数值分析课件1

合集下载

数值分析第一章PPT

数值分析第一章PPT

1.1.2 计算数学与科学计算 现代科学的三个组成部分: 科学理论, 科学实验, 科学计算 科学计算 的核心内容是以现代化的计算机及数学软件 (Matlab, Mathematica, Maple, MathCAD etc. )为工具,以数学 模型为基础进行模拟研究。
一些边缘学科的相继出现:
计算数学,计算物理学,计算力学,计算化学,计算生物学, 计算地质学,计算经济学,等等

取 0 e
1
x2
dx S4 ,
S4
R4
/* Remainder */
1 1 1 1 由留下部分 称为截断误差 /* Truncation Error */ 4! 9 5! 11 /* included terms */ 1 1 这里 R4 引起.005 0 由截去部分 4! 9 /* excluded terms */ 1 1 1 S4 1 1 0 .333 0 .1 0 .024 0 .743 引起 3 10 42 | 舍入误差 /* Roundoff Error */ | 0.0005 2 0.001
数值分析
第1章
数值分析与科学计算引论
§1.1 数值分析的对象、作用与特点
1.1.1 什么是数值分析 数值分析是计算数学的主要部分,计算数学是数学 科学的一个分支,它研究用计算机求解各种数学问题的 数值计算方法及其理论与软件实现.这门课程又称为(数 值)计算方法、科学与工程计算等。

在电子计算机成为数值计算的主要工具的今天, 需要研究适合计算机使用的数值计算方法。使用计 算机解决科学计算问题时大致要经历如下几个过程:
造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。

数值分析课件 第一章 绪论

数值分析课件 第一章 绪论

1 e 0 1 x n e 0 d I n x 1 e 0 1 x n e 1 d x e 1 1 ( ) I n n n 1 1
公式一:I n 1 e [ x n e x 1 0 n 0 1 x n 1 e x d x ] 1 n I n 1
I01 e 01exdx11 e0.63212 记为0I5 0* 6 此公式精确成
初始的小扰动 |E 0|0.51 0 8迅速积累,误差呈递增趋势。 造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。
公式二: I n 1 n I n 1 I n 1 n 1 ( 1 I n )
方法:先估计一个IN ,再反推要求的In ( n << N )。 注 意在e此理(N 公论1 式上1)与等公价IN 式。一N 1 1
)
0 .0 6 6 8 7 0 2 2 0
I
12
1 (1 13
I
13
)
0 .0 7 1 7 7 9 2 1 4
I
11
1 (1 12
I
12
)
0 .0 7 7 3 5 1 7 3 2
I
10
1 11
(1
I
11
)
0 .0 8 3 8 7 7 1 1 5
I
1
1 2
(1
I
2
)
0 .3 6 7 8 7 9 4 4
0
2! 3! 4!
11/1e111 e1 x 2d1x11 1 3 2! 50 3! 7 4! 9
取 01ex2dxS4 ,
S4
R4 /* Remainder */
则 R 44 1 !1 9 由 留5 1 !下1 部1 分1 称为截断误差 /* Truncation Error */

数值分析-第一章ppt课件

数值分析-第一章ppt课件

数及其图形作出判断. 整理版课件
6
由分部积分法可得:
Ine101xndex
n=1,2,4,6, 8,10,15
e 1 x n ex|1 0 e 1 0 1 nn 1 x ex dx
1 nn 1 I (n 1 ,2 , ).
如果取 I0 = 1–e–1 = 0.63212056 (八位有效数字).
x1,2b
b24ac 2a
直接进行计算则得: x1=109, x2=0. 其中的x2=0明பைடு நூலகம்失真, 这也是由于舍入误差造成的.
整理版课件
8
§1 误差的来源
实际 问题
建立数 学模型
确定计 算方法
编程 上机
由抽象简 化产生的 模型误差 及参数的 观测误差
由计算方 法本身产 生的截断 误差或称 方法误差
er(x* )e(x x* )x xx*
同样, 由于精确值 x 经常是未知的, 所以, 需要另
外的近似表达形式. 我们注意如下公式的推导,

|
e ( x*) x*
|
较小时,

e(x* )e(x* )e(x*x )* (x)
x x*
xx*
[x*[ee((xx**))2]x] *1[e(exx(**x*)]2)
整理版课件
18
乘法相关的误差公式: 设 f (x1, x2)= x1 x2 . e ( x 1 x 2 ) x 2 e ( x 1 ) x 1 e ( x 2 ) e r ( x 1 x 2 ) e r ( x 1 ) e r ( x 2 ) |e ( x 1 x 2 ) | |e ( x 1 ) | |e ( x 2 ) | |e r ( x 1 x 2 ) | |e r ( x 1 ) | |e r ( x 2 ) |

数值分析ppt课件

数值分析ppt课件

数值积分与微分
数值积分
通过数值方法近似计算定积 分,如梯形法则、辛普森法 则等。
数值微分
通过数值方法近似计算函数 的导数,如差分法、中心差 分法等。
常微分方程的数值解法
通过数值方法求解常微分方 程,如欧拉方法、龙格-库塔 方法等。
03
数值分析的稳定性与误差分析
误差的来源与分类
模型误差
由于数学模型本身的近 似性和简化,与真实系
非线性代数方法
非线性方程组的求解
通过迭代法、直接法等求解非线性方程组,如牛顿法、拟牛顿法 等。
非线性最小二乘问题
通过迭代法、直接法等求解非线性最小二乘问题,如GaussNewton方法、Levenberg-Marquardt方法等。
多项式插值与逼近
通过多项式插值与逼近方法对函数进行近似,如拉格朗日插值、 样条插值等。
机器学习与数值分析的交叉研究
机器学习算法
利用数值分析方法优化和改进机器学 习模型的训练和预测过程,提高模型 的准确性和效率。
数据驱动的模型
通过数值分析方法处理大规模数据集 ,提取有用的特征和模式,为机器学 习模型提供更好的输入和输出。
大数据与数值分析的结合
大数据处理
利用数值分析方法处理和分析大规模数 据集,挖掘其中的规律、趋势和关联信 息。
数值分析PPT课件
contents
目录
• 引言 • 数值分析的基本方法 • 数值分析的稳定性与误差分析 • 数值分析的优化方法 • 数值分析的未来发展与挑战
01
引言
数值分析的定义
数值分析
数值分析是一门研究数值计算方法及 其应用的学科,旨在解决各种数学问 题,如微积分、线性代数、微分方程 等。

课件-数值分析(第五版)1-3章

课件-数值分析(第五版)1-3章
2017/3/12
x x
f ( x) f ( x* ) f ( x)
x x

xf ( x) f ( x)
C p 10 即认为是病态
f ( x) x n
9 第1章 数值分析与科学计算引论
研究对象 作用特点
数值计算 误差
误差分析 避免危害
数值计算 算法设计
数学软件
2. 算法的数值稳定性 定义3 一个算法如果输入数据有误差,而在计算过程中舍入误 差不增长,则称此算法是数值稳定的,否则称此算法为不稳定 的。 例1.1:P.9 I n e
x 0.003
y 1
2017/3/12

1000
1.00314 , y * 1.003
6 第1章 数值分析与科学计算引论
研究对象 作用特点
数值计算 误差
误差分析 避免危害
数值计算 算法设计
数学软件
注: 有效位数与小数点后有多少位无关; m相同情况下,有效位数越多,误差限越小; 相对误差及相对误差限是无量纲的,绝对误差及误差限是有量纲的。
数值计算 算法设计
数学软件
1.1 数值分析的对象、作用与特点
1 研究对象
用计算机求解数学问题的数值计算方法、理论及软件实现
实际问题 数学模型 数值计算方法 程序设计(数学软件) 上机计算求出结果
应用数学
计算数学即数值分析
数值分析(计算方法) 插值与函数逼近(2、3)数值微分与数值积分(4) 的研究对象
第一章习题
1, 5,7,12,14

谢 !
2017/3/12
14 第1章 数值分析与科学计算引论
第2章 插值法
引言
拉格朗日(Lagrange)插值 均差与牛顿(Newton)插值 埃尔米特(Hermite)插值 分段低次插值 三次样条插值

数值分析原理课件第一章

数值分析原理课件第一章

第一章 绪 论本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题.§1.1 引 言计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。

由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括(1)非线性方程的近似求解方法;(2)线性代数方程组的求解方法;(3)函数的插值近似和数据的拟合近似;(4)积分和微分的近似计算方法;(5)常微分方程初值问题的数值解法;(6)优化问题的近似解法;等等从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关.计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差.我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断,从而产生截断误差. 如的计算是无穷过程,当用作为的 +++=!21!111e !1!21!111n e n ++++= e 近似时,则需要进行有限过程的计算,但产生了截断误差.e e n - 当用计算机计算时,因为舍入误差的存在,我们也只能得到的近似值,也就是n e n e *e 说最终用近似,该近似值既包含有舍入误差,也包含有截断误差.*e e 当参与计算的原始数据是从仪器中观测得来时,也不可避免得有观测误差.由于这些误差的大量存在,我们得到的只能是近似结果,进而对这些结果的“可靠性”进行分析就是必须的,它成为计算方法的第二个显著特点. 可靠性分析包括原问题的适定性和算法的收敛性、稳定性.所谓适定性问题是指解存在、惟一,且解对原始数据具有连续依赖性的问题. 对于非适定问题的求解,通常需要作特殊的预处理,然后才能做数值计算. 在这里,如无特殊说明,都是对适定的问题进行求解.对于给定的算法,若有限步内得不到精确解,则需研究其收敛性. 收敛性是研究当允许计算时间越来越长时,是否能够得到越来越可靠的结果,也就是研究截断误差是否能够趋于零.对于给定的算法,稳定性分析是指随着计算过程的逐步向前推进,研究观测误差、舍入对于同一类模型问题的求解算法可能不止一种,常希望从中选出高效可靠的求解算法. 如我国南宋时期著名的数学家秦九韶就提出求n 次多项式值0111a x a x a x a n n nn ++++-- 的如下快速算法;n a s =; k n a t -=t sx s +=),,2,1(n k =它通过n 次乘法和n 次加法就计算出了任意n 次多项式的值. 再如幂函数可以通过如下64x 快速算法计算出其值;x s =;循环6次s s s ⋅=如上算法仅用了6次乘法运算,就得到运算结果.算法最终需要在计算机上运行相应程序,才能得到结果,这样就要关注算法的时间复杂度(计算机运行程序所需时间的度量)、空间复杂度(程序、数据对存储空间需求的度量)和逻辑复杂度(关联程序的开发周期、可维护性以及可扩展性). 事实上,每一种算法都有自己的局限性和优点,仅仅理论分析是很不够的,大量的实际计算也非常重要,结合理论分析以及相当的数值算例结果才有可能选择出适合自己关心问题的有效求解算法. 也正因如此,只有理论分析结合实际计算才能真正把握准算法.§1.2 误差的度量与传播一、误差的度量误差的度量方式有绝对误差、相对误差和有效数字.定义1.1 用作为量的近似,则称为近似值的绝对误差.*x x )(:**x e x x =-*x 由于量x 的真值通常未知,所以绝对误差不能依据定义求得,但根据测量工具或计算情况,可以估计出绝对误差绝对值的一个较小上界,即有ε (1.1)ε≤-=x x x e **)(称正数为近似值的绝对误差限,简称误差. 这样得到不等式ε*x εε+≤≤-**x x x 工程中常用ε±=*x x 表示近似值的精度或真值x 所在的范围.*x 误差是有量纲的,所以仅误差数值的大小不足以刻划近似的准确程度. 如量 (1.2)m m cm s μ50001230000005.023.15.0123±=±=±=为此,我们需要引入相对误差定义1.2 用作为量的近似,称为近似值的相对误差. 当0*≠x x )(:**x e xxx r =-*x 是x 的较好近似时,也可以用如下公式计算相对误差*x (1.3)***)(xx x x e r -= 显然,相对误差是一个无量纲量,它不随使用单位变化. 如式(1.2)中的量s 的近似,无论使用何种单位,它的相对误差都是同一个值.同样地,因为量x 的真值未知,我们需要引入近似值的相对误差限,它是相*x )(*x r ε对误差绝对值的较小上界. 结合式(1.1)和(1.3),相对误差限可通过绝对误差限除以近似*x 值的绝对值得到,即(1.4)***)()(xx x r εε=为给出近似数的一种表示法,使之既能表示其大小,又能体现其精确程度,需引入有效数字以及有效数的概念.定义1.3 设量的近似值有如下标准形式x *x p n ma a a a x 21*.010⨯±= (1.5)()pm p n m n m m a a a a ----⨯++⨯++⨯+⨯±101010102211 =其中且,m 为近似值的量级. 如果使不等式}9,,1,0{}{1 ⊂=pi i a 01≠a (1.6)n m x x -⨯≤-1021*成立的最大整数为n ,则称近似值具有n 位有效数字,它们分别是、、… 和 . *x 1a 2a n a 特别地,如果有,即最后一位数字也是有效数字,则称是有效数.p n =*x 从定义可以看出,近似数是有效数的充分必要条件是末位数字所在位置的单位一半是绝对误差限. 利用该定义也可以证明,对真值进行“四舍五入”得到的是有效数. 对于有效数,有效数字的位数等于从第一位非零数字开始算起,该近似数具有的位数. 注意,不能给有效数的末位之后随意添加零,否则就改变了它的精度.例1.1 设量,其近似值,,. 试回答这三个近π=x 141.3*1=x 142.3*2=x 722*3=x 似值分别有几位有效数字,它们是有效数吗?解 这三个近似值的量级,因为有1=m 312*110211021005.000059.0--⨯=⨯=≤=- x x 413*2102110210005.00004.0--⨯=⨯=≤=- x x571428571428.3*3=x 312*310211021005.0001.0--⨯=⨯=≤=- x x 所以和都有3位有效数字,但不是有效数. 具有4位有效数字,是有效数.*1x *3x *2x 二、误差的传播这里仅介绍初值误差传播,即假设自变量带有误差,函数值的计算不引入新的误差. 对于函数有近似值,利用在点处),,,(21n x x x f y =),,,(**2*1*n x x x f y =),,,(**2*1n x x x 的泰勒公式(Taylor Formula),可以得到 )(),,,()(*1**2*1**i i ni n i x x x x xf y y y e -≈-=∑=(1.7))(),,,(*1**2*1i ni n i x e x x xf ∑== 其中,是的近似值,是的绝对误差. 式(1.7)表明函ii x f f ∂∂=:*i x i x )(*i x e *i x ),,2,1(n i =数值的绝对误差近似等于自变量绝对误差的线性组合,组合系数为相应的偏导数值. 从式(1.7)也可以推得如下函数值的相对误差传播近似计算公式 (1.8))(),,,()(***1**2*1*i r i ni ni r x e yx x x x f y e ∑=≈对于一元函数,从式(1.7)和(1.8)可得到如下初值误差传播近似计算公式)(x f y = (1.9))()()(***x e x f y e '≈ (1.10))()()(*****x e yx x f y e r r '≈式(1.9)表明,当导数值的绝对值很大时,即使自变量的绝对误差比较小,函数值的绝对误差也可能很大.例1.2 试建立函数的绝对误差(限)、相对误差n n x x x x x x f y +++== 2121),,,(的近似传播公式,以及时的相对误差限传播公式.{}ni i x 1*0=> 解 由公式(1.7)和(1.8)可分别推得和的绝对误差、相对误差传播公式如下(1.11)∑∑==≈ni i ini nix e x e x x xf y e 1**1**2*1*)()(),,,()(= (1.12)∑∑==≈ni i r i i r i ni ni r x e yx x e y x x x x f y e 1******1**2*1*)()(),,,()(= 进而有∑∑∑===≤≤≈ni i n i ini ix x e xe y e 1*1*1**)()()()(ε于是有和的绝对误差限近似传播公式 ∑=≈ni ixy 1**)()(εε当时,由式(1.3)推得相对误差限的近似传播公式{}ni i x 1*=>)(max )(max )(max )()()(*11***11***11****1**i r ni ni i ir n i ni i i r n i ni i r i ni ir x yx x yx x x y x yxy εεεεεε≤≤=≤≤=≤≤====≤=≈∑∑∑∑ 例1.3使用足够长且最小刻度为1mm 的尺子,量得某桌面长的近似值3.1304*=a mm ,宽的近似值mm (数据的最后一位均为估计值). 试求桌子面积近似值的绝8.704*=b 对误差限和相对误差限.解 长和宽的近似值的最后一位都是估计位,尺子的最小刻度是毫米,故有误差限 mm ,mm 5.0)(*=a ε5.0)(*=b ε面积,由式(1.7)得到近似值的绝对误差近似为ab S =***b a S = )()()(*****b e a a e b S e +≈进而有绝对误差限 mm 255.10045.03.13045.08.704)()()(*****=⨯+⨯=+≈b a a b S εεε相对误差限 %11.00011.08.7043.130455.1004)()(***=≈⨯=≈S S S r εε§1.3 数值实验与算法性能比较本节通过几个简单算例说明解决同一个问题可以有不同的算法,但算法的性能并不完全相同,他们各自有自己的适用范围,并进而指出算法设计时应该注意的事项. 算例1.1 表达式,在计算过程中保留7位有效数字,研究对不同)1(1111+=+-x x x x 的x ,两种计算公式的计算精度的差异.说明1:Matlab 软件采用IEEE 规定的双精度浮点系统,即64位浮点系统,其中尾数占52位,阶码占10位,尾数以及阶码的符号各占1位. 机器数的相对误差限(机器精度)eps=2-52≈2.220446×10-16,能够表示的数的绝对值在区间(2.2250739×10-308,1.797693×10308)内,该区间内的数能够近似表达,但有舍入误差,能够保留至少15位有效数字. 其原理可参阅参考文献[2, 4].分析算法1: 和算法2: 的误差时,精确解用双精111)(1+-=x x x y )1(1)(2+=x x x y 度的计算结果代替. 我们选取点集中的点作为x ,比较两种方法误差的差异.301}{=i i π 从图1.1可以看出,当x 不是很大时,两种算法的精度相当,但当x 很大时算法2的精度明显高于算法1. 这是因为,当x 很大时,和是相近数,用算法1进行计算时出x 111+x 现相近数相减,相同的有效数字相减后变成零,于是有效数字位数急剧减少,自然相对误差增大. 这一事实也可以从误差传播公式(1.12)分析出. 鉴于此,算法设计时,应该避免相近数相减.在图1.2中我们给出了当x 接近时,两种算法的精度比较,其中变量x 依次取为1-. 从图中可以看出两种方法的相对误差基本上都为,因而二者的精度相当.{}3011=--i iπ710-图1.1 算例1.1中两种算法的相对误差图()+∞→x图1.2 算例1.1中两种算法的精度比较)1(-→x 算例1.2 试用不同位数的浮点数系统求解如下线性方程组⎩⎨⎧=+=+2321200001.02121x x x x 说明2:浮点数系统中的加减法在运算时,首先按较大的阶对齐,其次对尾数实施相应的加减法运算,最后规范化存入计算机.算法1 首先用第一个方程乘以适当的系数加至第二个方程,使得第二个方程的的系1x 数为零,这时可解出;其次将带入第一个方程,进而求得(在第三章中称该方法为高2x 2x 1x 斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法1a 和算法1b . 算法 2 首先交换两个方程的位置,其次按算法1计算未知数 (第三章中称其为选主元的高斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法2a 和算法2b .方程组的精确解为, ,用不同的算法计算出的...25000187.01=x ...49999874.02=x 结果见表1.1.表1.1 对算例1.2用不同算法的计算结果比较算例1.2*1x )(*1x r ε*2x )(*2x r ε算法1a 0.00000.10×1010.50000.25×10-7算法2a 0.25000.75×10-70.50000.25×10-7算法1b 0.26000000.40×10-10.49999870.10×10-6算法2b0.25000200.50×10-80.50000000.25×10-7对于算例1.2,表中的数据表明,当用4位尾数计算时,算法1给出错误的结果,算法2则给出解很好的近似. 这是因为在实现算法1时,需要给第一个方程乘以加00001.0/2-至第二个方程,从而削去第二个方程中的系数,但在计算的系数时需做如下运算1x 2x(1.13)661610000003.0104.0103.0104.03200001.02⨯⨯⨯⨯=+⨯+=-+--对上式用4位尾数进行计算,其结果为. 因为舍入误差,给相对较大的数加以6104.0⨯-相对较小的数时,出现大数“吃掉”小数的现象. 计算右端项时,需做如下运算(1.14)661610000002.0102.0102.0102.02100001.02⨯⨯⨯⨯=+⨯+=-+--同样出现了大数吃小数现象,其结果为. 这样,得到的变形方程组6102.0⨯-⎩⎨⎧⨯-=⨯-⨯=⨯+⨯62612114102.0104.0101.0102.0101.0x x x 中没有原方程组中第二个方程的信息,因而其解远偏离于原方程组的解. 该算法中之所以出现较大数的原因是因为运算,因而算法设计中尽可能避免用绝对值较大的数00001.0/2-除以绝对值较小的数. 其实当分子的量级远远大于分母的量级时,除法运算还会导致溢出,计算机终止运行.虽从单纯的一步计算来看,大数吃掉小数,只是精度有所损失,但多次的大数吃小数,累计起来可能带来巨大的误差,甚至导致错误. 例如在算法1a 中出现了两次大数吃小数现象,带来严重的后果. 因而尽可能避免大数吃小数的出现在算法设计中也是非常必要的. 当用较多的尾数位数进行计算,舍入误差减小,算法1和2的结果都有所改善,算法1的改进幅度更大些.算例1.3 计算积分有递推公式,已知⎰+=1055dx x x I n ),2,1(511 =-=-n I nI n n . 采用IEEE 双精度浮点数,分别用如下两种算法计算的近似值.56ln 0=I 30I算法1 取的近似值为,按递推公式计算0I 6793950.18232155*0=I *1*51--=n n I nI *30I 算法2 因为,取的近似值为)139(5156)139(611039103939+⨯=<<=+⨯⎰⎰dx x I dx x 39I ,按递推公式计算3333330.004583332001240121*39≈⎪⎭⎫ ⎝⎛+=I ⎪⎭⎫ ⎝⎛-=-**1151n n I n I *30I 算法1和算法2 的计算结果见表1.2. 误差绝对值的对数图见图1.3.表1.2 算例1.3的计算结果算法1算法2n *nI n n I I -*n *nI nn I I -*18.8392e-002 1.9429e-01639 4.5833e-0033.9959e-0042 5.8039e-0029.8532e-016384.2115e-0037.9919e-0053 4.3139e-002 4.9197e-01537 4.4209e-003 1.5984e-0054 3.4306e-002 2.4605e-01436 4.5212e-003 3.1967e-0065 2.8468e-002 1.2304e-01335 4.6513e-003 6.3935e-0076 2.4325e-002 6.1520e-01334 4.7840e-003 1.2787e-007………33 4.9255e-003 2.5574e-00825 1.1740e+001 1.1734e+00132 5.0755e-003 5.1148e-00926-5.8664e+001 5.8670e+00131 5.2349e-003 1.0230e-00927 2.9336e+002 2.9335e+002 305.4046e-003 2.0459e-01028-1.4667e+003 1.4668e+003 297.3338e+0037.3338e+003 30-3.6669e+004 3.6669e+004图1.3 算例1.3用不同算法计算结果的误差绝对值的对数图从表1.2中的计算结果可以看出,算法1随着计算过程的推进,绝对误差几乎不断地以5的倍数增长,即有0*02*221*1*555I I I I I I I I n n n n n n n -≈≈-≈-≈----- 成立. 对于逐步向前推进的算法,若随着过程的进行,相对误差在不断增长,导致产生不可靠的结果,这种算法称之为数值不稳定的算法. 对于算法1绝对误差按5的幂次增长,但真值的绝对值却在不断变小且小于1,相对误差增长的速度快于5的幂次,导致产生错误的结果,因而算法1数值不稳定,不能使用. 而算法2随着计算过程的推进,绝对误差几乎不断地缩小为上一步的1/5,即有m m n m n n n n n n n I I I I I I I I 5/5/5/*22*21*1*++++++-≈≈-≈-≈- 成立. 绝对误差不断变小,真值的绝对值随着过程向前推进却在变大,这样相对误差也越来越小,这样的方法称之为数值稳定的算法. 算法1和算法2的误差对数示意图见图1.3. 这个算例告诉我们应该选用数值稳定的算法.知识结构图⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧算法设计要点数值方法的稳定性数值方法的收敛性算法多元函数一元函数传播有效数字相对误差(限)绝对误差(限)度量截断误差舍入误差误差的产生误差误差与算法习题一1 已知有效数,,. 试给出各个近似值的绝对误105.3*1-=x 4*210125.0⨯=x 010.0*3=x 差限和相对误差限,并指出它们各有几位有效数字.2 证明当近似值是x 的较好近似时,计算相对误差的计算公式和相差一个*x x x x -***xxx -和同阶的无穷小量.2*⎪⎪⎭⎫⎝⎛-x x x 3 设x 的近似值具有如式(1.5)的表示形式,试证明*x 1)若具有n 位有效数字,则相对误差;*x n r a x e -⨯≤11*1021)(2)若相对误差,则至少具有n 位有效数字.n r a x e -⨯+≤11*10)1(21)(*x 4 试建立二元算术运算的绝对误差限传播近似计算公式.5 试建立如下表达式的相对误差限近似传播公式,并针对第1题中数据,求下列各近似值的相对误差限.1) ; 2) ; 3) *3*2*1*1x x x y +=3*2*2x y =*3*2*3/x x y =6若例题1.3中使用的尺子长度是80mm ,最小刻度为1mm ,量得某桌面长的近似值mm ,宽的近似值mm . 试估计桌子长度、宽度的绝对误差限,并3.1304*=a 8.704*=b 求用该近似数据计算出的桌子面积的绝对误差限和相对误差限.7 改变如下计算公式,使其计算结果更为精确.1) 且0,cos 1≠-x xx1<<x 2)1,1ln )1ln()1(ln 1>>--++=⎰+N N N N N xdx N N3) 1,133>>-+x x x 8 (数值试验)试通过分析和数值试验两种手段,比较如下三种计算近似值算法的可靠性.1-e 算法1 ;∑=--≈mn nn e 01!)1( 算法2 ;101!1-=-⎪⎭⎫ ⎝⎛≈∑m n n e算法3 ;101)!(1-=-⎪⎪⎭⎫ ⎝⎛-≈∑m n n m e9 (数值试验)设某应用问题归结为如下递推计算公式 ,,72.280=y 251-=-n n y y,2,1=n 在计算时取为具有5位有效数字的有效数. 试分析近似计算公式的2*c **1*5c y y n n -=-绝对误差传播以及相对误差传播情况,并通过数值实验验证 (准确值可以用IEEE 双精度浮点运算结果代替),该算法可靠可用吗?。

数值分析精品PPT课件

数值分析精品PPT课件

所以 x x 10m (a1 1) 10n1 1 10mn1
2(a1 1)
2
x至少有n位有效数字.
1.2.3、数值运算的误差估计
(1).
( x1
x
2
)
( x1 )
(
x
2
)
(2).
(
x1
x
2
)
x1
(
x
2
)
x
2
(
x1
)
(3).
x1
x
2
x1
(
x
2
)
x
2
(
x1
)
x
2
1.2.2、误差与有效数字
1.误差
定义1、(误差的定义 ) 设x 精确值, x 近似值,称e x x为 绝对误差(误差).
当e 0时称为强近似, 当e 0时称为弱近似.
如果 e x x ,( ( x )),那么称 为
绝对误差限 .

称er
e
x
e
x
r
,
(
r
x x
定义2、
若x的近似值x的误差限是某一位的半 个单位, 该位到x的第一位非零数字共有 n位,就说x有n位 有效数字.它可表示为 x 10m (a1 a2 101 a2 102 ... an 10n1 ) 其中ai (i 1,2,3,..., n)是0到9中的一个数字, a1 0, m为 整数, 且 x x 1 10mn1.
x 10mn1 a1a2a3 ...an 10m a1 • a2a3 ...an .
称x有n位有效数字, a1 , a2 ,..., an是x的有效数字.
总之,当 x x 1 10mn1时, x有n位有效数字.

《数值分析》》课件

《数值分析》》课件
基于函数梯度的方法,通过迭代逼近最优解。
遗传算法
模拟生物进化过程的搜索算法,通过优胜略汰 的方式找到最优解。
模拟退火法
模拟金属退火过程的搜索算法,通过随机性和 温度控制来逼近最优解。
粒子群优化
模拟粒子群行为的算法,通过粒子之间的合作 和个体经验找到最优解。
截断误差
使用有限项进行级数展开时未考虑所有无穷项导致的误差。
舍入误差
由于数学运算符的近似计算和截取,导致了计算结果与真实结果之间的差距。
插值和拟合方法
插值和拟合方法是数值分析中常用的技术,用于根据已知数据点推导出未知数据点的值或找到拟合曲线或曲面。
插值方法
利用已知数据点之间的关系推导出处于数据点之间 位置的值。
2 物理学
求解量子力学方程、天体力学模拟和粒子物 理实验结果分析。
3 金融
风险评估、期权定价和投资组合优化。
4 医学
数值模拟手术、疾病预测和药物研发。
数值分析的历史和趋势
数值分析起源于古代文明对数学问题的解决方案。如今,随着计算机技术进步,数值分析在各个领域的 应用呈指数级增长。
1
古代
古埃及的巴比伦人使用分段直线插值法求解方程。
《数值分析》PPT课件
本课程介绍《数值分析》的学习目标,定义和应用领域。深入探讨数值分析 的历史、发展和误差分析。了解插值和拟合方法,数值微积分和数值积分。
数值分析的应用价值
数值分析在工程、物理学、金融等领域扮演着重要角色。通过数值模拟和优化算法,我们能够解决复杂问题并 做出准确的预测。
1 工程
计算结构力学、流体力学和电磁场分析,优 化设计和仿真。
2
20世纪
计算机的发明使数值分析成为可能,并发展了更高精度和快速的算法。

数值分析课件第一章

数值分析课件第一章
4.减少运算次数 减少运算次数可以不但节省时间,而且减少舍入误差. 例10 计算多项式的值
Pn ( x) an x n an1x n1 a1x a0 .
秦九韶算法:
S n an , S k xS k 1 ak , (k n-1,,0) P ( x) S . n 0
例: x 3.1415926 , 取三位 取五位 1 * * x3 3.14, | e3 | 0.0015926 0.005 10 2 , 2 1 * * x5 3.1416 | e5 | 0.0000073 0.00005 10 4 . , 2
I 0 1 e1.
* I 9 0.0684, I 0 0.6321, ( A) I n 1 nI n1, n 1,2,. ( B) * * I n1 1 (1 I n ), n 9,8,,1. n 1 1 e1 ( I 9 ( ) 0.0684) 2 10 10
* *
§3 误差定性分析、避免误差危害
一、算法的数值稳定性
定义3 一个算法若输入数据有 误差, 而在计算过程中舍入 误差不增长, 则称此算法是数值稳定 的, 否则是不稳定的.
例5
1 1 n x 计算I n e x e dx, n 0,1,, 0

并估计误差.
I n 1 nI n1 , n 1,2,,
数值分析
数学学院 李胜坤
第1章
一、什么是数值分析
引论
§1 数值分析的研究对象与特点
数值分析是计算数学的一个主要部分,计算数学是数 学科学的一个分支,它研究用计算机求解各种数学问题 的数值计算方法及其理论与软件实现. 步骤:实际问题→数学模型→数值计算方法 →程序设计→上机计算求出结果

数值分析PPT课件

数值分析PPT课件

03
数值分析的方法和技巧广泛应用于科学计算、工程、经 济、金融等领域。
主题的重要性
随着计算机技术的不断发展, 数值计算已经成为解决实际问 题的重要手段。
数值分析为各种数学问题提供 了有效的数值计算方法和技巧, 使得许多问题可以通过计算机 得以解决。
掌握数值分析的知识和方法对 于数学建模、科学计算、数据 分析等领域具有重要意义。
意义。
未来数值分析的发展方向
随着计算机技术的不断发展,数值分析 将更加依赖于计算机实现,因此数值算 法的优化和并行化将是未来的重要研究
方向。
随着大数据时代的到来,数值分析将更 加注重对大规模数据的处理和分析,因 此数据科学和数值分析的交叉研究将成
为一个新的研究热点。
随着人工智能和机器学习的发展,数值 分析将更加注重对非线性、非平稳问题 的处理,因此新的数值算法和模型将不
数值积分和微分
矩形法
将积分区间划分为若干个小的矩形区域,求 和得到近似积分值。
辛普森法
梯形法
利用梯形公式近似计算定积分,适用于简单 的被积函数。
利用三个矩形区域和一个梯形区域的面积近 似计算定积分。
02
01
高斯积分法
利用高斯点将积分区间划分为若干个子区间, 通过求和得到近似积分值。
04
03
矩阵的特征值和特征向量
数值分析ppt课件
目录
• 引言 • 数值分析的基本概念 • 数值分析的主要算法 • 数值分析的误差分析 • 数值分析的实例和应用 • 结论
01
引言
主题简介
01
数值分析是数学的一个重要分支,主要研究如何利用数 值计算方法解决各种数学问题。
02
它涉及到线性代数、微积分、微分方程、最优化理论等 多个数学领域。

数值分析全套课件

数值分析全套课件

Ln n si n

ˆ L2n (4L2n Ln ) / 3
n L error 192 3.1414524 1.4e-004 384 3.1415576 3.5e-005 3.1415926 4.6e-010
3/16
通信卫星覆盖地球面积
将地球考虑成一 个球体, 设R为地 球半径,h为卫星 高度,D为覆盖面 在切痕平面上的 投影(积分区域)
( x1 x2 ) | x1 | ( x2 ) | x2 | ( x1 )
15/16
例3.二次方程 x2 – 16 x + 1 = 0, 取
求 x1 8 63 使具有4位有效数
63 7.937
解:直接计算 x1≈8 – 7.937 = 0.063
( x1 ) (8) (7.937) 0.0005
5/16
误差的有关概念
假设某一数据的准确值为 x*,其近似值 为 x,则称
e(x)= x - x*
为 x 的绝对误差 而称
e( x) x x er ( x ) , x x
*
( x 0)

为 x 的相对误差
6/16
如果存在一个适当小的正数ε

,使得
e( x) x x
计算出的x1 具有两位有效数
1 0.062747 修改算法 x1 8 63 15.937 4位有效数 (15.937) 0.0005 ( x1 ) 0.000005 2 2 (15.937) (15.937)
16/16
1
参考文献
[1]李庆扬 关治 白峰杉, 数值计算原理(清华) [2]蔡大用 白峰杉, 现代科学计算 [3]蔡大用, 数值分析与实验学习指导 [4]孙志忠,计算方法典型例题分析 [5]车刚明等, 数值分析典型题解析(西北工大) [6]David Kincaid,数值分析(第三版) [7] John H. Mathews,数值方法(MATLAB版)

数值分析:第一章绪论PPT课件

数值分析:第一章绪论PPT课件

x
*
是指对每一个 1 i
n
都有lim k
xi( k )
x
* i
可以。理解为 | |
x
(
k
)
x*
||
0
定义1.2.3
若存在常数
C1、C2
>
0
使得,
C1 || x ||B || x ||A C2 || x ||B
则称 || ·||A 和|| ·||B 等价。
可以理解为对任何
向量范数都成立。
数值分析课程中所讲述的各种数值方 法在科学与工程计算、信息科学、管理 科学、生命科学等交叉学科中有着广泛 的应用
第3页/共44页
应用问题举例
第4页/共44页
1、一个两千年前的例子
今有上禾三秉,中禾二秉,下禾一秉, 实三十九斗;
上禾二秉,中禾三秉,下禾一秉, 实三十四斗;
上禾一秉,中禾二秉,下禾三秉, 实二十六斗。 问上、中、下禾实一秉各几何? 答曰:上禾一秉九斗四分斗之一。中禾 一秉四斗四分斗之一。下禾一秉二斗四 分斗之三。-------《九章算术》
定理1.2.1 Rn 上一切范数都等价。
第27页/共44页
二. 矩阵范数
定义1.2.4
Rmn空间的矩阵范数 || ·|| 对任意A, B R满mn足: (1) || A || 0 ; || A || 0 A 0 (正定性)
(2) || A || | | || A || 对任意 C (齐次性) (3) || A B || || A|| || B || (三角不等式)
1 1
(1
I1*
)
0.63
212056
第24页/共44页
我们仅仅是幸运吗?

数值分析课件第一章

数值分析课件第一章

x x*
1 10 m n 1. 2
(2.2)
21
定理1 设近似数 x *表示为
x* 10m (a1 a2 101 al 10(l 1) ), (2.1)
其中 ai (i 1,, l ) 是0到9中的一个数字,a1 0, m为整数. 1)若 x * 具有 n位有效数字, 则其相对误差限为 1 10( n 1) 2a1
1 6 5 I n1 , I 0 ln 0.1820 I n n 5 1 1 公式2 I n1 I n , I 8 0.019 In 5 n In I 公式1 I n
n
0.1820 0.0900 0.0500 0.0830 -0.165 1.0250 -4.958 24.933 -124.540
* * A* f ( x1 , xn ),
于是由泰勒展开, 函数值 A* 的误差 e( A*) 为
* * e( A*) A * A f ( x1 ,, xn ) f ( x1 ,, xn )
* * f ( x1 , , xn ) * ( xk xk ) xk k 1 n
x x* 1 10 m n 1. 2
(2.2)
19
例如 取3位
x π 3.14159265
x3 * 3.14,
1 π 3.14 =0.00159265 102 , 2
故x3 * 3.14有3为有效数字。
取5位
x5 * 3.1416 ,
1 104 . 2
16
把近似值的误差 e * 与准确值 x 的比值
e* x * x x x
* 称为近似值 x *的相对误差,记作 e r .

数值分析第一章PPT课件

数值分析第一章PPT课件

= f ’( )(x* x)
x* 与 x 非常接近时,可认为 f ’( ) f ’(x*) ,则有:
|e*(y)| | f ’(x*)|·|e*(x)|
即:x*产生的误差经过 f 作用后被放大/缩小了| f ’(x*)| 倍。故称| f ’(x*)|为放大因子 /* amplification factor */ 或 绝对条件数 /* absolute condition number */.
r* (x ) ln x * r* (y )
11 0n1lnx*0.1% 2a1
n4
.
10
1.3 避免误差危害的若干原则
算法的数值稳定性
用一个算法进行计算,如果初始数据误差在计算中 传播使计算结果的误差增长很快,这个算法就是数值不 稳定的.
.
11
1.3 避免误差危害的若干原则
病态问题与条件数
Cp
x f (x) f (x)
x nxn1 xn
n,
它表示相对误差可能放大 n倍.
如 n10,有 f(1 ) 1 ,f(1 .0)2 1 .2,4 若取 x 1, x*1.02, 自变量相对误差为 2% ,函数值相对误差为 24%, 这时问题可以认为是病态的.
一般情况下,条件数
Cp
10就认为是病态,
εr*21 a11 0n10.0 0% 1
已知 a1 = 3,则从以上不等式可解得 n > 6 log6,即
n 6,应取 * = 3.14159。
.
8
1.2 数值计算的误差
问题:对于y = f (x),若用x* 取代x,将对y 产生什么影响?
分析:e*(y) = f (x*) f (x)
e*(x) = x* x

《数值分析》ppt课件

《数值分析》ppt课件

7.
er

a b


er
(a)

er
(b)
30
例4
ε(p)
设有三个近似数
p ≈ 6.6332
≈0.02585
a=2.31,b=1.93,c=2.24
它们都有三位有效数字,试计算p=a+bc,e ( p)和e r ( p) 并问:p的计算结果能有几位有效数字?
2位
例5
设f (x, y) cos y , x 1.30 0.005, y 0.871 0.0005. x
er

e x

x x x
.
由于精确值 x 未知, 实际上总把
e x
作为x*的
相对误差,并且仍记为er , 即
er

e x
.
❖定义 近似值 x* 的相对误差上限(界) (relative accuracy)
εr

|
ε x
|.
注:相对误差一般用百分比表示.
17
例1 用最小刻度为毫米的卡尺测量直杆甲和直杆
注:理论上讲,e 是唯一确定的, 可能取正, 也可能取负.
e > 0 不唯一,当然 e 越小越具有参考价值。
15
提问:绝对误差限的大小能否完全地 表示近似值的好坏? 例如:有两个量
x 10 1 , y 1000 5
思考
问:谁的近似程度要好一些?
16
❖定义 近似值 x* 的相对误差 (relative error)
a 2.18
e r(b) e (b) 0.00005 0.0024%
b 2.1200
19
➢有效数字 ( significant digits)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提出数值问题
数值问题是指有限个输入数据(问题 的自变量、原始数据)与有限个输出数据 (待求解数据)之间函数关系的一个明确 无歧义的描述。这正是数值分析所研究的 对象。
数值问题举例
dy = x +y2 dx y ( 0) = y 0 x ∈ [0, 1]
是用一阶常微分方程初值问题表示的 数学模型,要求无穷多个输出,因而它不是 数值问题 。但当我们要求出有限个点处函 数值的近似值时,便成为一数值问题。
设计高效可靠的算法
计算方法的任务之一就是提供求得数值问 题近似解的方法—算法。
算法:指把对数学问题的解法归结为只有 加、减、乘、除等基本运算,并确定运算次序 的完整而准确的描述。
算法的可靠性:算法的可靠性包括算法的收 敛性、稳定性、误差估计等几个方面。这些是
数值分析研究的第二个任务。
一个算法在保证可靠的大前提下再评价其 优劣才是有价值的。 算法的优劣评价:可靠算法的优劣,应该考 虑其时间复杂度(计算机运行时间)、空间 复杂度(占据计算机存储空间的多少)以及 逻辑复杂度(影响程序开发的周期以及维护 )。这是数值分析研究的第三个任务。
e − e = (e − en ) + (en − e)
* *
二、误差的度量
1) 2) 3) 4)
绝对误差 相对误差 有效数字 各种度量之间的关系
1. 绝对误差

绝对误差定义:近似值减准确值
* ∆
x − x= e( x * ) * * e ( x ) 在不引起混淆时, 简记 为 e 。
• 绝对误差限:
位有效数字。如 A = sin 29 20′ = 0.4900 设其近似值a=0.484,其相对误差为:
0.4900 − 0.484 1 = 0.012397 < 0.0125 = × 101− 2 0.484 2× 4
我们并不能由此断定a有两位有效数字,因为
A − a = 0.4900 − 0.484 = 0.0600 > 0.005 = 1 × 10 0 − 2 2
2o
* e* = e* ⋅ x ≤ r
1 2( x1 + 1)
× 101− n × 10 m -1 × ( x1 + 1)
=
1 × 10 m − n 2
证毕
Remark

1、该定理实质上给出了一种求相对误差限的方法。 2、仅从
1 × 101− n 并不能保证x*一定具有n e ≤ 2 x1
* r
算法应用状态
计算方法研究对象以及解决问题方法的 广泛适用性,著名流行软件如Maple、Matlab、 Mathematica等已将其绝大多数内容设计成函 数,简单调用之后便可以得到运行结果。 但由于实际问题的具体特征、复杂性, 以及算法自身的适用范围决定了应用中必须 选择、设计适合于自己特定问题的算法,因 而掌握数值方法的思想和内容是至关重要的。
#
三、误差的传播
概念:近似数参加运算后所得之值一般也是近似 值,含有误差,将这一现象称为误差传播 。 误差传播的表现: –算法本身可能有截断误差; –初始数据在计算机内的浮点表示一般有舍入误 差; –每次运算一般又会产生新的舍入误差,并传播 以前各步已经引入的误差; –误差有正有负,误差积累的过程一般包含有误 差增长和误差相消的过程,并非简单的单调增 长; –运算次数非常之多,不可能人为地跟踪每一步 运算。
数值分析
教 师:赵俊锋 办公室: 勇字楼506 邮 件:zhaojf@
教 材:数值分析,欧阳洁等,高教出 版社,2009 参考书:1.欧阳洁,聂玉峰,车刚明,王
振海,数值分析习题及全真试题解析,西北 工业大学应用数学系,2013.9. 2、封建湖,车刚明,聂玉峰,数值分析原 理,科学出版社,2001. 3、封建湖,聂玉峰,王振海,数值分析导 教导学导考(第二版),西北工业大学出版 社,2006.
2.相对误差

Remark: 绝对误差限虽然能够刻划对同一真值 不同近似的好坏,但它不能刻划对不同真值近似 程度的好坏 。
定义
设 x*是对准确值 x( ≠ 0 )的一个近似,称
* * x − x e ( x ) * e= = r (x ) x* x*
* * e ( x ) e 为 x 近似 x 的相对误差。不引起混淆时,简记 r 为 r.
本课程主要内容
鉴于实际问题的复杂性,通常将其具体地 分解为一系列子问题进行研究,本课程主要涉 及如下几个方面问题的求解算法: 函数的插值和逼近 数值积分和数值微分 线性方程组求解、非线性方程(组)求解 代数特征值问题 常微分方程数值解法
§1.2 误差基础知识
内容提要: 一、误差的来源 二、误差的度量 三、误差的传播
如果存在正数 ε * = ε(x * ) ,使得有绝对误差
e* = x* − x ≤ ε * ,
则称 ε * 为
x 近似 x 的一个绝对误差限。
*
x ∈ [x * − ε * , x * + ε * ] , x = x * ± ε * 。
Remark: 通常计算中所要求的误差, 是指估计一
个尽可能小的绝对误差限。
x i* ' * * = ∑ * f i (x 1 ,, x n )e r (x i* ) i =1 y
n
进而得到如下绝对误差限和相对误差限传播关系:
' * * * ε ( y* ) < ε f ( x , , x ) ( x n i ) ≈∑ i 1 i =1 n
εr (y ) < ≈∑
× 101−n ,则
x*至少具有 n 位有效数
字。
定理证明
x1 ×10
m −1
≤ x ≤ ( x1 + 1) ×10
*
m −1
,
1 e( x ) ≤ ×10 m − n 2
*
1
o
* 1 e 1 1 * m−n m−n 1− n × = × 10 10 er = * ≤ * ×10 ≤ m -1 × × x1 2 10 2 x1 x x ⋅2
1 * * * * * f ( p) = f ( p ) + f1 ( p )( x1 − x1 ) + + f n ( p )( xn − xn ) + 1! 1 * * 2 f11 ( p* )( x1 − x1 ) + + f1n ( p* )( x1 − x1 )( x n − x* n )+ 2!
一、误差来源及其分类
1)模型误差(描述误差) 反映实际问题有关量之间的计算公式( 数学模型)通常是近似的。 2)观测误差 数学模型中包含的某些参数是通过观 测得到的。 m1m2
F =G
在计算方法中不研究这两类误差,总是假 定数学模型是正确合理的反映了客观实际问题。
r
2
3)截断误差(方法误差) 数值方法精确解与待求解模型的理论分 析解之间的差异。 这是由于我们需要将无穷过程截断为有 限过程,而使得算法必须在有限步内执行结 束而导致的。 例如:
1 1 1 1 1 e = 1 + + + , en = 1 + + + + , e − en 1! 2 ! 1! 2 ! n!
4)舍入误差 在实现数值方法的过程中,由于计算机表示 浮点数采用的是有限字长,因而仅能够区分有限 个信息,准确表示某些数,不能准确表示所有实 数,这样在计算机中表示的原始输入数据、中间 计算数据、以及最终输出结果必然产生误差,称 此类误差为舍入误差。 如利用计算机计算e的近似值en时,实际上 得不到en的精确值,只能得到en的近似e*;这样 e*作为e的近似包含有舍入误差和截断误差两部 分:
*
* * e ( x ε 相对误差限:数值 r 的上界,记为 r ) 。
* * * ε = ε x 相对误差限也可以通过 r
来计算。
Remark1: 当要求计算相对误差,是指及相对误差限是无量纲的,但绝对 误差以及绝对误差限是有量纲的。
]
+
泰勒公式分析初值误差传播
设 n 元可微函数 y = f ( x 1 , x 2 , , x n ) 中的自变量 x1、x2、…、 xn 是相互独立的。
用自变量的近似值进行准确计算,得 y = f ( x 1 , x 2 , , x n ) 。
*
* * *
当 x 1 、 x 2 、…、 x n 很好地近似了相应真值时,利用多元函 * 数一阶 Taylor 公式求得 y 的绝对误差:
m−n e* = x − x* ≤ 1 × 10 2 ,
*
则称 x 为 x 的具有 n 位有效数字的近似数, 或称 x 准确到
*
*
10 m − n
位,其中数字 x 1 , x 2 , , x n 分别被称为 x*的第 1、2、…、n 个有效 数字。
有效数:当x*
准确到末位,即n = p,则称
[
]
[
* * * * )( x − x )( x − x ) + )( x x ) f ( p + f 21 ( p* )( x 2 − x* − + + n n 2 1 1 2n 2 2 * * 2 * )( x − x ) )( x x ) f ( p + f n1 ( p* )( xn − x* − + + n nn n n 1 1
3.有效数字
为了规定一种近似数的表示法,使得用它表示的 近似数自身就直接指示出其误差的大小。为此需要引 出有效数字和有效数的概念。
定义:设 x 的近似值 x 有如下标准形式 x* = ±10 m × 0.x1x 2 x n x n +1 x p , 其中 m 为整数, { x i } ⊂ {0,1,2, ,9} 且 x 1 ≠ 0 , p ≥ n . 如果有
相关文档
最新文档