九年级数学上册21.1二次根式第3课时教案新人教版

合集下载

新人教版九年级上21.1二次根式教案

新人教版九年级上21.1二次根式教案

新人教版九年级上21.1二次根式教案篇一:数学:人教版九年级上21.1二次根式(教案)数学:人教版九年级上21.1二次根式(教案)一、教学目标1.复习平方根的概念.2.经历从实际问题列二次根式的过程知道什么是二次根式会求二次根式有意义的条件.二、教学重点和难点1.重点:二次根式的概念.2..三、教学过程(一)复习旧知导入新课师:从本节课开始我们要学习新的一章——第二十一章二次根式(板书:第二十一章二次根式).师:什么是二次根式这得从平方根说起.师:初二的时候我们学过平方根那么什么是平方根(稍停)师:(板书:x=5并指准)x=55是x的什么(稍停)5是x的平方;反过来x是5的什么(稍停)x是5的平方根.师:(指准x=5)x=55是x的平方x是5的平方根.大家按照老师的说法自己说几遍.(生自己说)师:位同学来说一说2222生:??(让一两名同学说)师:(指准x=5)x=5x是5的平方根那么5的平方根x等于什么呢(板书:5的平方根x=)生:??(让一两名学生回答)师:x=师:(指准55的算术平方根.师:(指准板书)5的平方根是12的平方根生:(齐答).2212的什么12的算术平方根.师:上面我们复习的是正数的平方根下面我们来看0的平方根.师:(板书:x=0并指准)x=0x等于什么生:(齐答)x=0.(师板书:x=0)师:(指准板书)从x=0得出x=0这说明什么(稍停)这说明0的平方根为0(板书:0的平方根为0).师:我们还规定0的算术平方根为0.师:下面我们再来看负数有没有平方根.师:(板书:x=5并指准)一个数的平方等于5这样的数有没有(稍停)任何一个数的平方或者大于0或者等于0不可能小于0所以这样的数没有(板书:不存在).这说明什么(稍停)这说明5没有平方根(板书:5没有平方根).师:(指板书)从上面的讨论我们可以得出一个结论什么结论(稍停)正数有两个平方根它们互为相反数;0的平方根是0;负数没有平方根.(二)试探练习回授调节1.填空:(1)9的平方根是9的算术平方根是;(2)6的平方根是6的算术平方根是;(3)0的平方根是0的算术平方根是.2.用带根号的式子填空:(1)一个直角三角形的两条直角边的长分别是2和3则斜边的长为;(2)面积为S的正方形的边长为;(3)跳水运动员从跳台跳下他在空中的时间t(单位:秒)与跳台高度h(单位:米)满足关系h=5t.如果用含有h的式子表示t则t=.(三)尝试指导讲授新课(生报第222222师:式子有什么共同的特点生:??(问题的答案不是唯一的鼓励学生发表自己的看法)师:(指准式子)是13S的算术平方h的算术平方根.另一方面从式子5子).师:a等于13a等于Sa等于什么生:(齐答)等于h.S式(板书:叫做二次根式).师:大家把二次根式的概念读两遍.(生读)师:下面我们来看一道例题.(师出示例题)例当x师:大家看一看这个题目想一想做这个题目.(生读题思考)师:x2必须大于等于0.为什么被开方数x2必须大于等于0x2的算术平方根而负数没有平方根所以被开方数x2必须大于等于0.(以下师边讲解边板书解题过程如下)解:由x2≥0得x≥2.当x ≥2.(四)试探练习回授调节3.填空:(1)当a有意义;(2)当x.4.选做题:当x;当x有意义.(五)归纳小结布置作业2师:本节课我们首先复习了平方根的概念然后学习了什么是二次根式.(指准板a必须大于等于0(板书:其中a≥0).(作业:P5习题1P3练习2)四、板书设计课题:21.1二次根式(第2课时)一、教学目标1.经历探究过程知道并会简单运用二次根式的基本性质.2.培养探究能力和归纳表达能力.二、教学重点和难点1.重点:二次根式的基本性质.2.难点:二次根式基本性质的探究.三、教学过程(一)创设情境导入新课师:上节课我们学习了二次根式的概念什么样的式子是二次根式(师出示下面的板书)a≥0)的式子叫做二次根式.师:a必须大于等于0.譬如.师:明确了二次根式的概念本节课我们要学习什么本节课我们要学习二次根式的性质(板书:二次根式的性质).(二)尝试指导讲授新课师:二次根式有什么性质二次根式有三个性质我们先来看第一个性质.(师出示下面的板书)性质1a≥0)是一个非负数.师:(指准板书)性质1.0所.a的算术平方根而a的算术平方根总是大于等于0.师:下面我们来看二次根式的第二个性质.师:于什么生:等于3.(直到有学生猜出这个答案师板书:=3)师:(指式子)等2=3为什么(稍停)2(师出示下图)面积=3师:(指准图)这是一个正方形这个正方形的面积为3那么它的边长等于什么(多让几名同学回答然后师在图上板书:边长师:3.么生:??(多让几名同学回答)=3.师:(板书:=)利用同样的办法我们可以得到等于什么师:3可见222生:(齐答)等于8.(生答师板书:8)篇二:人教版九年级上册教案21.1二次根式121.1二次根式第一课时教学内容二次根式的概念及其运用教学目标a≥0)的意义解答具体题目.提出问题根据问题给出概念应用概念解决实际问题.教学重难点关键1a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3那么它的图象在第一象限横、?纵坐标相等的点的坐标x问题2:如图在直角三角形ABC中AC=3BC=1∠C=90°那么AB边的长是.A问题3:甲射击6次各次击中的环数如下:8、7、9、9、7、8那么甲这次射击的方差是S2那么S=.老师点评:问题1:横、纵坐标相等即x=y所以x2=3.因为点在第一象限所以.问题2:由勾股定理得C问题3:由方差的概念得S=二、探索新知a≥0)?的式子叫做二次根式(学生活动)议一议:1.1有算术平方根2.0的算术平方根是多少3.当a<0老师点评:(略)例1、x1x≥0y?≥0).x?y;第二被开方数是正数分析或0.x>0)x≥0y≥0);不是二次11.xx?y例2.当x分析:由二次根式的定义可知被开方数一定要大于或等于0所以3x1≥0?才能有意义.解:由3x1≥0得:x≥当x≥131在实数范围内有意义.3三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x分析+1在实数范围内有意义x?11在实数范围内有意义必须同时满足中的≥0和x?11中的x+1≠0.x?1解:依题意得??2x?3?0?x?1?0由①得:x≥32由②得:x≠1当x≥32且x≠11x?1在实数范围内有意义.例4(1)已知求xy的值.(答案:2)(2)求axx+bxx的值.(答案:25)五、归纳小结(学生活动老师点评)本节课要掌握:1a≥0)的式子叫做二次根式2.要使二次根式在实数范围内有意义必须满足被开方数是非负数.六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.第一课时作业设计一、选择题1.下列式子中是二次根式的是()A.BCD.x2.下列式子中不是二次根式的是()ABCD.1x3.已知一个正方形的面积是5那么它的边长是()A.5BC.15D.以上皆不对二、填空题1.形如的式子叫做二次根式.2.面积为a的正方形的边长为.3.负数平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒其高为0.2m按设计需要做成正方形试问底面边长应是多少2.当x2在实数范围内有意义3.4.x有()个.底面应?A.0B.1C.2D.无数5.已知a、b=b+4求a、b的值.第一课时作业设计答案:一、1.A2.D3.B二、1a≥0)23.没有三、1.设底面边长为x则0.2x2=1解答:3??2x?3?0?x??2.依题意得:??2x?0???x?0∴当x>3且x≠0x2在实数范围内没有意义.23.134.B5.a=5b=4篇三:人教版数学九年级(上)21.1《二次根式》教案21.1《二次根式》教案一、知识回顾1.9的平方根是9的算术平方根是.2.3的算术平方根表示为;3的平方根表示为3.在实数范围内正数有0的(算术)平方根是;负数(算术)平方根.二、知识点拨知识点1:一般地我们把形如(a≥0)的式子叫做二次根式“”称为二次根号.6.下列是二次根式的是:.(1)x2=25(2)2x?1(3)x2-x-9=0(4)2x?6(5)xy≥0(6)2(7)12(8)x7.当a是怎样的实数时下列各2a式在实数范围内有意义a(1)a?2(2)?1(3)2a?3(4)?2(5)3?a(6)a(7)?a(8)a2(9)a32知识点2:一般地=a(a≥0).a)8.计算:222(1)(2)(3).5)(2)3)222(4)(5)(6)(32))(?0.2)知识点3:一般地a2=a (a≥0).9.化简:2(1)(2)?5(3)0.32)22(5)(4)?1(6)?2???)722(7)0.62(8)?3知识点4:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数和字母连接起来的式子我们称这样的式子为代数式.三、课后思考10.已知直角三角形两直角边为a和b斜边为c.(提示:勾股定理公式:a2+b2=c2)(1)如果a=12b=5求c;(2)如果a=3c=4求b;(3)如果c=10b=9求a.11.已知半径为rcm的圆的面积是半径为2cm和3cm的两个圆的面积的和求r的值.12.(1)?n是整数求自然数n的值.(2)24n是整数求正整数n的最小值.13.当x是怎样的实数时下列各式在实数范围内有意义1(1)3?x(2)2x?114.已知n是正整数n是整数求n的最小值.四、中考链接15.(XX·株洲)若使二次根式x?2在实数范围内有意义则x的取值范围是()A.x>2B.x≥2C.x<2D.x≤2XX16.(XX·天津)若x、y为实数且x?2?y?2?0则的值为.xy17.(XX·哈尔滨)36的算术平方根是()A.6B.±6C.D.±618.(XX·荆门)?9的平方根是()A.81B.±3C.3D.-319.(XX·宜宾)9的平方根是()A.3B.-3C.±3D.±3220.(XX·怀化)若a?2?b?3?(c?4)?0则a-b+c=.21.(XX·福州)请写出一个比5小的整数:022.(XX·江苏)计算:?2?(1?2)?4223.(XX·江西)计算:(?2)?(3?5)??2?(?3)024.(XX·南充)计算:(??XX)??3?2。

九年级数学上册 21.1 二次根式教案 新人教版

九年级数学上册 21.1 二次根式教案 新人教版
(1)学生是否联想到刚刚学习过的二次根式有意义的条件,本题中即要满足;
(2)学生是否能分和这两种情况进行讨论.
在教师的引导下,学生很容易得到如下结论:
是一个非负数.
通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生的分类讨论的思想和归纳概括的能力.
活动3
问题
根据算术平方根的意义填空:
21.1 二次根式
教学目标
知识技能
1.了解二次根式的概念.
2.了解二次根式的基本性质.
数学思考
经历观察、比较、总结二次根式的基本性质的过程,发展学生的归纳概括能力.
解决问题
通过对二次根式的概念和性质的探究,提高数学探究能力和归纳表达能力.
情感态度
学生经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的快乐,并提高应用的意识.
通过这组题目的练习,加深对这一性质的理解和应用.对于复杂的题目,要学会分解,化难为易.
活动4
问题
(1)填空:
;;
;.
(2)思考:当时,?
(3)与相等吗?
例3化简:
(1); (2).
教师首先引导学生比较活动3与活动4中两组题目的不同之处,注意学生是否观察出:活动3中的题目是对非负数先进行开平方运算,再进行平方运算;而活动4中的题目正好相反,是先进行平方运算,再进行开平方运算.
注重新旧知识的连贯性,使学生有一个由浅入深的学习过程,并体会到学习的内容是融会贯通的.
为学生提供练习的时间和空间,调动学生的主观能动性,激发好奇心和求知欲.
通过题目的练习,使学生加深对所学知识的理解,避免一些常见错误.
活动2
问题
请比较与0的大小.

2019数学九年级上册21.1-二次根式(教案)

2019数学九年级上册21.1-二次根式(教案)

课题:21.1二次根式一、教学目标1.复习平方根的概念.2.经历从实际问题列二次根式的过程,知道什么是二次根式,会求二次根式有意义的条件.二、教学重点和难点1.重点:二次根式的概念.2..三、教学过程(一)复习旧知,导入新课师:从本节课开始,我们要学习新的一章——第二十一章二次根式(板书:第二十一章二次根式).师:什么是二次根式?这得从平方根说起.师:初二的时候我们学过平方根,那么什么是平方根?(稍停)师:(板书:x2=5,并指准)x2=5,5是x的什么?(稍停)5是x的平方;反过来,x是5的什么?(稍停)x是5的平方根.师:(指准x2=5)x2=5,5是x的平方,x是5的平方根.大家按照老师的说法,自己说几遍.(生自己说)师:哪位同学来说一说?生:……(让一两名同学说)师:(指准x2=5)x2=5,x是5的平方根,那么5的平方根x等于什么呢?(板书:5的平方根x=)生:……(让一两名学生回答)师:x=师:(指准55的算术平方根.师:(指准板书)5的平方根是12的平方根是什么?生:(齐答).12的什么?12的算术平方根.师:上面我们复习的是正数的平方根,下面我们来看0的平方根.师:(板书:x2=0,并指准)x2=0,x等于什么?生:(齐答)x=0.(师板书:x=0)师:(指准板书)从x2=0得出x=0,这说明什么?(稍停)这说明0的平方根为0(板书:0的平方根为0).师:我们还规定0的算术平方根为0.师:下面我们再来看负数有没有平方根.师:(板书:x2=-5,并指准)一个数的平方等于-5,这样的数有没有?(稍停)任何一个数的平方,或者大于0,或者等于0,不可能小于0,所以这样的数没有(板书:不存在).这说明什么?(稍停)这说明-5没有平方根(板书:-5没有平方根).师:(指板书)从上面的讨论,我们可以得出一个结论,什么结论?(稍停)正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.(二)试探练习,回授调节1.填空:(1)9的平方根是,9的算术平方根是;(2)6的平方根是,6的算术平方根是;(3)0的平方根是,0的算术平方根是 .2.用带根号的式子填空:(1)一个直角三角形的两条直角边的长分别是2和3,则斜边的长为;(2)面积为S的正方形的边长为;(3)跳水运动员从跳台跳下,他在空中的时间t(单位:秒)与跳台高度h(单位:米)满足关系h=5t2.如果用含有h的式子表示t,则t= .(三)尝试指导,讲授新课(生报第2)师:,这三个带有根号的式子有什么共同的特点?生:……(问题的答案不是唯一的,鼓励学生发表自己的看法)师:(指准式子)是13S的算术平方根,是h5的算术平方根.另一方面,从式子子).师:a等于13a等于S中的a等于什么?生:(齐答)等于hS.式(板书:叫做二次根式).师:大家把二次根式的概念读两遍.(生读)师:下面我们来看一道例题.(师出示例题)例当x师:大家看一看这个题目,想一想怎么做这个题目.(生读题思考)师:x-2必须大于等于0.为什么被开方数x-2必须大于等于0?x-2的算术平方根,而负数没有平方根,所以被开方数x-2必须大于等于0.(以下师边讲解边板书,解题过程如下)解:由x-2≥0,得x≥2.当x≥2.(四)试探练习,回授调节3.填空:(1)当a 时,有意义;(2)当x 时,.24.选做题:当x 时,有意义;当x 时,有意义.(五)归纳小结,布置作业师:本节课我们首先复习了平方根的概念,然后学习了什么是二次根式.(指准板a必须大于等于0(板书:其中a≥0).(作业:P5习题1,P3练习2)四、板书设计课题:21.1二次根式(第2课时)一、教学目标1.经历探究过程,知道并会简单运用二次根式的基本性质.2.培养探究能力和归纳表达能力.二、教学重点和难点1.重点:二次根式的基本性质.2.难点:二次根式基本性质的探究.三、教学过程(一)创设情境,导入新课师:上节课我们学习了二次根式的概念,什么样的式子是二次根式?(师出示下面的板书)a≥0)的式子叫做二次根式.师:a必须大于等于0.譬如,.师:明确了二次根式的概念,本节课我们要学习什么?本节课我们要学习二次根式的性质(板书:二次根式的性质).(二)尝试指导,讲授新课师:二次根式有什么性质?二次根式有三个性质,我们先来看第一个性质.(师出示下面的板书)性质1a≥0)是一个非负数.师:(指准板书)性质1.0,所数;.a的算术平方根,而a的算术平方根总是大于等于0.师:下面我们来看二次根式的第二个性质.师:,2等于什么?生:等于3.(直到有学生猜出这个答案,师板书:=3)师:(指式子)2=3,为什么?(稍停)(师出示下图)面积=3师:(指准图)这是一个正方形,这个正方形的面积为3,那么它的边长等于什么?(多让几名同学回答,然后师在图上板书:边长师: 3.么?生:……(多让几名同学回答)师:3,可见,2=3.师:(板书:2=)利用同样的办法,我们可以得到2等于什么?生:(齐答)等于8.(生答师板书:8)师:(板书:2=)利用同样的办法,我们可以得到2等于什么?生:(齐答)等于a.(生答师板书:a )师:(指式子)2=a ,这就是二次根式的第二个性质(板书:性质2).师:(指准式子)这里的a 是被开方数,所以a 必须大于等于0(板书:(a ≥0)). 师:下面我们利用性质2来做几个题目. (师出示例1) 例1 计算:(1)2; (2)(2.(师边讲边解板书,解题过程如课本第4页所示) (三)试探练习,回授调节 1.计算:(1)2= (2)2=(3)2= (4)(2=(5)(2=(四)尝试指导,讲授新课师:前面我们学习了二次根式的性质1和性质2,下面我们学习性质3.师:)生:等于2.1.(直到有学生猜出这个答案,师板书:2.1)师:,为什么?(稍停) (师出示下图)面积=2.12师:(指准图)这是一个正方形,这个正方形的面积为2.12,那么它的边长等于什么?生:边长等于2.1.(多让几名同学回答,然后师在图上板书:边长=2.1)师:(指准图)我们知道,正方形面积的算术平方根等于边长,师: 生:(齐答)等于6.(生答师板书:6)师: 生:(齐答)等于a.(生答师板书:a )师:,这就是二次根式的第三个性质(板书:性质3) 师:(指准右边的a )这里的a 是a 2的算术平方根,所以a ≥0(边讲边板书:(a ≥0)).师:学习了二次根式的性质2和性质3,有的同学觉得性质2和性质3好像是一样的.性质2和性质3是一样的吗?(稍停)师:(指准板书)性质2和性质3这两个等式的右边是一样的,而且a 都必须大于等于0,但性质2和性质3的左边是不一样的,大家仔细看一看,性质2的左边是什么,性质3的左边又是什么.(让生观察一会儿)师:(指准式子)谁来说说这两个等式的左边有什么不同? 生:……(多让几名同学说,要鼓励学生用自己的语言来表述)师:(指准2)这个式子表示什么?表示a 的算术平方根的平方,这个式子表示什么?表示a 2的算术平方根.a 的算术平方根的平方和a 2的算术平方根的意思是不一样的.师:下面我们利用性质来做几个题目. (师出示例2) 例2 化简:; (师边讲解边板书,解题过程如课本第5页所示) (五)试探练习,回授调节 2.化简:3.直接写出结果:(1)2=(2= (六)归纳小结,布置作业师:本节课我们学习了什么?(稍停)我们学习了二次根式的三个性质.大家把这三个性质再看一遍.(生默读)(作业:P 5习题2.4.) 四、板书设计. ).课题:21.1二次根式(第3课时)一、教学目标1.通过基本训练,复习巩固二次根式的概念和性质.2.了解代数式的概念,会用代数式表示实际问题中的某一个量.二、教学重点和难点1.重点:用代数式表示实际问题中的某一个量.2.难点:用代数式表示实际问题中的某一个量.三、教学过程(一)基本训练,巩固旧知1.填空:(1)形如 (a≥0)的式子叫做二次根式.(2)二次根式的三个性质是:性质1a≥0)是一个数;性质2:2= (a≥0);性质3= (a≥0).2.直接写出结果:2=(3)(23.判断正误:对的画“√”,错的画“×”.(1)2=7;();()(3)2=-7;()(4)(2=7;()(5)2-=7;();();(). ( )(二)尝试指导,讲授新课师:到现在我们已经学习了好几种式子,我们学习了整式(板书:整式)、分式(板书:分式)、二次根式(板书:二次根式).师:什么样的式子是整式?(边讲边板书:3,2a ,3+2a )3是一个整式,2a 是一个整式,3+2a 也是一个整式.师:什么样的式子是分式?(边讲边板书:32a ,2a 3+2a )32a 是一个分式,2a3+2a也是一个分式.师:什么样的式子是二次根式?(边讲边板书:是一个二次根. 师:整式、分式、二次根式都可以叫做代数式(连线并板书:代数式,如板书设计所示).师:除了整式、分式、二次根式是代数式,由整式、分式、二次根式混合组成的式子也是代数式(连线并板书:混合式,如板书设计所示).师:(板书:2a式,把这两个式子加起来,得到2a+.师:(板书:32a32a32a根式,把这两个式子乘起来,得到32a32a.师:(指准板书)到现在为止,我们学过的代数式包括整式、分式、二次根式,以及由这三种式子混合组成的式子.师:下面我们来看一个列代数式的例子. (师出示例题)例 一个矩形的面积为S ,长宽之比为3:2,用代数式表示这个矩形的长和宽. (先让生读题,然后师边讲解边板书,解题过程如下)解:设这个矩形的长为3x,宽为2x.根据题意列方程得 3x·2x=S,整理得 x2=S6,∴∴这个矩形的长为(三)试探练习,回授调节4.用代数式表示:面积为S的圆的半径为 .5.一个矩形的面积为60,长宽之比为5:2,求这个矩形的长和宽.(四)归纳小结,布置作业师:本节课我们学习了代数式的概念.(指准板书)到目前为止,我们学过的代数式包括整式、分式、二次根式,以及由这三种式子混合组成的式子.(作业:P6习题5.6.)四、板书设计2019-2020学年。

2019-2020学年(教案)九年级数学上册 21.1.1 二次根式导学案新人教版.doc

2019-2020学年(教案)九年级数学上册 21.1.1 二次根式导学案新人教版.doc

2019-2020学年(教案)九年级数学上册 21.1.1 二次根式导学案新人教版教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2a≥02=a(a≥0(a≥0).(3a≥0,b≥0a≥0,b>0a≥0,b>0).2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1a≥0a≥0)是一个非负数;2=a(a≥0);(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1a≥02=a(a≥0(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时章节测试讲评 2课时21.1 《二次根式(1)》学案学习内容:二次根式的概念及其运用学习目标:1a≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习(一)、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________) (二)学生学习课本知识2、3页(三)、探索新知1、知识: 平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二.例如:形如 、 、 是二次根式。

人教版数学九年级上册21.1.2《二次根式的概念》教案

人教版数学九年级上册21.1.2《二次根式的概念》教案

人教版数学九年级上册21.1.2《二次根式的概念》教案一. 教材分析人教版数学九年级上册21.1.2《二次根式的概念》是该册的一个重点和难点。

本节课主要介绍二次根式的概念,包括二次根式的定义、性质和运算。

通过本节课的学习,学生将能够理解二次根式的概念,掌握二次根式的性质和运算,为后续学习二次根式的应用打下基础。

二. 学情分析学生在学习本节课之前,已经学习了实数、有理数、无理数等基础知识,对数的运算也有一定的了解。

但是,学生对二次根式的概念和性质可能还比较陌生,需要通过本节课的学习来掌握。

此外,学生可能对二次根式的运算有一定的困难,需要通过实例和练习来加深理解。

三. 教学目标1.理解二次根式的概念,掌握二次根式的性质和运算。

2.能够运用二次根式的知识解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.二次根式的概念和性质。

2.二次根式的运算。

五. 教学方法采用问题驱动法、实例教学法、合作学习法等教学方法。

通过问题引导学生思考,通过实例讲解和练习让学生理解和掌握二次根式的概念和性质,通过合作学习让学生互相交流和解决问题。

六. 教学准备1.PPT课件。

2.教学实例和练习题。

3.黑板和粉笔。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾实数、有理数、无理数等基础知识,为新课的学习做好铺垫。

2.呈现(15分钟)讲解二次根式的定义,通过实例让学生理解二次根式的概念。

讲解二次根式的性质,让学生掌握二次根式的基本性质。

3.操练(20分钟)让学生进行二次根式的运算练习,引导学生运用二次根式的性质和运算法则进行计算。

在此过程中,教师要及时给予指导和反馈,帮助学生巩固所学知识。

4.巩固(10分钟)通过一些典型的例题和练习题,让学生进一步理解和掌握二次根式的概念和性质,能够熟练地进行二次根式的运算。

5.拓展(10分钟)让学生思考和讨论二次根式在实际问题中的应用,引导学生将所学知识运用到实际问题中,提高学生的解决问题的能力。

九年级数学 第21章二次根式教案 新人教版

九年级数学 第21章二次根式教案 新人教版

教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2a≥0)是一个非负数,2=a(a≥0)(a≥0).(3(a≥0,b≥0);a≥0,b>0)a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1a≥0a≥0)是一个非负数;2=a(a≥0);(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1a≥0)2=a(a≥0(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式3课时21.2 二次根式的乘法3课时21.3 二次根式的加减3课时教学活动、习题课、小结2课时§21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1a≥0)的式子叫做二次根式的概念;2a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.B A C问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以.问题2:由勾股定理得问题3:由方差的概念得S=二、探索新知,都是一些正数的算术平方根.像这样一些正数的算术平方a≥0)•的式子叫做二次根式,(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0老师点评:(略)例1.下列式子,1xx>0)、、、1x y+x≥0,y•≥0).分析;第二,被开方数是正数或0.(x>0)、(x ≥0,y ≥0);不是二1x、1x y +.例2.当x分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.解:由3x-1≥0,得:x ≥13当x ≥13在实数范围内有意义. 三、巩固练习教材P 练习1、2、3. 四、应用拓展例3.当x 11x +在实数范围内有意义?分析+11x +0和11x +中的x+1≠0. 解:依题意,得23010x x +≥⎧⎨+≠⎩由①得:x ≥-32由②得:x ≠-1当x ≥-32且x ≠-111x +在实数范围内有意义.例4(1)已知,求xy的值.(答案:2)(2)=0,求a 2004+b 2004的值.(答案:25) 五、归纳小结(学生活动,老师点评) 本节课要掌握:1(a≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.第一课时作业设计一、选择题1.下列式子中,是二次根式的是()A.B C D.x2.下列式子中,不是二次根式的是()A B C D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5 B C.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x是多少时,x+x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b,求a、b的值.第一课时作业设计答案:一、1.A 2.D 3.B二、1(a≥0)23.没有三、1.设底面边长为x,则0.2x2=1,解答:2.依题意得:230xx+≥⎧⎨≠⎩,32xx⎧≥-⎪⎨⎪≠⎩∴当x>-32且x≠0时,x+x2在实数范围内没有意义.3.1 34.B5.a=5,b=-4§21.1 二次根式(2)第二课时教学内容1a≥0)是一个非负数;2.2=a(a≥0).教学目标a≥0)2=a(a≥0),并利用它们进行计算和化简.a≥0)是一个非负数,用具2=a(a≥0);最后运用结论严谨解题.教学重难点关键1a≥0)是一个非负数;2=a(a≥0)及其运用.2a≥0)是一个非负数;•用探究的方法2=a(a≥0).教学过程一、复习引入(学生活动)口答 1.什么叫二次根式?2.当a ≥0a<0 老师点评(略). 二、探究新知 议一议:(学生分组讨论,提问解答)a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:2=_______;)2=_______;2=______;)2=_______;2=______;2=_______;)2=_______.是4是一个平方等于4)2=4.同理可得:)2=2,2=9,2=3,2=13,2=72,)2=0,所以例1 计算1.2 2.(2 3.2 4. 2分析)2=a (a ≥0)的结论解题.解:2 =32,(2 =32·2=32·5=45,2=56,(2)2=22724 .三、巩固练习计算下列各式的值:22()2)2()2422-四、应用拓展例2 计算1.2(x≥0)2.23.24. 2分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.所以上面的42=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>02=x+1(2)∵a2≥02=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0 2+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥02=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3分析:(略)五、归纳小结本节课应掌握:1a≥0)是一个非负数;2.2=a(a≥0);反之:a=2(a≥0).六、布置作业1.教材P8复习巩固2.(1)、(2)P9 7.2.选用课时作业设计.第二课时作业设计 一、选择题1的个数是( ).A .4B .3C .2D .12.数a 没有算术平方根,则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0 二、填空题1.(2=________.2_______数. 三、综合提高题 1.计算(1)2 (2)-2 (3)(12)2 (4)(- 2(5) 2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)16(4)x (x ≥0)3=0,求x y 的值. 4.在实数范围内分解下列因式: (1)x 2-2 (2)x 4-9 3x 2-5第二课时作业设计答案: 一、1.B 2.C二、1.3 2.非负数三、1.(1)2=9 (2)-)2=-3 (3)(12)2=14×6=32(4)(-2=9×23=6 (5)-62.(1)5=2 (2)3.4=2(3)16=2 (4)x=)2(x ≥0)3.103304x y x x y -+==⎧⎧⎨⎨-==⎩⎩ x y =34=814.(1)x 2-2=()(x )(2)x 4-9=(x 2+3)(x 2-3)=(x 2+3)((x ) (3)略§21.1 二次根式(3)第三课时教学内容a (a ≥0)教学目标(a ≥0)并利用它进行计算和化简.(a ≥0),并利用这个结论解决具体问题. 教学重难点关键1a (a ≥0). 2.难点:探究结论.3.关键:讲清a ≥0a 才成立. 教学过程一、复习引入老师口述并板收上两节课的重要内容;1(a ≥0)的式子叫做二次根式;2a ≥0)是一个非负数;3.2=a (a ≥0).那么,我们猜想当a ≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:;=________. (老师点评):根据算术平方根的意义,我们可以得到:=0.01110=23=37.例1 化简(1 (2 (3 (4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a ≥0)•去化简.解:(1 (2=4(3 (4 三、巩固练习教材P 7练习2.四、应用拓展例2 填空:当a ≥0;当a<0,•并根据这一性质回答下列问题.(1,则a 可以是什么数?(2,则a 可以是什么数?(3,则a 可以是什么数?分析(a ≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0,,即使a>a所以a不存在;当a<0,,即使-a>a,a<0综上,a<0例3当x>2分析:(略)五、归纳小结(a≥0)及其运用,同时理解当a<0a的应用拓展.六、布置作业1.教材P8习题21.1 3、4、6、8.2.选作课时作业设计.第三课时作业设计一、选择题1).A.0 B.23C.423D.以上都不对2.a≥0().AC.二、填空题1..2m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│答案:一、1.C 2.A二、1.-0.02 2.5三、1.甲甲没有先判定1-a是正数还是负数2.由已知得a-•2000•≥0,•a•≥2000所以a-1=1995,a-2000=19952,所以a-19952=2000.3. 10-x§21.2 二次根式的乘除第一课时教学内容(a≥0,b≥0)(a≥0,b≥0)及其运用.教学目标(a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简(a≥0,b≥0)并运用它进行计算;•(a≥0,b≥0)并运用它进行解题和化简.教学重难点关键(a≥0,b≥0)(a≥0,b≥0)及它们的运用.(a≥0,b≥0).关键:要讲清(a<0,b<0)=a b,如=或教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1=______;(2=_______.(3.参考上面的结果,用“>、<或=”填空.×_____,×_____,×2.利用计算器计算填空(1,(2(3(4,(5.老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来:例1.计算(1(2(3(4分析:a≥0,b≥0)计算即可.解:(1(2(3(4=例2 化简(1(2(3(4(5(a≥0,b≥0)直接化简即可.解:(1×4=12(2×9=36(3×10=90(4=3xy(5三、巩固练习(1)计算(学生练习,老师点评)①②×(2) 化简:;教材P11练习全部四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1(2解:(1)不正确.×3=6(2)不正确.五、归纳小结本节课应掌握:(1(a≥0,b≥0)(a≥0,b≥0)及其运用.六、布置作业1.课本P151,4,5,6.(1)(2).2.选用课时作业设计.第一课时作业设计一、选择题1,•那么此直角三角形斜边长是().A.cm B.C.9cm D.27cm2.化简).A. D.311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1 4.下列各等式成立的是().A..C.× D.二、填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:==,……通过上述探究你能猜测出:(a>0),并验证你的结论.答案:一、1.B 2.C 3.A 4.D二、1.2.12s三、1.设:底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,.2.验证:==§21.2 二次根式的乘除第二课时教学内容a≥0,b>0)a≥0,b>0)及利用它们进行计算和化简.教学目标a≥0,b>0(a≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1a≥0,b>0)a≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空(1;(2;;(3.(43.利用计算器计算填空:=_________,(2=_________,(3=______,(4.(1。

人教新课标版初中九上21.1二次根式(3)教案

人教新课标版初中九上21.1二次根式(3)教案

21.1 二次根式(3)教学内容 本节课主要学习二次根式的性质2a =a (a ≥0)及其运用教学目标一、知识技能 使学生理解并掌握2a =a ,并能利用这一结论进行计算.二、数学思考 通过对2a 的化简,培养学生分类讨论的思想.三、解决问题 解决了2a 这一类问题的化简问题.四、情感态度培养学生用分类讨论的思想分析生活中出现的不同事物重难点、关键 重点:利用2a =a (a ≥0)进行计算难点:当a <0时,2a =-a 这一结论的推导和应用.关键:讲清a ≥0时,2a =a 才成立.教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、 复习引入【提出问题】1.什么叫二次根式?2.你已经掌握了二次根式的哪些性质?【活动方略】教师演示课件,给出题目.学生根据所学知识回答问题.【设计意图】复习二次根式的概念及二次根式的性质1、2,为二次根式的性质继续学习引入作好铺垫.二、 探索新知【探究】填空: 22=_______; 21.0 =_______;22()3=________; 20=________。

【活动方略】学生口答结果后总结有何规律. 教师演示课件,给出题目.与学生一起分析填空,同时讲清2a (a ≥0)的意义并总结出规律.老师点评:根据算术平方根的意义,我们可以得到:22=2; 21.0 =0.1; 22()3=23; 20=0.因此,一般地:2a =a (a ≥0)【设计意图】 使学生理解2a (a ≥0)实际上是求a 2的算术平方根.归纳出二次根式的性质3:2a =a (a ≥0)三、 范例点击 例1 化简(1)16(2)2)5(- (3)22)1(+x解:(1)16=24=4; (2)2)5(-=25=5(3)22)1(+x =x 2+1.【活动方略】教师活动:操作投影,分别将例1、2、3显示,组织学生讨论.学生活动:合作交流,讨论解答。

【设计意图】使学生掌握二次根式的性质3,应用二次根式的性质3进行简单的计算。

九年级数学上册 二次根式全册教案 人教版

九年级数学上册 二次根式全册教案 人教版

21.1 二次根式(1)第一课时一、教学目标: a ≥0)的意义解答具体题目.二、教学重难点: 1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题. 三、 教学过程:例1. 下列式子,哪些是二次根式,1xx>0)、、、1x y+(x ≥0,y•≥0).例2. 当x四、应用拓展:例3.当x 11x +在实数范围内有意义?例4(1)已知,求xy的值.(2)=0,求a 2004+b 2004的值.五、归纳小结:1a ≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 六、课后作业: (一)选择题:1.下列式子中,是二次根式的是( )A .BC .x 2.下列式子中,不是二次根式的是( )A B .1x3.已知一个正方形的面积是5,那么它的边长是( )A .5B .15D .以上皆不对 (二)填空题:1.形如________的式子叫做二次根式;面积为a 的正方形的边长为_____;负数______平方根.(三)综合提高题:1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x+x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b=b+4,求a、b的值.21.1 二次根式(2)第二课时一、教学目标:a≥02=a(a≥0),并利用它们进行计算和化简.二、教学重难点:1a≥0)是一个非负数;2=a(a≥0)及其运用.2.难点:a≥0)是一个非负数;用探究的方法导出2=a(a≥0).三、教学过程:例1 计算)21.)2 2.(2 3.2 4.(2四、应用拓展:例2 计算1.2(x≥0) 2.23.2 4.2例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3五、归纳小结1a≥0)是一个非负数; 2.2=a(a≥0);反之:a=2(a≥0).六、布置作业1.教材P8复习巩固2.(1)、(2) P9 7.七、课后作业:(一)选择题:1二次根式的个数是( ). A .4 B .3 C .2 D .1 2.数a 没有算术平方根,则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0 (二)填空题1.(2=______. 2_______数.(三)综合提高题 1.计算(1)2(2)-)2(3)(12)2(4)()2 (5)2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)16(4)x (x ≥0)3=0,求x y的值.4.在实数范围内分解下列因式:(1)x 2-2 (2)x 4-9 3x 2-521.1 二次根式(3)第三课时一、教学目标: (a ≥0)并利用它进行计算和化简.二、教学重难点:1a (a ≥0). 2.难点:探究结论. 三、教学过程: 例1 化简(1(2(3(4四、应用拓展:例2、填空:当a ≥0;当a<0,•并根据这一性质回答下列问题.(1),则a 可以是什么数?(2),则a 可以是什么数?(3),则a 可以是什么数?(a ≥0)及其运用,同时理解当a<0a 的应用拓展.六、布置作业: 1.教材P 8习题21.1 3、4、6、8. 七、课后作业:(一)选择题:1). A.0 B.23C.423D.以上都不对2.a≥0).AC.(二)填空题:1.=________.2.是一个正整数,则正整数m的最小值是________.(三)综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│21.2 二次根式的乘除(1)第四课时a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简二、教学重难点:a≥0,b≥0)(a≥0,b≥0)及它们的运用.a≥0,b≥0).三、教学过程:例1.计算:(1(2(3(4例2.化简:(1(2(3(4(5四、巩固练习:教材P11练习全部五、应用拓展:例3.判断下列各式是否正确,不正确的请予以改正:(1=(2六、归纳小结:本节课应掌握:(1(a≥0,b≥0)a≥0,b≥0)及其运用.七、布置作业:1.课本P15 1,4,5,6.(1)(2).八、课后作业:(一)选择题1,•那么此直角三角形斜边长是().A.cm B..9cm D.27cm2.化简) A..3=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().A..C.³.(二)填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.(三)综合提高题1.一个底面为30cm³30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?21.2 二次根式的乘除(2)第五课时一、教学目标:a ≥0,b>0(a ≥0,b>0)及利用它们进行运算.二、教学重难点:1(a ≥0,b>0)(a ≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定. 三、教学过程:例1.计算:(1(2(3(4例2.化简:(1(2(3 (4 四、巩固练习: 教材P14 练习1.五、应用拓展:例3=x 为偶数,求(1+x 的值.六、归纳小结: a ≥0,b>0a ≥0,b>0)及其运用.七、布置作业:1.教材P 15 习题21.2 2、7、8、9. 八、课后作业:(一)选择题: 1.的结果是( )A .27.27C .72.阅读下列运算过程:====数学上将这种把分母的根号去掉的过程称作“分母有理化”的结果是( )A .2B .6C .13D(二)填空题:1.分母有理化2.已知x=3,y=4,z=5_______.(三)综合提高题:1:1,•现用直径为的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算:(1²(m>0,n>0)(2)(a>0)21.2 二次根式的乘除(3)第六课时一、教学目标:理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.二、重难点关键:1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.三、教学过程:例1.(1)例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.四、巩固练习:教材P14练习2、3五、应用拓展:例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=-,32=-从计算结果中找出规律,并利用这一规律计算BAC+)+1)的值.六、归纳小结:本节课应掌握:最简二次根式的概念及其运用. 七、布置作业:1.教材P 15 习题21.2 3、7、10.八、课后作业: (一)选择题:1(y>0)是二次根式,那么,化为最简二次根式是( ). A (y>0) B y>0) C (y>0) D .以上都不对2.把(a-1中根号外的(a-1)移入根号内得( ).A ..3.在下列各式中,化简正确的是( )A =±12C 2D .4的结果是( ) A . B . C ..(二)填空题:1.化简=_________.(x ≥0) 2.a 化简二次根式号后的结果是_________.(三)综合提高题:1.已知a 正确,•请写出正确的解答过程:2.若x 、y 为实数,且21.3 二次根式的加减(1)第七课时一、教学目标:理解和掌握二次根式加减的方法.二、重难点关键:1.重点:二次根式化简为最简根式. 2.难点关键:会判定是否是最简二次根式. 三、教学过程:例1.计算:(1(2例2.计算:(1)(2)+ 四、巩固练习:教材P 19 练习1、2. 五、应用拓展:例3.已知4x 2+y 2-4x-6y+10=0,求(23-(x )的值.六、归纳小结:本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.七、布置作业: 1.教材P 21 习题21.3 1、2、3、5. 八、课后作业:(一)选择题:1.以下二次根式:;( ). A .①和② B .②和③ C .①和④ D .③和④2.下列各式:①17=1,其中错误的有( ). A .3个 B .2个 C .1个 D .0个 (二)填空题:1.在、是同类二次根式的有________.2.计算二次根式的最后结果是________.(三)综合提高题:1 2.236-)的值.(结果精确到0.01)2.先化简,再求值.(-(,其中x=32,y=27.21.3 二次根式的加减(2)第八课时一、教学目标:运用二次根式、化简解应用题.二、重难点关键:讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.三、教学过程:例1.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?三、巩固练习:教材P19 练习3四、应用拓展:例3.若最简根式3aa、b的值.(•同类二次根式就是被开方数相同的最简二次根式)五、归纳小结:本节课应掌握运用最简二次根式的合并原理解决实际问题.六、布置作业:1.教材P21习题21.3 7.七、课后作业:(一)选择题:1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(•结果用最简二次根式) A...以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A...(二)填空题:1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,•鱼塘的宽是_______m.(结果用最简二次根式)2.已知等腰直角三角形的直角边的边长为,•那么这个等腰直角三角形的周长是________.(结果用最简二次根式)ACQPBA C2m1m4m D(三)综合提高题:1.n 是同类二次根式,求m 、n21.3 二次根式的加减(3)第九课时一、教学目标:含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用. 二、重难点关键:重点:二次根式的乘除、乘方等运算规律;难点:由整式运算知识迁移到含二次根式的运算. 三、教学过程:例1.计算:(1)(2)(例2.计算:(1))( (2)))四、巩固练习:课本P 20练习1、2. 五、应用拓展: 例3.已知x b a-=2-x a b -,其中a 、b 是实数,且a+b ≠0,六、归纳小结:本节课应掌握二次根式的乘、除、乘方等运算. 七、布置作业: 1.教材P 21 习题21.3 1、8、9. 八、课后作业:(一)选择题1. ).A .203.23.23.2032 ). A .2 B .3 C .4 D .1 (二)填空题:1.(-12+2)2的计算结果(用最简根式表示)是________.2.((-()2的计算结果(用最简二次根式表示)是_______.3.若,则x 2+2x+1=________.4.已知,,则a 2b-ab 2=_________.(三)综合提高题: 12.当时,的值.(结果用最简二次根式表示)第二十二章一元二次方程第十课时一、教学目标:了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念。

人教版初中数学九年级上册《21.1二次根式》3课时教学设计

人教版初中数学九年级上册《21.1二次根式》3课时教学设计

21. 1二次根式第一课时教课内容二次根式的观点及其运用 教课目的理解二次根式的观点,并利用a ( a ≥ 0)的意义解答详细题目.提出问题,依据问题给出观点,应用观点解决实质问题. 教课重难点要点 1.要点:形如a ( a ≥0)的式子叫做二次根式的观点;2.难点与要点:利用“ a ( a ≥ 0)”解决详细问题.教课过程 一、复习引入(学生活动)请同学们独立达成以下三个问题:1 : 已知 反 比 例 函 数 y= 3, 那 么 它 的图 象 在 第 一 象 限 横 、 ? 纵 坐 标 相 等的 点 的坐 标 是 x___________ .b5E2RGbCAP问题 2:如图,在直角三角形 ABC 中,AC=3 ,BC=1 ,∠ C=90°,那么 AB 边的长是 __________ .p1EanqFDPwAB C问题 3:甲射击 6 次,各次击中的环数以下:8、 7、 9、 9、 7、 8,那么甲此次射击的方差是 S 2,那么S=_________ . DXDiTa9E3d老师评论:问题 1:横、纵坐标相等, 即 x=y ,所以 x 2 =3.由于点在第一象限, 所以 x=3 ,所以所求点的坐标 ( 3 ,3 ).问题 2:由勾股定理得AB= 10问题 3:由方差的观点得4S=.6二、研究新知很显然 3、 10、4,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就6把它称二次根式.所以,一般地,我们把形如 a ( a ≥ 0 ) ?的式子叫做二次根式, “”称为二次根号. RTCrpUDGiT(学生活动)议一议:1. -1 有算术平方根吗? 2. 0 的算术平方根是多少? 3.当 a<0, a 存心义吗?老师评论 :(略)例 1.以下式子, 哪些是二次根式, 哪些不是二次根式:2 、 33 、 1、 x ( x>0)、 0、4 2、-2 、x1 、 x y ( x ≥ 0,y?≥ 0).x y剖析 :二次根式应知足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或 0.解:二次根式有: 2 、 x ( x>0 )、 0 、- 2 、 x y ( x ≥ 0,y ≥ 0);不是二次根式的有: 3 3 、1、42、1 .xx y例 2.当 x 是多少时,3x 1 在实数范围内存心义?剖析 :由二次根式的定义可知,被开方数必定要大于或等于0,所以 3x-1 ≥0, ? 3x1 才能存心义.1解:由 3x-1 ≥ 0,得: x ≥1时,3当 x ≥3x 1 在实数范围内存心义.3三、稳固练习教材 P 练习 1、2、3. 四、应用拓展例 3.当 x 是多少时,2x 3 +1 在实数范围内存心义?x 1剖析 :要使2x 3 +1在实数范围内存心义, 一定同时知足2x3中的≥0和 1中的 x+1≠0.x1 x12x 3 0解:依题意,得1x3由①得: x ≥ -2由②得: x ≠ -1当 x ≥- 3 且 x ≠ -1 时,2x 3 +1 在实数范围内存心义.2x 1例 4(1)已知 y=2 x + x 2 +5 ,求 x的值. ( 答案 :2)y(2) 若a 1 + b20042004的值. (答案 :2 1 =0 ,求 a +b)5五、概括小结 (学生活动,老师评论) 本节课要掌握:1.形如a ( a ≥ 0)的式子叫做二次根式, “”称为二次根号.2.要使二次根式在实数范围内存心义,一定知足被开方数是非负数. 六、部署作业1.教材 P 8 复习稳固 1、综合应用 5. 2.采用课时作业设计. 3.课后作业 :《同步训练》第一课时作业设计 一、选择题1.以下式子中,是二次根式的是()A .- 7B .37C . xD . x2.以下式子中,不是二次根式的是( )A . 4B . 16C . 81 D . x3.已知一个正方形的面积是5,那么它的边长是( )A .5B . 5C .1D .以上皆不对5二、填空题1.形如 ________的式子叫做二次根式.2.面积为 a 的正方形的边长为 ________. 3.负数 ________平方根. 三、综合提升题1.某工厂要制作一批体积为1m 3 的产品包装盒,其高为,按设计需要, ?底面应做成正方形,试问底面边长应是多少?5PCzVD7HxA2.当 x 是多少时, 2x 3 +x 2在实数范围内存心义?x3.若 3 x + x 3 存心义,则x 2 =_______.4.使式子 ( x 5) 2 存心义的未知数 x 有( )个.A . 0B .1C . 2D .无数5.已知 a、 b 为实数,且 a 5 +2102a =b+4,求a、b的值.第一课时作业设计答案:一、1.A 2.D 3.B二、 1. a (a≥0)2. a 3.没有三、 1.设底面边长为x,则2,解答: x= 5 .=12x 3 0 ,x 32.依题意得: 2x 0x 0∴当 x>- 3且 x≠0 时,2x 3+x2在实数范围内没存心义.2x13.34. B5. a=5, b=-4二次根式(2)第二课时教课内容1.a( a≥ 0)是一个非负数;2.(a)2=a( a≥0).教课目的理解 a (a≥0)是一个非负数和( a )2=a(a≥0),并利用它们进行计算和化简.经过复习二次根式的观点,用逻辑推理的方法推出 a (a≥0)是一个非负数,用详细数据联合算术平方根的意义导出( a )2=a(a≥0);最后运用结论谨慎解题.jLBHrnAILg教课重难点要点1.要点: a (a≥0)是一个非负数;( a )2=a(a≥0)及其运用.2.难点、要点:用分类思想的方法导出 a (a≥0)是一个非负数;?用研究的方法导出( a )2=a ( a≥ 0).教课过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当 a≥ 0 时, a 叫什么?当a<0 时, a 存心义吗?老师评论(略).二、研究新知议一议:(学生疏组议论,发问解答)a( a≥ 0)是一个什么数呢?老师评论:依据学生议论和上边的练习,我们能够得出a( a≥ 0)是一个非负数.做一做:依据算术平方根的意义填空:( 4 )2=_______ ;( 2 )2=_______;(9 )2=______;(3 )2=_______;(1 2 7 2 23 ) =______;( 2 ) =_______ ;(0 )=_______.老师评论: 4 是4的算术平方根,依据算术平方根的意义, 4 是一个平方等于 4 的非负数,所以有( 4 )2=4.同理可得:( 2 2,(9 )232 1)2 1,(7 2 7,(02,所以)=2 =9,() =3,(3 = 3 2 ) = 2 ) =0( a )2=a(a≥0)例 1 计算1.(3) 2 2.(3 5)2 3.(5) 2 4.(7) 2 2 6 2剖析:我们能够直接利用( a )2=a(a≥0)的结论解题.解:(3)2=3,(3 5 )2 =3 2·( 5 )2=32· 5=45,2 2(5 2=5,(7 2=( 7) 2 7.)6 2)22 4 6三、稳固练习计算以下各式的值:( 18)2 (2) 2 (9 )2 ( 0)2 (47) 2 3 4 8(3 5) 2 (5 3) 2四、应用拓展例 2 计算1.(x 1 )2(x≥0)2.(a2)2 3.(a2 2a 1 )24.(4x2 12 x9 )2剖析:( 1)由于 x≥ 0,所以 x+1>0 ;( 2) a2≥ 0;( 3) a2+2a+1= ( a+1)≥ 0;(4)4x 2-12x+9= ( 2x)2-2· 2x· 3+32=( 2x-3 )2≥ 0.2所以上边的 4 题都能够运用( a )=a(a≥0)的重要结论解题.解:(1)由于 x≥ 0,所以 x+1>0(x1)2=x+1( 2)∵ a2≥ 0,∴(a2)2=a22 2(3)∵ a +2a+1= ( a+1)又∵( a+1)2≥ 0,∴ a2+2a+1≥0 ,∴a22a 1 =a2+2a+1(4)∵ 4x2-12x+9= (2x)2-2· 2x·3+3 2=( 2x-3 )2又∵( 2x-3 )2≥ 0∴ 4x2-12x+9 ≥ 0,∴(4x2 12x 9 )2=4x2-12x+9例 3 在实数范围内分解以下因式:( 1)x2-3 (2) x4-4 (3) 2x 2-3剖析:(略)五、概括小结本节课应掌握:1. a (a≥0)是一个非负数;2.( a )2=a(a≥0);反之:a=(a )2(a≥0).六、部署作业1.教材 P8复习稳固2.( 1)、( 2)P97.2.采用课时作业设计.3.课后作业 :《同步训练》第二课时作业设计一、选择题1.以下各式中15、3a 、 b2 1 、a2 b2、 m2 20 、144 ,二次根式的个数是().A . 4B .3 C. 2 D .12.数 a 没有算术平方根,则 a 的取值范围是().A . a>0B .a≥ 0 C. a<0 D. a=0二、填空题1.( -3 ) 2=________ .2.已知x 1 存心义,那么是一个_______数.三、综合提升题 1.计算( 1)( 9 )2(2)-( 3 )2(3)(16 )2( 4)(- 32) 223(5)(23 32)(23 32)2.把以下非负数写成一个数的平方的形式 :( 1)5(2)1( 4) x (x ≥ 0)( 3)63.已知x y 1 +x 3 =0,求 x y 的值. 4.在实数范围内分解以下因式 :( 1)x 2- 2(2) x 4-9 3x2-5第二课时作业设计答案 :一、1.B 2. C二、1.32.非负数三、 1.( 1)( 9 ) 2(2)-( 21 621 3 =93) =-3( 3)() =4×6=22(4)(- 32)2=9× 2 =6 (5)-6332.( 1) 5=( 5 )2 ( 2) 3.4=( 3.4 )2(3) 1=(1 )2 ( 4) x=( x ) 2( x ≥ 0)66x y 1 0 x 3 x y =34=813.3 0y4 x4.( 1) x 2- 2=( x+2 )( x- 2 )( 2) x 4- 9=( x 2+3 )(x 2- 3) =( x 2+3 )(x+ 3 )( x- 3 )(3)略二次根式 (3)第三课时教课内容a 2 = a ( a ≥ 0)教课目的理解a 2 =a ( a ≥ 0)并利用它进行计算和化简.经过详细数据的解答,研究a 2 =a ( a ≥0),并利用这个结论解决详细问题.教课重难点要点1.要点:a 2 = a (a ≥ 0).2.难点:研究结论.3.要点:讲清 a ≥ 0 时, a 2 = a 才建立.教课过程 一、复习引入老师口述并板收上两节课的重要内容;1.形如a ( a ≥ 0)的式子叫做二次根式;2. a ( a ≥ 0)是一个非负数;3. ( a )2 =a ( a ≥ 0).那么,我们猜想当a ≥0 时,a 2 =a 能否也建立呢?下边我们就来研究这个问题.二、研究新知 (学生活动)填空:22=_______ ; 2 =_______ ;( 1 )2 =______;10( 2 )2 =________ ; 02 =________ ; ( 3) 2 =_______ . 3 7(老师评论):依据算术平方根的意义,我们能够获得:22 =2;2; ( 1) 2= 1 ; (2)2= 2 ; 02=0; ( 3)2= 3 .10 10 3 3 7 7所以,一般地:a2 =a ( a≥ 0)例 1 化简()9 () (4)2 ()25() (3)21 2 3 4剖析:由于( 1) 9=-3 2,( 2)( -4)2=42,( 3) 25=52,( 4)( -3)2=32,所以都可运用a2 =a( a≥ 0) ?去化简.解:( 1)9 = 32=3(2)( 4)2 = 42=4(3)25 = 52 =5 (4)( 3)2= 32 =3三、稳固练习教材 P7练习 2.四、应用拓展例 2填空:当a≥ 0 时,a2=_____;当a<0时,a2=_______,?并依据这一性质回答以下问题.(1)若a2 =a,则 a 能够是什么数?(2)若a2 =-a ,则 a 能够是什么数?(3)a2 >a,则 a 能够是什么数?剖析:∵ a2 =a(a≥ 0),∴要填第一个空格能够依据这个结论,第二空格就不可以,应变形,使“()2 ”中的数是正数,由于,当a≤0 时,22xHAQX74J0X ( a) ,那么≥ .a = -a 0( 1)依据结论求条件;( 2)依据第二个填空的剖析,逆向思想;( 3)依据( 1)、( 2)可知a2 =│ a │,而│ a│要大于 a,只有什么时候才能保证呢?a<0.LDAYtRyKfE解:(1)由于a2=a,所以a≥0;( 2)由于a2 =-a ,所以 a≤ 0;( 3)由于当 a≥ 0 时a2 =a,要使a2 >a,即便 a>a 所以 a 不存在;当 a<0 时,a2 =-a ,要使a2 >a,即便 -a>a ,a<0 综上, a<0Zzz6ZB2Ltk例 3 当 x>2,化简(x 2) 2 - (1 2x)2 .剖析:( 略)五、概括小结本节课应掌握:a2 =a( a≥ 0)及其运用,同时理解当a<0 时,a2 =- a 的应用拓展.六、部署作业1.教材 P8习题 21. 13、 4、 6、 8.2.选作课时作业设计.3.课后作业 :《同步训练》第三课时作业设计一、选择题1.(2 1)2 ( 2 1)2 的值是().3 3A . 02C. 42D .以上都不对B.332 . a≥0 时,a2 、( a)2 、 - a2 ,比较它们的结果,下边四个选项中正确的选项是().A . a2 = ( a)2 ≥ - a2B .a2 > ( a)2 >- a2C .a2 < ( a)2 <- a2D .- a2 > a2 = ( a)2二、填空题1 . - 0.0004 =________.2.若20m 是一个正整数,则正整数m 的最小值是 ________.三、综合提升题1.先化简再求值:当a=9 时,求 a+ 1 2a a2的值,甲乙两人的解答以下:甲的解答为:原式 =a+ (1 a) 2 =a+( 1-a ) =1;乙的解答为:原式 =a+ (1 a) 2 =a+( a-1 ) =2a-1=1 7.两种解答中, _______的解答是错误的,错误的原由是__________.2.若│ 1995-a │ + a 2000 =a,求a- 19952的值.(提示:先由a-200 0≥ 0,判断1995-a? 的值是正数仍是负数,去掉绝对值)3. 若-3 ≤ x≤ 2 时,试化简│ x-2 │+ (x 3)2 + x2 10x 25 。

新人教版数学九上优秀教案:21·1二次根式

新人教版数学九上优秀教案:21·1二次根式

的概念及其三个运算性质.
二、探究新知
(一)定义及非负性
学生独立完成后,教师订正; 算 术 平 方 根 的 意
活动 1、填空,完成课本思考 1:
并引导学生观察得出:四个 义 是 得 出 二 次 根
65 , S , 2 , h
式子表示的都是非负数的算 式的性质的基础,
术平方根.
复习算术平方根
5
教师可指出算术平方根即正 的 意 义 便 于 理 解
活动 2、观察其形式上的共同点,被开方数的共同点,说明各式所表 的平方根.
定义、归纳性质.
示的共同意义.
活动 3、给出二次根式的定义,介绍二次根式的读法.
活动 4、思考下列问题:
① 9 的运算结果是 3, 9 是不是二次根式?3 是不是? ②定义中为什么要加 a ≥0?若 a<0, a 表示什么?有无意义? ③当 a=0 时, a 表示什么?结果是什么?当 a>0 时, a 表示什
3.
2
a和
a2 的运算、化简
教学难点
a <0 时 a2 的化简.
教学过程设计
教学程序及教学内容
师生行为
设计意图
一、复习引入
点题,板书课题.
导语设计:在勾股定理和四边形两章中,已经用到过简单的二次根式
运算,在本章中将系统地学习二次根式的运算。本课只学习二次根式
让学生了解本章 的学习内容和本 课的学习目标.
作课类别 教学媒体
知识

技能

过程

方法

情感
Байду номын сангаас态度
教学重点
示范课 课 题
第二十一章二次根式 21.1 二次根式 多媒体
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.1 二次根式教案
教学内容 2a =a (a ≥0)
教学目标
理解2a =a (a ≥0)并利用它进行计算和化简.
通过具体数据的解答,探究2a =a (a ≥0),并利用这个结论解决具体问题. 教学重难点关键
1.重点:2a =a (a ≥0).
2.难点:探究结论. 3.关键:讲清a ≥02a a 才成立.
教学过程
一、复习引入 老师口述并板收上两节课的重要内容;
1a a ≥0)的式子叫做二次根式; 2a a ≥0)是一个非负数;
3.a )2=a (a ≥0). 那么,我们猜想当a ≥02a 是否也成立呢?下面我们就来探究这个问题.
二、探究新知
(学生活动)填空: 2220.0121()10
=______; 22
()3
=________2023
()7=_______. (老师点评):根据算术平方根的意义,我们可以得到: 2220.0121()1011022()3=2320=023()7=37. 因此,一般地:2a =a (a ≥0)
例1 化简
(19(22(4)-(325(42
(3)-
分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52

(4)(-3)2=32,所以都可运用2a =a (a ≥0)•去化简. 解:(1)9=23=3 (2)2(4)-=2
4=4 (3)25=25=5 (4)2(3)-=23=3
三、巩固练习
教材P 7练习2.
四、应用拓展
例2 填空:当a ≥0时,2a =_____;当a<0时,2a =_______,•并根据这一性质回答下列问题.
(1)若2a =a ,则a 可以是什么数?
(2)若2a =-a ,则a 可以是什么数?
(3)2a >a ,则a 可以是什么数?
分析:∵2a =a (a ≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a ≤0时,2a =2
()a -,那么-a ≥0. (1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知2a =│a │,而│a │要大于a ,只有什么时候才能保证呢?a<0.
解:(1)因为2a =a ,所以a ≥0;
(2)因为2a =-a ,所以a ≤0;
(3)因为当a ≥0时2a =a ,要使2a >a ,即使a>a 所以a 不存在;当a<0时,2a =-a ,要使2a >a ,即使-a>a ,a<0综上,a<0
例3当x>2,化简2(2)x --2
(12)x -.
分析:(略)
五、归纳小结
本节课应掌握:2a =a (a ≥0)及其运用,同时理解当a<0时,2a =-a 的应用拓展.
六、布置作业
1.教材P 8习题21.1 3、4、6、8.
2.选作课时作业设计.
3.课后作业:《同步训练》
第三课时作业设计
一、选择题
1.2211(2)(2)33+-的值是( ). A .0 B .23 C .423 D .以上都不对
2.a ≥0时,2a 、2()a -、-2a ,比较它们的结果,下面四个选项中正确的是(
). A .2a =2()a -≥-2a B .2a >2()a ->-2a
C .2a <2()a -<-2a
D .-2a >2a =2()a -
二、填空题
1.-0.0004=________.
2.若20m 是一个正整数,则正整数m 的最小值是________.
三、综合提高题
1.先化简再求值:当a=9时,求a+212a a -+的值,甲乙两人的解答如下: 甲的解答为:原式=a+2(1)a -=a+(1-a )=1;
乙的解答为:原式=a+2(1)a -=a+(a-1)=2a-1=17.
两种解答中,_______的解答是错误的,错误的原因是__________.
2.若│1995-a │+2000a -=a ,求a-19952的值.
(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)
3. 若-3≤x ≤2时,试化简│x-2│+2(3)x ++21025x x -+。

答案:
一、1.C 2.A
二、1.-0.02 2.5
三、1.甲 甲没有先判定1-a 是正数还是负数
2.由已知得a-•2000•≥0,•a•≥2000
所以a-1995+2000a -=a ,2000a -=1995,a-2000=19952,
所以a-19952=2000.
3. 10-x。

相关文档
最新文档