高考数学几何大题解题技巧

合集下载

高考数学中的立体几何解题方法总结

高考数学中的立体几何解题方法总结

高考数学中的立体几何解题方法总结在高考数学中,立体几何是一个重要的考点。

对于大部分学生来说,立体几何是比较新颖的知识点,需要掌握一些特定的解题方法。

本文将总结一些高考数学中的立体几何解题方法,以便于广大考生能够更好地应对高考数学考试。

一、立体几何基本概念在解决立体几何问题之前,首先需要理解一些基本概念。

立体几何主要包括三维图形、视图、棱锥、棱柱、圆锥、圆柱、球体等。

学生需要认真理解这些概念,并掌握绘制三维图形的技巧,以便于快速准确地分析问题。

二、立体几何定理掌握一些常见的立体几何定理十分必要。

例如,平行截面定理、截棱锥定理、圆锥与平面的位置关系、球的性质等等。

这些定理可以帮助学生在解决一些复杂的立体几何题目时,能够快速找到规律,从而准确解决问题。

三、快速计算体积的方法体积是立体几何题目中最常见的考点。

理解如何快速计算体积可以帮助学生在有限的时间内快速解决问题。

例如,计算实体的体积可以分别计算各部分的体积再相加;计算投影面积的体积可以利用截线公式或剖面法等方法。

此外,还应当掌握利用相似关系计算体积的方法,以便于解决一些复杂的题目。

四、快速计算表面积的方法表面积的计算同样是立体几何中常见的考点。

学生需要掌握表面积的计算方法,并能够快速灵活地运用这些方法。

例如,计算立体几何的表面积可以分解成各个面的表面积再相加;计算圆锥的表面积可以利用母线和圆周角的关系等等。

五、快速计算正多面体体积的方法对于正多面体的体积计算,学生需要掌握一些类比和相似关系等方法。

例如,正八面体的体积可以利用正四面体体积乘以3的方法;正二十面体的体积可以利用正四面体体积乘以5的方法。

这些方法可以帮助学生在复杂的题目中快速计算正多面体的体积。

以上五点是掌握高考数学中的立体几何解题方法的基础。

学生需要认真理解这些方法,并在解决立体几何题目时不断运用,直到形成自己的解题风格。

通过不断练习和总结,相信大家一定可以在高考数学中取得好成绩!。

高考数学解题技巧及规范答题:立体几何大题

高考数学解题技巧及规范答题:立体几何大题
(2)当四棱锥 体积为 时,求二面角 的正弦值.
【分析】
(1)分别取 , 的中点 , ,证明 , 可得 平面 ,
可证 ,由等腰三角形的性质可得 ,证明三角形全等即可求证;
(2)在 上取一点O,连接 ,使 ,根据已知条件证明O为正方形 的中心,建立空间直角坐标系求出平面 和平面 的法向量,利用夹角公式即可求解.
又 ,所以 ,
故 .
【此处由三角形的面积公式和体积公式求体积,若底面面积正确但体积计算错误,减1分.】
【评分细则】
①利用三线合一证明AO⊥BD,得1分
②利用面面垂直的性质证明AO⊥平面BCD,得2分.
③利用线面垂直的性质证明AO⊥CD,得1分.
④利用(1)结论证明三线垂直,合理建系得2分.
⑤正确写出和设出点的坐标,指出一个平面的法向量,得2分.
(1)若三棱锥 体积是 ,求 的值;
(2)若直线 与平面 所成角的正弦值是 ,求 的值.
【分析】
(1)由题意知, 、 、 两两垂直,建立空间直角坐标系,设 ,由 ,求得M的坐标,过 作 于 , 于 ,再由 求解;
(2)由(1)知 ,求得平面 的一个法向量为 ,设直线 与平面 所成的角为 ,然后由 求解.

又 平面 平面 ,
平面 ,
即 ,
又 ,
平面 ,
故 为四棱锥 的高,
为直线 与平面 所成角,
又 ,
即 ,
四棱锥 的体积为 ;
(2)假设存在点 ,建立如图所示的空间直角坐标系,
设 , ,
则 ,
则 , , ,
设平面 和平面 的法向量分别为 , ,
则 ,令 ,则 ,
,令 ,
则 ,
二面角 的余弦值为 ,

四类立体几何题型-新高考数学大题秒杀技巧(解析版)

四类立体几何题型-新高考数学大题秒杀技巧(解析版)

四类立体几何题型-高考数学大题秒杀技巧立体几何问题一般分为四类:类型1:线面平行问题类型2:线面垂直问题类型3:点面距离问题类型4:线面及面面夹角问题下面给大家对每一个类型进行秒杀处理.技巧:法向量的求算待定系数法:步骤如下:①设出平面的法向量为n =x ,y ,z .②找出(求出)平面内的两个不共线的向量a =a 1,b 1,c 1 ,b =a 2,b 2,c 2 .③根据法向量的定义建立关于x ,y ,z 的方程组n ⋅a =0n ⋅b =0④解方程组,取其中的一个解,即得法向量.注意:在利用上述步骤求解平面的法向量时,方程组n ⋅a =0n ⋅b =0有无数多个解,只需给x ,y ,z 中的一个变量赋于一个值,即可确定平面的一个法向量;赋的值不同,所求平面的法向量就不同,但它们是共线向量.秒杀:口诀:求谁不看谁,积差很崩溃(求外用外减,求内用内减)向量a =x 1,y 1,z 1 ,b =x 2,y 2,z 2 是平面α内的两个不共线向量,则向量n =y 1z 2−y 2z 1,x 2z 1−x 1z 2,x 1y 2−x 2y 1 是平面α的一个法向量.特别注意:空间点不容易表示出来时直接设空间点的坐标,然后利用距离列三个方程求解.类型1:线面平行问题方法一:中位线型:如图⑴,在底面为平行四边形的四棱锥P -ABCD 中,点E 是PD 的中点.求证:PB ⎳平面AEC .分析:方法二:构造平行四边形如图⑵, 平行四边形ABCD 和梯形BEFC 所在平面相交,BE ⎳CF ,求证:AE ⎳平面DCF .分析:过点E作EG⎳AD交FC于G,DG就是平面AEGD与平面DCF的交线,那么只要证明AE⎳DG即可。

方法三:作辅助面使两个平面是平行如图⑶,在四棱锥O-ABCD中,底面ABCD为菱形,M为OA的中点,N为BC的中点,证明:直线MN‖平面OCD分析::取OB中点E,连接ME,NE,只需证平面MEN∥平面OCD。

高考数学中的空间几何解析技巧

高考数学中的空间几何解析技巧

高考数学中的空间几何解析技巧高考数学的空间几何部分是让许多考生头疼的,因为它需要考生有很强的几何直观、坐标系分析能力和逻辑推理能力。

但如果我们掌握了一些空间几何解析技巧,就可以更加轻松地应对空间几何题目。

本文将介绍几种实用的空间几何解析技巧,希望对广大考生有所帮助。

一、向量法求点线关系在空间几何中,向量法常常是解题的常用方法。

例如,在求一个点是否在一条直线上或一个平面上时,我们可以通过向量的加、减、数量积等运算来判断点所在的直线或平面方程。

具体而言,如果一个点P(x0,y0,z0),在一条直线L上,那么向量OP与直线L上的任意向量的数量积为零。

如果一个点P(x0,y0,z0),在一个平面上,那么该点到该平面的距离为零,即OP与该平面的法向量垂直。

例如,当我们需要判断点P(2,3,4)是否在直线L:x+1=y-2=z-3时,可以构造如下两个向量:OP=<2-(-1),3-2,4-3>=<3,1,1>OL=<1, -2, -3>如果P在L上,则向量OP与任意在L上的向量平行,即它们的数量积为0,则<3,1,1>·<1,-2,-3>=0通过计算可得,该点在直线上,因此将其代入直线方程可以得到:x+1=2+1y-2=3-2z-3=4-3即x=3,y=4,z=5。

如果需要判断点P(2,3,4)是否在平面π:3x-2y+z-1=0上面,我们可以求出该点到平面的距离,如果距离为0,则该点在平面上。

通过向量的知识,可知我们可以构造向量PA,使其端点为点A (1,1,0), 则PA=<2-1, 3-1, 4-0>=<1,2,4>平面π的法向量为<3,-2,1>,则点P到平面π的距离为向量PA 在法向量上的投影,即d=|<1,2,4>·<3,-2,1>|/|<3,-2,1>|=|1+(-4)+4|/√(9+4+1)=1因此点P在平面π上。

高中数学高考专题(5)立体几何的高考解答题型及求解策略

高中数学高考专题(5)立体几何的高考解答题型及求解策略

高中数学高考专题(5)立体几何的高考解答题型及求解策略立体几何的解答题型主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再计算几何体的体积.试题背景有折叠问题、探索性问题等,考查空间想象能力、逻辑思维能力及转化与化归思想的应用能力.题型一线面位置关系的证明题型概览:空间中线面的平行与垂直的证明有两种思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量法来论证,应用向量证明线、面的位置关系的关键是把空间线面位置关系的判定定理和性质定理与空间向量建立对应关系,把空间位置关系的证明转化为空间向量的运算,通过运算解决证明问题.这里以传统方法为例建立审题程序与答题模板,向量方法参照本专题题型二.如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN⊥平面ABCD,E、F分别为MA、DC的中点,求证:(1)EF∥平面MNCB;(2)平面MAC⊥平面BND.[审题程序]第一步:利用中位线、平行四边形的性质在四边形MNCB内确定与EF平行的直线;第二步:在平面MAC和平面BND中寻找与另一平面垂直的直线;第三步:应用面面垂直、菱形的性质,由线线垂直解决.[规范解答](1)如图,取NC的中点G,连接FG,MG.因为ME∥ND且ME=12ND,F、G分别为DC、NC的中点,FG∥ND且FG=12ND,所以FG与ME平行且相等,所以四边形MEFG是平行四边形,所以EF∥MG,又MG⊂平面MNCB,EF⊄平面MNCB,所以EF∥平面MNCB.(2)如图,连接BD、MC.因为四边形MADN是矩形,所以ND⊥AD.因为平面MADN⊥平面ABCD,平面ABCD∩平面MADN=AD,DN⊂平面MADN,所以ND⊥平面ABCD,所以ND⊥AC.因为四边形ABCD是菱形,所以AC⊥BD.因为BD∩ND=D,所以AC⊥平面BDN.又AC⊂平面MAC,所以平面MAC⊥平面BDN.[答题模板]解决这类问题的答题模板如下:1.(2016·北京西城区高三期末)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G,H分别是CE,CF的中点.(1)求证:AC⊥平面BDEF;(2)求证:平面BDGH∥平面AEF;(3)求多面体ABCDEF的体积.[解](1)证明:因为四边形ABCD是正方形,所以AC⊥BD.又平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,所以AC⊥平面BDEF.(2)证明:在△CEF中,因为G,H分别是CE,CF的中点,所以GH∥EF.又GH⊄平面AEF,EF⊂平面AEF,所以GH∥平面AEF.设AC∩BD=O,连接OH.在△ACF中,因为OA=OC,CH=HF,所以OH∥AF.因为OH⊄平面AEF,AF⊂平面AEF,所以OH∥平面AEF.因为OH∩GH=H,OH,GH⊂平面BDGH,所以平面BDGH∥平面AEF.(3)由(1)得AC⊥平面BDEF.因为AO=2,四边形BDEF的面积S▱BDEF=3×22=62,=4.所以四棱锥A-BDEF的体积V1=13×AO×S▱BDEF同理,四棱锥C-BDEF的体积V2=4.所以多面体ABCDEF的体积V=V1+V2=8.题型二求空间几何体的体积题型概览:计算几何体的体积,关键是根据条件找出相应的底面和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题.(1)直接法:对于规则几何体,直接利用公式计算即可.(2)割补法:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.(3)等体积法:一般利用三棱锥的“等积性”求三棱锥体积,可以把任何一个面作为三棱锥的底面.注意两点:一是求体积时,可选择“容易计算”的方式来计算;二是利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.(2016·全国卷Ⅲ)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求四面体N-BCM的体积.[审题程序]第一步:由线线平行或面面平行证明(1);第二步:由N 为PC 中点,推证四面体N -BCM 的高与P A 的关系; 第三步:利用直接法求四面体的体积.[规范解答] (1)由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形, 于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. [答题模板] 解决这类问题的答题模板如下:2.(2016·深圳一模)如图所示,在四棱锥S-ABCD中,底面ABCD是平行四边形,侧面SBC是正三角形,E是SB的中点,且AE⊥平面SBC.(1)证明:SD∥平面ACE;(2)若AB⊥AS,BC=2,求点S到平面ABC的距离.[解](1)证明:连接BD,交AC于点F,连接EF.∵四边形ABCD是平行四边形,∴F是BD的中点,又∵E是SB的中点,∴EF∥SD.∵SD⊄平面ACE,EF⊂平面ACE,∴SD∥平面ACE.(2)∵AB⊥AS,BC=BS=2,且E是SB的中点,∴AE=1.∵AE⊥平面SBC,BS、CE⊂平面SBC,∴AE⊥BS,AE⊥CE.∴AB=AE2+BE2= 2.又侧面SBC 是正三角形,∴CE =3, ∴AC =AE 2+CE 2=2,∴△ABC 是底边长为2,腰长为2的等腰三角形, ∴S △ABC =12×2×4-12=72.设点S 到平面ABC 的距离为h .由V 三棱锥S -ABC =V 三棱锥A -SBC ,得13h ·S △ABC =13AE ·S △SBC ,∴h =AE ·S △SBC S △ABC =237=2217.题型三 立体几何中的探索性问题题型概览:如果知道的是试题的结论,而要求的却是试题的某一个存在性条件(如存在某个定点、定直线、定值等),这种试题称为存在探索型试题.解题策略一般是先假设结论成立,然后以该结论作为一个已知条件,再结合题目中的其他已知条件,逆推(即从后往前推),一步一步推出所要求的特殊条件,即要求的存在性条件.若能求出,则存在;若不能求出,则不存在.(2016·石家庄调研)如图,在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,AC ⊥BC ,E 在线段B 1C 1上,B 1E =3EC 1,AC =BC =CC 1=4.(1)求证:BC ⊥AC 1;(2)试探究:在AC 上是否存在点F ,满足EF ∥平面A 1ABB 1?若存在,请指出点F 的位置,并给出证明;若不存在,请说明理由.[审题程序]第一步:由B 1E =3EC 1及EF ∥平面A 1ABB 1猜想点F 的位置;第二步:在平面A 1ABB 1内探求与EF 平行的直线或寻找经过EF 与平面A 1ABB 1平行的平面; 第三步:由线线平行或面面平行推理论证.[规范解答] (1)证明:∵AA 1⊥平面ABC ,BC ⊂平面ABC ,∴BC ⊥AA 1. 又∵BC ⊥AC ,AA 1∩AC =A ,∴BC ⊥平面AA 1C 1C . 又AC 1⊂平面AA 1C 1C ,∴BC ⊥AC 1.(2)解法一:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图1,在平面A1B1C1内过点E作EG∥A1C1交A1B1于点G,连接AG.∵B1E=3EC1,∴EG=34A1C1.又AF∥A1C1且AF=3,4A1C1∴AF∥EG且AF=EG,∴四边形AFEG为平行四边形,∴EF∥AG.又EF⊄平面A1ABB1,AG⊂平面A1ABB1,∴EF∥平面A1ABB1.解法二:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图2,在平面BCC1B1内过点E作EG∥BB1交BC于点G,连接FG. ∵EG∥BB1,EG⊄平面A1ABB1,BB1⊂平面A1ABB1,∴EG∥平面A1ABB1.∵B1E=3EC1,∴BG=3GC,∴FG∥AB.又AB⊂平面A1ABB1,FG⊄平面A1ABB1,∴FG∥平面A1ABB1.又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面A1ABB1.∵EF⊂平面EFG,∴EF∥平面A1ABB1.[答题模板]解决这类问题的答题模板如下:3.如图,三棱柱ABC-A1B1C1的底面是边长为4的正三角形,侧棱AA1⊥底面ABC,M为A1B1的中点.(1)证明:MC⊥AB;(2)若AA1=26,侧棱CC1上是否存在点P,使得MC⊥平面ABP?若存在,求PC的长;若不存在,请说明理由.[解](1)证明:取AB的中点N,连接MN,CN,则MN⊥底面ABC,MN⊥AB.因为△ABC是正三角形,所以NC⊥AB.因为MN∩NC=N,MN⊂平面MNC,NC⊂平面MNC,所以AB⊥平面MNC,所以AB⊥MC.(2)由(1)知MC⊥AB,若存在点P使得MC⊥平面ABP,则必有MC⊥BP.过M作MQ⊥B1C1,垂足为Q,连接QC,则QC是MC在平面BCC1B1内的射影,只需QC⊥BP即可,此时Rt△QC1C与Rt△PCB相似,QC1C1C =PCCB,所以PC=QC1·CBC1C=3×426=6,点P恰好是CC1的中点.。

高考数学几何大题解题技巧

高考数学几何大题解题技巧

高考数学几何大题解题技巧数学几何题目在高考中是常见的题目,很多考生都会在这里失分,它是一定技巧可循的。

下面是店铺为你整理关于高考数学几何大题解题技巧的内容,希望大家喜欢!高考数学几何大题解题技巧1、平行、垂直位置关系的论证的策略(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2、空间角的计算方法与技巧主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算。

(3)二面角①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。

3、空间距离的计算方法与技巧(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。

在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。

求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

4、熟记一些常用的小结论诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。

高考数学解析几何解题技巧

高考数学解析几何解题技巧

配多少呢,我先配一次给大家看看
新手版:原式 ak 2 (3bk 2 4b)
1

1
( ak 2 3bk 2 4b )2

2
(4k 2 1)2 ab ab
(4k 2 1)2

1 4ab

[(a
3b)k 2 4b]2 (4k 2 1)2
只需系数对应成比例,a 3b 4b ,a 13b 41
• 方法:
• ①设参 ②联立+韦达(秒杀)
• 分类型:
• (i)单参问题:③△>0(秒杀)//解范围1

④由题干翻译出另一不等式(运用韦达定理)

//考察转换关系(秒杀),解范围2,取交集即可
• (ii)双参问题:
• ③△>0(秒杀)//一道含两个参数的不等式
• ④由题干翻译出一道等式,用于消参
• ⑤代回③得解
• 方法: • ①设参 ②联立+韦达(秒杀) • ③△>0得到一个不等式(秒杀) • //这一步通常没什么用,仅仅用于对消参后得到的式子进行
初步判断....但几乎每道题都会满足△>0,不过既然可以秒杀,浪 费不了多少时间 • ④消参(必定可以因式分解) • ⑤一般得到两个解.....一般利用题干(例如不过顶点等条件)舍去 一解,计算定点即可
套路三:证明直线过定点问题
祭出今年的解析几何大题
20.已知椭圆C:x a
2 2

y2 b2
1(a b 0),四点P1(1,1), P2 (0,1), P3(1,
3 2
),
P4
(1,
3) 2
中恰好有三点在椭圆C上
(1)求C的方程

解析几何大题

解析几何大题

解析几何大题(原创版)目录1.解析几何大题的概述2.解析几何大题的解题思路3.解析几何大题的解题技巧4.解析几何大题的例题解析5.总结正文解析几何大题是高中数学中非常重要的一部分,也是高考数学中的热点题型。

这种题型主要考察学生的解析几何知识和解题能力,包括对解析几何概念的理解,对解析几何方法的应用,以及对解析几何题目的解析能力。

一、解析几何大题的概述解析几何大题主要涉及到解析几何中的直线、圆、椭圆、双曲线等几何图形,以及它们之间的关系。

这种题型的难度较大,需要学生有较强的逻辑思维能力和数学运算能力。

二、解析几何大题的解题思路解析几何大题的解题思路主要包括以下几个步骤:1.认真阅读题目,理解题意,确定题目要求的解。

2.分析题目,找出题目中的已知条件和待求解的问题。

3.根据已知条件,运用解析几何的相关知识和方法,进行逻辑推理和数学运算。

4.得出结论,并对结论进行验证。

三、解析几何大题的解题技巧解析几何大题的解题技巧主要包括以下几个方面:1.对解析几何中的基本概念和公式有深入的理解,熟练掌握解析几何的方法和技巧。

2.能够灵活运用解析几何中的几何方法、代数方法和几何与代数的结合方法。

3.在解题过程中,要注意保持思路的清晰和逻辑的严密,避免因为粗心大意而造成错误。

四、解析几何大题的例题解析例如,解析几何中的一道经典题目:已知直线 l:y=2x+1,圆 O:(x-1)+(y-2)=5,求直线 l 与圆 O 的交点。

解:首先,根据题目中的已知条件,我们可以列出直线 l 和圆 O 的方程。

然后,通过解析几何中的方法,我们可以求出直线 l 和圆 O 的交点。

五、总结解析几何大题是高中数学中的重点和难点,对学生的逻辑思维能力和数学运算能力有较高的要求。

高考数学几何题解题技巧知识点

高考数学几何题解题技巧知识点

高考数学几何题解题技巧知识点高考数学几何题是考生普遍认为难度较大的部分,但只要掌握了一些解题技巧和相关知识点,就能够应对各种考试题型。

本文将介绍一些高考数学几何题解题技巧和知识点,帮助考生在考试中取得好成绩。

一、平面几何基本概念在解答几何题之前,我们首先需要掌握一些平面几何的基本概念和术语。

1. 点、线、面:点是几何图形的基本要素,没有长度、宽度和厚度;线由无数个点组成,没有宽度和厚度;面由无数个线组成,有长度和宽度,但没有厚度。

2. 直线和射线:直线是由两个点确定的最短路径,无限延伸;射线有一个起点,无限延伸。

3. 角度:由两条射线共同起点组成的角,可以用度来度量。

4. 三角形:由三条线段组成,组成三角形的线段称为边,组成三角形的点称为顶点。

5. 四边形:由四条线段组成。

6. 圆:圆心到圆上任意一点的距离相等,可以用圆心角来度量。

二、解题思路和方法在解答高考数学几何题时,我们可以采用以下的解题思路和方法。

1. 画图:通过画图可以更好地理解题目和问题,有助于找到解题的突破口。

2. 利用已知条件:在解题过程中,要充分利用已知条件,根据已知条件的几何含义来解决问题。

3. 应用几何定理:数学几何中有许多重要的定理,比如三角形的角平分线定理、相似三角形的性质等,可以灵活运用这些定理来解题。

4. 利用几何性质和相似关系:在解决几何问题时,可以利用几何图形的性质和相似关系来解题。

5. 分类讨论:对于复杂的几何问题,可以根据不同情况进行分类讨论,逐一解决问题。

三、常见的几何题类型和解题技巧1. 长方形和正方形题型:对于长方形和正方形的几何问题,可以利用对角线的性质、正方形的性质等进行解题。

2. 三角形题型:在解决三角形问题时,可以利用角平分线定理、三角形的中线性质等进行推理。

3. 圆题型:对于圆的几何问题,可以利用圆心角和多边形内角和公式等进行解题。

4. 相似三角形题型:在解决相似三角形问题时,可以利用两个相似三角形的边的对应比例相等的性质来解题。

高考数学中立体几何的考点及解题技巧

高考数学中立体几何的考点及解题技巧

高考数学中立体几何的考点及解题技巧高考数学中的立体几何是相对来说比较难的一个环节,也是考生必须要掌握的内容之一。

本文将针对高考数学中立体几何的考点和解题技巧做一个详尽的论述。

1. 空间基本概念在解决空间问题时,首先需要掌握的就是空间基本概念。

包括点、线、面的概念及其相关性质。

比如平行四边形的对角线相交于点O,则线段OA、OB互相平分且相等。

2. 立体图形的投影立体图形的投影是指将三维的立体图形在某一平面上产生的影像。

在这里,我们主要讲解直线与平面的投影,并通过题目的解答来加深记忆。

3. 三视图三视图是三维立体图形的三个面正、左、俯视图。

在解决题目时,需要掌握三维图形和其三视图之间的对应关系,想象立体图形在视线方向上的不同表现,来确定视角和投影位置。

特别是在椎体、金字塔、棱锥等图形的题目中,需要考生准确细致地确定各部分的位置。

4. 空间向量空间向量是指空间中有大小和方向的量,在立体几何中经常使用,可以用于排除无关信息,简化问题。

5. 立体几何解题的思路立体几何解题的方法及思路与平面几何有些不同。

在立体几何中,有的题目需要平面几何的方法来解决;某些题目需要分解为几个简单的平面图形,再运用三角函数来解决;有些题目需要利用向量的性质,优化模型。

因此,在解答的过程中,需要先明确各部分关系,做到想象明确,思路清晰。

高考数学中立体几何的考点及解题技巧就是如此,需要同学们根据自已的掌握程度,不断深化学习。

建议同学们多进行课堂上的实际解答,熟练掌握相关理论知识。

除此之外,同学们还需要养成良好自习习惯,在课外时间多加练习,巩固学习成果。

相信在充分掌握理论知识的情况下,同学们一定可以取得优异的高考成绩。

高考数学技巧解决平面几何题的关键方法

高考数学技巧解决平面几何题的关键方法

高考数学技巧解决平面几何题的关键方法在高考数学中,平面几何题一直是考试难点之一。

考生在备考过程中,如果能掌握一些解题技巧和关键方法,将能更轻松地应对这类题目。

本文将介绍几种高考数学技巧,帮助考生解决平面几何题。

一、刻画图形特征解决平面几何题的关键是准确理解图形,在脑海中根据题目描述形成一个清晰的图像。

首先,仔细研读题目,记录、提取关键信息。

然后,根据这些信息进行推敲和分析,进一步刻画图形特征。

例如,如果题目中给出了两个三角形的相似比例关系,我们可以将其表示为"∠A∼∠B",并考虑等式成立的条件。

这样的分析能够帮助我们更好地解决几何问题。

二、应用相似三角形相似三角形是解决平面几何题的常用方法之一。

当出现两个三角形的角度相等或对应边成比例的情况时,我们可以判断这两个三角形是相似的。

在应用相似三角形解题时,可以利用已知信息推导出未知信息,或者通过求解比例关系来确定未知边长。

例如,如果题目给出两个相似三角形的比例关系为"a:b",我们可以利用相似三角形的性质求解出各个边长,进而解决问题。

三、利用三角形的性质除了相似三角形的性质外,考生还可以运用三角形内角和定理、三角形外角和定理以及角平分线定理等来解决平面几何题。

这些性质在高考数学中经常出现,掌握它们能够帮助我们更好地解决几何问题。

例如,当题目给出一个三角形的内心或重心时,我们可以利用这些特殊点的性质解决问题;当题目涉及到平行线的关系时,我们可以利用平行线的内外角和定理求解角度。

四、利用相交线的性质平面几何题中,相交线的性质也是考点之一。

考生在解决这类题目时,可以利用同位角、同旁内角、交错内角等相关性质进行分析。

例如,当题目中给出两条平行线以及与其相交的一条直线时,我们可以利用同位角的性质解决题目中涉及的角度问题。

五、应用向量方法向量是解决平面几何题的另一种有效方法。

考生可以构建向量方程解题,通过向量的加法、减法和数量积等运算,推导出问题的解。

高考数学应试技巧之立体几何

高考数学应试技巧之立体几何

高考数学应试技巧之立体几何在高考中,数学是考生必须要面对的必修科目之一,而立体几何也是其中难度较大的一部分。

在高考中,立体几何通常占据一定比例的分值,因此掌握好立体几何应试技巧对于整个数学成绩的提升有着非常重要的作用。

在本文中,我将介绍一些高考数学立体几何应试技巧,希望能够对广大考生有所帮助。

一、抓住重点难点在立体几何的学习中,我们需要把握住某些重点难点,这些知识点往往决定了整个部分的难度和重要性。

以下是一些高考立体几何的重难点:1. 空间向量和平面向量的相互转化;2. 向量叉乘的定义和性质;3. 直线和平面的方程式和性质,如平面法向量的确定;4. 空间几何中的相交线和平面、轴的求法;5. 三棱锥和四棱锥的性质和特征,以及如何求它们的体积;6. 球体的性质和公式,如球的面积和体积的计算。

以上这些内容都是高考立体几何中难度较大也较为重要的知识点,考生需花费更多的时间和精力去深入学习。

二、解题方法与技巧在考场上,考生需要注意一些解题方法和技巧,以使解题更顺利。

以下是一些常见的解题技巧:1. 画图法:立体图形通常较难想象,可以通过一些手绘图解来帮助解题。

可以在图纸上画出与题目相符合的立体图形,然后通过图形来解答问题。

尤其是在容易出错的计算过程中,可以通过画各个过程图来实现规范化计算。

2. 应用向量计算:在空间向量和平面向量的知识点中,向量计算是一种应用非常广泛的解题方法。

通过把题目所给的向量与需要求解的向量相互运算,可以求解出问题的答案。

例如,求两条直线的夹角、直线上的点到平面的距离等,都可以采用向量方法来解决。

3. 利用坐标系解题:在解决空间几何中的问题时,可以利用三维坐标系来解决。

这种方法可以将三维几何问题转化为平面几何问题,使问题更加明确化和规范化。

比如,若需要求两直线的交点,则可通过方程式,建立坐标系,进而求解问题。

4. 利用相似性质解决问题:在解决三棱锥、四棱锥题目时,我们可以利用它们的相似性质来帮助解决问题。

【高考数学】高考解析几何解答题题型分析及解答策略(学生).doc

【高考数学】高考解析几何解答题题型分析及解答策略(学生).doc

高考解析几何解答题题型分析及解答策略。

©归纳・・1.定点问题(1)解析几何中直线过定点或曲线过定点问题是指不论直线或曲线中的参数如何变化,直线或曲线都经过某一个定点.(2)定点问题是在变化中所表现出来的不变的点,那么就可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变量所影响的某个点,就是要求的定点.2.定值问题解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不随参数的变化而变化,而始终是一个确定的值.3.最值问题圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法, 即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数,然后利用函数方法、不等式方法等进行求解.4.圆锥曲线中的范围问题(1)解决这类问题的基本思想是建立目标函数和不等关系.(2)建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理.5.圆锥曲线中的存在性问题(1)所谓存在性问题,就是判断满足某个(某些)条件的点、直线、曲线(或参数)等几何元素是否存在的问题.(2)这类问题通常以开放性的设问方式给出,若存在符合条件的几何元素或参数值,就求出这些几何元素或参数值;若不存在,则要求说明理由.6.圆锥曲线中的证明问题圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等).7.圆锥曲线与三角、向量的交汇问题8.圆锥曲线与数列、不等式的交汇问题9.圆锥曲线与函数、导数的交汇问题.(1)求椭圆E的方程;(2)过椭圆E的左顶点A作两条互相垂直的直线分别与椭圆E交.于(不同于点A的)M, N两点,试判断直线与x轴的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.[例2].已知椭圆C:务+相=1(泓>0)的离心率e=斗,左、右焦点分别为Fi,F2,点F(2, 茶),点%在线段PF1的中垂线上.(1)求椭圆。

高考数学中的立体几何问题及解题方法

高考数学中的立体几何问题及解题方法

高考数学中的立体几何问题及解题方法高考数学中,立体几何是一项重要的考试题型。

相比于平面几何、代数和概率统计等内容,立体几何更为抽象,对学生的空间想象力和逻辑能力要求更高。

本文旨在探讨高考数学中的立体几何问题及其解题方法。

一、立体几何常考题型常见的立体几何问题包括立体几何图形的性质、体积、表面积等问题。

下面列举一些高考中经常出现的立体几何考点。

1. 立体图形的名字和性质高考中经常出现的立体图形包括正方体、长方体、棱柱、棱锥、圆柱、圆锥、球等。

学生需要掌握这些图形的属性,比如正方体的六个面都是正方形、长方体的所有面都是矩形等等,只要掌握了它们的基本属性,在解决题目时就能做到心中有数。

2. 体积求立体图形的体积是立体几何中比较基础和常见的题型。

学生需要清楚掌握各种常见图形的体积公式,例如:①正方体的体积公式:V=a³②长方体的体积公式:V=lxwxh③棱柱的体积公式:V=Ah④圆柱的体积公式:V=πr²h⑤球的体积公式:V=4/3πr³⑥棱锥的体积公式:V=1/3Ah注意,这些公式必须要掌握,不要在考试中还在纠结于公式的推导方法。

3. 表面积求立体图形的表面积也是数学中的一大题型。

常见的几何图形表面积的计算方式有如下几种公式:①正方体的表面积公式:S=6a²②长方体的表面积公式:S=2(lw+lh+wh)③棱柱的表面积公式:S=2B+Ph④圆柱的表面积公式:S=2πr²+2πrh⑤球的表面积公式:S=4πr²⑥棱锥的表面积公式:S=B+1/2Pl其中B表示底面积,P表示底面外接多边形的周长,l表示斜几何。

上面列举的是一些常见的立体几何题目,还有一些特殊题目需要学生掌握,例如“平行四边形体积定理”、“曲面半径定理”等等。

二、举例分析解题方法1. 体积题例题:某学校花坛为正方形,长和宽之和为25米,现在将花坛增加5个方块,每个方块边长为2米,求增加的花坛的体积。

掌握高考数学中的平面几何题解题方法

掌握高考数学中的平面几何题解题方法

掌握高考数学中的平面几何题解题方法在高考数学中,平面几何作为考试中的一个重要考点,是考生需要掌握和熟练运用的知识点之一。

解题方法的掌握不仅可以帮助考生更好地应对考试,还能够提升数学解题的思维能力和逻辑思维能力。

本文将介绍一些掌握高考数学中平面几何题解题方法的技巧与思路。

一、平面几何的基本概念在解平面几何题时,首先要确保自己对于基本概念的掌握。

例如,点、直线、线段、角度、平行线、垂直线等基本概念的理解是解题的基础。

理解清楚这些概念的含义,有助于正确理解题目的要求以及运用相应的解题方法。

二、平面几何的基本性质在解题时,掌握平面几何的基本性质是非常重要的。

例如,两条平行线被一条截线所截时,对应角相等;两条平行线夹着的内角和为180度等。

了解这些基本性质,可以帮助我们进行问题的分析和解答。

在解题过程中,有必要通过阅读题目和观察图形来确定是否可以运用某些性质,从而找出解题的方向。

三、平面几何题的解题步骤解答平面几何题时,可以按以下步骤进行:1. 仔细审题,理解题目所给条件和要求。

2. 绘制准确的图形,根据图形特点找出解题的线索。

3. 运用平面几何的基本概念和性质,对问题进行分析。

4. 利用已有条件,运用相应的解题方法,求解所需答案。

5. 根据题目要求,得出最终解答,并进行必要的验证。

四、常见平面几何题型及解题方法1. 直线和角的问题直线和角的问题是高考数学平面几何题中的常见类型。

在解决这类问题时,可以应用解直线与角的性质和定理,如平行线之间的夹角相等,同位角、内错角等。

可以通过计算角度大小、设立方程、运用相似三角形的性质等多种方法解题。

2. 三角形的问题三角形是高考平面几何题中的另一个重要的题型。

在解决与三角形相关的问题时,可以利用三角形的边长关系(如勾股定理、正弦定理、余弦定理等),角度关系(如内角和、外角和等),以及三角形的相似性等。

根据问题所给条件,选取合适的解题方法,化繁为简,解答问题。

3. 圆的问题圆是高考平面几何题中的另一种题型。

高中解析几何秒杀公式

高中解析几何秒杀公式

高中解析几何秒杀公式解析几何是数学必考的内容,高考数学中的解析几何的公式又非常多,那么考生如何秒杀高考数学解析几何的公式呢?高考数学解析几何有哪些解题技巧呢?如何秒杀高考数学圆锥曲线1.根据题设的已知条件,利用待定系数法列出二元二次方程,求出椭圆的方程,并化为标准方程。

2.直线设为斜截式y=kx+m,将直线与椭圆联立得到如图一元二次方程。

注意该式子具有普适性。

3.通常要验证判别式大于零(因为无论是该经验所给的弦长公式还是韦达定理都是在判别式大于零的情况下才有意义,若题目给出直线与椭圆相交则略去该步,多写不扣分)。

4.直接写出需要的弦长公式或韦达定理。

可以省去至少5分钟,而且不会算错。

5恒成立问题的证明可能会与导数,不等式交汇。

恒成立问题的证伪只要找到反例即可。

存在性问题通常是存在的,方法是提出无关的未知数。

6.最后别忘了写综上所述。

如何秒杀高考数学直线和圆的方程 1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。

2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系。

3.了解二元一次不等式表示平面区域。

4.了解线性规划的意义,并会简单的应用。

5.了解解析几何的基本思想,了解坐标法。

6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。

如何秒杀高考数学立体几何平行、垂直位置关系:1.由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

2.利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

3.三垂线定理及其逆定理在题中使用的频率最高,在证明线线垂直时应优先考虑。

空间角的计算方法:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

1.两条异面直线所成的角:平移法,补形法,向量法。

2.直线和平面所成的角分为作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算,和用公式计算。

漫谈解析几何大题的四大优化策略

漫谈解析几何大题的四大优化策略

解题篇经典题突破方法高考数学2021年4月壇琰鉛料JT灯天販曲回兀尤连英咯V-■浙江省湖州中学盛耀建解析几何大题,是每年高考的必考大题,虽然常考,且题型也较为固定,但其依然是挡在考生面前的几座大山之一,得分率较低。

那么如何破解这一难题,推翻这座大山呢?笔者认为,除了需要我们同学总结一些常见的题型,还需要掌握一些特殊的技巧,笔者就此整理了解析几何大题解题时的四大常见优化策略,供同学们复习备考时参考。

策略一:同构式“同构式”侧重于“同构”二字,顾名思义,结构相同。

具体举例如下:捌(如图1,已知抛物线E:;/=2的:(力>0)过点Q(1,2),F为其焦点,过F且不垂直于工轴的直线I交抛物线E于A,B两点,动点P满足图1AFAB的垂心为原点O。

(¥,%),又因为。

为厶PAB的垂心,从而B(rr2,夕2),联立{,消去工整理得==4jc,y2—4:ty—4=0,则<》1+%=4左,设P(鼻。

,13》2=—4。

%),则PA=yi\——■>y0—yi),ub—PA•06=0,代入化简得+3^03^2+3= 0,同理亍'式+》0夕1+3=0,所以J/19y2是方程亍夕2+30的两根,由韦达定理知4y必+兀―土j,夕0=—gS=—312皿2=厂=_43^o3i?所以动点P在定直线皿口=—3上。

S=—3,(1)求抛物线E的标准方程;(2)求证:动点P在定直线勿上,并求的最小值。

~2I AB I d、d.s”==生=13严+4| SgB^\AB\d2込|2d解析:(1)由题意,将Q(l,2)代入b= 2”:,得22=20*0=2,所以抛物线E的标准方程为b=4sQ#9y+y N2◎,当且仅当t=±号。

其中d19d2分别为点P和点Q到直线AB的距离。

攀时取等(2)设Z:H=£jy-|-l(£HO),A(rci,;yi),评注:第(2)问的解答关键在于“%,;2Vi—V?所以k AB=yl y2,将①②代入得k AB=工1—S/2今,即直线AB的斜率为定值今。

高考数学中的平面几何题技巧

高考数学中的平面几何题技巧

高考数学中的平面几何题技巧高考数学中,平面几何是一个重要的考点,需要掌握一些技巧来解答相关的题目。

本文将介绍一些高考数学中的平面几何题的解题技巧。

一、图形的对称性对于平面几何题目,要注意图形的对称性。

常见的对称性有轴对称和中心对称。

通过观察图形的对称性,我们可以得到一些有用的信息,帮助我们进行解题。

例如,在判断一个图形是否是正方形时,我们可以通过观察它的对称性来判断。

正方形是轴对称的,即以中心为对称轴,分成两半是完全相同的。

如果我们发现一个图形具有轴对称性,并且两半是完全相同的,那么可以初步判断这个图形可能是正方形。

二、利用相似三角形在解决平面几何题时,我们常常会遇到相似三角形。

相似三角形有一个重要的性质:对应角相等,对应边成比例。

利用这个性质,我们可以通过已知条件找到未知条件,从而解决问题。

例如,当我们要计算一个直角三角形的某个边长,但是缺少相关信息时,我们可以利用相似三角形来解决。

观察图形是否存在与已知直角三角形相似的三角形,通过对应边的比例关系来计算未知边长。

三、运用几何判断在高考数学中,平面几何题目通常会涉及到几何判断。

这就要求我们熟悉一些几何判断的定理和方法。

例如,当我们需要判断两个角是否相等时,可以利用“对顶角相等”的定理来解决。

如果我们需要判断两条线段是否平行,可以利用“同位角相等”或“内错角互补”等定理来判断。

四、运用平面几何的知识解决问题解决平面几何题目的最重要的一点是熟练掌握平面几何的相关知识,包括各种定理、公式等。

例如,在计算一个图形的面积时,我们需要掌握各种图形的计算公式。

比如,计算三角形的面积可以使用“底乘高除以二”的公式,计算矩形的面积可以使用“长乘以宽”的公式。

五、综合运用多种技巧在解答平面几何问题时,往往需要综合运用多种技巧来解决问题。

例如,当我们需要计算一个复杂图形的面积时,可以分割成若干个简单的图形进行计算,然后再将它们的面积相加。

这时我们就需要利用到对称性、相似三角形、几何判断等多种技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学几何大题解题技巧
1、平行、垂直位置关系的论证的策略
1由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

2利用题设条件的性质适当添加辅助线或面是解题的常用方法之一。

3三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2、空间角的计算方法与技巧
主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

1两条异面直线所成的角①平移法:②补形法:③向量法:
2直线和平面所成的角
①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用
向量计算。

②用公式计算。

3二面角
①平面角的作法:i定义法;ii三垂线定理及其逆定理法;iii垂面法。

②平面角的计算法:
i找到平面角,然后在三角形中计算解三角形或用向量计算;ii射影面积法;iii向量
夹角公式。

3、空间距离的计算方法与技巧
1求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角
形中求解,也可以借助于面积相等求出点到直线的距离。

2求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。

在不能直
接作出公垂线的情况下,可转化为线面距离求解这种情况高考不做要求。

3求点到平面的距离:一般找出或作出过此点与已知平面垂直的平面,利用面面垂直
的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有
时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。

求直线与平面的距离及平面与
平面的距离一般均转化为点到平面的距离来求解。

4、熟记一些常用的小结论
诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。

弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。

5、平面图形的翻折、立体图形的展开等一类问题
要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。

6、与球有关的题型
只能应用“老方法”,求出球的半径即可。

7、立体几何读题
1弄清楚图形是什么几何体,规则的、不规则的、组合体等。

2弄清楚几何体结构特征。

面面、线面、线线之间有哪些关系平行、垂直、相等。

3重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。

8、解题程序划分为四个过程
①弄清问题。

也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。

②拟定计划。

找出已知与未知的直接或者间接的联系。

在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。

即是我们常说的思考。

③执行计划。

以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。

即我们所说的解答。

④回顾。

对所得的结论进行验证,对解题方法进行总结。

感谢您的阅读,祝您生活愉快。

相关文档
最新文档