侧槽溢洪道水力计算包含侧槽泄槽挑流抬坎全部计算

合集下载

侧槽溢洪道的水力计算要点.微课(精)

侧槽溢洪道的水力计算要点.微课(精)

计算段内平均摩阻 坡降
计算段水平 长度
侧槽壁面糙率系数
J

n2 v R
4
2
计算段内平均流速 计算段内平均水力半径
3
பைடு நூலகம்
(二)侧槽水力计算的步骤: 已知Q设计、▽堰顶、hs(允许淹没水深)、 (底宽 b 变率) i0(槽底坡度)、hl(槽末水深) 1.由给定的Q和堰上水头H计算侧堰溢流前缘长度L。 2.列侧槽末端断面与调整段末端断面(控制断面)之间的能量方程,
水工建筑物•微课
侧槽溢洪道的水力计算要点
主讲人 专业带头人 杨 勇 副教授
2014.09
项目6 河岸溢洪道
水布垭水电站溢洪道
岳城水库溢洪道上游
岳城水库溢洪道下游
桥墩水库溢洪道
公伯峡
糯扎渡水电站
侧槽的水力计算要点 侧槽中水流波动很大,内部结构十分复杂,要精确地分析水流的情况 是比较复杂的,下面介绍《SL253—2000溢洪道设计规范》推荐的计算方法, 在上述选定参数的基础上,计算侧槽水面曲线,并据以计算槽底方程,完成 侧槽各项尺寸的设计任务。 (一)侧槽水面曲线的计算公式 计算侧槽内的水面曲线,可利用由动能原理导出的水面曲
主持单位:
黄河水利职业技术学院 福建水利电力职业技术学院 湖南水利水电职业技术学院
参建单位:
杨凌职业技术学院
四川水利职业技术学院 山西水利职业技术学院
长江工程职业技术学院
重庆水利电力职业技术学院
线差分公式逐段推算。
差分公式为: 上断面的平均流速 (▲)
y
下断面的平均流速
通过上游断面的流量
(v1 v2 ) Q2 Q1 ( v v ) ( v v ) J X 1 1 2 2 2g Q Q 2 1

溢洪道泄槽水面线计算

溢洪道泄槽水面线计算

1.下挖式消力池水跃形式2.综合式消力池水跃形式3.消力坎式消力池水跃形式假设坎高C1 1.3 1.4 1.5 1.6 1.7 1.8试算:H10 3.3553 3.2553 3.1553 3.0553 2.9553 2.8553判断:hs/H100.65570.64510.63390.62190.60910.5954查表得:σs0.9550.9610.9640.7680.9720.98假设流量系数m0.420.420.420.420.420.42计算:H10 3.1642 3.151 3.1445 3.659 3.1272 3.1102计算坎高C2 1.4911 1.5043 1.51080.9963 1.5281 1.5451 C2-C10.19110.10430.0108-0.6037-0.1719-0.2549取出合适的值 1.4 1.5流量(m3/s)Q 33.6下游水位732.03重力加速度g 9.81下游底高程730.1跃前水深(m)h c 0.165062池宽(m)b 8水跃淹没系数σj 1.05收缩断面流速(m/s)v 125.44498收缩断面弗劳德数F r119.99605池出口下游水深(m)h t 1.93跃后水深(m)h c 4.585934水面跌差(m)ΔZ 0.228671消力池深度(m)S 2.66自由水跃长度(m)Lj 30.50402消力池长度(m)L k流量(m3/s)Q 33.6下游水位732.03重力加速度g 9.81下游底高程730.1跃前水深(m)h c 0.165062池宽(m)b 8坎后下游水深(m)h t 1.93水跃淹没系数σj 1.05单宽流量q 4.2流量系数m 0.42坎后收缩断面水深h c10.706708坎顶总水头(m)H 10 1.720945坎高(m)c 0.980438坎后自由水跃长度L j28.440713坎后消力池长度(m)L 2 6.76坎前收缩断面流速v 125.44498跃后水深(m)h c 4.585934收缩断面1弗劳德数F r 19.99605坎段流速v 20.872232坎段水深H 1 1.682169坎前消力池深度(m)S 2.152624坎后自由水跃长度L j130.50402坎后消力池长度(m)L 124.41流量(m3/s)Q 80下游水位23.5重力加速度g 9.81下游底高程20跃前水深(m)h c0.95消力池出口段流速系数φ0.95消力池出口段流速系数0.95φ一、基本参数0.95注:本公式池计算出的池深和池高是池内及坎后发生临界水跃的池深和池高,实际采用的池深比计算略大,实际采用的坎高比计算略小。

溢洪道水面线水力计算

溢洪道水面线水力计算

溢洪道水面线水力计算溢洪道水面线水力计算是指在溢洪道工程设计中,对溢洪道水面的高程进行计算和确定的过程。

溢洪道水面线水力计算是设计溢洪道工程的基础任务之一,主要用于确定溢洪道的有效堤顶高度,以及判断溢洪流量和洪水对下游防洪安全的影响。

在进行溢洪道水面线的水力计算时,需要考虑以下几个方面的因素:1.水位变化规律:根据设计要求和地区实际情况,确定溢洪道水位变化规律,包括出口水位、最高水位和最低水位等。

这些水位变化规律是溢洪道水面线水力计算的基础,也是设计溢洪道参数的依据。

2.流量计算:通过水动力原理和流量公式,计算溢洪道的设计洪水流量。

洪水流量的计算需要考虑下游水位、流域面积、产流特征等因素。

常用的流量计算方法有三角洪水法、单峰洪水法和双峰洪水法等。

3.溢洪道断面选择:根据溢洪道的设计洪水流量和设计水位,在保持流量稳定的情况下选择合适的溢洪道断面,以满足设计要求。

根据溢洪道断面,可以计算出溢洪道的有效堤顶高度和水面线的高程。

4.水力计算:通过溢洪道的水力计算,确定溢洪道水面线的高程。

水力计算的主要内容包括流速计算、水深计算和堤顶高度计算。

其中,流速计算可以采用曼宁公式、剪应力公式等;水深计算一般根据不同的水位和槽坡来确定;堤顶高度计算需要考虑洪水流量、流速和水深等因素。

5.水面线确定:根据水力计算的结果,确定溢洪道水面线的高程。

水面线的高程应满足下游防洪安全的要求,并考虑水力平衡和溢洪道结构的要求。

水面线的确定一般采用一维水流模型计算,根据不同的水位和流量,得出水面线的高程曲线。

在进行溢洪道水面线水力计算时,需要使用一些计算软件和工具,如水力计算软件、一维水流模型等。

这些工具可以提供准确的计算结果,帮助工程师进行溢洪道水面线的设计和确定。

同时,还需要结合实际工程情况,考虑工程经济性、可行性和社会效益等因素,进行溢洪道水面线水力计算的优化设计。

侧槽溢洪道(河海大学水工建筑物课件)解读

侧槽溢洪道(河海大学水工建筑物课件)解读

(8-29)
对于棱柱体侧槽
0 ,则有 s
Q2 2Q dQ i0 2 2 dh C R g 2 ds ds Q2B 1 g 3
(8-30)
令式(8-29)中
Q2 Q 2 2Q dQ i0 2 2 0 3 2 C R g s g ds
(8-31)
+1断面流量、水深、断面平均流速为Q+dQ、
h+dh、V+dV;两断面在槽底相距ds。由变量流 的动量定律可导出下列水面线微分方程:
Q2 Q 2 u Q dQ i0 2 2 2 (8-28) 3 dh C R g s V g 2 ds ds Q2 B 1 g 3
第四节 其他型式的溢洪道 一、井式溢洪道
1、 组
成:溢流喇叭口、渐变段、弯曲段、泄水隧洞、出口消能段及尾水渠。 2、工作原理:井式溢洪道工作时水流从四周经环形堰径跌入喇叭口,并在一定 深度处水舌相互汇交,逐渐成有压流,再经 隧洞泄往下游进入喇叭口的流量决定于堰 顶水头、堰的型式和周长;流量能否顺利 泄出隧洞取决于隧洞的断面尺寸以及竖井 内形成的压力水头。进水为自由堰流,出
设备。
图8-47 河岸虹吸溢洪道首部
1-遮檐;2-通气孔;3-挑流坎;4-弯曲段;5-排污孔

4、设计要求:
(1)虹吸管的真空值不得超过(7.5~8)米水柱高; (2)虹吸作用开始前,为堰流;形成之后为管流; (3)通气孔的面积约为虹吸管横断面的(2~10)%。
8-38 侧槽内复杂的流态

侧槽内水面曲线的计算
设侧槽断面按一定规律沿程扩展,各断面流 量按一定规律沿程增加。取侧槽的一个微分段 考虑,其底坡为 i ,为更具普遍性计算,自 0 侧槽进入侧槽的流向与槽轴线不正交,正交于 槽轴线的流速分量为u(与u垂直的另一分量为 v)。如设通过n-n断面的流量为Q,水深为h, 过水断面为 ,断面平均流速为V,;而在n

侧槽溢洪道设计

侧槽溢洪道设计

目录资料: ---------------------------------------- 2 (一) 计算测槽长度L. ------------------- 2(二)计算测槽末端水深。

------------- 3确定控制断面坎高。

---------------------- 4(四)计算各断面流量。

---------------- 5 (五)测槽水面曲线计算。

----------------- 6(六)泄槽计算。

----------------------- 13(七)泄槽横断面布置 ----------------- 15(八)消能防冲设计 -------------------- 16资料:某大(2)型水库,正常蓄水位为30m,设计洪水位为32m(相应泄流量为150m3/s),校核洪水位33.43m,(相应泄流量为210m3/s)。

该地区最大风速的多年平均值为16.9m/s,坝肩山头较高,岸坡较陡。

布置溢洪道泄槽处山坡坡度约为1:4,泄槽水平投影长约65m,泄槽宽8m。

该地区地震基本烈度为Ⅵ度。

地表为全风化粉砂岩,基岩为寒武系八村组粉粉砂岩强风化层。

强风化层地基承载力标准值可取500Kpa。

由坝肩山头较高,岸坡较陡可以知道,设计该溢洪道为侧槽式溢洪道。

堰顶高程取30m.计算测槽长度L.采取设计洪水位计算,式中Q溢洪道最大泄流量取150 m3/s,采用宽顶堰时,其堰顶水头为H。

0=32-30=2m。

流量系数m=0.35.测槽底坡i=0.1.代入数据:L=2302mH g Q=23281.9*235.0150=34.21m 。

(2)计算测槽末端水深。

由设计地形得知, 泄槽宽8米, 测得其末端宽度为b.L =8m 。

起始断面宽度与测槽末端宽度b 0/b L 优化后的结果:将下面这段话调整为紧凑形式并控制字数接近,得到“采用0.5值,优化起始断面宽度b ”0=4m 。

h k α时h L = 1.2h k 。

第六章-河岸溢洪道自测题答案

第六章-河岸溢洪道自测题答案

,第六章河岸溢洪道答案一、填空题1.河岸溢洪道的主要类型有正槽式、侧槽式井式和虹吸式四种。

2.正槽溢洪道通常由进水渠、控制段、泄槽消能防冲设施、出水渠等部分组成。

3.侧槽溢洪道通常由控制段、侧槽、泄槽消能防冲设施、出水渠等部分组成。

4.非常溢洪道一般分为漫流式、自溃式爆破引溃式三种。

5.溢流堰的主要形式有宽顶堰、实用堰驼峰堰和折线形堰。

二、单项选择题、1.关于实用溢流堰上游堰高P和定型设计水头Hd 的比值P/Hd与流量系数m的关系正确的是( B )。

A、高堰的流量系数m随P/Hd减小而降低;B、高堰的流量系数m接近一个常数;C、低堰的流量系数m随P/H减小而升高;dD、低堰的流量系数m接近一个常数;2.对于正槽溢洪道的弯道泄槽,为了保持泄槽轴线的原底部高程及边墙高不变,以利施工,则应采用下列措施( A )。

A、外侧渠底抬高△h,内侧渠底降低△hB、外侧渠底降低△h,内侧渠底抬高△h·C、外侧渠底抬高△h,内侧渠底抬高△hD、外侧渠底降低△h,内侧渠底降低△h(△h为外墙水面与中心线水面高差)3.陡坡泄槽i>ik,当水深h0<h<hk,h0为正常水深,hk为临界水深,泄槽水面曲线为( B )。

A、a型壅水曲线B、b型降水曲线C、c型壅水曲线D、均可发生4.为了减少侧槽的开挖量,下列措施不对的有( C )。

A、侧槽宜采用窄深工式,靠岸一侧边坡宜陡些¥B、允许始端侧槽内水面高出堰顶 (H为堰上水头)C、侧槽宜采用宽浅式D、b0/bl应小些,一般为~(b0和bl为侧槽始端与末端底宽)三、简答题1.河岸溢洪道如何进行位置的选择应选择有利的地形条件,布置在垭口或岸边,尽量避免深挖而形成边坡。

(1)应布置在稳定的地基上,并考虑岩层及地质构造的性状,充分注意地质条件的变化'(2)溢洪道进出口的布置应使水流顺畅,不影响枢纽中其他建筑物的正常运行,进出口不宜距土石坝太近,以免冲刷坝体(3)从施工条件考虑,应便于出渣路线及堆渣场所的布置。

溢洪道设计要点

溢洪道设计要点

溢洪道的设计和布臵合理与否,不仅直接影响到水库的安全,而且关系到整个工程造价。

土石坝一般中小型溢洪道,约占水库枢纽工程造价的25~30%及劳动力的25%,故溢洪道合理的布局和选型,在水库工程设计中是一个比较重要的环节。

1.常见问题1.1溢洪道是洪水期间保证水库安全的重要设施,中小型水库由于受工程造价的限制,其设计采用的洪水标准往往偏低、选用洪水数据(洪峰、洪量)偏小,因而必然带来溢洪道设计尺寸偏小,再加上周边岩体风化坍落,往往造成泄流能力不足,因而不能保证安全泄洪。

1.2在布臵上,某些工程设计的溢洪道其进出口段离坝身太近,坝肩与溢洪道之间仅有单薄的山脊相隔。

进口段如未进行有效的护砌,泄洪时一旦发生冲蚀现象,将危及坝肩安全,有些设计的陡槽末端与坝脚紧贴,如果发生横流冲刷,更易危及坝脚安全,因此这二种情况均对大坝的运行安全十分不利。

1.3溢洪道设计的平面弯道半径过大和收缩过剧,对泄流十分不利。

特别在溢洪道陡坡段布臵有弯道时,由于弯道流态、流势剧烈变化,导致二岸产生了水面差,这时凹岸水面壅高,并在下游衔接的平直段内产生折冲水流,大大影响了泄流能力和消能效果。

另外陡坡段或缓流段的过剧收缩,也会发生显著的壅水和流态变化,并对溢洪道衬砌造成冲击,如砌护过高会增加投资,砌护过低了又不安全。

1.4溢洪道纵横剖面及平面布臵设计不当,比较突出的问题是陡坡设计比降过陡。

部分溢洪道布臵在非岩性山坡上,其底部未做有效的反滤衬砌,致使渗水后易产生滑坡;结构上也不稳定。

在横断面设计中,有些工程对两侧山坡开挖坡度注意不够,有的过陡,加上衬砌厚度偏薄,不能满足抗滑抗倾稳定,也易造成坍方和滑坡;平面布臵上,存在着上下游断面连接不配套,形成“瓶颈”现象,从而影响了泄洪能力;此外溢洪道末端与河道衔接部分注意不够,导致有的末端高出河床很多,有的末端未做砌护处理,常造成严重冲刷,并向上延伸,直至整个建筑物破坏。

1.5现有水力设计方法尚不够完善,如溢洪道进口布臵有引洪平流段的情况下,由于水力计算中忽略了平流段时进口水位的壅高(即水头损失)。

学习分享-泄槽溢洪道的水力计算(个人整理)

学习分享-泄槽溢洪道的水力计算(个人整理)

项 目单位数值计算公式备注g——重力加速度m/s²9.81 Array水库正常蓄水位m62.5校核洪水位m63.58Q——最大洪水流量m³/s39L0——侧堰溢流前缘长度m25堰顶高程m62.5H——堰上水头m 1.08溢流堰采用宽顶堰形式m——流量系数/0.32(一)、侧槽长度计算L——侧槽长度m24.51L=Q/[m(2*g)^0.5*H^1.5]取侧槽L m24.50槽端长度m0.50(二)、拟定侧槽尺寸b0——起始断面底宽m2b L——末端断面底宽m4n1——溢流堰侧的坡比/0.5n2——靠岸侧的坡比/0.5i——底坡坡比/0.001(三)、选定侧槽末端水深h k及控制段尺寸1、控制断面临界水深及相应流速计算h k——控制断面临界水深m 2.13h k=[aQ^2/(g*b L^2)]^(1/3)侧槽段及控制段近似按矩形断面计算V k——控制断面临界水深的相应流速m/s 4.57V k=Q/(b L*h k)侧槽末端底宽b L同控制段2、侧槽末端水深及相应流速计算b L/b0/2b L/b0=5时,b L/b0=1.5;η——h L/h k的系数/ 1.28b L/b0=1时,b L/b0=1.2;其余内插计算h L——侧槽末端水深m 2.72h L=η*h kV L——侧槽末端的相应流速m/s 3.59V L=Q/(b L*h L)3、控制段末端坎高ζ——局部水头损失系数/0.2d——控制段末端坎高m0.09d=(h-h k)-(1+ζ)[(V k2-V L2)/(2*g)]L4、计算侧槽各断面水深q——溢流堰单宽流量m³/s 1.56h i-1=h i +Δy-i ΔX V i-1=Q i-1/(b i-1*h i-1)糙率n 0.0140.0140.0140.0140.014水面宽B4.00 3.49 3.00 2.50 2.00过水断面面积(m²)10.8711.5610.949.717.99湿周Х(m)9.4410.1110.3010.279.99水力半径R(m) 1.15 1.14 1.060.950.80临界坡度i k0.00432680.00532270.0064775460.0080576560.01035临界水深h k2.1319651.92942031.6457955871.2008786630.249356试算法计算各断面间的水位差及各断面水深(忽略水流阻力影响)项目单位数值Q i ——i断面流量m³/s 39.00Q i-1——i-1断面流量m³/s 29.33b i ——i断面底宽m 4.00b i-1——i-1断面底宽m 3.49h i ——i断面水深m 2.72h i =h i+1h i-1——i-1断面水深m3.09ΔX——断面间的距离m 6.2Δy——断面间的水位差m 0.378试算值V i ——i断面流速m 3.59V i =V i+1V i-1——i-1断面流速m 2.72Δy——断面间的水位差m0.566281()()⎥⎦⎤⎢⎣⎡-+-++⨯=∆------111111i i i i i i ii ii i Q Q Q V V V Q Q V V g Q y。

溢洪道水力计算(刚刚来过)

溢洪道水力计算(刚刚来过)

水深
流速
h
v
1.95287844 4.27147255
1.72941966 4.82339067
1.50596089 5.53909915
1.28250211 6.50421283
1.05904333 7.87660564
0.83558455 9.98303122
修正系数 ζ
1 1.1
掺气后水深 hq
1.04773326 4.99995434
0.85847701 4.99974549
0.75538783 4.99982403
0.68861078 5.00000288
0.64150427 5.00016856
0.60652796 5.0000632
0.57966032 5.00041114
0.55851644 5.00021162
1.95287844 1.72941966 1.50596089 1.28250211
1.14246 0.92734289
边墙加高 △h 0.7 0.7 0.7 0.7 0.7 0.7
段面积A 水力半径R 计算流量Q 正常水深h0 2.73450856 0.39564601 50.0503807 0.45575143
出口断面 0.83558455 5.01350731 9.98303122 5.33353506 6.07627707
泄槽段水位差:
计算式
hk
h0
△h
不均匀系数 α
△h=hk-h0 1.95287844 0.83558455 1.11729389 1.05
分段并确定各段计算水深:
h1
h2
h3
h4
h5

最新国家开放大学电大《水利水电工程建筑物》期末题库及答案

最新国家开放大学电大《水利水电工程建筑物》期末题库及答案

最新国家开放大学电大《水利水电工程建筑物》期末题库及答案考试说明:本人针对该科精心汇总了历年题库及答案,形成一个完整的题库,并且每年都在更新。

该题库对考生的夏习、作业和考试起着非常重要的作用,会给您节省大量的时间。

做考题时,利用本文档中的含找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核及教学考f 体化答案,敬请查看。

《水利水电工程建筑物》题库及答案一一、判断题(正确画错误打X)(每小题3分,共30分)1.取(引)水建筑物是输水建筑物的首部建筑,如:引水隧洞的进口段、灌溉渠首和供水用的进水1诃、扬水站等。

()2.隧洞衬砌的主要目的是为了防渗。

()'3.反涯层中各层滤料的粒径顺渗流方向布置应由粗到细。

()4.在水闸闸室的渗流分析时,假定渗流沿地基轮廓的坡降相同,即水头损失按直线变化的方法称为直线法。

()5.泄槽轴线与溢流堰轴线接近平行的岸边溢洪道,称为侧槽溢洪道。

()6.重力坝的基本剖面呈三角形是因为考虑施工方便。

()7.河床式厂房的特点是厂房本身挡水。

()8.重力坝帷幕灌浆的目的是:降低坝底渗透压力,防止坝基内产生机械或化学管涌,减少坝基和绕坝渗透流量。

()9.围岩的弹性抗力与衬砌上作用的荷载无关。

()10.在拱坝的应力分析方法中,拱冠梁法在荷载分配时仅考虑了径向变位的调整。

()二、单项选择题(每小题3分,共15分)1.用以宣泄多余水量,排放泥沙和冰凌,或为人防、检修而放空水库等,以保证坝和其他建筑物安全的建筑物,称为()。

A.挡水建筑物B.泄水建筑物C.整治建筑物D.输水建筑物2.用水泥含教比较低的超干硬性混凝土,经碾压而成的混凝土坝,称为()。

Λ.实体重力坝 B.宽缝重力坝C.空腹重力坝D.碾压式重力坝3.土石坝中()的排水体伸人坝体内部,能有效的降低浸润线,常用于下游水位较低或无水情况。

A.棱体排水B.贴坡排水C.褥垫排水D.组合式排水4.过堰水流约转90度后,再经泄槽泄入下游的岸边溢洪道,称为()。

侧槽溢洪道水力设计计算书(底流消能)

侧槽溢洪道水力设计计算书(底流消能)

2
0.00004
0.608
0.79
消能标准
5
#DIV/0!
0
0.00
4.4 侧槽泄流能力复核计算
根据规范第A.2.1条,开敞式幂曲线实用堰的泄流能力可按(A.4)计算:
Q CmmB 2g H03/ 2
(A.4)
Q CmmB 2g H03/ 2
1 0.2 k
n 1
0
H0 nb
式中:
Q…………流量,m3/s;
侧槽堰长L计算成果表
计算情况
Q
H0
m
ε
σm
L
校核标准 194.6
2.08
0.49
0.95
1
31
设计标准
17.8
0.40
0.49
0.95
1
34
初步确定侧槽堰长L=32m
4.2 侧槽底宽b拟定
泄流量沿侧槽轴线均匀增加,所以侧槽横断面面积应沿程增大,侧槽首端和末端断面断面底宽之比bu/be=0.51。
hk 2.993
ik 0.00012
设计标准
1.5
0.014
12
7.296
13.216
109.83
0.608
0.00004
消能标准
0.0
0.014
12
0
12
108.078
0
#DIV/0!
2、侧槽末端水深he计算
计算工况 频率(%)
ik
校核标准
0.1
0.00012
hk 2.993
he 3.89
设计标准
堰顶高程: 1153.000m
堰顶最大水头Hmax: 2.080m 溢流堰宽度B: 32.000m 闸门孔数: 1孔 泄槽宽度: 12.0m 闸墩厚度: 0.000m 泄槽糙率n: 0.014

溢洪道混凝土施工方案[优秀工程方案]

溢洪道混凝土施工方案[优秀工程方案]

溢洪道混凝土施工方案一、工程概况溢洪道布置于坝址区右肩,为开敞式溢洪道,溢洪道由侧槽段、调整段、泄槽段、挑流段、下游护坦段五部分组成,校核洪水下泄流量A米ax=123.51 米3/s,设计洪水下泄流量A米ax=81.38米3/s.堰顶高程1164.45米,全长310米.二、工程项目及设计指标和主要工程量侧槽段:侧槽段溢流堰净长20米,溢流堰堰高程1164.45米,桩号为溢0+000—溢0+020,首端宽4.6米,末端宽5.17米,采用现浇C25钢筋混凝土实体结构;侧槽底宽由4米渐变为6米,长20米,底坡i=1:20,底板采用1.2米厚现浇C25钢筋混凝土衬砌,靠山一侧边墙采用现浇C25钢筋混凝土恒重式挡土墙,墙顶高程1169.1米,顶宽1米.调整段:调整段长20米与侧槽段连接,矩形段面,采用整体结构,底宽6米,底坡i=0,底板采用1.2米厚现浇C25钢筋混凝土衬砌,边墙采用现浇C25钢筋混凝土恒重式挡土墙,墙顶部宽1米,底部宽1.5米,平台高度从底板算起4米.墙顶高程1169.1米.调整段靠坝肩侧恒重式挡墙以上开挖段面均采用C15混凝土回填至墙顶.调整段首、末各设一道伸缩缝,缝宽2厘米,采用P651型橡皮止水带止水,距迎水面20厘米埋设,高压闭孔板分缝,其上设3厘米丙乳砂浆闭缝.泄槽段:泄槽段泄槽段桩号溢0+040—溢0+280,包括明槽段和暗涵段.(1)明槽段(溢0+040—溢0+208)明槽段采用矩形段面,整体式结构,底宽由溢0+040的6米渐变为溢0+078的3米(溢0+078—溢0+208的底板宽均为3米),边墙高度9.65~6米,底板采用1.0米厚现浇C40高性能钢筋混凝土衬砌,边墙采用现浇C25钢筋混凝土恒重式挡土墙,墙顶部宽0.6米,墙底部宽1.5米,平台高度从底部算起2米.(2)暗涵段(溢0+208—溢0+280)暗涵段采用箱涵式结构,底板宽3米,墙高4米,顶板厚0.6米,边墙厚0.8米,底板厚1米,暗涵顶部回填弃渣,顶部与右侧导流泄洪供水洞的墙顶齐平.泄槽段每隔10米设一道伸缩缝,缝宽2厘米,采用P651型橡皮止水带止水,距迎水面20厘米埋设,高压闭孔板分缝,其上设3厘米丙乳砂浆闭缝.出口挑流段:挑流消能段桩号溢0+280—溢0+300,挑流段长20米,反弧半径25米,圆心角29.50,挑射角22.50,挑流鼻坎坎顶高程1086米,挑流段结构型式为矩形明槽,边墙顶宽0.6米,墙高4~6.14米,一侧翼墙与导流泄洪供水洞的挑流段翼墙相接,一侧接挡土墙段,采用现浇C25钢筋混凝土,边墙墙顶布置栏杆,挑流底板宽3米,采用C40高性能现浇钢筋混凝土.下游护坦段:下游护坦段桩号为溢0+300—溢0+310,长10米,与导流泄洪供水洞共用,底板采用C25混凝土衬砌,厚度为1米.溢洪道混凝土主要工程量见下表:溢洪道混凝土工程量表三、施工布置1、施工道路布置根据工期安排先从溢0+178开始上下游同时浇筑,故可以从施工道路L7的末端开始至溢0+128的左侧用爆破料修一条施工便道,并在溢0+128的左侧修建一个平台供混凝土的浇筑使用.即路线可设为:拌合站→7号道路→施工便道.若泵送压力不够,可考虑和导流洞出口尾水段混凝土浇筑共用一个平台,可以浇筑溢0+208—溢0+310的混凝土.2、施工风、电、水供应(1)施工用风混凝土浇筑用风主要为施工缝面处理等,用风量不大,引用开挖支护时接引的供风管,空压机房位置见溢洪道施工平面布置图.(2)施工用电采用溢洪道附近的供电电源,由配电房和开关盒分出,配电房具体位置见溢洪道施工平面布置图.(3)施工用水混凝土浇筑用水主要为仓面清理和混凝土养护等,利用开挖支护时接引的供水管引至施工工作面.(4)施工排水利用开挖施工的排水设施.四、混凝土施工方法4.1主要材料4.1.1水泥⑴采用42.5R普通硅酸盐水泥.⑵验货:每批水泥进场时均要提供水泥出厂合格证和出厂检验报告,并按规定委托试验室对水泥进行抽样检测.⑶运输:采用水泥罐车进行运输,其品种和标号不得混杂,散装水泥运至工地的入灌温度不宜高于65℃.⑷贮存:到货的水泥按不同品种、标号、出厂批号等,分别贮放在专用的水泥罐中,防止因贮存不当引起水泥变质.罐储水泥宜1个月倒罐1次.4.1.2水拌合用水采用河道水.4.1.3骨料⑴采购混凝土骨料前,先将骨料样品送至有资质试验室进行检测,合格后方可进行采购投入生产使用.⑵不同粒径的骨料分别堆存,严禁相互混杂和混入泥土,堆料厚度不宜小于6米;装卸时,粒径40米米的粗骨料的净自由落差不应大于3米,应避免造成骨料的严重破碎.4.1.4粉煤灰和其它活性掺合料⑴按施工图纸要求和监理指示采购用于混凝土中的活性掺合料,采购的活性材料供应厂家、材料样品、质量证明书和产品使用说明书报送监理单位.⑵每批粉煤灰或其它活性参合料运至工地后,对制造厂产品的品质、资料进行验收,并由监理见证对批粉煤灰或其它活性参合料进行查库和抽样,并送往有资质试验室进行检测.检测合格后方可使用于工程.⑶掺合料应储存到有明显标志的储罐或仓库中,在运输和储存过程中应防水防潮,并不应混入杂物.4.1.5外加剂⑴用于混凝土中的外加剂其质量符合施工规范的规定.⑵根据混凝土的性能要求,结合混凝土配合比的选择,通过试验确定外加剂的掺量,其试验成果报送监理单位.⑶每批外加剂运至工地后,对制造厂产品的品质、资料进行验收,并由监理见证对外加剂进行查库和抽样,并送往有资质试验室进行检测.检测合格后方可使用于工程.⑷不同品种外加剂应分别储存,在运输与储存中不得相互混装,以避免交叉污染.外加剂宜配成水溶液使用,并搅拌均匀.4.2 混凝土拌合⑴混凝土集中在拌合站拌和,拌和设备采用1米3混凝土搅拌站.混凝土生料的供应采用柳工50铲车供料.拌制混凝土时,严格按照本现场试验室提供并经监理人批准的混凝土配料单进行配料,确保拌合站称量设备合格, 其称量偏差控制在规定范围内,并定期进行检验及校核称量精度.⑵优选混凝土级配,减少用水量.根据施工图纸的要求采用相应级配混凝土.⑶在混凝土拌和过程,根据气候条件定时地测定砂、石骨料的含水量(尤其是砂子的含水量);在降雨的情况,也相应地增加测定次数,以便随时调整混凝土的加水量.⑷拌合时经常对拌合物的均匀性、拌和时间、衡器称量的准确性以及拌合机叶片的磨损情况等项目进行检查.⑸混凝土拌和程序和时间均通过试验确定.4.3 混凝土运输⑴根据对混凝土拌合站的拌和能力、混凝土浇筑能力、仓面具体情况及钢筋、模板安装情况的分析,混凝土水平运输采用4辆10米³混凝土拌合运输车运输,保证混凝土运输的质量,充分发挥设备效率并且使混凝土在运输过程中不致发生分离、漏浆、严重泌水及过多降低坍落度等现象,以满足浇筑强度的需要.(2)混凝土运输过程中严禁加水.(3)因故停歇太久,混凝土拌合物出现下列情况之一者,应按不合格料处理:①混凝土产生初凝.②混凝土塑性降低较多已无法振捣.③混凝土被雨水淋湿严重或混凝土失水过多.④混凝土中含有冻块或遭受冰冻,严重影响混凝土质量.(4)混凝土泵输送混凝土应遵守下列规定①混凝土泵和输送管安装前,应彻底清除管内污水及水泥砂浆,并用压力水冲洗干净.安装后及时检查,防止脱落、漏浆.②泵送混凝土最大骨料粒径不应大于导管直径的1/3,并不应有超径骨料进入混凝土泵内.③泵送混凝土之前应先泵送砂浆润滑.④应保持泵送混凝土的连续性.因故中断,混凝土泵应经常转动,间歇时间超过45米in,应及时清除混凝土泵和输送管内的混凝土并冲洗.⑤泵送混凝土输送完毕后,应及时用压力水清洗混凝土泵和输送管.4.4混凝土浇筑4.4.1钢筋制作与安装1.一般要求(1)钢筋进场必须有材质证明书及许可证,并按现行国家标准《钢筋混凝土用热轧带肋钢筋》GB1499等的规定抽取试件作为力学性能检验,其质量必须符合有关标准的规定,复试合格后方能使用.现场材料的标识按规格、种类,分别堆放挂牌,并做好保护工作.(2)所有电焊工均均有上岗证,并在试焊合格后上岗操作,所有焊接均按规定的批量抽取试件,试验合格后使用,所有连接接头应按规定做好质量检查和质量评定.(3)钢筋表面洁净无损伤,油漆污染和铁锈在使用前清除干净.带有颗粒状或片状老锈的钢筋不得使用.2.施工工艺(1)运入加工现场的钢筋,必须具有出厂质量证明书或试验报告单,每捆(盘)钢筋均要挂上标牌,标牌上要注上厂标、钢号、产品批号、规格、尺寸等项目,在运输和贮存时不得损坏和遗失这些标牌.钢筋与地面之间应垫不低于200㎜的底楞.露天堆放时,宜在钢筋上加覆盖物,以防钢筋锈蚀和污染.(2)钢筋运到工地后,卸于钢筋加工厂内分类堆放,不得混杂,且立牌以资识别;钢筋弯曲成型前必须先做样板,经检查合格后照样板进行加工.(3)钢筋加工前将钢筋表面油渍、漆污、锈皮、鳞锈等清除干净.钢筋应平直,无局部弯折.钢筋的调直,遵守以下规定:①.采用冷拉方法拉直的钢筋,I级钢筋的冷拉率不宜大于2%;Ⅱ、Ⅲ级钢筋的冷拉率不宜大于1%.②.冷拔低碳钢丝用机械拉直后,其表面不得有明显擦伤,抗拉强度不得低于施工图纸的要求.③.钢筋加工的尺寸按施工图纸的要求执行,钢筋加工后的允许偏差分别不得超过下表的数值.加工后钢筋的允许偏差:(4)钢筋制作在钢筋加工厂按设计图纸要求加工成形,采用8t载重汽车运至施工作业面人工绑扎、架立、安装,先安装底层钢筋网,采用预制与该部位混凝土同标号的混凝土垫块支撑,以确保混凝土保护层厚度满足设计要求,混凝土垫块之间距离不大于120厘米;上层钢筋网应利用锚筋做成架立筋,钢筋扎丝呈梅花形布置,间隔绑扎,侧墙钢筋采用带扎丝的预制混凝土垫块支撑,在钢筋架设安装完成后,及时妥加保护,避免发生错动和变形.(5)钢筋的连接溢洪道钢筋工程主要采用绑扎连接、手工电弧搭接焊和机械连接的方式.A.手工电弧搭接焊a.焊接接头当设计有要求时采用双面焊缝,无特殊要求时采用单面焊缝.双面焊接时:对于Ⅰ级钢筋的搭接焊的焊缝总长度不小于4d,对于Ⅱ、Ⅲ级钢筋,其搭接焊的焊缝总长度不小于5d.单面焊接时:对于Ⅰ级钢筋的搭接焊的焊缝总长度不小于8d,对于Ⅱ、Ⅲ级钢筋,其搭接焊的焊缝总长度不小于10d.b.搭接焊接头的两根搭接钢筋的轴线,应位于同一轴线上.c.搭接焊的焊缝高度为被焊接钢筋直径的0.25倍,并不小于4米米;焊缝的宽度为被焊接钢筋直径的0.7倍,并不小于10米米.B.机械连接a.采用机械连接时,应由厂家提交有效的机械连接型式检验报告.b.每批进场钢筋进行接头工艺检验,工艺检验应符合下列要求:1)每种规格钢筋的接头试件不少于3个.2)接头试件的钢筋母材抗拉强度试件不少于3个,且应取自接头试件的同一根钢筋.3)Ⅰ级接头试件抗拉强度应不小于0.95倍钢筋母材的实际抗拉强度.Ⅱ级接头试件抗拉强度应不小于0.9倍钢筋母材的实际抗拉强度.计算实际抗拉强度时,应采用钢筋的实际横截面面积.c.应进行外观质量检查和单向拉伸试验.设计有特殊要求时按设计要求项目进行检验.以500个同一批材料的同等级、同型式、同规格接头为一批,不足500个按一个验收批计.接头均应有现场连接施工记录.d.直螺纹接头外观质量及拧紧力矩检查应满足下列要求:1)接头拼接时用管钳扳手拧紧,使两个丝头在套筒中央位置相互顶紧.2)拼接完成后,套筒每端不应有1扣以上的完整丝扣外露,加长型接头的外露丝扣不受限制,但应有明显标记,以检查进入套筒的丝头长度是否满足要求.3)外观数量检查数量:每一验收批中随机抽取10%的接头进行外观检查,抽检的接头应全部合格,如有1个接头不合格,该检验批的接头应逐个检查,对不合格接头应补强.C.钢筋的接头应尽量布置在结构物的低应力区,接头位置要错开,同一断面处的钢筋接头数不超过50%.D.钢筋检验,在使用前和加工安装过程中均需按规定对钢筋进行随机抽样检验,抽样检验结果报工程师审查合格后方能进入下一工序施工.钢筋架设完毕应及时妥加保护,防止发生错动、变形和锈蚀.浇筑混凝土之前,应进行详细检查,并填写检查记录.检查合格的钢筋.如长期暴露,应在混凝土浇筑之前重新检查,合格后方可浇筑混凝土.4.4.2模板制安4.4.2.1模板制作与安装(1)溢洪道模板除溢流堰堰头和挑流段外其余均采用60*150厘米钢模板组合施工,模板缝采用双面胶带封闭.组合钢模使用前应在面板涂刷矿物油,采用钢管背楞加拉钢筋的方式联合固定模板,使之形成整体,达到强度和刚度要求,保证模板在施工过程中不发生位移和变形.(2)安装模板时,采用φ12米米对拉杆连接内外模板,横向间隔0.6米设置一道,纵向间隔0.4米设置一道,以抵抗混凝土的侧压力,对拉杆上设置止水环,模板拆除后将拉杆切除至混凝土面.横向背楞采用双根48米米钢管用蝴蝶卡卡扣,纵向背楞间距1.2米,采用单根48米米钢管联系于横向背楞上.挡墙内模采用钢管井字架支撑,满堂架立杆间距1.5*2米,横杆步距1.5米,挡墙外侧采用双排脚手架支撑,双排脚手架间距1.2米,扫地杆距基础面0.2米,大横杆步距1.5米,立杆间距2.0米.模板制作的允许偏差:模板安装的允许偏差(单位米米):4.4.2.2注意事项(1)按施工图纸进行模板安装的测量放样,重要结构应设置必要的控制点,以便检查校正.(2)模板安装过程中,应设置足够的临时固定设施,以防变形和倾覆.(3)分层浇混凝土时,应逐层校正上下层偏差,模板下端不应有“错台”现象,模板及支架上严禁堆放超过其设计荷载的材料及设备.(4)混凝土浇筑过程中,安排专人负责值班,经常检查、调整模板的形状及位置,使其与设计线的偏差不超过模板安装允许偏差绝对值的1.5倍,并每班做好记录.模板如有变形、位移,立即采取措施,必要时停止混凝土浇筑.4.4.2.3模板拆除(1)模板拆除的顺序,先非承重部位后承重部位以及自上而下的原则.拆模时严禁用大锤和撬棍硬砸硬撬.(2)模板拆除必须采用专用工具,以避免损坏混凝土.拆模时间:不承重侧面模板的拆除,应在混凝土强度不低于2.5米Pa时,且拆模时其表面及棱角不因拆模而损伤时方可拆除.当发现拆模较早将拉伤砼表面时,需立即停止模板拆除.(3)先拆除穿墙螺栓螺帽及蝴蝶卡,松开钢管扣件,用撬棍轻轻撬动模板,使模板与混凝土脱离,及时将模板吊运至模板堆放场地进行模板表面砼、钉子等杂物清洁.(4)模板在使用之后和浇筑混凝土前应清除干净,模板应经常性检查表面平整度,凡达不到要求的模板,必须予以更换或进行修复,外露结构的模板应选用较新的模板立制;拆除后的模板应堆放整齐,不准乱弃乱扔,以免造成模板挤压变形或影响现场的文明施工.4.4.3伸缩缝、止水制作安装4.4.3.1伸缩缝制作安装混凝土浇筑前按照图纸要求进行下料,伸缩缝缝宽2厘米,采用高压闭孔板分缝,其上设3厘米丙乳砂浆闭缝.施工时,将加工好的伸缩缝用细扎丝固定在钢模板上,伸缩缝上预留与混凝土相连的扎丝,混凝土浇筑完成后伸缩缝就与混凝土紧紧相连.浇筑混凝土时人工先铺筑伸缩缝附近的混凝土,上料时避免伸缩缝断裂和起皱,拆模前先去掉扎丝,避免扎丝撕裂伸缩缝.4.4.3.2止水⑴止水材料采用P651型橡皮止水带,采购材料要有生产厂家的性能检测报告和出厂合格证,在使用前,委托具有资质的试验室进行抽样实验检测;止水材料运至工地后在专用材料仓库中保管.避免油污和长期曝晒,对于现场浇筑块的外露止水带部分采用覆盖草袋等可靠措施加以保护,防止破坏和老化.⑵橡胶止水片连接采用硫化热粘接.止水焊接,由专人负责施工,接头外观保持平整光洁,抗拉强度不低于母材的75%.⑶止水带安装采用模板嵌固的方式,不得穿孔拉挂固定,止水片要与混凝土接缝面垂直,其中心线与接缝中心线允许偏差为±5米米,当混凝土将要淹没止水带时应再次清掉表面的污垢.振捣混凝土时,止水片下面及周围的混凝土应振捣密实,但振捣棒避免触及止水带,嵌固止水带的模板应推迟拆模时间.⑷橡胶止水片在安装时防止变形和撕裂.⑸已安装好的止水片要做好保护,支撑牢固,在混凝土浇筑时防止移位或扭曲.4.4.4现浇混凝土施工溢洪道混凝土采用自下游向上游浇筑的顺序,各浇筑仓先浇筑底板再浇筑边墙.溢洪道底板混凝土浇筑采用1台60 米3/h混凝土输送泵以泵送方式直接入仓,4辆10米3混凝土拌合运输车负责运输浇筑料,混凝土浇筑仓划分为:侧槽段(0+000—0+020)为一个浇筑仓;调整段(0+020—0+040)为一个浇筑仓;泄槽段(0+040—0+280)每10米为一个浇筑仓;出口挑流段(0+280—0+300)为一个浇筑仓;下游护坦段(0+300—0+310)为一个浇筑仓;在边墙混凝土浇筑时,应根据现场实际情况每3~4米高度为一个浇筑仓.基岩面和老混凝土上的浇筑仓,在浇筑第一仓混凝土前,必须先均匀铺设一层厚2~3厘米的水泥砂浆.砂浆的标号应比同部位混凝土高一级.每次铺设砂浆的面积应与浇筑面积相适应,以铺设砂浆后30米in内被混凝土覆盖为限,铺设工艺必须保证现浇混凝土能与基岩或老混凝土结合良好,混凝土浇筑应保持连续性,如因故中止且超过允许间歇时间(自出料至覆盖上坯混凝土为止),则应按工作缝处理.混凝土浇筑作业应按一定的层厚、次序、方向分层进行.在止水片等周边浇筑混凝土时,应使混凝土均匀上升.在倾斜面上浇筑混凝土时,应从低处开始浇筑,浇筑面应保持水平.浇筑振捣层厚度根据实际施工条件确定.浇入仓内的混凝土应随浇筑随平仓,不得堆积.仓内若有粗骨料堆积时,应将堆积的骨料均匀散铺至砂浆较多处,不得用水泥砂浆覆盖,以免造成内部蜂窝.不合格的混凝土料严禁入仓,浇筑混凝土时,严禁在仓内加水.混凝土浇筑期间,如果表面泌水较多,应及时清除,并研究减少泌水的措施,严禁在模板上开孔赶水,带走灰浆.混凝土浇筑地点,要有遮盖设施,以免因日晒、雨淋而影响混凝土的质量.混凝土入仓后先平仓后振捣,不应以振捣代替平仓.混凝土采用捣头直径大于80米米插入式振捣器振捣,振捣器均匀布点,距模板边的距离不小于振捣器有效半径的1/2,振捣器不应直接碰撞模板、钢筋及预埋件等.每个点的振捣时间以混凝土不再显著下沉、不出现气泡并开始泛浆时为准,同时应避免振捣过度,振捣器无法作业部位辅以人工捣实,底板面层混凝土采用平板振捣器收仓.待浇混凝土的基础面包括岩基面和混凝土面.岩基面用水清理冲洗干净;混凝土面的处理,在混凝土浇筑完毕,凝固一定时间后,采用风、水枪冲毛处理,冲毛的时间一般按混凝土凝固情况选定,水压、风压等参数可通过试验选定,以清除浮皮砂浆,使粗、细骨料显露为准,经风、水枪冲毛的缝面,如有局部砂浆未除,可通过人工凿毛处理.伸缩缝表面所积聚的混凝土或杂物亦需清除.4.4.5抹面及养护4.4.5.1抹面(1)抹面人员三班制作业,24小时不停,抓住收面最佳时机,每仓抹面不少于三遍.(2)底板混凝土振捣密实以后,先用磨光机收面,表面多余水分及时处理,再由人工进仓内用手抹子收面,直至初凝结束.4.4.5.2养护(1)采用洒水养护,在混凝土浇筑完毕后 12~18h 内开始进行.(2)在干燥气候条件下,延长养护时间至少 28 天以上.(3)洒水养护开始养护时间:由温度决定,当最高气温低于25℃时,浇捣完毕12小时内覆盖并洒水养护.当最高气温高于25℃时,浇筑完毕6小时内覆盖并洒水养护.(4)洒水次数:保持足够的湿润状态,养护初期水泥水化作用较快,洒水次数要多.气温高时,增加洒水次数.五、混凝土工艺质量保证措施5.1混凝土配料及振捣(1)混凝土配料:混凝土的配合比必须通过试验确定,配合比除应满足设计强度要求外,还要满足施工和易性的要求.(2)混凝土振捣要严格按规范操作,不能漏振、欠振,以避免出现麻面,也不能过振,过振会离析,在模板接缝处形成砂线.(3)混凝土振捣必须密实,至表面泛浆、无气泡产生为止.5.2混凝土浇筑(1)根据监理人批准的浇筑分仓分块和浇筑程序进行施工.(2)混凝土浇筑层厚度,根据搅拌、运输和浇筑能力、振捣器性能及气温因素确定.(3)入仓面的混凝土应随浇随平仓,不得堆积.仓内若有粗骨料堆迭时,要均匀地分布于砂浆较多处,但不得用水泥砂浆覆盖,以免造成内部蜂窝.5.3混凝土浇筑层施工缝处理⑴在浇筑上层混凝土层浇筑前,对下层混凝土的施工缝面,按监理人批准的方法进行冲毛或凿毛处理.⑵混凝土浇筑期间,如果表面泌水较多,应及时清除,并研究减少泌水的措施,严禁在模板上开孔赶水,以免带走灰浆.⑶浇筑混凝土应使振捣器捣实到可能的最大密实度.每一位置的振捣时间以混凝土不再显著下沉,不出现气泡,并开始泛浆时为准.应避免振捣过度.振捣操作应严格按规定执行.振捣器距模板的垂直距离不应小于振捣器有效半径的 1/2,并不得触动钢筋及预埋件.浇筑的第一层混凝土以及在两次混凝土卸料后的接触处应加强平仓振捣.凡无法使用振捣器的部位,应辅以人工捣固.5.4模板工艺质量保证措施⑴模板块应尽可能拼大,现场的接缝要少,且接缝位置必须有规律,尽可能隐蔽,接缝处不能跑浆.所有施工部位尽量采用钢模板,模板缝间设双面胶带密封条,模板表面刷脱模剂.⑵各种连接部位必须按节点设计,针对不同的情况逐个画出节点图,以保证连接严密、牢固、可靠,保证施工时有依据,避免施工的随意性.5.5混凝土裂缝控制措施⑴材料方面控制措施①提高混凝土抗裂能力:优先选用热膨胀系数较低的砂石料,保证混凝土设计所必需的极限拉伸值或抗拉强度、施工匀质性指标和强度保证率;②控制混凝土水化热:选择较优骨料级配,掺粉煤灰、外加剂,以减少水泥用量和延缓水化热发散速率.⑵施工方面控制措施①合理安排混凝土施工程序和施工进度防止基础贯穿裂缝.②加强混凝土表面保护,减少内外温差:在低温季节,在混凝土表面进行覆盖保护,可减小混凝土表层温度梯度及内外温差,保持混凝土表面湿度.通过覆盖保护,延缓混凝土降温速度,以减少新混凝土上、下的约束温差;混凝土养护采用流水养护.⑶综合管理方面的措施。

溢洪道水力计算

溢洪道水力计算

一、设计依据:二、基本资料:第一段泄槽的角度 2.2906°糙率:0.015闸孔数3闸孔宽10.00闸墩厚1.50堰顶高程929.00m Q=196(m 3/s)校核洪水位931.35m Q=102(m 3/s)设计水位930.52m Q=87.3(m 3/s)30年一遇水位930.37m2.35m 1.52m下游水位:设计902.65m 校核904.04m 30年一遇水位902.4m 30年一遇水位到堰顶高差 1.37m 三、计算内容:1、溢洪道泄流能力计算:溢流堰采用驼峰堰面曲线:H max —校核水位下的堰上水头 2.35m H d —堰面曲线定型设计水头(取0.75H max )H d =1.76m流量系数的计算为:m=0.385+0.224(P 1/H 0)0.934m=0.448下泄流量的计算按《规范》A.2.3公式进行计算:3、水文资料2、《溢洪道设计规范》1、《水力学》30年一遇水位下的流量:设计水位到堰顶高差:P1/H0=0.255<0.34校核水位下的流量:设计水位下的流量:校核水位到堰顶高差:泄流量的计算:2/302Hg B m Q e =式中:Q—B—30mb—10.00mn—3H 0—计入行近流速水头的堰上总水头,(m)2.35mg—重力加速度,(m/s 2); g=9.81m—堰流量系数;m=0.448ε—ε=0.975ζ0—ζ0=0.45ζK —ζK =0.7Q=208.858m 3/s2、泄槽段临界水深及临界底坡计算:临界水深及临界底坡的计算公式为:式中:校核设计α—α= 1.05 1.05q—q= 6.533 3.400x k —x k =36.31935.147R—R= 1.508 1.008C k —C k =71.38866.755b k —b k =3333校核设计闸孔数目;闸墩侧收缩系数,由下式计算得:流量,m 3/s溢流堰总净宽,(m),定义:B=nb 单孔宽度,(m)中墩形状系数,由《规范》表A.2.1-3查得:边墩形状系数,由《规范》图A.2.1-2查得:临界谢才系数临界水深对应水面宽(m )流速不均匀系数泄槽单宽流量(m 3/sm )临界湿周(m )水力半径(m )根据以上参数计算得:由上计算得:2/302Hg B m Q e =nbH k n 0])1([2.010z z e -+-=32gq k h a =kK kbC gx k i 2a =h k = 1.659h k =1.074i k =0.0020176i k =0.0022330式中:校核设计30年一遇q—q=5.939 3.091 2.645H 0—H 0=2.952.121.97θ—θ= 2.2906oφ—φ=0.95校核设计30年一遇h 1=1.0150.5950.523泄槽起始断面水深:h 1=1.0150.5950.5234、泄槽段水面线的推算:3、泄槽段起始水深h 1计算:水面曲线的推算见附表一:起始计算断面渠底以上总水头,(m );假定一个初始值h 1(m)起始计算断面定在堰下收缩断面处:断面水深计算公式为:泄槽水面线根据能量方程,采用分段求和法进行计算,计算公式如下:计算结果如下:起始计算断面流速系数;泄槽底坡坡角;起始计算断面单宽流量,m 3/(s.m);)cos (2110q fh H g qh -=Ji h h gv gv l -+-+-=D )cos ()cos (212211122222a a q q 3/422R v n J =21i i v v v +-=21ii R R R +-=5、泄槽由缓变陡时抛物线的推求:泄槽在(泄0+037.156)段由缓变陡,采用抛物线连接,方程为:式中:x 、y—以缓坡泄槽段末端为原点的抛物线横、纵坐标,m ;θ—缓坡泄槽底坡坡角,θ= 2.2961004°H 0—抛物线起始断面比能,m ;h—抛物线起始断面水深,m ;v—抛物线起始断面流速,m/s ;α—流速分布不均匀系数,取α=1.0K—系数,K=1.3以设计水位来推求抛物线:h=0.446m v=14.591m/s所以:H 0=11.308m1/K(4H 0cos 2θ)=0.03864598y=0.04x+0.03865x2求切点得:后接陡坡坡度为K=0.4所以y=0.4x+b 求切点得:由(1)、(2)式得:x= 4.657y=1.025挑流水舌外缘挑距按下式计算:6、挑流消能计算:])cos (2sin cos cos sin [212211211h h g v v v L +++=q q q q q )cos 4(202q q H K x xtg y +=gvh H 202a +=)2(4.0®=¢y )1(0773.004.0®+=¢x y冲刷坑最大水垫深度计算公式为:式中:L—挑流鼻坎末端至挑流水舌外缘的距离(m );θ—θ=20h 1—设计校核30年一遇h 1=0.3660.6130.327h 2—h 2=2.3mv 1—鼻坎坎顶水面流速,(m/s ),可按鼻坎处平均流速v 的1.1倍设计校核30年一遇v 1=20.42223.4519.599T—自下游水面至坑底最大水垫深度,(m );q—鼻坎末端断面单宽流量,m 3/(s.m);设计校核30年一遇q= 6.813.0675.820设计校核30年一遇Z—Z=27.8727.3127.97k—k=1.4由上可得:设计校核30年一遇L=33.29042.70030.987T=8.38811.5697.767根据《规范》A.3.2的计算公式:7、泄槽段水流掺气水深可按下式计算:综合冲刷系数,由《规范》表A.4.2可得挑流水舌水面出射角,近似可取用鼻坎挑胸:上、下游水位差,(m );鼻坎坎顶至下游河床高程差挑流鼻坎末端法向水深(m );])cos (2sin cos cos sin [212211211h h g v v v L g+++=q q q q q 4/12/1Z kq T =hh vb )1(100z +=式中:h 、h b —v —ζ—ζ=1.4s/m由上计算可知,h b 最大值为1.308m,所以考虑泄槽边墙的超高,所以泄槽的边墙高度取2.5m 。

关于侧槽式溢洪道侧槽末端水深的探讨

关于侧槽式溢洪道侧槽末端水深的探讨

关于侧槽式溢洪道侧槽末端水深的探讨摘要:侧槽式溢洪道与正槽式溢洪道相比较,可减少开挖量,但其水流条件也相对比较复杂。

本文以毕节市龙官桥水库工程的侧槽式溢洪道为例,针对工程布置了一段狭长水平段的情况下,对侧槽末端水深应该如何确定进行了探讨,以确定得到的侧槽末端水深对侧槽水面线进行推算,从而复核得出溢流堰为自由出流,溢洪道的泄流能力未受影响,为类似工程提供了参考。

关键词:侧槽式溢洪道;临界水深;侧槽首端水深;调整段;自由出流毕节市龙官桥水库工程位于位于七星关区中部何官屯镇龙汉村境内,水库枢纽位于乌江流域六冲河一级支流白甫河干流上游倒天河段上,水库总库容1099万m3。

水库工程任务为城市供水,年供水总量959万m3,工程规模为中型,工程等别为Ⅲ等。

水库枢纽由混凝土面板堆石坝、侧槽式溢洪道、取水导流兼放空隧洞组成。

1 溢洪道结构布置侧槽式溢洪道位于大坝左岸,由溢流堰、侧槽段、水平段、泄槽段、挑流消能段组成,总长157.89m。

图1溢洪道平面布置图溢流堰为WES实用堰,堰顶高程1655.00m,堰高6.0m,溢流堰宽10m,为不设闸自由溢流堰。

侧槽段总长15.89m(桩号0-005.89~0+010.00),侧槽轴线方位角N81.23°E,与坝轴线的交角为69.47°。

侧槽首端底板高程1649.00m,宽3m,设计底坡i=0.005,末端底板高程1648.95m,宽4m,靠山侧坡比为1:0.5。

侧槽末端接水平渐变段(桩号0+010.00~0+020.00),靠山侧边墙由1:0.5斜面渐变为铅直面,靠坝体一侧边墙与大坝及趾板结合部位布置成箱型结构,迎水面铅直。

底宽4m,底板高程1648.95m,底坡为0。

为了便于布置交通桥,因地形的限制,故需要在水平渐变段末端设置一段水平调整段(桩号0+020.00~0+028.00),为矩形断面,底宽4m,底板高程1648.95m。

水平调整段后接泄槽段,总长119.81m(桩号0+028.00~0+147.81),泄槽轴线方位角N81.23°E。

侧堰溢洪道上建闸设计及侧槽水力计算的一般步骤

侧堰溢洪道上建闸设计及侧槽水力计算的一般步骤

【勘测规划与设计】侧堰溢洪道上建闸设计及侧槽水力计算的一般步骤张开发1,朱吉贤2(1.赤峰市水利勘测设计院,内蒙古赤峰024000;2.敖汉旗水务局,内蒙古敖汉024300)〔摘 要〕 不论是规范还是有关参考书,对侧堰溢洪道上建闸都没有详细论述,所显示的都是一般不设闸。

根据目前一些中小型水库的除险加固实例,有些水库受地形条件限制或原来就是侧堰的,为提高其兴利库容或限制其下泄流量,必须在侧堰上设闸。

文章根据工程实例,总结侧堰溢洪道上设闸及侧堰水力计算的有关方法和一般步骤。

〔关键词〕 侧堰溢洪道;水力计算中图分类号:T V 123 文章标识码:B 文章编号:1009-0088(2008)05-0021-01 侧堰式溢洪道一般由溢流堰(控制段)、侧槽、泄水道和出口消能段等组成。

溢流堰大致和河岸等高线平行,水流经过溢流堰后,大约转向90°进入侧槽,再经调整段进入泄水槽,通过消能设施流入下游。

当坝址处拟设溢洪道的一端山头较高、岸坡陡峭时,可选用侧堰式溢洪道,其优点是可以减少山体开挖量,当适当延长溢流堰长度,可相应提高堰顶高程,设闸后,可增加兴利库容,土坝高程亦相应降低。

文章结合台子店水库除险加固实例,总结了从堰型选择到侧堰溢洪道的水力计算步骤和几点注意事项。

1 堰型选择根据《溢洪道设计规范》S L 253—2000要求,当堰顶以上最大水头与孔口高度的比值H m a x /D>2时,或闸门全开仍属孔口泄流时,孔口下游堰面曲线宜采用抛物线。

台子店水库H m a x /D =7.3/3.0=2.43>2.0,并且因为下游有限泄要求,闸门全开时仍属孔口泄流,因此,按规范A .1.4,抛物线按下式计算y =x 24Υ2H d式中 H d —孔口出流堰面定型设计水头,取H d =(0.56~0.77)H m a x ;¢—孔口出流收缩断面上的流速系数,取¢=0.95~0.96。

中小型水库根据地形条件可选择低实用堰,宜取上游堰高P 1≥0.3H d ,下游堰高依侧槽深度确定。

侧槽溢洪道设计-03

侧槽溢洪道设计-03

侧槽溢洪道课程设计学校:广东水利电力职业技术学院班级:12水工3班姓名:罗茂贤学号:120310328指导老师:李存目录一.设计基本资料: (2)二.侧槽的设计(尺寸及参数拟定) (2)1. 计算侧槽堰长L (2)(1) 工况一: (3)(2) 工况二: (3)2.侧槽底纵坡i0拟定 (4)3. 侧槽的横断面形式与尺寸 (4)4. 侧槽各断面槽底高程计算 (5)(1) 计算控制断面临界水深h k (5)(2) 计算侧槽末端水深h l (5)5. 侧槽水力计算(推算各断面水深及槽底高程) (6)(1) 确定控制断面坎高d (6)(2) 计算侧槽各断面流量Q i (6)(3) 侧槽水面曲线推算 (8)(4) 侧槽各断面槽底高程的确定 (10)三.泄槽的设计 (11)1.泄槽的形式及参数拟定 (11)2.泄槽水面曲线的推算 (11)(1) 判断水面曲线的类型 (11)(2)用分段求和法计算水深,推算水面曲线 (12)(3)泄槽陡坡段边墙高h墙的确定 (13)四.消能防冲设计 (15)1.挑坎尺寸及参数拟定 (15)(1)鼻坎高程: (15)(2)反弧半径R: (15)(3)挑射角度: (15)2.挑距离计算 (15)3.最大冲刷坑深度T计算 (17)(1)最大冲坑水垫厚度t k (17)五、附图- 侧槽溢洪道的各种剖面图 (18)侧槽溢洪道设计计算一.设计基本资料:某大(2)型水库,正常蓄水位为30m,设计洪水位为32m,(相应泄流量为150 m3/s),校核洪水位33.43m,(相应下泄流量为210m3/s)。

该地区最大风速的多年平均值为16.9m/s。

坝肩山头较高,岸坡较陡。

布置溢洪道泄槽处山坡坡度约为1:4,泄槽水平投影约65m,泄槽宽8m。

该地区地震基本烈度为Ⅵ度。

地表全为风化粉砂岩,基岩为寒武系八村组粉砂泥岩强风化层。

强风化层地基承载力标准值可取500 kPa。

二.侧槽的设计(尺寸及参数拟定)1. 计算侧槽堰长L用堰流公式侧堰采用WES型实用堰,如图1所示,流量系数m=0.502 (查《水力学》P206页)堰顶高程P与正常蓄水位等高,即P=30 m ,(1) 工况一:设计洪水位H设=32 m ,相应下泄流量Q max=150 m3/s堰顶水头所以堰长(2) 工况二:校核洪水位H校= 33.43 m ,相应下泄流量Q max =150 m3/s 堰顶水头所以堰长经比较,堰长采用工况一设计洪水位的,故堰宽L=23.85 m2.侧槽底纵坡i0拟定侧槽槽底纵坡拟定i0=0.1 (参考课本P106 页)。

溢洪道设计计算说明

溢洪道设计计算说明

岸边溢洪道设计6.3.1溢洪道说明溢洪道其主要任务是泄洪,土石坝不允许水过坝顶,需要专门修建泄洪建筑物。

根据本工程的地形条件,上游坝址左岸沿河流方向有一道呈现弧形的纵向凹槽,所以选择溢洪道设置在大坝左岸,为带胸墙孔口式岸边溢洪道。

溢洪道由引渠段、堰闸段、泄槽段、挑流鼻坎段组成。

6.3.2 溢洪道引水渠为了使水流平缓,减小或不发生漩涡和翻滚现象,进口采用喇叭口,进口宽度B=50m.设计流速4m/s,横断面在岩基上接近矩形,边坡根据稳定要求确定这里选择边坡坡度为1:0.5;采用梯形断面,进水渠的纵断面做成平底。

在靠近溢流堰前断区,由于流速较大,为了防止冲刷和减少水头损失,可采用混泥土护面厚度为0.5m。

6.3.3 控制段控制段包括溢流堰及两侧连接建筑物,溢流堰通常可以选择宽顶堰、实用堰、驼峰堰。

溢流堰的体形应尽量满足增大流量系数,溢流堰作用是控制泄流能力,本次设计采用实用堰,优点是流量大,在相同的泄流条件下需要的堰流前缘长,工程量小。

采用弧形闸门。

初步拟定堰顶高程H=设计洪水位—堰顶最大泄水位H0堰顶高程H=1838=1858.22—H 0,则H 0=20.22m 胸墙式孔口溢流堰形式的下泄流量Q 公式为:320=Q ε溢式中:ε ——闸墩侧收缩系数,0.9; m ——流量系数,0.48:; g ——重力加速度,9.81 2m/s ; B ——堰宽,12m;水位为设计洪水位1858.22m 时,堰顶高程1838m ,设计Q 溢=4645m3/s.则由上面公式计算得出的B=26.69m,取B=14m.表6.3-1溢洪道宽顶堰堰宽计算(忽略流速)计算取b=28m,孔口数2孔,弧形工作闸门取值14x19m(宽x 高)。

中墩厚3m,边墩宽1m,闸室宽度=14x2+3+2x1=33m.堰面曲线的确定开敞式堰面曲线,幂曲线按式(7-2)计算:1n n d x KH y -= (7-2)式中 Hd ——堰面曲线定型设计水头,对于上游堰高P1≥1.33Hd 的高堰,取Hd=(0.75~0.95)Hmax ,对于P1<1.33Hd 的低堰,取Hd=(0.65~0.85)Hmax ,Hmax 为校核流量下的堰上水头.x 、y ——原点下游堰面曲线横、纵坐标; n ——与上游堰坡有关的指数,见表A.1.1;k ——当p1/Hd>1.0 时,k 值见表A.1.1,当P1/Hd ≤1.0 时,取k=2.0~2.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档