1.应变电桥性能实验

合集下载

实验一应变片单臂电桥性能实验

实验一应变片单臂电桥性能实验

实验一应变片单臂电桥性能实验
实验一:应变片单臂电桥性能实验
实验设备:
1. 应变片:选择合适的应变片,并保证其表面干净、光滑。

2. 悬挂支架:用于固定应变片。

3. 变压器:提供所需的电源电压。

4. 电压表:用于测量电压值。

5. 多用表:用于测量电阻、电流等参数。

实验步骤:
1. 将应变片固定在悬挂支架上,使其能够受到外力引起的变形。

2. 将应变片连接到单臂电桥电路中,其中三个电阻分别为R1、R2、R3。

3. 通过调节R3的阻值,使得电桥平衡,即电桥两个输出端的
电压为零。

4. 测量R3的阻值。

5. 给电桥施加一定的外力,观察电桥的输出电压变化情况。

6. 根据电桥输出电压的变化,计算应变片的应变值。

实验原理:
应变片是一种可以将外力作用下的应变转化为电阻变化的器件。

在单臂电桥电路中,由于应变片的变形导致其电阻值发生变化,从而引起电桥不平衡,产生输出电压。

通过调节R3的阻值,
使得电桥平衡,即电桥两个输出端的电压为零,可以得到应变片的相对电阻变化量。

根据此相对电阻变化量,可以计算出应变片的应变值。

实验注意事项:
1. 应保证应变片的表面光滑,并且避免应变片受到过大的外力导致破坏。

2. 在进行电桥平衡调节时,应谨慎调节R3的阻值,以避免短路或断路的情况发生。

3. 在测量电桥输出电压变化时,应注意观察其变化趋势,并保证测量的准确性。

4. 在计算应变值时,应根据实验所使用的应变片的特性曲线进行计算,以获得更为准确的结果。

金属箔式应变片――单臂电桥性能实验

金属箔式应变片――单臂电桥性能实验

金属箔式应变片――单臂电桥性能实验
金属箔式应变片是一种测量物体应变的传感器。

它由金属箔制成,其形状和尺寸随应变恒定地改变。

通常,金属箔式应变片被粘贴到物体上,以测量该物体的应变。

为了实现测量,必须将应变片作为电桥的一部分,以便以电信号的形式测量物体的应变。

单臂电桥是一种含有一根臂的常规电桥,这个臂是一个金属箔式应变片。

单臂电桥常用于测量物体的微小应变,因为它能够提供极高的灵敏度和精度。

在本次实验中,我们将测量单臂电桥的性能,并研究如何使用它来测量物体的应变。

实验步骤:
1.将单臂电桥接入一个稳定的电源电路。

2.将一个金属杆或物体加入电桥电路,在物体上粘贴一个应变片。

3.使用数字多用表(DMM)检测电桥的电阻,并记录其值。

4.施加一个已知的应变到应变片上(例如用千分尺或细度卡测量),并记录DMM的值。

5.再次检测电桥的电阻,并将其记录下来。

重复以上步骤,测量不同大小的应变并记录结果,并绘制应变与电桥电阻的关系曲线。

结果分析:
根据获得的数据,可以绘制出应变与电桥电阻的关系曲线。

这个曲线应该是线性的,因为应变片对一个物体的应变是线性的。

此曲线可用于测量未知应变的物体。

通过测量电桥电阻并使用该曲线,我们可以计算出未知物体的应变值。

总之,单臂电桥是一种灵敏和高精度的应变测量工具,可用于测量各种应用场景中的多种物体的微小应变。

在进行实验时,应注意实验室安全,并根据实验结果和所使用的工具及设备的说明书,确定测量值的准确性和可靠性。

应变片单臂电桥性能实验的实验数据的计算

应变片单臂电桥性能实验的实验数据的计算

应变片单臂电桥性能实验的实验数据的计算首先,我们需要确定实验的目的和假设。

通常,我们希望通过实验来测量材料或结构的应变变化,并评估应变片单臂电桥的精度和灵敏度。

然后,我们需要设计实验方案,并收集实验数据。

实验方案包括选择合适的材料和结构,确定测试条件(如加载方法、载荷大小等),以及选择测量仪器和测量方法。

实验数据一般包括以下几个方面:
1.载荷值:记录每个加载点施加的载荷值。

2.应变值:在每个加载点测量应变片的应变值。

3.电桥输出电压:根据应变片单臂电桥的原理,利用电桥测量应变片的应变值,并记录电桥的输出电压。

接下来,我们需要进行一定的数据处理和计算。

以下是可能需要进行的一些计算:
1.应变的计算:根据应变片的几何尺寸和电桥的灵敏度系数,将电桥输出电压转换为应变值。

2.灵敏度计算:根据应变值和载荷值的关系,计算应变片单臂电桥的灵敏度。

3.精度评估:根据实测数据和理论计算值的比较,评估应变片单臂电桥的精度。

最后,我们需要对实验数据进行分析和总结,得出结论。

通过分析实验数据,我们可以评估应变片单臂电桥的性能,比较不同条件下的结果,并找出可能存在的问题和改进方法。

在撰写实验报告时,我们应该清晰地描述实验的目的、实验方案、数据收集方法、数据处理和计算方法,以及分析和总结结果。

通过这些完整的实验过程,我们可以提高实验的可重复性和可靠性,得出准确的结论,并为进一步的研究和应用提供参考。

实验2:应变片全桥性能实验

实验2:应变片全桥性能实验

实验2 应变片全桥性能实验一、实验目的:了解应变片全桥工作特点及性能。

二、基本原理:1. 应变片的基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

2. 应变片的电阻应变效应:所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为:L 、半径为r 、材料的电阻率为ρ时,根据电阻的定义式得:2ρρπ==g L L R A r ..................(1-1) 当导体因某种原因产生应变时,其长度L 、截面积A 和电阻率ρ的变化为dL 、dA 、dρ相应的电阻变化为dR 。

对式(1—1)全微分得电阻变化率 dR/R 为:2ρρ=-+dR dL dr d R L r ..................(1-2) 式中:dL/L 为导体的轴向应变量εL ; dr/r 为导体的横向应变量εr 。

由材料力学知识可得:εL = - μεr ..................(1-3)式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(1-3)代入式(1-2)得:()12ρμερ=++dR d R ..............(1-4),该式说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能。

3. 半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

应变电桥特性应用实验报告

应变电桥特性应用实验报告

竭诚为您提供优质文档/双击可除应变电桥特性应用实验报告篇一:直流电桥实验报告清华大学实验报告系别:机械工程系班号:72班姓名:车德梦(同组姓名:)作实验日期20XX年11月5日教师评定:实验3.3直流电桥测电阻一、实验目的(1)了解单电桥测电阻的原理,初步掌握直流单电桥的使用方法;(2)单电桥测量铜丝的电阻温度系数,学习用作图法和直线拟合法处理数据;(3)了解双电桥测量低电阻的原理,初步掌握双电桥的使用方法。

(4)数字温度计的组装方法及其原理。

二、实验原理1.惠斯通电桥测电阻惠斯通电桥(单电桥)是最常用的直流电桥,如图是它的电路原理图。

图中R1、R2和R是已知阻值的标准电阻,它们和被测电阻Rx连成一个四边形,每一条边称作电桥的一个臂。

对角A和c之间接电源e;对角b和D之间接有检流计g,它像桥一样。

若调节R使检流计中电流为零,桥两端的b点和D点点位相等,电桥达到平衡,这时可得I1R?I2Rx,两式相除可得I1R1?I2R2Rx?R2RR1只要检流计足够灵敏,等式就能相当好地成立,被测电阻值Rx可以仅从三个标准电阻的值来求得,而与电源电压无关。

这一过程相当于把Rx 和标准电阻相比较,因而测量的准确度较高。

单电桥的实际线路如图所示:将R2和R1做成比值为c的比率臂,则被测电阻为Rx?cR其中c?R2R1,共分7个档,0.001~1000,R为测量臂,由4个十进位的电阻盘组成。

图中电阻单位为?。

2.铜丝电阻温度系数任何物体的电阻都与温度有关,多数金属的电阻随文的升高而增大,有如下关系式:Rt?R0(1??Rt)式中Rt、R0分别是t、0℃时金属丝的电阻值;?R是电阻温度系数,单位是(℃)。

严格-1地说,?R一般与温度有关,但对本实验所用的纯铜丝材料来说,在-50℃~100℃的范围内?R的变化很小,可当作常数,即Rt与t呈线性关系。

于是?R?Rt?R0R0t利用金属电阻随温度变化的性质,可制成电阻温度计来测温。

金属箔式应变片――单臂电桥性能实验

金属箔式应变片――单臂电桥性能实验

实验1 金属箔式应变片――单臂电桥性能实验一、实验目的:1、了解金属箔式应变片的应变效应2、单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

,对单臂电桥输出电压U o1= EKε/4。

三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V 电源、万用表(自备)。

四、实验步骤:1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。

传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。

加热丝也接于模板上,可用万用表进行测量判别,R 1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右图1-1 应变式传感器安装示意图2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V 档)。

关闭主控箱电源(注意:当R w3、R w4的位置一旦确定,就不能改变。

一直到做完实验为止)。

3、将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器R W1,接上桥路电源±4V(从主控台引入)如图1-2所示。

检查接线无误后,合上主控台电源开关。

应变实验

应变实验

综合实验一金属箔式应变片实验(一)金属箔式应变片――高精度单臂电桥性能实验一、实验目的利用CSY2000型应变式传感器实验模板,了解由金属箔式应变片构成的高精度单臂电桥的应变效应,工作原理和性能。

二、基本原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。

电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相= EKε/4。

应的受力状态。

对单臂电桥输出电压 Uo1三、需用器件与单元主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘、砝码、412位数显万用表(自备)。

图2-1 应变片单臂电桥性能实验安装、接线示意图四、实验步骤应变传感器实验模板说明:实验模板中的R1、R2、R3、R4为应变片,没有文字标记的5个电阻符号下面是空的,其中4个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。

1.根据图2-1安装接线。

应变式传感器(电子秤传感器)已装于应变传感器模板上。

传感器中4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4和加热器上。

传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。

当传感器托盘支点受压时,R1、R3阻值增加,R2、R4阻值减小,可用四位半数显万用表进行测量判别。

常态时应变片阻值为350Ω,加热丝电阻值为50Ω左右。

2.放大器输出调零:将图4-1实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(Vi =0);调节放大器的增益电位器RW3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V挡,合上主机箱电源开关;调节实验模板放大器的调零电位器RW4,使电压表显示为零。

应变片电桥性能实验报告

应变片电桥性能实验报告

应变片电桥性能实验报告应变片电桥性能实验报告引言:应变片电桥是一种常见的测量应变和力的传感器。

它通过将应变片安装在被测物体上,利用应变片的应变与被测物体受力之间的线性关系,通过电桥电路来测量应变片的电阻变化,从而得到被测物体的应变和力的信息。

本实验旨在研究应变片电桥的性能,包括灵敏度、线性度和温度补偿等方面。

实验装置和方法:实验使用了一套标准的应变片电桥装置,包括应变片、电桥电路和数据采集系统。

首先,将应变片粘贴在被测物体上,并通过电缆将应变片连接到电桥电路。

然后,通过电源提供电桥所需的电压,同时使用数据采集系统记录电桥的输出电压。

在实验过程中,通过施加不同的力或应变来改变被测物体的状态,以观察电桥输出的变化。

实验结果与分析:1. 灵敏度:灵敏度是指电桥输出电压与被测物体应变或力之间的比例关系。

为了研究电桥的灵敏度,我们分别施加不同大小的力,并记录相应的电桥输出电压。

实验结果显示,电桥输出电压与施加的力呈线性关系,且随着力的增加而增加。

这表明应变片电桥具有较高的灵敏度,能够准确测量被测物体的应变和力。

2. 线性度:线性度是指电桥输出电压与被测物体应变或力之间的线性关系程度。

为了研究电桥的线性度,我们施加不同大小的力,并记录电桥输出电压。

实验结果显示,电桥输出电压与施加的力之间存在一定的偏差,但整体呈现较好的线性关系。

这表明应变片电桥具有较好的线性度,能够准确测量被测物体的应变和力。

3. 温度补偿:温度对应变片电桥的性能有较大影响,因此需要进行温度补偿。

为了研究电桥的温度补偿效果,我们在实验过程中改变环境温度,并记录电桥输出电压。

实验结果显示,随着温度的变化,电桥输出电压存在一定的漂移。

通过对漂移进行补偿,可以减小温度对电桥的影响,提高测量的准确性。

结论:通过本实验的研究,我们得出以下结论:1. 应变片电桥具有较高的灵敏度,能够准确测量被测物体的应变和力。

2. 应变片电桥具有较好的线性度,能够准确反映被测物体应变和力之间的关系。

应变电桥实训报告

应变电桥实训报告

一、实验目的1. 了解应变电桥的工作原理和组成。

2. 掌握应变电桥的测试方法及数据处理。

3. 学会使用应变电桥检测材料或结构的应变变化。

4. 提高对传感器检测技术的认识和应用能力。

二、实验原理应变电桥是一种利用电阻应变片测量材料或结构应变变化的传感器。

其基本原理是:将电阻应变片粘贴在被测材料或结构上,当材料或结构受到外力作用时,应变片上的电阻值发生变化,通过电桥电路检测出电阻的变化,从而得到应变值。

应变电桥主要由以下部分组成:电阻应变片、电桥电路、放大器、数据采集系统等。

三、实验仪器与设备1. 电阻应变片实验模块2. 托盘3. 砝码4. 数显电压表5. 15V、4V电源6. 万用表(自备)7. 计算机及数据采集软件四、实验步骤1. 将电阻应变片粘贴在被测材料或结构上,确保粘贴牢固。

2. 将应变片接入电桥电路,连接好电路各部分。

3. 使用万用表测量应变片初始电阻值。

4. 在托盘上放置砝码,逐渐增加砝码质量,观察应变片电阻值的变化。

5. 使用数显电压表测量电桥输出电压。

6. 使用数据采集软件记录应变片电阻值和电桥输出电压随砝码质量变化的数据。

7. 根据实验数据,计算应变片电阻值和电桥输出电压的变化率,从而得到应变值。

五、实验结果与分析1. 通过实验,观察到应变片电阻值和电桥输出电压随砝码质量增加而增大,说明应变片能够有效地检测到材料或结构的应变变化。

2. 根据实验数据,计算出应变片电阻值的变化率为0.01Ω/με,电桥输出电压的变化率为0.5mV/με。

3. 将应变值与理论值进行对比,发现实验结果与理论值基本一致,说明实验方法可靠,应变电桥具有良好的检测性能。

六、实验结论1. 应变电桥是一种有效的传感器,可以用于检测材料或结构的应变变化。

2. 通过实验,掌握了应变电桥的测试方法及数据处理。

3. 提高了传感器检测技术的认识和应用能力。

七、实验注意事项1. 在粘贴应变片时,注意保持应变片与被测材料或结构的接触良好,避免空隙和气泡的产生。

实验一应变片单臂电桥性能实验

实验一应变片单臂电桥性能实验

实验一应变片单臂电桥性能实验一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。

二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

1、应变片的电阻应变效应 所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得(1—1)当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。

对式(1—1)全微分得电阻变化率 dR/R为:(1—2)式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr由材料力学得:εL= - μεr (1—3)式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(1—3)代入式(1—2)得:(1—4)式(1—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。

2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取(1—5)其灵敏度系数为:K=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。

金属导体的电阻应变灵敏度一般在2左右。

(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

金属箔式应变片单臂电桥性能实验

金属箔式应变片单臂电桥性能实验

金属箔式应变片单臂电桥性能实验实验说明本实验旨在通过金属箔式应变片单臂电桥性能实验,研究电桥电路中各元件间的关系,探究电阻的特性,进一步探究应变片的工作原理并且熟悉应变测量方法。

此外,本实验还将研究如何使用电桥进行精密测量。

实验原理单臂电桥,也被称为无支艺电桥,由一个已知阻值的电阻R和一个未知电阻R1构成。

它的基本原理是,将一个电阻R分配给两个不同的分支,使得其分配到有外力作用的应变片分支的反向热电信号和环境温度变化的电动势的影响相互抵消,从而产生一个感到应变片的应变反应信号。

为了使电桥的输出接近于0,可以通过调节电阻R的数值来确定电桥失配电阻R1未知数的大小。

因此,单臂电桥通常用于测量很小的电阻值和形状不规则的物体的应变值。

在本实验中,我们使用金属箔式应变片作为测量对象。

金属箔式应变片是一种能够反映物体应变状态的材料。

在物体发生形变时,应变片会随之发生微小的变形,从而改变电阻。

这种特性可以被用来制作应变检测器,如应变计。

应变计的应用范围非常广泛,比如用于测量建筑物的位移和金属结构的应力变化等。

实验材料和仪器1. 金属箔式应变片2. 八个10kΩ电阻3. 成品提供电桥电路板4. 万用表5. 直流电源单元实验步骤1. 根据电桥电路板上的布置图连接电桥电路。

接线过程如下所示:a. 将电阻1-4固定在电路板上b. 在电路板的中央位置放置Msp(金属箔式应变片)。

c. 用导线连接电路板上的两个端点,将万用表设置为电阻测试模式,在电路板上测量电桥的失配电阻R1。

d. 调整电阻R的数值使得万用表的读数最小。

如果万用表的读数仍然不为0,则通过调整电源电压的数值进行微调。

2. 在电路板上记录测量结果,并记录Msp上施加的应变值。

3. 重复步骤1和步骤2,至少连续测量10组数据。

结果分析在本实验中,通过分析电桥电路板上的布置图,我们成功地搭建了金属箔式应变片单臂电桥电路,并使用万用表和直流电源单元来测试电桥的响应情况。

实验一 应变片单臂、半桥、全桥实验

实验一 应变片单臂、半桥、全桥实验

实验一金属箔式应变片——单臂、半桥、全桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反应了相应的受力状态。

对单臂电桥输出电压U01=EKε/4。

当两片应变片阻值和应变量相同时,其桥路输出电压U02=EK/ε2。

全桥测量电路中其桥路输出电压U03=KEε。

其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码、数显表、±15V电源、±4V电源、万用表(自备)。

四、实验步骤:1、根据图(1-1)应变式传感器已装于应变传感器模板上。

传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。

加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右。

图1-1 应变式传感安装示意图2、接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板调节增益电位器R w3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上数显表电压输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档)。

关闭主控箱电源。

3、将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好),接好电桥调零电位器R w1,接上桥路电源±4V(从主控箱引入)如图1-2所示。

实验三应变片全桥性能实验

实验三应变片全桥性能实验

实验三--应变片全桥性能实验实验三:应变片全桥性能实验一、实验目的1.掌握全桥应变测量电路的工作原理及使用方法。

2.了解全桥测量电路的非线性误差及其补偿方法。

3.学会用静态应变仪测量试件的应变。

二、实验原理应变片全桥性能实验主要通过搭建全桥应变测量电路,利用应变片感受试件应变,并利用静态应变仪进行测量。

全桥测量电路由四个应变片组成,其中两个为工作应变片,两个为补偿应变片。

工作应变片感受试件的应变,补偿片则用于补偿温度引起的误差。

通过全桥测量电路,可将试件的应变转换成电信号输出。

三、实验步骤1.准备实验设备:试件、全桥应变片、静态应变仪、绝缘胶带、万能表。

2.搭建全桥应变测量电路:将四个应变片粘贴在试件上,组成全桥电路。

使用万能表检查电路的正确性。

3.安装补偿片:选择与工作片相同型号和规格的应变片作为补偿片,粘贴在试件附近的适当位置,以补偿温度引起的误差。

4.连接静态应变仪:将全桥应变测量电路的输出端连接到静态应变仪的输入端。

5.开始测量:打开静态应变仪,设置合适的测量范围,开始测量试件的应变。

6.分析实验数据:记录实验数据,分析全桥测量电路的非线性误差及其补偿方法。

7.整理实验器材:完成实验后,将所有设备恢复原状,整理实验器材。

四、实验结果与分析1.实验结果:记录实验中测得的应变值,与理论值进行比较,分析误差。

2.结果分析:对实验数据进行线性拟合,分析全桥测量电路的非线性误差。

如果误差较大,需要考虑补偿方法。

常见的补偿方法有温度补偿和电桥平衡补偿。

温度补偿可以通过粘贴温度传感器来实现,以监测环境温度的变化。

电桥平衡补偿可以通过调整电桥的电阻值来实现,以使电桥在零载条件下达到平衡状态。

五、结论通过本次实验,我们掌握了全桥应变测量电路的工作原理及使用方法,了解了全桥测量电路的非线性误差及其补偿方法,并学会了用静态应变仪测量试件的应变。

这些技能和方法对于工程实践中的结构健康监测和损伤识别具有重要的应用价值。

(完整版)应变片单臂电桥性能实验

(完整版)应变片单臂电桥性能实验

塔里木大学课程实验报告姆)重量(g)0 20 40 60 80 100 120 140 160 180 200电阻R4(欧姆)350.82350.81350.80350.78350.77350.75350.74350.72350.71350.69350.682.差分放大器调零算法描述及实验步骤1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得(1—1)当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。

对式(1—1)全微分得电阻变化率 dR/R为:(1—2)式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr由材料力学得:εL= - μεr (1—3) 式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(1—3)代入式(1—2)得:(1—4)式(1—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。

2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取(1—5)其灵敏度系数为:k=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。

金属导体的电阻应变灵敏度一般在2左右。

(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

半导体材料之所以具有较大的电阻变化率,是因为它有远比金属导体显著得多的压阻效应。

在半导体受力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。

金属箔式应变片单臂电桥性能实验报告

金属箔式应变片单臂电桥性能实验报告

南京信息工程大学传感器实验(实习)报告实验(实习)名称金属箔式应变片单臂电桥性能实验实验(实习)日期12.2得分指导老师系专业班级姓名学号实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

实验内容:基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。

电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

对单臂电桥输出电压U o1= EKε/4。

需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘、1位数显万用表(自备)。

砝码、42图1 应变片单臂电桥性能实验安装、接线示意图实验步骤:应变传感器实验模板说明:实验模板中的R1、R2、R3、R4为应变片,没有文字标记的5个电阻符号下面是空的,其中4个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。

1、根据图1〔应变式传感器(电子秤传感器)已装于应变传感器模板上。

传感器中4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4和加热器上。

传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。

当传感器托盘支点受压时,R1、R3阻值增加,R2、R4阻值减小,可用四位半数显万用进行测量判别。

常态时应变片阻值为350Ω,加热丝电阻值为50Ω左右。

〕安装接线。

2、放大器输出调零:将图1实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。

应变片电桥实验报告

应变片电桥实验报告

一、实验目的1. 理解应变片电桥的工作原理及组成。

2. 掌握应变片电桥的测量方法及操作步骤。

3. 分析应变片电桥的输出特性,包括灵敏度、非线性误差和温度误差等。

4. 了解应变片在力学测试领域的应用。

二、实验原理应变片电桥是一种将应变信号转换为电信号的传感器。

当应变片受到外力作用时,其电阻值发生变化,通过电桥电路将这种变化转换为电压输出。

电桥电路由四个电阻组成,其中两个电阻为应变片,另外两个电阻为固定电阻。

应变片电桥的输出电压与应变片的电阻变化成正比,其关系式为:\[ U = \frac{R_1}{R_1 + R_2} \times U_{max} \]其中,\( U \) 为输出电压,\( R_1 \) 和 \( R_2 \) 为应变片电阻,\( U_{max} \) 为电源电压。

三、实验仪器与设备1. 应变片电桥传感器2. 电桥电源3. 数据采集系统4. 计算机5. 加载设备(如砝码、力传感器等)四、实验步骤1. 将应变片电桥传感器安装于加载设备上。

2. 将应变片电桥传感器与数据采集系统连接。

3. 启动数据采集系统,设置采样频率和采样时长。

4. 对应变片电桥传感器施加不同大小的力,记录对应的应变值和输出电压。

5. 分析应变片电桥的输出特性,包括灵敏度、非线性误差和温度误差等。

五、实验结果与分析1. 灵敏度:应变片电桥的灵敏度表示单位应变引起的输出电压变化。

通过实验数据计算得到应变片电桥的灵敏度为:\[ S = \frac{ΔU}{Δε} \]其中,\( ΔU \) 为输出电压变化,\( Δε \) 为应变变化。

2. 非线性误差:应变片电桥的输出电压与应变之间存在非线性关系。

通过实验数据绘制输出电压与应变的关系曲线,分析非线性误差。

3. 温度误差:应变片电桥的输出电压受温度影响较大。

通过实验数据绘制输出电压与温度的关系曲线,分析温度误差。

六、实验结论1. 应变片电桥能够将应变信号转换为电信号,具有较高的灵敏度和稳定性。

应变片单桥、半桥及全桥性能实验

应变片单桥、半桥及全桥性能实验

安康学院电子与信息工程系实验报告一、实验目的1.掌握应变片单桥、半桥及全桥的电路形式及性能;2.理解温度效应对应变片测量电桥的影响。

二、实验原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:εK RR=∆ (公式1) 式中R R ∆为电阻丝电阻相对变化,K 为应变灵敏系数,ll∆为电阻丝长度相对变化。

电桥的作用是完成电阻到电压的比例变化,其输出电压反映了相应的受力状态,单桥、半桥及全桥的比例关系分别为:εεεEK U EK U EK U ===32124 (公式2) 电阻应变片受温度效应的影响,当温度变化时,在被测体受力状态不变时,电桥输出会有变化。

三、实验内容及步骤1.单臂电桥连接图及测量结果图1 单桥连线图2.半桥连线图及测量结果图2 半桥连线图3.半桥连线图及测量结果图3 全桥连线图4.应变片电桥的温度影响对图3中的半桥电路,放置200g砝码于托盘上,记录下电桥输出电压值U,将5V直流稳压电源接于实验模板的加热器插孔上,数分钟1o后待数显表电压显示基本稳定后,记下读数U。

2oU01=231mv U02=239mv5.实验数据处理及分析1.三种电桥灵敏度及非线性误差的计算2.温度变化产生的相对误差的变化电阻应变片受温度效应的影响,当温度变化时,在被测体受力状态不变时,电桥输出会有变化。

3.分析(主要写根据数据能验证哪些结论)电阻丝在外力作用下发生机械变形时,其电阻值发生变化从而通过电桥的作用完成电阻到电压变化,改变了电阻丝电阻,应变灵敏系数K,l 。

电阻丝长度l四、思考题1.单臂电桥时,作为桥臂电阻应变片应选用:A:正(受拉)应变片B:负(受压)应变片C:正、负应变片均可以。

答:C2.半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:A:对边B:邻边答:B3.应变式传感器可否用于测量温度?答:应变传感器不可用于测量温度。

应变片电桥性能实验

应变片电桥性能实验

应变片电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂、半桥、全桥电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:εK R R =∆/式中R R /∆为电阻丝电阻的相对变化,K 为应变灵敏系数,l l /∆=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

单臂电桥输出电压U O14/εEK =。

三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表、±15V 电源、±4V 电源、万用表(自备)。

四、实验内容及步骤:1、根据图1-1应变式传感器已装于应变传感器模块上。

传感器中各应变片已接入模块的左上方的R 1、R2、R3、R 4。

加热丝也接于模块上,可用万用表进行测量判别,R 1= R 2= R 3= R 4=350Ω,加热丝阻值为50Ω左右。

2、实验模块差动放大器调零。

接入模块电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模块调节增益电位器Rw 3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上的数显表电压输入端Vi 相连,调节实验模块上调零电位器Rw 4,使数显表显示为零(数显表的切换开关打到2V 档)。

关闭主控箱电源。

图1-1 应变式传感器安装示意图实验一单臂电桥实验将应变式传感器的其中一个应变片R1(即模块左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入)如图1-2所示。

检查接线无误后,合上主控箱电源开关。

调节Rw1,使数显表显示为零。

《应变电桥特性及温度补偿实验》2021年-机械测试技术课程实验

《应变电桥特性及温度补偿实验》2021年-机械测试技术课程实验
微分筒每转过1格,测杆沿轴方向移动微小位移0.01毫米, 这也叫测微头的分度值。
一般测微头在使用前,首先转动微分筒到10mm处 (为了保留测杆轴向前、后位移的余量)
测微头的读数方法:
先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对 准微分筒上的数值、可以估读1/10分度,如图甲读数为3.678mm,不是 3.178mm;
《应变电桥特性及温度补偿实验》
《应变电桥特性及温度补偿实验》
内容提要
一.实验要求和目的 二.实验仪器 三.应变片半桥特性实验 四.应变片的温度影响实验 五.应变片温度补偿实验
《应变电桥特性及温度补偿实验》
一.实验要求和目的
(一)实验要求 1.禁止在实验室大声喧哗、打闹; 2.实验前签到,实验结束签退; 3.实验时,接好线让老师检查后开启电源; 4.结束后关闭电源,将仪器整理好。
《应变电桥特性及温度补偿实验》
三.应变片全桥特性实验
(一)箔式应变片全桥实验原理
应变片全桥特性实验原理图
《应变电桥特性及温度补偿实验》
(二)需用器件与单元介绍
⑴菱形虚框为无实体的电桥模型(为实验 者组桥参考而设,无其它实际意义)。
⑵R1=R2=R3=350Ω是固定电阻,为组成单 臂应变和半桥应变而配备的其它桥臂电阻 。
《应变电桥特性及温度补偿实验》
一.实验要求和目的
(二)实验目的 1.了解应变片全桥工作特点及性能; 2.了解温度对应变片测试系统的影响; 3.了解温度对应变片测试系统的影响及补偿方法;
《应变电桥特性及温度补偿实验》
二.实验仪器
CSY-9XX传感器系统
由机壳、机头、显示面板、调理电路面板等组成。
1、机壳: 机壳内部装有直流稳压电源、振
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一金属箔式应变片――单臂电桥性能实验
一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

,对单臂电桥输出电压U o1= EKε/4。

三、需用器件与单元:应变式传感器实验模板、应变式传感器、电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。

四、实验步骤:
1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。

传感器中各应
变片已接入模板的左上方的R1、R2、R3、R4。

加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右
图1-1 应变式传感器安装示意图
2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验
模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方
法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V 档)。

关闭主控箱电源(注意:当R w3、R w4的位置一旦确定,就不能改变。

一直到做完实验三为止)。

3、将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一
个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器R W1,接上桥路电源±4V(从主控台引入)如图1-2所示。

检查接线无误后,合上主控台电源开关。

调节R W1,使数显表显示为零。

图1-2应变式传感器单臂电桥实验接线图
4、在电子称上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,
直到200g(或500 g)砝码加完。

记下实验结果填入表1-1,关闭电源。

重量(g)
电压(mv)
5、根据表1-1计算系统灵敏度S=ΔU/ΔW(ΔU输出电压变化量,ΔW重量变化量)
和非线性误差δf1=Δm/y F..S ×100%式中Δm为输出值(多次测量时为平均值)与
拟合直线的最大偏差:y F·S满量程输出平均值,此处为200g(或500g)。

五、思考题:
单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。

实验二金属箔式应变片――半桥性能实验
一、实验目的:比较半桥与单臂电桥的不同性能、了解其特点。

二、基本原理:不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。

当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。

三、需用器件与单元:同实验一。

四、实验步骤:
1、传感器安装同实验一。

做实验(一)的步骤2,实验模板差动放大器调零。

2、根据图1-3接线。

R1、R2为实验模板左上方的应变片,注意R2应和R1受力状态
相反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻边。

接入桥路电源±4V,调节电桥调零电位器R W1进行桥路调零,实验步骤
3、4同实验一中
4、5的步骤,将实验数据记入表1-2,计算灵敏度S2=U/W,
非线性误差δf2。

若实验时无数值显示说明R2与R1为相同受力状态应变片,应更换另一个应变片。

图1-3应变式传感器半桥实验接线图
表1-2半桥测量时,输出电压与加负载重量值
重量
电压
五、思考题:
1、半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1)对边(2)
邻边。

2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线
性(2)应变片应变效应是非线性的(3)调零值不是真正为零。

实验三金属箔式应变片――全桥性能实验
一、实验目的:了解全桥测量电路的优点。

二、基本原理:全桥测量电路中,将受力性质相同的两应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KEε。

其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

三、需用器件和单元:同实验一
四、实验步骤:
1、传感器安装同实验一。

2、根据图1-4接线,实验方法与实验二相同。

将实验结果填入表1-3;进行灵敏
度和非线性误差计算。

1-4全桥性能实验接线图
表1-3全桥输出电压与加负载重量值
五、思考题:
1、全桥测量中,当两组对边(R 1、R 3为对边)电阻值R 相同时,即R 1=R 3,R 2=R 4,而R 1≠R 2时,是否可以组成全桥:(1)可以(2)不可以。

2、某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如何利用这四片电阻应变片组成电桥,是否需要外加电阻。

实验四 金属箔式应变片单臂、半桥、全桥性能比较
一、实验目的:比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、实验步骤:根据实验一、二、三所得的单臂、半桥和全桥输出时的灵敏度和非线性度,
从理论上进行分析比较。

阐述理由(注意:实验一、二、三中的放大器增益必须相同)。

相关文档
最新文档