矩阵键盘程序c程序,51单片机.
简易计算器(1602加矩阵键盘)

一、原理图:二、程序#include<reg51.h> //包含单片机寄存器的头文件#include<intrins.h> //包含_nop_()函数定义的头文件#include<math.h>sbit RS=P2^0; //寄存器选择位,将RS位定义为P2.0引脚sbit RW=P2^1; //读写选择位,将RW位定义为P2.1引脚sbit E=P2^2; //使能信号位,将E位定义为P2.2引脚sbit BF=P1^7; //忙碌标志位,#define NO_KEY_PRESS 0xff/********************************************************************************************************/unsigned char code tab[]={0xb7,0xee,0xde,0xbe,0xed,0xdd,0xbd,0xeb,0xdb,0xbb};unsigned long num1,num2,alg;unsigned char flag;void delay1ms(){unsigned char i,j;for(i=0;i<10;i++)for(j=0;j<15;j++);}/********************************************************************************************************/void delay(unsigned char n){unsigned char i;for(i=0;i<n;i++)delay1ms();}/*****************************************************函数功能:判断液晶模块的忙碌状态返回值:result。
【免费下载】单片机中用矩阵键盘实现计算器

col_1=1;
col_2=1;
col_3=1;
col_4=0;
keyfind(12);
col_1=0;
col_2=0;
col_3=0;
col_4=0;
//第一列输出'0'
//第二列输出'0'
//第三列输出'0'
//第四列输出'0'
//列线输出全为'0'
flag++; //每按一下标志位加 1
while(((P1&0x0f)!=0x0f)); //等待按键释放
break; case 2:
keynum=2+col_dat; break; case 4: keynum=3+col_dat; break; case 8: keynum=4+col_dat; break; }
} void keyprocess(void) {
switch(keynum) {
case 1:if(flag==1) //flag=1 表示是第一次按下,按得是被除数 num1=7; //第一个键按下对应是数字 7 if(flag==3) //flag=3 表示是第三次按下,按的是除数 num2=7; break;
计算器
1.程序要求:
用矩阵按键实现简单的加减乘除运算。
2.程序代码:
#include <reg51.h> #include <stdio.h> sbit col_1=P1^4; sbit col_2=P1^5; sbit col_3=P1^6; sbit col_4=P1^7;
unsigned char code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//共阴极数 码管 unsigned char keynum,flag; unsigned char num1,num2,flag1,flag2,flag3,flag4; void keyscan(void); void display(); void keyfind(unsigned char); void keyprocess(void);
单片机按键程序设计

单片机按键程序设计单片机按键的基本原理其实并不复杂。
通常,按键就是一个简单的开关,当按键按下时,电路接通,对应的引脚电平发生变化;当按键松开时,电路断开,引脚电平恢复到初始状态。
在程序设计中,我们需要不断检测引脚的电平变化,从而判断按键是否被按下。
在实际的按键程序设计中,有多种方式可以实现按键检测。
其中一种常见的方法是查询法。
这种方法是通过不断地读取按键对应的引脚状态来判断按键是否被按下。
以下是一个简单的查询法示例代码:```cinclude <reg51h> //包含 51 单片机的头文件sbit key = P1^0; //定义按键连接的引脚void main(){while(1) //无限循环{if(key == 0) //如果按键按下,引脚为低电平{//执行按键按下的操作//比如点亮一个 LED 灯P2 = 0xfe;while(key == 0);//等待按键松开}}}```上述代码中,我们首先定义了按键连接的引脚`key`,然后在主函数的无限循环中不断检测按键引脚的状态。
当检测到按键按下时,执行相应的操作,并通过`while(key == 0)`等待按键松开。
除了查询法,还有中断法可以用于按键检测。
中断法的优点是能够及时响应按键动作,不会因为程序的其他操作而导致按键响应延迟。
```cinclude <reg51h> //包含 51 单片机的头文件sbit key = P1^0; //定义按键连接的引脚void int0_init()//中断初始化函数{IT0 = 1; //下降沿触发中断EX0 = 1; //使能外部中断 0EA = 1; //开总中断}void int0() interrupt 0 //外部中断 0 服务函数{//执行按键按下的操作//比如点亮一个 LED 灯P2 = 0xfe;}void main(){int0_init();//初始化中断while(1);//无限循环,保持程序运行}```在上述代码中,我们首先在`int0_init` 函数中对中断进行了初始化设置,然后在`int0` 函数中编写了按键按下时的处理代码。
实验一 矩阵键盘检测

实验一矩阵键盘检测一、实验目的:1、学习非编码键盘的工作原理和键盘的扫描方式。
2、学习键盘的去抖方法和键盘应用程序的设计.二、实验设备:51/AVR实验板、USB连接线、电脑三、实验原理:键盘接口电路是单片机系统设计非常重要的一环,作为人机交互界面里最常用的输入设备。
我们可以通过键盘输入数据或命令来实现简单的人机通信。
1、按键的分类一般来说,按键按照结构原理可分为两类,一类是触点式开关按键,如机械式开关、导电橡胶式开关等;另一类是无触点式开关按键,如电气式按键,磁感应按键等。
前者造价低,后者寿命长.目前,微机系统中最常见的是触点式开关按键(如本学习板上所采用按键)。
按键按照接口原理又可分为编码键盘与非编码键盘两类,这两类键盘的主要区别是识别键符及给出相应键码的方法。
编码键盘主要是用硬件来实现对键的识别,非编码键盘主要是由软件来实现键盘的识别.全编码键盘由专门的芯片实现识键及输出相应的编码,一般还具有去抖动和多键、窜键等保护电路,这种键盘使用方便,硬件开销大,一般的小型嵌入式应用系统较少采用。
非编码键盘按连接方式可分为独立式和矩阵式两种,其它工作都主要由软件完成.由于其经济实用,较多地应用于单片机系统中(本学习板也采用非编码键盘)。
2、按键的输入原理在单片机应用系统中,通常使用机械触点式按键开关,其主要功能是把机械上的通断转换成为电气上的逻辑关系。
也就是说,它能提供标准的TTL 逻辑电平,以便与通用数字系统的逻辑电平相容。
此外,除了复位按键有专门的复位电路及专一的复位功能外,其它按键都是以开关状态来设置控制功能或输入数据。
当所设置的功能键或数字键按下时,计算机应用系统应完成该按键所设定的功能。
因此,键信息输入是与软件结构密切相关的过程。
对于一组键或一个键盘,通过接口电路与单片机相连.单片机可以采用查询或中断方式了解有无按键输入并检查是哪一个按键按下,若有键按下则跳至相应的键盘处理程序处去执行,若无键按下则继续执行其他程序。
51单片机矩阵键盘扫描程序

{
TH0=(65536-2000)/256;//重新赋值2ms
TL0=(65536-2000)%256;
Display(0,8); //调用数码管扫描
}
/*------------------------------------------------
unsigned char code dofly_DuanMa[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,
0x77,0x7c,0x39,0x5e,0x79,0x71};//显示段码值0~F
unsigned char code dofly_WeiMa[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//分别对应相应的数码管点亮,即位码
case 0xd7:return 11;break;//b
case 0xee:return 12;break;//c
case 0xed:return 13;break;//d
case 0xeb:return 14;break;//e
case 0xe7:return 15;break;//f
default:return 0xff;break;
}
}
/*------------------------------------------------
uS延时函数,含有输入参数unsigned char t,无返回值
unsigned char是定义无符号字符变量,其值的范围是
0~255这里使用晶振12M,精确延时请使用汇编,大致延时
长度如下T=tx2+5 uS
单片机教程26课单片机矩阵式键盘接口技术及程序设计

单片机教程26课:单片机矩阵式键盘接口技术及程序设计发布:2009-4-04 22:40 | 作者:hnrain | 查看:885 次在单片机系统中键盘中按钮数量较多时,为了减少I/O 口的占用,常常将按钮排列成矩阵形式,如图1所示。
在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按钮加以连接。
这样,一个端口(如P1 口)就能组成4*4=16个按钮,比之直接将端口线用于键盘多出了一倍,而且线数越多,区别越明显,比如再多加一条线就能组成20键的键盘,而直接用端口线则只能多出一键(9键)。
由此可见,在需要的键数比较多时,采用矩阵法来做键盘是合理的。
<单片机矩阵式键盘接口技术及编程接口图>矩阵式结构的键盘显然比直接法要复杂一些,识别也要复杂一些,上图中,列线通过电阻接正电源,并将行线所接的单片机的I/O 口作为输出端,而列线所接的I/O 口则作为输入。
这样,当按钮没有按下时,所有的输出端都是高电平,代表无键按下。
行线输出是低电平,一旦有键按下,则输入线就会被拉低,这样, 通过读入输入线的状态就可得知是否有键按下了。
具体的识别及编程办法如下所述。
矩阵式键盘的按钮识别办法确定矩阵式键盘上何键被按下介绍一种行扫描法”行扫描法行扫描法又称为逐行(或列)扫描查询法,是一种最常用的按钮识别办法,如上图所示键盘,介绍过程如下。
判断键盘中有无键按下将全部行线Y0-Y3置低电平,然后检测列线的状态。
只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4根行线相交叉的4个按钮之中。
若所有列线均为高电平,则键盘中无键按下。
判断闭合键所在的位置在确认有键按下后,即可进入确定具体闭合键的过程。
其办法是:依次将行线置为低电平,即在置某根行线为低电平时,其它线为高电平。
在确定某根行线位置为低电平后,再逐行检测各列线的电平状态。
若某列为低,则该列线与置为低电平的行线交叉处的按钮就是闭合的按钮。
单片机实验报告——矩阵键盘数码管显示

单片机实验报告信息处理实验实验二矩阵键盘专业:电气工程及其自动化指导老师:***组员:明洪开张鸿伟张谦赵智奇学号:152703117 \152703115\152703118\152703114室温:18 ℃日期:2017 年10 月25日矩阵键盘一、实验内容1、编写程序,做到在键盘上每按一个键(0-F)用数码管将该建对应的名字显示出来。
按其它键没有结果。
二、实验目的1、学习独立式按键的查询识别方法。
2、非编码矩阵键盘的行反转法识别方法。
3、掌握键盘接口的基本特点,了解独立键盘和矩阵键盘的应用方法。
4、掌握键盘接口的硬件设计方法,软件程序设计和贴士排错能力。
5、掌握利用Keil51软件对程序进行编译。
6、会根据实际功能,正确选择单片机功能接线,编制正确程序。
对实验结果能做出分析和解释,能写出符合规格的实验报告。
三、实验原理1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。
2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。
3、识别键的闭合,通常采用行扫描法和行反转法。
行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。
行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。
然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。
这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。
由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。
单片机矩阵键盘代码

LED(k);
}
} /////////////////////////////////////////////////////////////////
P3=0xfd; ////////////////222222222222222222222222222222222222222222222222222222222222
case 0xdd:k=5;break;
case 0xbd:k=6;break;
case 0x7d:k=7;break;
}
while(tmep!=0xf0)
{
tmep=P3;
tmep&=0xf0;
}
FM_();
tmep=P3;
tmep&=0xf0;
if(tmep!=0xf0)
{
delay(10);
tmep=P3;
tmep&=0xf0;
if(tmep!=0xf0)
{
tmep=P3;
switch(tmep)
{
case 0xe7:k=12;break;
{
if(xy==4||xy==12)
P1=0xe0;
else
{
if(xy==5||xy==13)
P1=0xc0;
else
{
if(xy==6||xy==14)
P1=0x80;
else
{
if(xy==7||xy==15)
P1=0x00;
}
}
}
}
}
}
}
}//////////LED
单片机控制的矩阵键盘扫描程序集

单片机控制的矩阵键盘扫描程序集各种各样的矩阵键盘扫描程序集矩阵键盘的扫描对初学者来说是不可避免的,然而也相对来说有点难度.鉴于此,我整理了一下,我所遇到的矩阵键盘扫描程序集,将相继贴上来,供大家参考! 说明:这些大多都是网上转贴来的,其所有权归原作者!谢谢合作.最简单矩阵键盘扫描程序key:MOV p0,#00001111b;上四位和下四位分别为行和列,所以送出高低电压检查有没有按键按下jmp k10;跳到K10处开始扫描,这里可以改成其它条件转移指令来决定本次扫描是否要继续,例如减1为0转移或者位为1或0才转移,这主要用来增加功能,确认上一按键功能是否完成?是否相当于经过了延时?是否要封锁键盘?goend:jmp kend;如果上面判断本次不执行键盘扫描程序,则立即转到程序尾部,不要浪费CPU的时间k10:jb p0.0,k20;扫描正式开始,先检查列1四个键是否有键按下,如果没有,则跳到K20检查列2k11:MOV p0,#11101111b;列1有键按下时,P0.0变低,到底是那一个键按下?现在分别输出各行低电平jb p0.0,k12;该行的键不按下时,p0.0为高电平,跳到到K12,检查其它的行MOV r1,#1;如果正好是这行的键按下,将寄存器R0写下1,表示1号键按下了k12:MOV p0,#11011111bjb p0.0,k13MOV r1,#2;如果正好是这行的键按下,将寄存器R0写下2,表示2号键按下了k13:MOV p0,#10111111bjb p0.0,k14MOV r1,#3;如果正好是这行的键按下,将寄存器R0写下3,表示3号键按下了k14:MOV p0,#01111111bjb p0.0,kend;如果现在四个键都没有按下,可能按键松开或干扰,退出扫描(以后相同)MOV r1,#4如果正好是这行的键按下,将寄存器R0写下4,表示4号键按下了jmp kend;已经找到按下的键,跳到结尾吧k20:jb p0.1,k30;列2检查为高电平再检查列3、4k21:MOV p0,#11101111b;列2有健按下时,P0.0会变低,到底是那一行的键按下呢?分别输出行的低电平jb p0.1,k22;该行的键不按下时p0.0为高电平,跳到到K22,检查另外三行MOV r1,#5;如果正好是这行的键按下,将寄存器R0写下5,表示5号键按下了(以后相同,不再重复了)k22:MOV p0,#11011111bjb p0.1,k23MOV r1,#6k23:MOV p0,#10111111bjb p0.1,k24MOV r1,#7k24:MOV p0,#01111111bjb p0.1,kendMOV r1,#8jmp kend;已经找到按下的键,跳到结尾吧(以后相同,不要重复了)k30:jb p0.2,k40k31:MOV p0,#11101111bjb p0.2,k32MOV r1,#9k32:MOV p0,#11011111bjb p0.2,k33MOV r1,#10k33:MOV p0,#10111111bjb p0.2,k34MOV r1,#11k34:MOV p0,#01111111bjb p0.2,kendMOV r1,#12jmp kendk40:jb p0.3,kendk41:MOV p0,#11101111bjb p0.3,k42MOV r1,#13k42:MOV p0,#11011111bjb p0.3,k43MOV r1,#14k43:MOV p0,#10111111bjb p0.3,k44MOV r1,#15k44:MOV p0,#01111111bjb p0.3,kendMOV r1,#16kend: ret行列扫描键盘可检测出双键按下#include <reg52.h>#define ulong unsigned long#define uint unsigned int#define uchar unsigned charextern void delay(unsigned int x);unsigned char Tab_key[]= //行列式键盘映射{0x00, //无键按下’’7’’,’’8’’,’’9’’,’’/’’,’’4’’,’’5’’,’’6’’,’’*’’,’’1’’,’’2’’,’’3’’,’’-’’,’’C’’,’’0’’,’’=’’,’’+’’,//下面为按’’C’’同时再按的键:’’7’’,’’8’’,’’9’’,’’/’’,’’4’’,’’5’’,’’6’’,’’*’’,’’1’’,’’2’’,’’3’’,’’-’’,’’0’’,’’=’’,’’+’’,};// P1口行列式键盘//#define KEYPIN_L P1 // 定义键扫描列端口为P1低四位输入//#define KEYPIN_H P1 // 定义键扫描行端口为P1高四位扫描输出//// P1口行列式键盘////公用函数unsigned char KeysCAN(void); // 键扫描函数// //内部私有函数unsigned char fnKeycode(unsigned char key); // 根据键盘映射表输出顺序键值///*// P1口行列式键盘//extern unsigned char KeysCAN(void); // 键扫描函数//*/// P1口行列式键盘////---------------------------------------------------------------------------//unsigned char KeysCAN(void) // 键扫描函数//{unsigned char sccode,recode,keytemp = 0;KEYPIN_L = KEYPIN_L|0x0f; // P1低四位为列线输入//KEYPIN_H = KEYPIN_H&0x0f; // P1高四位为行线发全零扫描码//if ((KEYPIN_L&0x0f) != 0x0f){delay(10); // 延时10 MS 消抖//if ((KEYPIN_L&0x0f) != 0x0f){sccode = 0xef; // 逐行扫描码初值(1110 1111) //while(sccode != 0xff) //将扫描4次,keytemp为每次键值相或的值//{KEYPIN_H = sccode; // 输出行扫描码//if ((KEYPIN_L&0x0f) != 0x0f) // 本行有键按下//{recode = (KEYPIN_L&0x0f)|0xf0; // 只要低位,高位置1 //keytemp |= (~sccode)+(~recode); //特征码(高位为列P3,低位为行KEYPIN_H) //}sccode = (sccode << 1)|0x01; // 扫描码0向高位移动//}}}KEYPIN_H = KEYPIN_H|0xf0;return(fnKeycode(keytemp));}//---------------------------------------------------------------------------//unsigned char fnKeycode(unsigned char key) // 根据键盘映射表输出顺序键值//{switch(key){case 0x11: // 1 键//key = 0x01;break;case 0x21: // 2 键// key = 0x02;break;case 0x41: // 3 键// key = 0x03;break;case 0x81: // 4 键// key = 0x04;break;case 0x12: // 5 键// key = 0x05;break;case 0x22: // 6 键// key = 0x06;break;case 0x42: // 7 键// key = 0x07;break;case 0x82: // 8 键// key = 0x08;break;case 0x14: // 9 键// key = 0x09;break;case 0x24: // 10 键// key = 0x0A;break;case 0x44: // 11 键// key = 0x0B;break;case 0x84: // 12 键// key = 0x0C;break;case 0x18: // 13 键// key = 0x0D;break;case 0x28: // 14 键// key = 0x0E;break;case 0x48: // 15 键// key = 0x0F;break;case 0x88: // 16 键// key = 0x10;break;//以下为功能键//case 0x19: // ’’C’’ +1 键//key = 0x11;break;ca se 0x29: // ’’C’’ +2 键//key = 0x12;break;case 0x49: // ’’C’’ +3 键//key = 0x13;break;case 0x89: // ’’C’’ +4 键//key = 0x14;break;case 0x1A: // ’’C’’ +5 键// key = 0x15;break;case 0x2A: // ’’C’’ +6 键// key = 0x16;break;case 0x4A: // ’’C’’ +7 键// key = 0x17;break;case 0x8A: // ’’C’’ +8 键// key = 0x18;break;case 0x1C: // ’’C’’ +9 键//key = 0x19;break;case 0x2C: // ’’C’’ +10 键// key = 0x1A;break;case 0x4C: // ’’C’’ +11 键// key = 0x1B;break;case 0x8C: // ’’C’’ +12 键// key = 0x1C;break;// case 0x18: // ’’C’’ +13 键// // key = 0x1D;// break;case 0x38: // ’’C’’ +14 键// key = 0x1D;break;case 0x58: // ’’C’’ +15 键// key = 0x1E;break;case 0x98: // ’’C’’ +16 键// key = 0x1F;break;default : // 无键//key = 0x00;break;}return(Tab_key[key]);}矩键查寻键值44程序与显示#include <reg52.h>//#include <math.h>#include <intrins.h>#define uchar unsigned char#define TURE 1#define FALSE 0int key;int del;void Tkey(void);void led(void);/************主程序*************/void main(void){void tkey(void);void led(void);void delay(int);SCON=0x00;TI=0;while(TURE){Tkey();led();delay(2000);}}/********矩键查寻键值4*4程序******/按键为P1.0---P1.7 void Tkey(void){uchar readkey;//rereadkey;uchar x_temp,y_temp;P1=0x0f;x_temp=P1&0x0f;if(x_temp==0x0f) goto keyout;P1=0xf0;y_temp=P1&0xf0;readkey=x_temp|y_temp;readkey=~readkey;switch(readkey){case 0x11:key=0; break;case 0x21:key=1; break;case 0x41:key=2; break;case 0x81:key=3; break;case 0x12:key=4; break;case 0x22:key=5; break;case 0x42:key=6; break;case 0x82:key=7; break;case 0x14:key=8; break;case 0x24:key=9; break;case 0x44:key=10;break;case 0x84:key=11;break;case 0x18:key=12;break;case 0x28:key=13;break;case 0x48:key=14;break;case 0x88:key=15;break;default: key=16;break;}keyout:_nop_();}/************显示程序*************/void led(void){uchar code LEDValue[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90}; //0-9 uchar data num[6];uchar k;num[0]=0;num[1]=0;num[2]=0;num[3]=0;num[4]=key/10;num[5]=key-(key/10)*10;for(k=0;k<=5;k++){SBUF=LEDValue[num[5-k]];while(TI==0);TI=0;}}/************延时程序*************/void delay(del){for(del;del>0;del--);;伪定义KEYBUF EQU 30H ;键值暂存单元,查表时用;*************************************;* *;* 主程序和中断程序入口*;* *;*************************************ORG 0000H ;程序执行开始地址AJMP MAIN ;跳至MAIN执行;*************************************;* *;* 主程序*;* *;*************************************ORG 0040HMAIN: MOV P1,#0FFHMOV P3,#0FFHLCALL KEYSCAN ;主体程序。
矩阵键盘扫描汇编程序

4*4矩阵键盘扫描汇编程序(基于51单片机)// 程序名称:4-4keyscan.asm;// 程序用途:4*4矩阵键盘扫描检测;// 功能描述:扫描键盘,确定按键值。
程序不支持双键同时按下,;// 如果发生双键同时按下时,程序将只识别其中先扫描的按键;// 程序入口:void;// 程序出口:KEYNAME,包含按键信息、按键有效信息、当前按键状态;//================================================================== ====PROC KEYCHKKEYNAME DATA 40H ;按键名称存储单元;(b7-b5纪录按键状态,b4位为有效位,;b3-b0纪录按键)KEYRTIME DATA 43H ;重复按键时间间隔SIGNAL DATA 50H ;提示信号时间存储单元KEY EQU P3 ;键盘接口(必须完整I/O口) KEYPL EQU P0.6 ;指示灯接口RTIME EQU 30 ;重复按键输入等待时间KEYCHK:;//=============按键检测程序========================================= ====MOV KEY,#0FH ;送扫描信号MOV A,KEY ;读按键状态CJNE A,#0FH,NEXT1 ;ACC<=0FH; CLR C ;Acc等于0FH,则CY为0,无须置0NEXT1:; SETB C ;Acc不等于0FH,则ACC必小于0 FH,;CY为1,无须置1MOV A,KEYNAMEANL KEYNAME,#1FH ;按键名称屏蔽高三位RRC A ;ACC带CY右移一位,纪录当前按键状态ANL A,#0E0H ;屏蔽低五位ORL KEYNAME,A ;保留按键状态;//=============判别按键状态,决定是否执行按键扫描=================== =====CJNE A,#0C0H,NEXT2 ;110按键稳定闭合,调用按键检测子程序SJMP KEYSCANNEXT2:CJNE A,#0E0H,NEXT3 ;111按键长闭合,重复输入允许判断SJMP WAITNEXT3:CJNE A,#0A0H,EXIT ;101干扰,当111长闭合处理ORL KEYNAME,#0E0HWAIT:MOV A,KEYRTIMEJNZ EXIT ;时间没到,退出;//=============键盘扫描程序========================================= =====KEYSCAN:MOV R1,#0 ;初始化列地址MOV R3,#11110111B ;初始化扫描码LOOP:MOV A,R3RL AMOV R3,A ;保留扫描码MOV KEY,A ;送扫描码MOV A,KEY ;读键盘ORL A,#0F0H ;屏蔽高四位CJNE A,#0FFH,NEXT31 ;A不等于FFH,说明该列有按键动作INC R1 ;列地址加1,准备扫描下一列CJNE R1,#4,LOOP ;列地址不等于4,扫描下一列SJMP EXIT ;没有按键,退出;//=============按键判断对应位等于零,说明该行有按键按下============= =====NEXT31:JB ACC.0,NEXT32MOV R2,#0 ;第0行有按键SJMP NEXT5NEXT32:JB ACC.1,NEXT33MOV R2,#1 ;第1行有按键SJMP NEXT5NEXT33:JB ACC.2,NEXT34MOV R2,#2 ;第2行有按键SJMP NEXT5NEXT34:MOV R2,#3 ;第3行有按键NEXT5: ;计算按键地址MOV A,R1RL ARL A ;列地址乘4(每列对应4行)ADD A,R2 ;加行地址MOV DPTR,#KEYTABMOVC A,@A+DPTRANL KEYNAME,#0E0HORL KEYNAME,A ;送按键(送值的时候已经置按键有效)MOV KEYRTIME,#RTIME ;送重复按键等待时间CLR KEYPL ;打开指示灯MOV SIGNAL,#10 ;送信号提示时间(每次按键闪10 0ms)EXIT:MOV KEY,#0FFH ;置键盘接口高电平RET ;退出;//=============按键名称表=========================================== =====KEYTAB:DB 1AH ;扫描码0,对应A ************************************ ******DB 1BH ;扫描码1,对应B ** **DB 1CH ;扫描码2,对应C ** I/O口 PX.4 PX.5 PX.6 PX.7 **DB 1DH ;扫描码3,对应D ** **DB 11H ;扫描码4,对应1 ** PX.0 A(0) 1(4) 2(8) 3 (C) **DB 14H ;扫描码5,对应4 ** **DB 17H ;扫描码6,对应7 ** PX.1 B(1) 4(5) 5(9) 6 (D) **DB 1EH ;扫描码7,对应E ** **DB 12H ;扫描码8,对应2 ** PX.2 C(2) 7(6) 8(A) 9 (E) **DB 15H ;扫描码9,对应5 ** **DB 18H ;扫描码A,对应8 ** PX.3 D(3) E(7) 0(B) F(F) **DB 10H ;扫描码B,对应0 ** **DB 13H ;扫描码C,对应3 ************************************ ******DB 16H ;扫描码D,对应6DB 19H ;扫描码E,对应9DB 1FH ;扫描码F,对应FEND第二种解法ORG 0000HSTART: MOV R0,#00H ;初始化程序,开始的延时是为了使硬件能够准备好DJNZ R0,$LOOP: MOV SP,#60HCALL KEYDISPLAY:MOV A,R4MOV DPTR,#TABLE ;定义字形表的起始地址MOVC A,@A+DPTR ;TABLE为表的起始地址MOV P2,ASJMP LOOP;子程序内容,P1口的低四位为行线,高四位为列线KEY: PUSH PSWPUSH ACCMOV P1,#0F0H ;令所有的行为低电平,全扫描字-P1.0-P1.3,列为输入方式;这一段只是验证有键按下,并不能判断是哪一行MOV R7,#0FFH ;设置计数常数,作为延时KEY1: DJNZ R7, KEY1MOV A,P1 ;读取P1口的列值ANL A,#0F0H ;判别有键值按下吗(当有键按下时,P1口的高四位就不全为1了,底四位还是都为0的);这个地方进行相或的原因,是因为要把底四位的0000变成1111,以便下一步进行求反ORL A,#0FH //这个地方原版上没有,这是又加了,如果不加的的话,是不对的********CPL A ;求反后,有高电平就有键按下JZ EKEY;累加器为0则转移(意为求反后本来全为0的,如果有键按下时,求反后高四位就有1了),退出LCALL DEL20ms ;有键按下,进行处理;下面进行行行扫描,1行1行扫SKEY: MOV A,#00HMOV R0,A ;R0作为行计数器,开始初值为0MOV R1,A ;R1作为列计数器,开始初值为0MOV R2,#0FEH ;R2作为扫描暂存字,开始初值为1111 1110,(第四位作为行扫描字)SKEY2: MOV A,R2MOV P1,A ;输出行扫描字,1111 1110NOPNOPNOP ;3个NOP操作使P1口输出稳定MOV A,P1 ;读列值(和开始一样)MOV R1,A ;暂存列值(第一次为**** 1110,既高四位有一位"可能"会为0)ANL A,#0F0H ;取高四位,ORL A,#0FH ;使第四位全部置1CPL ABIAOZHI:JNZ SKEY3 ;累加器为非0则转移指令(意思是判断到按键在这一行),转去处理INC R0 ;如果按键没在这一行,行计数器加1SETB C ;进位标志位加1,为了在左移的时候开始的低位0不在出现在低(循环一圈后)MOV A,R2RLC A ;带进位左移1位(形成下一行扫描字,再次扫描)MOV R2,AMOV A,R0;把加1后的行计数器R0和总共扫描次数(4次比较)CJNE A,#04H,SKEY2 ;(扫描完了么)书本上这个地方也有错误,书本上写的是:SKEY1AJMP EKEY ;如果没有的话,退出;有键按下后行扫描过后,此为确列行SKEY3: MOV A,R1 ;JNB ACC.4,SKEY5 ;直接寻址位为0咋转移指令JNB ACC.5,SKEY6JNB ACC.6,SKEY7JNB ACC.7,SKEY8AJMP EKEY //我自己感觉到这命令没有用处SKEY5: MOV A,#00H ;存0列号MOV R3,AAJMP DKEYSKEY6: MOV A,#01H ;存1列号MOV R3,AAJMP DKEYSKEY7: MOV A,#02H ;存2列号MOV R3,AAJMP DKEYSKEY8: MOV A,#03H ;存3列号MOV R3,AAJMP DKEY;取出具体的行号,再加上列号,最终确认按键的号码DKEY: //MOV R4,#00HMOV A,R0MOV B,#04HMUL AB ;让行号*4,第四位放在A中(总共就4行,相乘后一定<16,也就是只有第四位有值)ADD A,R3 ;让行号和列号相加,最终确认任按键的具体号MOV R4,AEKEY: POP ACCPOP PSWRET ;按键扫描处理函数DEL20ms:MOV R7,#2DL2: MOV R6,#18DL1: MOV R5,#255DJNZ R5,$DJNZ R6,DL1DJNZ R7,DL2RET;此为共阴极数码管的数字表TABLE: DB 3FH ;0DB 06H ;1DB 5BH ;2DB 4FH ;3DB 66H ;4DB 6DH ;5DB 7DH ;6DB 27H ;7DB 7FH ;8DB 6FH ;9DB 77HDB 7CHDB 39HDB 5EHDB 79HDB 71HEND第三种PIC单片机键盘扫描汇编程序;本程序用于PIC外接键盘的识别,通过汇编程序,使按下K1键时第一个数码管显示1,按下K2键时第一;个数码管上显示2,按下K3键时第一个数码管上显示3,按下K4键时第一个数码管上显示4,;汇编程序对键盘的扫描采用查询方式LIST P=18F458INCLUDE "P18F458.INC";所用的寄存器JIANR EQU 0X20FLAG EQU JIANR+1 ;标志寄存器DEYH EQU JIANR+2DEYL EQU JIANR+3F0 EQU 0 ;FLAG的第0位定义为F0ORG 0X00GOTO MAINORG 0X30;*************以下为键盘码值转换表****************** CONVERT ADDWF PCL,1RETLW 0XC0 ;0,显示段码与具体的硬件连接有关RETLW 0XF9 ;1RETLW 0XA4 ;2RETLW 0XB0 ;3RETLW 0X99 ;4RETLW 0X92 ;5RETLW 0X82 ;6RETLW 0XD8 ;7RETLW 0X80 ;8RETLW 0X90 ;9RETLW 0X88 ;ARETLW 0X83 ;BRETLW 0XC6 ;CRETLW 0XA1 ;DRETLW 0X86 ;ERETLW 0X8E ;FRETLW 0X7F ;"."RETLW 0XBF ;"-"RETLW 0X89 ;HRETLW 0XFF ;DARKRETURN;***************PIC键盘扫描汇编程序初始化子程序***************** INITIALBCF TRISA,5 ;置RA5为输出方式,以输出锁存信号BCF TRISB,1BCF TRISA,3BCF TRISE,0BCF TRISE,1BSF TRISB,4 ;设置与键盘有关的各口的输入输出方式BCF TRISC,5BCF TRISC,3 ;设置SCK与SDO为输出方式BCF INTCON,GIE ;关闭所有中断LW 0XC0WF SSPSTAT ;设置SSPSTAT寄存器LW 0X30WF SSPCON1 ;设置SPI的控制方式,允许SSP方式,并且时钟下降;沿发送数据,与"74HC595当其SCLK从低到高电平;跳变时,串行输入数据(DI)移入寄存器"的特点相对应LW 0X01WF JIANR ;显示值寄存器(复用为键值寄存器)赋初值CLRF FLAG ;清除标志寄存器RETURN ;返回;**************显示子程序*****************DISPLAYCLRF PORTAWF SSPBUFAGAINBTFSS PIR1,SSPIFGOTO AGAINNOPBCF PIR1,SSPIFBSF PORTA,5 ;详细的程序语句请参考 pic教程语句部分,可在首页搜索。
矩阵键盘的键值计算及编程

2 读取I/O口值的练习
.j
用程序控制单片机P2口工作,让高四位全高电平,低四位全低电平。 即:P2=0xf0; 具体实现见操作,结果如图。
P1口高四位是指:P1.7 P1.6 P1.5 P1.4
一般都是自高到低读出一个端口各脚电平 ,得到8位二进制数,再将8位二进制转换成2位十六进数。
P3口值= P3.7 P3.6 P3.5 P3.4P3.3 P3.2 P3.1 P3.0 =1111 1010=0xfa
2 读取I/O口值的练习
.j
当 程序使P2=0x0f; 外接一个两脚开关到P2口只能让P2产生如下四个新的值: 0x0e, 0x0d,0x0b,0x07 0x0d 0x0b
找出行线值 置行线所处端口位置高电平
找出列线值 置列线所处端口位置高电平
行线值+列线值=键值
计算键值一般方法
3 键盘的键值
.j
先找出行线值,再找出列线值,最后绘出矩阵键盘的键值。
总结
4×4矩阵键盘的键值 共有16个,计算键值时总是:
4 键盘扫描编程__线反转法
.j
/************键盘扫子描函数*******************/ char keyscan(void) //键盘扫描函数,键盘使用P2口 { char value_h,value_l; //value_h行值变量,value_l列值变量 P2=0xf0; //将行线所处位置置高电平 if((P2&0xf0)!=0xf0) //判断是否有键按下 { delay(10); //延时防抖 if((P2&0xf0)!=0xf0) //仍有键按下 { value_h=P2&0xf0; //读出P2口值给变量value_h P2=0x0f; //将列线所处位置置高电平 value_l=P2&0x0f; //读出P2口值给变量value_l return(value_l+value_h); //找到的键值返回给调用函数 } } }
矩阵式键盘实验报告

矩阵式键盘实验报告矩阵键盘设计实验报告南京林业大学实验报告基于AT89C51单片机4x4矩阵键盘接口电路设计课程院系班级学号姓名指导老师机电一体化设计基础机械电子工程学院杨雨图2013年9月26日一、实验目的1、掌握键盘接口的基本特点,了解独立键盘和矩阵键盘的应用方法。
2、掌握键盘接口的硬件设计方法,软件程序设计和贴士排错能力。
3、掌握利用Keil51软件对程序进行编译。
4、用Proteus软件绘制“矩阵键盘扫描”电路,并用测试程序进行仿真。
5、会根据实际功能,正确选择单片机功能接线,编制正确程序。
对实验结果能做出分析和解释,能写出符合规格的实验报告。
二、实验要求通过实训,学生应达到以下几方面的要求:素质要求1.以积极认真的态度对待本次实训,遵章守纪、团结协作。
2.善于发现数字电路中存在的问题、分析问题、解决问题,努力培养独立工作能力。
能力要求1.模拟电路的理论知识2.脉冲与数字电路的理念知识3.通过模拟、数字电路实验有一定的动手能力4.能熟练的编写8951单片机汇编程序5.能够熟练的运用仿真软件进行仿真三、实验工具1、软件:Proteus软件、keil51。
2、硬件:PC机,串口线,并口线,单片机开发板四、实验内容1、掌握并理解“矩阵键盘扫描”的原理及制作,了解各元器件的参数及格元器件的作用。
2、用keil51测试软件编写AT89C51单片机汇编程序3、用Proteus软件绘制“矩阵键盘扫描”电路原理图。
4、运用仿真软件对电路进行仿真。
五.实验基本步骤1、用Proteus绘制“矩阵键盘扫描”电路原理图。
2、编写程序使数码管显示当前闭合按键的键值。
3、利用Proteus软件的仿真功能对其进行仿真测试,观察数码管的显示状态和按键开关的对应关系。
4、用keil51软件编写程序,并生成HEX文件。
5、根据绘制“矩阵键盘扫描”电路原理图,搭建相关硬件电路。
6、用通用编程器或ISP下载HEX程序到MCU。
矩阵式键盘实现的电子密码锁C程序

{
unsigned char i,j;
for(i=0;i<100;i++)
for(j=0;j<60;j++)
;
}
/**************************************************************
函数功能:开锁延时子程序
break;
}
}
/**************************************************************
函数功能:延时输出音频
**************************************************************/
void delay(void)
{
while(P16==0)
;
keyval=3; //可判断是S3键被按下
}
if(P17==0) //如果检测到接P1.7引脚的列线为低电平“0”
{
while(P17==0)
;
keyval=4; //可判断是S4键被按下
}
P1=0xfd; //第二行置为低电平“0”(P1.1输出低电平“0”)
if(P14==0) //如果检测到接P1.4引脚的列线为低电平“0”
{
unsigned char D[ ]={5,8,4,5,1,2,11}; //设定密码
EA=1; //开总中断
ET0=1; //定时器T0中断允许
TMOD=0x01; //使用定时器T0的模式1
TH0=(65536-500)/256; //定时器T0的高8位赋初值
单片机矩阵键盘代码

#include<reg52.h>#define uint unsigned int#define uchar unsigned char sbit dula=P2^6;sbit wela=P2^7;uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};void delayms(uint);void display(uchar);void matrixkeyscan();void main(){dula=1;P0=0x00;dula=0;P0=0xff;wela=1;P0=0xc0;while(1){matrixkeyscan();}}void delayms(uint xms) {uint i,j;for(i=xms;i>0;i--)for(j=110;j>0;j--); }void display(uchar num) {dula=1;P0=table[num];dula=0;}void matrixkeyscan() {uchar temp,key;temp=P3;temp=temp&0x0f;if(temp!=0x0f){delayms(10);temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;switch(temp){case 0xee:key=0;break;case 0xed:key=1;break;case 0xeb:key=2;break;case 0xe7:key=3;break;}while(temp!=0x0f){temp=P3;temp=temp&0x0f;}display(key);}}P3=0xdf;temp=P3;temp=temp&0x0f;if(temp!=0x0f){delayms(10);temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;switch(temp){case 0xde:key=4;break;case 0xdd:key=5;break;case 0xdb:key=6;break;case 0xd7:key=7;break;}while(temp!=0x0f){temp=P3;temp=temp&0x0f;}display(key);}}P3=0xbf;temp=P3;temp=temp&0x0f;if(temp!=0x0f){delayms(10);temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;switch(temp){case 0xbe:key=8;break;case 0xbd:key=9;break;case 0xbb:key=10;break;case 0xb7:key=11;break;}while(temp!=0x0f){temp=P3;temp=temp&0x0f;}display(key);}}P3=0x7f;temp=P3;temp=temp&0x0f;if(temp!=0x0f){delayms(10);temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;switch(temp){case 0x7e:key=12;break;case 0x7d:key=13;break;case 0x7b:key=14;break;case 0x77:key=15;break;}while(temp!=0x0f){temp=P3;temp=temp&0x0f;}display(key);}}}。
矩阵键盘程序c程序-51单片机.

/*编译环境:Keil 7.50A c51 *//*******************************************************//*********************************包含头文件********************************/#include<reg51.h>/*********************************数码管表格********************************/ unsigned char table[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x 8E};/****************************************************************************函数功能:延时子程序入口参数:出口参数:****************************************************************************/ void delay(void){unsigned char i,j;for(i=0;i<20;i++)for(j=0;j<250;j++);}/****************************************************************************函数功能:LED显示子程序入口参数:i出口参数:****************************************************************************/ void display(unsigned char i){P2=0xfe;P0=table[i];}/****************************************************************************函数功能:键盘扫描子程序入口参数:出口参数:****************************************************************************/ void keyscan(void){unsigned char n;//扫描第一行P1=0xfe;n=P1;n&=0xf0;if(n!=0xf0){delay();P1=0xfe;n=P1;n&=0xf0;if(n!=0xf0){switch(n){case(0xe0):display(3);break;case(0xd0):display(2);break;case(0xb0):display(1);break;case(0x70):display(0);break;}}}//扫描第二行P1=0xfd;n=P1;n&=0xf0;if(n!=0xf0){delay();P1=0xfd;n=P1;n&=0xf0;if(n!=0xf0){switch(n){case(0xe0):display(7);break;case(0xd0):display(6);break;case(0xb0):display(5);break;case(0x70):display(4);break;}}}//扫描第三行P1=0xfb;n=P1;n&=0xf0;if(n!=0xf0){delay();P1=0xfb;n=P1;n&=0xf0;if(n!=0xf0){switch(n){case(0xe0):display(11);break;case(0xd0):display(10);break;case(0xb0):display(9);break;case(0x70):display(8);break;}}}//扫描第四行P1=0xf7;n=P1;n&=0xf0;if(n!=0xf0){delay();P1=0xf7;n=P1;n&=0xf0;if(n!=0xf0){switch(n){case(0xe0):display(15);break;case(0xd0):display(14);break;case(0xb0):display(13);break;case(0x70):display(12);break;}}}}/**************************************************************************** 函数功能:主程序入口参数:出口参数:****************************************************************************/ void main(void){while(1){keyscan();}}。
单片机 矩阵键盘实验 实验报告

实验五矩阵键盘实验一、实验内容1、编写程序,做到在键盘上每按一个数字键(0-F)用发光二极管将该代码显示出来。
按其它键退出。
2、加法设计计算器,实验板上有12个按键,编写程序,实现一位整数加法运算功能。
可定义“A”键为“+”键,“B”键为“=”键。
二、实验目的1、学习独立式按键的查询识别方法。
2、非编码矩阵键盘的行反转法识别方法。
三、实验说明1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。
2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。
3、识别键的闭合,通常采用行扫描法和行反转法。
行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。
行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。
然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。
这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。
由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。
行反转法识别按键的过程是:首先,将4个行线作为输出,将其全部置0,4个列线作为输入,将其全部置1,也就是向P1口写入0xF0;假如此时没有人按键,从P1口读出的值应仍为0xF0;假如此时1、4、7、0四个键中有一个键被按下,则P1.6被拉低,从P1口读出的值为0xB0;为了确定是这四个键中哪一个被按下,可将刚才从P1口读出的数的低四位置1后再写入P1口,即将0xBF写入P1口,使P1.6为低,其余均为高,若此时被按下的键是“4”,则P1.1被拉低,从P1口读出的值为0xBE;这样,当只有一个键被按下时,每一个键只有唯一的反转码,事先为12个键的反转码建一个表,通过查表就可知道是哪个键被按下了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/*编译环境:Keil 7.50A c51 */
/*******************************************************/
/*********************************包含头文件********************************/
#include<reg51.h>
/*********************************数码管表格********************************/ unsigned char table[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x 8E};
/****************************************************************************
函数功能:延时子程序
入口参数:
出口参数:
****************************************************************************/ void delay(void)
{
unsigned char i,j;
for(i=0;i<20;i++)
for(j=0;j<250;j++);
}
/****************************************************************************
函数功能:LED显示子程序
入口参数:i
出口参数:
****************************************************************************/ void display(unsigned char i)
{
P2=0xfe;
P0=table[i];
}
/****************************************************************************
函数功能:键盘扫描子程序
入口参数:
出口参数:
****************************************************************************/ void keyscan(void)
{
unsigned char n;
//扫描第一行
P1=0xfe;
n=P1;
n&=0xf0;
if(n!=0xf0)
{
delay();
P1=0xfe;
n=P1;
n&=0xf0;
if(n!=0xf0)
{
switch(n)
{
case(0xe0):display(3);break;
case(0xd0):display(2);break;
case(0xb0):display(1);break;
case(0x70):display(0);break;
}
}
}
//扫描第二行
P1=0xfd;
n=P1;
n&=0xf0;
if(n!=0xf0)
{
delay();
P1=0xfd;
n=P1;
n&=0xf0;
if(n!=0xf0)
{
switch(n)
{
case(0xe0):display(7);break;
case(0xd0):display(6);break;
case(0xb0):display(5);break;
case(0x70):display(4);break;
}
}
}
//扫描第三行
P1=0xfb;
n=P1;
n&=0xf0;
if(n!=0xf0)
{
delay();
P1=0xfb;
n=P1;
n&=0xf0;
if(n!=0xf0)
{
switch(n)
{
case(0xe0):display(11);break;
case(0xd0):display(10);break;
case(0xb0):display(9);break;
case(0x70):display(8);break;
}
}
}
//扫描第四行
P1=0xf7;
n=P1;
n&=0xf0;
if(n!=0xf0)
{
delay();
P1=0xf7;
n=P1;
n&=0xf0;
if(n!=0xf0)
{
switch(n)
{
case(0xe0):display(15);break;
case(0xd0):display(14);break;
case(0xb0):display(13);break;
case(0x70):display(12);break;
}
}
}
}
/**************************************************************************** 函数功能:主程序
入口参数:
出口参数:
****************************************************************************/ void main(void)
{
while(1)
{
keyscan();
}
}。