积= 2805.720 m**2 总附加扭矩= 0.0 kN*m 次方向总风载= 0.0 kN(ITEM008) 各工况外载力系向O(x0,y0,z0)点的静力等效力矢_________________________________________________________(X0,Y0,Z0) = ( 0.000 0.000 0.000)Fx Fy Fz Mx My Mz工况 1 (DL ) 0.000 0.000 -803.467 20.922 242.566 0.000(ITEM009) 按高规附录(E.0.1)条计算的楼层侧向剪切刚度比_________________________________________________________第 10 页*下列输出适用于多塔、广义层结构*层号 塔号 X柱刚度 Y柱刚度 X向墙刚度 Y向墙刚度 X 向总刚度 X向刚度比 Y向总刚度 Y向刚度比1 1 0.755E+07 0.748E+07 0.000E+00 0.000E+00 0.755E+07 1.00 0.748E+07 1.00注: 下面的RX,RY是本层刚度与上层刚度70%的比值和本层刚度与上三层平均刚度80%的比值中的较小者若某层的RX或RY小于1,则该楼层为柔软层层号 塔号 RX RY1 1 1.25 1.25(ITEM010) 按高规附录(E.0.2)条计算的楼层侧向剪弯刚度比_________________________________________________________*下列输出适用于多塔、广义层结构*层号 塔号 X柱刚度 Y柱刚度 X向墙刚度 Y向墙刚度 X 向总刚度 X向刚度比 Y向总刚度 Y向刚度比1 1 0.120E+08 0.119E+08 0.000E+00 0.000E+00 0.120E+08 1.00 0.119E+08 1.00注: 下面的RX,RY是本层刚度与上层刚度70%的比值和本层刚度与上三层平均刚度80%的比值中的较小者若某层的RX或RY小于1,则该楼层为柔软层层号 塔号 RX RY1 1 1.25 1.25* 程序自动确定的最不利地震方向角 = 4.66 度(ITEM011) 按[楼层剪力/层间位移]计算的楼层刚度比___________________________________________________第 11 页*下列输出适用于多塔、广义层结构*X刚度比 : 本层X刚度比下层X刚度Y刚度比 : 本层Y刚度比下层Y刚度X刚度比1: 本层X刚度比上层X刚度的70%和上三层X刚度平均值的80%中的小者(抗规3.4.3;高规3.5.2-1)Y刚度比1: 本层Y刚度比上层Y刚度的70%和上三层Y刚度平均值的80%中的小者(抗规3.4.3;高规3.5.2-1)X刚度比2: 本层X刚度与本层层高的乘积与上层X刚度与上层层高的乘积的比值(高规3.5.2-2)Y刚度比2: 本层Y刚度与本层层高的乘积与上层Y刚度与上层层高的乘积的比值(高规3.5.2-2)层号 塔号 X刚度 Y刚度 X刚度比 Y刚度比 X刚度比1 Y刚度比1 X刚度比2 Y刚度比2 刚度比2下限 薄弱层调整系?1 1 0.560E+08 0.554E+08 1.00 1.00 1.25 1.25 1.00 1.00 1.50 1.00(ITEM012) 各地震方向参与振型的有效质量系数______________________________________________MODE NO. EX EY1 0.017 0.017 0.005 0.0052 0.005 0.022 0.021 0.0263 0.000 0.023 0.000 0.0264 0.001 0.024 0.000 0.0265 0.004 0.027 0.000 0.0266 0.005 0.032 0.000 0.0267 0.000 0.033 0.006 0.0328 0.000 0.033 0.000 0.0329 0.012 0.045 0.008 0.04010 0.007 0.052 0.011 0.05111 0.000 0.052 0.000 0.05112 0.000 0.052 0.000 0.05113 0.000 0.052 0.000 0.05114 0.000 0.052 0.006 0.05615 0.005 0.057 0.000 0.057第 1 地震方向 EX ( 0.0度) 的有效质量系数为 0.057,参与振型数不够,建议增加振型数重算 !第 2 地震方向 EY ( 90.0度) 的有效质量系数为 0.057,参与振型数不够,建议增加振型数重算 !(ITEM013) 各振型的基底地震力(按抗规5.2.5调整前)___________________________________________________第 12 页(X0,Y0,Z0) = 0.000 0.000 63.895*地震工况* 1 EX ( 0.0度)振型号 Fx Fy Fz Mx My Mz1 1.136 0.545 0.000 -7.484 15.826 0.8322 0.272 -0.576 0.000 7.918 3.719 0.3673 0.004 -0.003 0.000 0.042 0.046 -1.9344 0.005 0.001 0.000 -0.018 0.034 0.0155 0.008 0.007 0.000 -0.101 0.034 0.1716 0.002 0.001 0.000 -0.021 -0.022 0.0277 0.000 0.000 0.000 0.002 0.000 0.0018 0.001 0.001 0.000 -0.013 0.022 0.0249 2.000 1.629 0.000 -23.059 28.117 1.07110 1.276 -1.575 0.000 22.308 18.148 0.27411 0.000 0.000 0.000 0.003 0.002 -0.30212 0.000 0.000 0.000 -0.002 0.000 0.00513 0.028 0.004 0.000 -0.068 0.537 0.01514 0.006 -0.052 0.000 0.955 0.094 -0.01115 0.499 0.037 0.000 -0.715 9.059 -0.088*地震工况* 2 EY ( 90.0度)振型号 Fx Fy Fz Mx My Mz1 0.261 -0.545 0.000 7.592 3.590 0.399第 13 页2 1.220 0.576 0.000 -7.871 16.761 -0.7773 0.003 0.003 0.000 -0.038 0.036 1.6304 0.000 -0.001 0.000 0.007 0.004 0.0035 0.006 -0.007 0.000 0.028 0.082 0.1406 0.001 -0.001 0.000 -0.013 0.012 0.0167 0.000 0.000 0.000 -0.003 -0.019 0.0088 0.001 -0.001 0.000 0.016 0.009 0.0179 1.327 -1.629 0.000 22.904 18.784 0.87210 1.944 1.575 0.000 -22.399 27.532 -0.33911 0.001 0.000 0.000 -0.005 0.008 0.88812 0.000 0.000 0.000 0.000 0.004 0.00913 0.001 -0.004 0.000 0.073 0.009 0.00214 0.480 0.052 0.000 -0.873 8.901 0.09815 0.003 -0.037 0.000 0.671 0.053 -0.006(ITEM014) 按抗规(5.2.5)条计算的地震力放大系数_________________________________________________地震方向 地震力放大系数 结构最小剪重比 规范限值EX ( 0.0度) 3.437 0.465 % 1.600 %EY ( 90.0度) 3.428 0.467 % 1.600 %(ITEM015) 各楼层的总剪力和总弯矩____________________________________第 1 地震方向 EX ( 0.0度) 各楼层的总剪力、总弯矩 (楼层内力截面处的内力)层号 本方向剪力 垂直方向剪力 本方向弯矩 垂直方向弯矩1 12.9( 1.60%) 0.3( 0.04%) 182.0( 0.91%) 4.0( 0.02%)第 2 地震方向 EY ( 90.0度) 各楼层的总剪力、总弯矩 (楼层内力截面处的内力)第 14 页层号 本方向剪力 垂直方向剪力 本方向弯矩 垂直方向弯矩1 12.9( 1.60%) 0.3( 0.04%) 182.0( 0.91%) 3.3( 0.02%)第 1 地震方向 EX ( 0.0度) 各楼层的地震荷载 (楼层内力截面至层顶范围内的地震作用)层号 本方向作用力 垂直方向作用力1 12.4 0.3第 2 地震方向 EY ( 90.0度) 各楼层的地震荷载 (楼层内力截面至层顶范围内的地震作用)层号 本方向作用力 垂直方向作用力1 12.4 0.2(ITEM016) 结构周期及振型方向________________________________周期(s) 方向角(度) 类型 扭振成份 X侧振成份 Y侧振成份 总侧振成份1 1.213365 87.4 X 0.00 0.82 0.181.002 1.207427 -2.9 Y 0.00 0.18 0.82 1.003 1.159994 98.0 TORSION 0.99 0.00 0.00 0.014 0.981672 0.9 X 0.05 0.84 0.11 0.955 0.961936 -1.3 X 0.13 0.59 0.28 0.876 0.936758 -0.1 X 0.02 0.97 0.01 0.987 0.927494 90.0 Y 0.00 0.02 0.98 1.008 0.884398 90.5 Y 0.19 0.02 0.79 0.819 0.554793 80.7 X 0.00 0.60 0.40 1.0010 0.553835 -4.7 Y 0.00 0.40 0.60 1.0011 0.534496 66.9 TORSION 1.00 0.00 0.00 0.0012 0.513016 21.0 Y 0.27 0.25 0.48 0.7313 0.467615 3.4 X 0.00 0.98 0.02 1.0014 0.465131 91.3 Y 0.00 0.01 0.99第 15 页1.0015 0.463516 1.3 X 0.00 1.00 0.00 1.00(ITEM017) 适用于不规则结构的楼层水平位移及位移角统计________________________________________________________静力工况 WX ( 0.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 0.000 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 0.000 (发生于 1 层 1 塔)静力工况 WY ( 90.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 0.000 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 0.000 (发生于 1 层 1 塔)静力工况 LX ( 0.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值1 1 0.82 0.79 1.04 1/90495 1/97519 1.08本工况下全楼最大层间位移角= 1/90495 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.038 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.078 (发生于 1 层 1 塔)静力工况 PX ( 0.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值1 1 0.85 0.79 1.08 1/85649 1/98466 1.15第 16 页本工况下全楼最大层间位移角= 1/85649 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.078 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.150 (发生于 1 层 1 塔)静力工况 MX ( 0.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值1 1 0.90 0.79 1.13 1/78170 1/97098 1.24 本工况下全楼最大层间位移角= 1/78170 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.130 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.242 (发生于 1 层 1 塔)静力工况 LY ( 90.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值1 1 0.81 0.81 1.01 1/91045 1/92603 1.02 本工况下全楼最大层间位移角= 1/91045 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.010 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.017 (发生于 1 层 1 塔)静力工况 PY ( 90.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值1 1 0.83 0.79 1.05 1/83805 1/93241 1.11 本工况下全楼最大层间位移角= 1/83805 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.049 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.113 (发生于 1 层 1 塔)静力工况 MY ( 90.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值1 1 0.84 0.82 1.03 1/84675 1/92175 1.09 本工况下全楼最大层间位移角= 1/84675 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.032 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.089 (发生于 1 层 1 塔)第 17 页地震工况 EX ( 0.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值1 1 2.99 2.86 1.04 1/23410 1/24714 1.06本工况下全楼最大层间位移角= 1/23410 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.044 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.056 (发生于 1 层 1 塔)地震工况 EY ( 90.0度) 的楼层位移统计层号 塔号 最大位移 平均位移 位移比 最大位移角 平均位移角 位移角比值1 1 2.93 2.88 1.02 1/23967 1/24909 1.04本工况下全楼最大层间位移角= 1/23967 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.017 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.039 (发生于 1 层 1 塔)(ITEM018) 单塔多塔通用的框架0.2V0(0.25V0)调整系数_____________________________________________________SFCE_FACTOR1= 0.250 SFCE_FACTOR2= 1.800第 1 地震工况 EX 的0.2V0调整系数层号 塔号 调整系数 框架剪力 框架剪力底限 本段最大框架剪力 基底剪力 基底塔块1 1 1.000 0. 0. 0. 687. 1 - 1;第 2 地震工况 EY 的0.2V0调整系数层号 塔号 调整系数 框架剪力 框架剪力底限 本段最大框架剪力 基底剪力 基底塔块第 18 页1 1 1.000 0. 0. 0. 689. 1 - 1;(ITEM019) 水平荷载作用下的楼层位移及位移比______________________________________________( 1 ).WX ( 0.0度)风荷载引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)WX ( 0.0度)风荷载引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 2 ).WY ( 90.0度)风荷载引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)WY ( 90.0度)风荷载引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)第 19 页本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 3 ). WZX 特殊风荷载引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)WZX 特殊风荷载引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 4 ). WZY 特殊风荷载引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)WZY 特殊风荷载引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 5 ). WFX 特殊风荷载引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00第 20 页本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)WFX 特殊风荷载引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 6 ). WFY 特殊风荷载引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)WFY 特殊风荷载引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 7 ). LX ( 0.0度)指定水平力引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)LX ( 0.0度)指定水平力引起的楼层层间位移第 21 页层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 8 ). PX ( 0.0度)正偏心指定水平力引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)PX ( 0.0度)正偏心指定水平力引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 9 ). MX ( 0.0度)负偏心指定水平力引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)MX ( 0.0度)负偏心指定水平力引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)第 22 页本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)(10 ). LY ( 90.0度)指定水平力引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)LY ( 90.0度)指定水平力引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)(11 ). PY ( 90.0度)正偏心指定水平力引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)PY ( 90.0度)正偏心指定水平力引起的楼层层间位移层号 塔号 节点号 最大层间位移 平均层间位移 比值 节点号 最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)(12 ). MY ( 90.0度)负偏心指定水平力引起的楼层位移层号 塔号 节点号 最大位移 平均位移 比值 节点号 最小位移1 1 0 0.00 0.00 1.00 0 0.00第 23 页。

PKPM结构设计软件入门与应用实例—钢结构

PKPM结构设计软件入门与应用实例—钢结构

PKPM结构设计软件入门与应用实例—钢结构前言随着经济的高速发展,我国建筑钢结构发展迅速。

结构形式的多样化和复杂化,设计周期的缩短,对结构分析与设计的效率和质量都提出了很高的要求,结构计算商用软件的出现和推广,是解决这一矛盾的有效途径。

现在计算机辅助设计已经成为建筑结构设计领域工作的主流。

对于有志于从事结构设计的即将毕业的土木工程专业学生来言,尽快的掌握结构计算软件已经成为一个基本技能。

在众多的结构计算软件中,由中国建筑科学研究院PKPM工程部研发的PKPM系列软件有着很高的市场占有率。

该系列软件自1987年的研发以来,经过不断开发,现在已非常成熟,并且由于其与我国规范很接近,受到我国用户的青睐。

无疑,掌握STS的使用对设计工作者是很重要的,尤其是对于初学者。

对于刚毕业的学生来说,大家已经具有一定的力学和结构知识,但是对软件的使用还不够熟悉,对规范的了解也比较欠缺,设计经验也很不足。

因此,在介绍软件应用的同时,也应对其它几个方面给予介绍。

通过实例来讲解,对初学者来说,是一种好形式。

考虑到这些因素,本书的写作基本是分开为三个模块,即软件部分、设计知识、规范部分,这三个方面都围绕实例展开。

我们希望通过这种方式作到实例、设计原理、规范、软件的有机结合。

这种编写方式是我们对于此类书籍的一种尝试。

鉴于本书工具书的定位,我们对这四部分的内容处理原则为:软件部分侧重于讲解步骤和例题用到的参数,对于软件的技术条件等请参看PKPM公司的用户手册或技术条件。

设计知识部分侧重于讲解结构设计概念和设计经验,对于构造知识由于其内容广泛,本书也不多涉及,这些内容请参看相关构造手册和国标图集。

规范链接部分指出与设计阶段相关的规范条款,限于篇幅,对于规范具体条款内容从略,实际上是用到条文的索引。

同时,也希望这种方式能有效的帮助读者自己去查阅规范,以尽快的熟悉相关规范。

本书的使用方法,我们推荐采用三阶段的学习:1、软件部分的学习:读者先阅读设计条件,然后按照设计步骤,自己跟着软件操作一遍,在本阶段,主要是让初学者首先对软件的全局和基本的操作流程有个基本的了解。

PKPM-设计软件STS培训0130

PKPM-设计软件STS培训0130

三、钢结构设计示例
根据图纸,依次把钢 柱的规格增加;钢梁 同样:梁布置-增加选择需要的钢梁截面 类型-输入规格;这 样需要增加的钢梁钢 柱都增加了,接下来 就是布置钢梁钢柱。 点击确定,按照输入 栏的提示分别把柱和 梁布置上。
三、钢结构设计示例
右图为最终的梁柱布 置结果,其中女儿墙 钢柱可建进去,也可 以不建进去,通过后 期增加荷载,把女儿 墙对刚架的影响考虑 进去。
三、钢结构设计示例
三、钢结构设计示例
补充数据为附件重量的设置及基础的计算,对于一般 的刚架可默认。
截面优选计算出的截面一般不是常规,我们也不用此 项优化。
三、钢结构设计示例
结构计算中,首先是 参数的设置,然后根 据个别构件的要求, 重新选择验算规范、 抗震等级、构件钢号 等,设置好后点击结 构计算,便会进行电 算。
钢结构设计软件STS培 训

目录
CONTENTS
01 设计软件STS认识
02 常用模块说明
03 钢结构设计示例
一、设计软件STS认识
钢结构设计软件STS是PKPM系列的一个功能模块,既能独立运行,又可与PKPM其他模块数据共享。 可以完成钢结构的模型输入、优化设计、结构计算、连接节点设计与施工图辅助设计。
三、钢结构设计示例
打开以后,出 现如图界面,可以 按照工具栏功能逐 步建立模型:轴线 网格-构件布置-荷 载布置-约束布置补充数据-截面优选 -结构计算-计算结 果查询-绘施工图; 首先从建立轴线网 格开始。简单的网 格可以在这里面建 立,复杂的可以通 过导入DXF建立网格。
三、钢结构设计示例
通过新建DWG文件, 画出刚架的轴线;注 意事项:1、图形离 坐标原点不可太远, 不能有多余的线,否 则导入STS时可能出 错;2、网格线采用 直线形式,既L线, 多段线( PL线), STS不识别;3、分段 节点通过两条线相交 得到,分段原则:a) 运输限制,国内项目 不宜超过

PKPM钢结构计算实例教学教材

PKPM钢结构计算实例教学教材

某车间计算实例房屋概况:南北朝向,为一幢单层双跨排架结构建筑物,建筑面积约1460.00m2,建造于2008年。

共计8间,开间除两端为5.40m外其余均为6.00m,跨度为16.00+16.00m。

上部结构由砼柱、钢梁承重,屋盖采用C型钢檩条(175×70×25×2.5@1450mm),彩钢瓦屋面,砖砌围护墙。

3~4轴、8~9轴屋面各设6道水平支撑,水平支撑间设刚性杆;A、B、C轴柱顶钢梁间各设1道刚性水平通长系杆;檩条与钢梁间隔根设隅撑,檩条间设置直拉条/斜拉条;B~C轴设有一台5.0吨吊车。

排架立面示意图结构平面图结构验算:一、新建工程→钢结构→门式刚架→门式钢架二维设计(或新建工程→钢结构→框排架→pk交互输入与优化计算)二、网络生成→快速建模→门式刚架三、柱、梁布置1、截面定义→增加→选取截面类型→输入截面参数注:1、对于钢构件则需要区分轴压对Y截面分类(具体参考钢结构设计规范表5.1.2-1);四、计算长度(平面外、平面内)注:1、平面内计算长度系统默认;2、平面外计算长度(柱:取柱间支撑的高度。

梁:取水平支撑或隅撑的间距)。

五、铰接构件注:1、对于节点处由螺栓连接<6颗螺栓时设铰接点;2、对于钢/砼构件连接处设铰接点。

六、恒载输入→梁间恒载注:1、梁间恒载需将屋面恒荷载换算成梁间线荷载;2、计算公式:屋面恒载*(梁左侧开间的一半+梁右侧开间的一半)。

七、活载输入→梁间活载注:1、梁间恒载需将屋面恒荷载换算成梁间线荷载;2、计算公式同梁间恒载;3、屋面荷载取值:不上人屋面取0.5(荷载规范);若水平投影面积大于60m2则屋面活荷载可取不小于0.3(门规);以上荷载取值与屋面雪荷载取值相比取大值。

八、左、右风输入→自动布置注:1、砼排架柱、轻钢屋面结构可参照(门规);2、地面粗糙度、风压参考(荷载规范)。

九、吊车荷载注:1、在吊车数据库选取吊车类型、跨度、吨位相同或相近的吊车数据。

PKPM算量钢筋软件培训课件七

PKPM算量钢筋软件培训课件七

PKPM算量、钢筋软件2008版应用指南七、室内、外墙装饰工程目录1.中国建筑科学研究院简介2.工程建设领域企业竞争力的提高3.PKPM算量、钢筋软件的功能特点4.PKPM算量、钢筋软件的应用流程5.PKPM算量、钢筋软件的应用学习的重点6.PKPM算量、钢筋软件手工建立预算模型7.PKPM算量、钢筋软件读取结构设计模型建立预算模型8.PKPM算量、钢筋软件转DWG图建立预算模型9.PKPM算量、钢筋软件衬DWG图校核预算模型10.PKPM算量、钢筋软件转DWG图计算梁钢筋11.PKPM算量、钢筋软件转DWG图计算板钢筋12.PKPM算量、钢筋软件转DWG图计算柱钢筋13.PKPM算量、钢筋软件智能绘制坡屋面14.PKPM算量、钢筋软件智能计算土方工程量15.PKPM算量、钢筋软件智能计算外墙面装饰工程量16.PKPM算量、钢筋软件智能计算室内装饰工程量17.PKPM算量、钢筋软件在预算、结算中查看工程量的方法18.PKPM造价软件预算、结算、进度审核应用指南十五、PKPM算量、钢筋软件智能计算外墙面装饰工程量操作步骤:①在右侧菜单栏中:左键单击工程量,选择外立面②选择想要计算的标准层。

③左键单击标非外墙,选择所要计算的外墙面亮绿色线标记。

④左键单击选择立面选择,按键盘上TAB键出现上图,选择自动生成,软件会自动将想要计算的外立面展开如下图5。

⑤选择自动生成后,软件会自动将想要计算的外立面展开如上图。

①选择本层参数设置如下图6,进行设置混凝土与砖墙相交处的钢丝网片的宽度及在第一层时设置室内多点的标高。

⑦计算规则设置如下图7。

⑧做法录入(套定额)如图7。

⑨选择做法布置方式如下图。

⑩检查布置范围如图9。

⑾查看计算结果如图。

十六、PKPM算量、钢筋软件智能计算室装饰工程量操作步骤:①左键单击右侧菜单栏中工程量,选择装饰,进入装饰工程。

②左键单击本层参数设置,按图输入相应的参数。

③左键单击做法录入,按图纸装饰做法依次按地面、墙面、天棚面、屋面防水等录入,套本地的定额;在套定额时不用选择工程量代码。

PKPM算量、钢筋软件培训课件一

PKPM算量、钢筋软件培训课件一

PKPM算量、钢筋软件2008版应用指南一、手工建模及学习重点目录1.中国建筑科学研究院简介2.工程建设领域企业竞争力的提高3.PKPM算量、钢筋软件的功能特点4.PKPM算量、钢筋软件的应用流程5.PKPM算量、钢筋软件的应用学习的重点6.PKPM算量、钢筋软件手工建立预算模型7.PKPM算量、钢筋软件读取结构设计模型建立预算模型8.PKPM算量、钢筋软件转DWG图建立预算模型9.PKPM算量、钢筋软件衬DWG图校核预算模型10.PKPM算量、钢筋软件转DWG图计算梁钢筋11.PKPM算量、钢筋软件转DWG图计算板钢筋12.PKPM算量、钢筋软件转DWG图计算柱钢筋13.PKPM算量、钢筋软件智能绘制坡屋面14.PKPM算量、钢筋软件智能计算土方工程量15.PKPM算量、钢筋软件智能计算外墙面装饰工程量16.PKPM算量、钢筋软件智能计算室内装饰工程量17.PKPM算量、钢筋软件在预算、结算中查看工程量的方法18.PKPM造价软件预算、结算、进度审核应用指南PKPM工程量、钢筋量智能计算软件操作指南一、中国建筑科学研究院简介国建筑科学研究院创建于1953年,原为建设部直属最大的综合性科学研究机构,2000年10月1日,由科研事业单位转制为科技型企业。

中国建筑科学研究院以建筑工程为主要研究对象,以应用研究和开发研究为主,致力于解决我国工程建设中的关键技术问题;负责编制与管理工程建设技术标准和规范;承担国家建筑工程、空调设备、电梯和化学建材的质量监督检验和测试任务。

二、工程建设领域企业竞争力建设领域企业的竞争力之一:工程成本预控及控制。

工程成本预控无论是建设单位或者施工单位,都要进行工程造价做一个可行性预算。

工程造价最基础的数据就是工程量的计算及钢筋量的计算; 工程量是否准确直接影响工程造价。

目前建设项目从立项到实施,所用的时间与过去几年相比,缩短了很多;一般情况下上千万的工程,在进行招投标的时间不会超过15天,无论是编标单位,还是投标单位时间都是很紧。

钢结构课程设计(PKPM出图,节点验算)

钢结构课程设计(PKPM出图,节点验算)

目录1、基本资料 (1)1.1、建筑物基本资料 (1)1.2、设计荷载 (2)2、内力图 (2)3、钢材级别和梁柱截面 (4)4、焊接方法和焊条型号 (5)5、节点设计 (5)5.1梁柱节点 (5)5.1.1柱节点螺栓强度验算 (5)5.1.2端板厚度验算 (6)5.1.3梁柱节点域剪应力验算 (6)5.1.4螺栓处腹板强度验算 (6)5.2梁梁节点 (6)5.2.1梁梁节点螺栓强度验算 (6)5.2.2端板厚度验算 (7)5.2.3螺栓处腹板强度验算 (7)6、施工图 (8)参考文献 (8)1、基本资料1.1、建筑物基本资料12某单层单跨钢结构厂房长度150m ,檐口高度:7500mm ,基础顶埋深:800mm ,柱距:7500mm ,跨度:15000mm ,屋顶坡度0.1。

如图0框架立面图。

图0框架立面图1.2、设计荷载恒载:2/KN 3.0m ,风载:2/KN 4.0m ,活载:2/KN 5.0m ,不考虑抗震设防。

2、内力图用力学求解器计算这种荷载作用下的门式钢架内力,并经最不利组合得出的弯矩包络图,剪力包络图,轴力包络图如下所示。

图1弯矩包络图(单位:KN·M)图2剪力包络图(单位:KN)34图3轴力包络图 (单位:KN )3、钢材级别和梁柱截面本门式钢架采用碳素结构钢,牌号表达为Q235钢。

经PKPM 软件计算得出钢材截面。

由图2可知截面大小,梁采用焊接H 型钢HM234×180×6×8,柱采用焊接H 型钢HM480×250×6×8。

(a ) (b )图4截面示意图 (a )梁截面;(b )柱截面54、焊接方法和焊条型号焊接方法选用设备简单,操作灵活方便的手工电弧焊。

钢板及型钢为Q235钢,焊条型号选用E43型。

对接焊质量等级不低于二级。

5、节点设计5.1梁柱节点梁节点连接采用10.9级M27高强摩擦型螺栓。

构件接触面采用喷砂处理,摩擦面抗滑移系数0.45。

PKPM结构设计软件入门与应用实例:钢结构框架(多高层篇)

PKPM结构设计软件入门与应用实例:钢结构框架(多高层篇)
图1-单击 ,进入图1-16界面。
需修改截面参数时,选择需修改的构件,再单击修改,进入“截面类型选择界面”图17,再按图18,操作完成修改。
需定义新截面时按上述图16至图18重新操作即可完成,如定义相同类型新截面时,还可选择与要定义的截面类型相同的已有截面,单击 ,进入截面参数定义界面,如图1-18,修改截面参数,单击 ,完成新截面定义。
本工程耐火等级一级,建筑类别为一类,建筑物使用年限100年。
结构类型:钢框架结构。
本地设防烈度6度,场地土类别二类。
楼板采用压型钢板非组合型楼板。
结构安全等级一级,建筑物抗震设防类别为乙类。
墙体材料:±0.000以上采用加气混凝土砌块,容重≤6kN/m3
基本分压:0.45kN/m2
基本雪压:0.40kN/m2
2.钢梁定义:选择梁布置进入梁定义的界面,如图1-19,单击 ,进入截面类型选择界面,如图1-17。
图1-19梁定义界面
本工程钢梁选用H型梁单击 ,进入截面参数定义界面,如图1-20。
图1-20截面参数定义界面
随后的操作与钢柱定义操作相同。
3.次梁布置:先在图1-19界面中定义好钢梁截面,选择次梁布置,进入次梁选择界面,如图1-19。选择所布置次梁截面后,单击 ,进入次梁布置界面,如图1-21。
图1-10五层~二十二层结构平面布置图
1.2平面建模
编者按:高层钢结构的在设计中的分析与钢筋混凝土高层结构的建模与结构分析操作过程类似,本书重点介绍的就是高层钢结构与钢筋混凝土高层结构PKPM应用的不同之处。
1.2.1建立工作目录
启动PKPM软件钢结构模块后,进入用户界面,如图1-11所示。
图1-11框架主界面
支撑:H250×380×16×20,H250×380×14×18
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某车间计算实例
房屋概况:
南北朝向,为一幢单层双跨排架结构建筑物,建筑面积约1460.00m2,建造于2008年。

共计8间,开间除两端为5.40m外其余均为6.00m,跨度为16.00+16.00m。

上部结构由砼柱、钢梁承重,屋盖采用C型钢檩条(175×70×25×2.5@1450mm),彩钢瓦屋面,砖砌围护墙。

3~4轴、8~9轴屋面各设6道水平支撑,水平支撑间设刚性杆;A、B、C轴柱顶钢梁间各设1道刚性水平通长系杆;檩条与钢梁间隔根设隅撑,檩条间设置直拉条/斜拉条;B~C轴设有一台5.0吨吊车。

排架立面示意图
结构平面图
结构验算:
一、新建工程→钢结构→门式刚架→门式钢架二维设计(或新建工程→钢结构→框排架→pk交互输入与优化计算)
二、网络生成→快速建模→门式刚架
三、柱、梁布置
1、截面定义→增加→选取截面类型→输入截面参数
注:1、对于钢构件则需要区分轴压对Y截面分类(具体参考钢结构设计规范表5.1.2-1);
四、计算长度(平面外、平面内)
注:1、平面内计算长度系统默认;
2、平面外计算长度(柱:取柱间支撑的高度。

梁:取水平支撑或隅撑的间距)。

五、铰接构件
注:1、对于节点处由螺栓连接<6颗螺栓时设铰接点;
2、对于钢/砼构件连接处设铰接点。

六、恒载输入→梁间恒载
注:1、梁间恒载需将屋面恒荷载换算成梁间线荷载;
2、计算公式:屋面恒载*(梁左侧开间的一半+梁右侧开间的一半)。

七、活载输入→梁间活载
注:1、梁间恒载需将屋面恒荷载换算成梁间线荷载;
2、计算公式同梁间恒载;
3、屋面荷载取值:不上人屋面取0.5(荷载规范);若水平投影面积大于60m2则屋面活荷载可取不小于0.3(门规);以上荷载取值与屋面雪荷载取值相比取大值。

八、左、右风输入→自动布置
注:1、砼排架柱、轻钢屋面结构可参照(门规);
2、地面粗糙度、风压参考(荷载规范)。

九、吊车荷载
注:1、在吊车数据库选取吊车类型、跨度、吨位相同或相近的吊车数据。

十、参数输入
1、结构类型参数
注:1、参考(门规)表3.4.2和表3.5.2;
2、总信息参数
3、地震计算参数
注:1、参数选取参考(抗震规范);十一、结构计算。

相关文档
最新文档