线性代数试卷及答案
线性代数测试试卷及答案
线性代数A 卷一﹑选择题每小题3分,共15分1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是 A AB BA = B 222()AB A B = C 222()2A B A AB B +=++ D A B B A +=+2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为A nB sC n s -D 以上答案都不正确3.如果三阶方阵33()ij A a ⨯=的特征值为1,2,5,那么112233a a a ++及A 分别等于 A 10, 8 B 8, 10 C 10, 8-- D 10, 8--4. 设实二次型11212222(,)(,)41x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭的矩阵为A ,那么A 2331A ⎛⎫= ⎪-⎝⎭B 2241A ⎛⎫= ⎪-⎝⎭C 2121A ⎛⎫= ⎪-⎝⎭D 1001A ⎛⎫= ⎪⎝⎭ 5. 若方阵A 的行列式0A =,则 A A 的行向量组和列向量组均线性相关 BA 的行向量组线性相关,列向量组线性无关 C A 的行向量组和列向量组均线性无关 DA 的列向量组线性相关,行向量组线性无关 二﹑填空题每小题3分,共30分1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ;2. 设100210341A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,*A 是A 的伴随矩阵,则*1()A -= ;3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ;4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ;5. 设A 为正交矩阵,则A = ;6. 设,,a b c 是互不相同的三个数,则行列式222111ab c a b c = ; 7. 要使向量组123(1,,1),(1,2,3),(1,0,1)T T T αλαα===线性相关,则λ= ; 8. 三阶可逆矩阵A 的特征值分别为1,2,3---,那么1A -的特征值分别为 ;9. 若二次型222123123121323(,,)52-24f x x x x x x t x x x x x x =++++是正定的,则t 的取值范围为 ;10. 设A 为n 阶方阵,且满足2240A A I +-=,这里I 为n 阶单位矩阵,那么1A -= . 三﹑计算题每小题9分,共27分1. 已知210121012A ⎛⎫⎪= ⎪ ⎪⎝⎭,100100B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求矩阵X 使之满足AX X B =+.2. 求行列式1234234134124123的值.3 求向量组1234(1,0,1,0),(2,1,3,7),(3,1,0,3,),(4,3,1,3,)αααα==--=-=--的一个最大无关组和秩.四﹑10分设有齐次线性方程组123123123(1)0,(1)0,(1)0.x x x x x x x x x λλλ+-+=⎧⎪-++=⎨⎪++-=⎩ 问当λ取何值时, 上述方程组1有唯一的零解﹔2有无穷多个解,并求出这些解. 五﹑12分求一个正交变换X PY =,把下列二次型化成标准形:222123123121323(,,)444f x x x x x x x x x x x x =+++++.六﹑6分已知平面上三条不同直线的方程分别为123: 230,: 230,: 230.l ax by c l bx cy a l cx ay b ++=++=++= 试证:这三条直线交于一点的充分必要条件为0a b c ++=.线性代数A 卷答案一﹑1. D 2. C 3. B 4. A 5. A二﹑1. 0 2. *1()A A -=- 3. 1 4. 3 5. 1或-16. ()()()c a c b b a ---7. 08. 111,,23---9. 405t -<< 10. 1142A I +三﹑1. 解 由AX X B =+得1()X A I B -=-. 2分下面求1()A I --. 由于110111011A I ⎛⎫ ⎪-= ⎪ ⎪⎝⎭4分而1()A I --=011111110-⎛⎫ ⎪- ⎪ ⎪-⎝⎭. 7分所以10111001()11101111100011X A I B --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=-=- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭. 9分2. 解1234234134124123=10234103411041210123123413411014121123= 4分 123401131000440004-=-- 8分 160= 9分 .3. 解 由于3112341234011301131301053307330733r r --⎛⎫⎛⎫⎪ ⎪---- ⎪ ⎪- ⎪ ⎪-- ⎪ ⎪----⎝⎭⎝⎭324212345011300212700424r r r r -⎛⎫⎪--- ⎪ ⎪+ ⎪--⎝⎭ 43123401132002120000r r -⎛⎫⎪-- ⎪+ ⎪ ⎪⎝⎭6分 故向量组的秩是 3 ,123,,ααα是它的一个最大无关组;9分 四﹑解 方程组的系数行列式111111111A λλλ-=--2(1)(2)λλ=-+- 2分①当2(1)(2)0A λλ=-+-≠,即1λ≠-且2λ≠时,方程组有唯一的零解; 4分 ②当1λ=-时, 2(1)(2)0A λλ=-+-=,方程组的系数矩阵为12 1 21 1 11 2 A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,它有一个二阶子式123021-=-≠-,因此秩A 2n =<这里3n =,故方程组有无穷多个解.对A 施行初等行变换,可得到方程组的一般解为132333,,,x x x x x x =⎧⎪=⎨⎪=⎩ 其中3x 可取任意数; 7分 ③当2λ=时, 2(1)(2)0A λλ=-+-=,方程组的系数矩阵为11 1 11 1 11 1 A ⎛⎫⎪= ⎪ ⎪⎝⎭,显然,秩A 1n =<这里3n =,所以方程组也有无穷多个解.对A 施行初等行变换可得方程组的一般解为1232233,,,x x x x x x x =--⎧⎪=⎨⎪=⎩ 其中23,x x 可取任意数. 10分 五﹑ 解 二次型的矩阵为12 2 21 2 22 1 A ⎛⎫⎪= ⎪ ⎪⎝⎭, 2分因为特征多项式为212 221 2 (1)(5)22 1I A λλλλλλ----=---=+----, 所以特征值是1-二重和5. 4分把特征值1λ=-代入齐次线性方程组()0I A X λ-=得1231231232220,2220,2220,x x x x x x x x x ---=⎧⎪---=⎨⎪---=⎩ 解此方程组可得矩阵A 的对应于特征值1λ=-的特征向量为12(1,0,1),(0,1,1)T T αα=-=-.利用施密特正交化方法将12,αα正交化:11(1,0,1)T βα==-, 211(,1,)22T β=--,再将12,ββ单位化得1T η=,2(T η=, 8分 把特征值5λ=代入齐次线性方程组()0I A X λ-=得1231231234220,2420,2240,x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩ 解此方程组可得矩阵A 的对应于特征值5λ=的特征向量为3(1,1,1)T α=.再将3α单位化得3Tη=. 10分 令123(,,)0P ηηη⎛⎫ ⎪ ⎪⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭则P 是一个正交矩阵,且满足1100010005T P AP P AP --⎛⎫ ⎪==- ⎪ ⎪⎝⎭.所以,正交变换X PY =为所求,它把二次型化成标准形222123123(,,)5f x x x y y y =--+. 12分六﹑证明:必要性由123,,l l l 交于一点得方程组230230230ax by c bx cy a cx ay b ++=⎧⎪++=⎨⎪++=⎩有解,可知231()()230()10231a b cb c R A R A bc a a b c c a c a ba b=⇒=⇒++= 2分由于2221211[()()()]01b cca b a c b a c a b=--+-+-≠,所以0a b c ++= 3分充分性:0()a b c b a c ++=⇒=-+2222222()2[()][()]022312366()10231a bac b ac a c a c a c b c a b c a b c b c b c a b c a a b c c a c a b c a b a b ⎫⇒=-=-+=-++-≠⎪⎪⎪⎬⎪==++=⎪⎪⎭又因为()()2R A R A ⇒==, 5分 因此方程组230230230ax by c bx cy a cx ay b ++=⎧⎪++=⎨⎪++=⎩有唯一解,即123,,l l l 交于一点. 6分线性代数习题和答案第一部分选择题共28分一、单项选择题本大题共14小题,每小题2分,共28分在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内;错选或未选均无分;1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于A. m+nB. -m+nC. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A是A的伴随矩阵,则A中位于1,2的元素是A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩A T等于A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1α1+β1+λ2α2+β2+…+λsαs+βs=0C.有不全为0的数λ1,λ2,…,λs使λ1α1-β1+λ2α2-β2+…+λsαs-βs=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有A.秩A<nB.秩A=n-1=0 D.方程组Ax=0只有零解10.设A是一个n≥3阶方阵,下列陈述中正确的是A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使λE-Aα=0,则λ是A的特征值的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是A.|A|2必为1B.|A|必为1=A T的行列向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题共72分二、填空题本大题共10小题,每小题2分,共20分不写解答过程,将正确的答案写在每小题的空格内;错填或不填均无分;15.11135692536=.16.设A=111111--⎛⎝⎫⎭⎪,B=112234--⎛⎝⎫⎭⎪.则A+2B= .17.设A=a ij3×3,|A|=2,A ij表示|A|中元素a ij的代数余子式i,j=1,2,3,则a 11A 21+a 12A 22+a 13A 232+a 21A 21+a 22A 22+a 23A 232+a 31A 21+a 32A 22+a 33A 232= . 18.设向量2,-3,5与向量-4,6,a 线性相关,则a= .19.设A 是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b 的2个不同的解,则它的通解为 .20.设A 是m ×n 矩阵,A 的秩为r<n,则齐次线性方程组Ax=0的一个基础解系中含有解的个数为 .21.设向量α、β的长度依次为2和3,则向量α+β与α-β的内积α+β,α-β= . 22.设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征值为 .23.设矩阵A =010********---⎛⎝ ⎫⎭⎪⎪⎪,已知α=212-⎛⎝ ⎫⎭⎪⎪⎪是它的一个特征向量,则α所对应的特征值为 .24.设实二次型fx 1,x 2,x 3,x 4,x 5的秩为4,正惯性指数为3,则其规范形为 .三、计算题本大题共7小题,每小题6分,共42分25.设A =120340121-⎛⎝ ⎫⎭⎪⎪⎪,B =223410--⎛⎝ ⎫⎭⎪.求1AB T ;2|4A |.26.试计算行列式3112513420111533------.27.设矩阵A =423110123-⎛⎝ ⎫⎭⎪⎪⎪,求矩阵B 使其满足矩阵方程AB =A +2B .28.给定向量组α1=-⎛⎝ ⎫⎭⎪⎪⎪⎪2103,α2=1324-⎛⎝ ⎫⎭⎪⎪⎪⎪,α3=3021-⎛⎝ ⎫⎭⎪⎪⎪⎪,α4=0149-⎛⎝ ⎫⎭⎪⎪⎪⎪. 试判断α4是否为α1,α2,α3的线性组合;若是,则求出组合系数; 29.设矩阵A =12102242662102333334-----⎛⎝⎫⎭⎪⎪⎪⎪. 求:1秩A ;2A 的列向量组的一个最大线性无关组;30.设矩阵A=022234243----⎛⎝ ⎫⎭⎪⎪⎪的全部特征值为1,1和-8.求正交矩阵T 和对角矩阵D ,使T -1AT =D .31.试用配方法化下列二次型为标准形fx 1,x 2,x 3=x x x x x x x x x 12223212132323444+-+--,并写出所用的满秩线性变换;四、证明题本大题共2小题,每小题5分,共10分32.设方阵A 满足A 3=0,试证明E -A 可逆,且E -A -1=E +A +A 2.33.设η0是非齐次线性方程组Ax=b 的一个特解,ξ1,ξ2是其导出组Ax=0的一个基础解系.试证明 1η1=η0+ξ1,η2=η0+ξ2均是Ax=b 的解; 2η0,η1,η2线性无关;答案:一、单项选择题本大题共14小题,每小题2分,共28分二、填空题本大题共10空,每空2分,共20分 15. 6 16. 337137--⎛⎝⎫⎭⎪17. 4 18. –1019. η1+c η2-η1或η2+c η2-η1,c 为任意常数 20. n -r 21. –5 22. –2 23. 124. z z z z 12223242++-三、计算题本大题共7小题,每小题6分,共42分25.解1AB T =120340*********-⎛⎝ ⎫⎭⎪⎪⎪--⎛⎝ ⎫⎭⎪⎪⎪=861810310⎛⎝ ⎫⎭⎪⎪⎪. 2|4A |=43|A |=64|A |,而|A |=1203401212-=-. 所以|4A |=64·-2=-12826.解 311251342011153351111113100105530------=-----=511 1111 550 ----=5116205506255301040 ---=---=+=.27.解AB=A+2B即A-2EB=A,而A-2E-1=2231101211431531641--⎛⎝⎫⎭⎪⎪⎪=-----⎛⎝⎫⎭⎪⎪⎪-.所以B=A-2E-1A=143153164423110123-----⎛⎝⎫⎭⎪⎪⎪-⎛⎝⎫⎭⎪⎪⎪=386 296 2129-----⎛⎝⎫⎭⎪⎪⎪.28.解一----⎛⎝⎫⎭⎪⎪⎪⎪−→−-----⎛⎝⎫⎭⎪⎪⎪⎪2130130102243419053213010112013112−→−--⎛⎝⎫⎭⎪⎪⎪⎪−→−⎛⎝⎫⎭⎪⎪⎪⎪1035011200880014141035011200110000−→−⎛⎝⎫⎭⎪⎪⎪⎪1002010100110000,所以α4=2α1+α2+α3,组合系数为2,1,1.解二考虑α4=x1α1+x2α2+x3α3,即-++=-=-+=+-=⎧⎨⎪⎪⎩⎪⎪230312243491231223123x x xx xx xx x x.方程组有唯一解2,1,1T,组合系数为2,1,1.29.解对矩阵A施行初等行变换A−→−-----⎛⎝⎫⎭⎪⎪⎪⎪12102 00062 03282 09632−→−-----⎛⎝⎫⎭⎪⎪⎪⎪−→−----⎛⎝⎫⎭⎪⎪⎪⎪12102032830006200021712102032830003100000=B.1秩B=3,所以秩A=秩B=3.2由于A与B的列向量组有相同的线性关系,而B是阶梯形,B的第1、2、4列是B的列向量组的一个最大线性无关组,故A的第1、2、4列是A的列向量组的一个最大线性无关组;A的第1、2、5列或1、3、4列,或1、3、5列也是30.解A的属于特征值λ=1的2个线性无关的特征向量为ξ1=2,-1,0T, ξ2=2,0,1T.经正交标准化,得η1=25555//-⎛⎝⎫⎭⎪⎪⎪,η2=2515451553///⎛⎝⎫⎭⎪⎪⎪.λ=-8的一个特征向量为ξ3=122-⎛⎝⎫⎭⎪⎪⎪,经单位化得η3=132323///.-⎛⎝⎫⎭⎪⎪⎪所求正交矩阵为T=25521515135545152305323////////--⎛⎝⎫⎭⎪⎪⎪.对角矩阵D=100 010 008-⎛⎝⎫⎭⎪⎪⎪.也可取T=25521515130532355451523////////---⎛⎝⎫⎭⎪⎪⎪.31.解fx1,x2,x3=x1+2x2-2x32-2x22+4x2x3-7x32=x1+2x2-2x32-2x2-x32-5x32.设y x x xy x xy x11232233322=+-=-=⎧⎨⎪⎪⎩⎪⎪, 即x y yx y yx y112223332=-=+=⎧⎨⎪⎩⎪,因其系数矩阵C=120011001-⎛⎝⎫⎭⎪⎪⎪可逆,故此线性变换满秩;经此变换即得fx1,x2,x3的标准形y12-2y22-5y32 .四、证明题本大题共2小题,每小题5分,共10分32.证由于E-AE+A+A2=E-A3=E,所以E-A可逆,且E-A-1= E+A+A2 .33.证由假设Aη0=b,Aξ1=0,Aξ2=0.1Aη1=Aη0+ξ1=Aη0+Aξ1=b,同理Aη2= b,所以η1,η2是Ax=b的2个解;2考虑l0η0+l1η1+l2η2=0,即l0+l1+l2η0+l1ξ1+l2ξ2=0.则l0+l1+l2=0,否则η0将是Ax=0的解,矛盾;所以l1ξ1+l2ξ2=0.又由假设,ξ1,ξ2线性无关,所以l1=0,l2=0,从而l0=0 .所以η0,η1,η2线性无关;。
线性代数期末试卷及详细答案
线性代数期末试卷及详细答案⼀、填空题(将正确答案填在题中横线上。
每⼩题2分,共10分)1、设1D =3512, 2D =345510200,则D =12D D OO =_____________。
2、四阶⽅阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶⽅阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶⽅阵A 满⾜关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
⼆、单项选择题(每⼩题仅有⼀个正确答案,将正确答案的番号填⼊下表内,每⼩题2分,共20分)1、若⽅程13213602214x x x x -+-=---成⽴,则x 是(A )-2或3;(B )-3或2;(C )-2或-3;(D )3或2; 2、设A 、B 均为n 阶⽅阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+;(B )()()22A B A+B =A B --;(C )()()2A E=A E A+E --;(D )()222AB =A B3、设A 为可逆n 阶⽅阵,则()**A=(A )A E ;(B )A ;(C )nA A ;(D )2n A A -;4、下列矩阵中哪⼀个是初等矩阵(A )100002?? ???;(B )100010011??;(C )011101001-?? ?- ? ?;(D )010002100??- ;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++= ,则1,α2α,,m α线性⽆关;(B )向量组1,α2α,,m α若其中有⼀个向量可由向量组线性表⽰,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α的⼀个部分组线性相关,则原向量组本⾝线性相关;(D )向量组1,α2α,,m α线性相关,则每⼀个向量都可由其余向量线性表⽰。
02198自考线性代数试卷及答案
《线性代数》试题一(课程代码:02198)一、单选题(本大题共10小题,每小题2分,共20分)1.若矩阵A满足Aˆ2-5A=E,则矩阵(A-5E)ˆ-1=【】A、A-5EB、A+5EC、AD、-A2.设矩阵A是2阶方阵,且det(A)=3,则det(5A)=【】A、3B、15C、25D、753.设矩阵A,B,X为同阶方阵,且A,B可逆,若A(X-E)B=B,则矩阵X=【】A、E+Aˆ-1B、E+AC、E+Bˆ-1D、E+B4.设矩阵A1,A2均为可逆方阵,则以下结论正确的是【】5.设αˇ1,αˇ2,…,αˇk是n维列向量,则αˇ1,αˇ2,…αˇk线性无关的充分必要条件是【】A、向量组αˇ1,αˇ2,…,αˇk中任意两个向量线性无关B、存在一组不全为0的数lˇ1,lˇ2,…,lˇk,使得lˇ1αˇ1+lˇ2αˇ2+…+lˇkαˇk≠0C、向量组αˇ1,αˇ2,…,αˇk中存在一个向量不能由其余向量线性表示D、向量组αˇ1,αˇ2,…,αˇk中任意一个向量都不能由其余向量线性表示6.设α=(aˇ1,aˇ2,aˇ3),β=(bˇ1,bˇ2,bˇ3),其中aˇ1,aˇ2,aˇ3不全为0,且bˇ1,bˇ2,bˇ3不全为0,则αˇTβ的秩为【】A、0B、1C、2D、37.设三阶方阵A的特征值分别为1/2,1/4,3,则Aˆ-1的特征值为【】A、2,4,1/3B、1/2,1/4,1/3C、1/2,1/4,3D、2,4,38.二次型f(X1,X2,X3)=(X1+X2+X3)2的矩阵是【】9.以下关于正定矩阵叙述正确的是【】A、正定矩阵的特征值一定大于零B、正定矩阵的行列式一定小于零C、正定矩阵的乘积一定是正定矩阵D、正定矩阵的差一定是正定矩阵10.设A为3阶矩阵,且|A|=3,则|(-A)ˆ-1|=【】A、-3B、-1/3C、1/3D、3二、填空题(本大题共10小题,每小题3分,共30分)1、在五阶行列式中,项的符号为____________。
线性代数试卷及其答案
试卷一一、判断题。
在每小题后面的小括号内打“√”号或“×”号1.任何实对称矩阵都可以表成一系列初等矩阵的乘积。
( ) 2.方阵A 与其转置阵 T A 有相同的特征值,因此有相同的特征向量。
( ) 3.设ij A 为n 阶行列式||ij a D =中元素ij a 的代数余子式,若ij ij A a -=),,2,1,(n j i =,则0≠D 。
( )4.若r ηηη,,,21 为线性方程组0=AX 的基础解系,则与r ηηη,,,21 等价的向量组也为此方程组的基础解系。
( ) 5. 设c b a ,,是互不相等的数,则向量组),,,1(32a a a ,),,,1(32b b b ,),,,1(32c c c是线性无关的。
( )二、单项选择题1. 设n 阶方阵C B A ,, 满足关系式E ABC =,则 成立。
A. E ACB =; B. E CBA =; C. E BAC =; D. E BCA =.2. 设n 维向量)(,,,21n m m <ααα 线性无关,则n 维向量m βββ,,,21 线性无关的充要条件为 。
A. 向量组m ααα,,,21 可由向量组m βββ,,,21 线性表示;B. 向量组m βββ,,,21 可由向量组m ααα,,,21 线性表示;C. 向量组m ααα,,,21 与向量组m βββ,,,21 等价;D. 矩阵=A (m ααα,,,21 )与矩阵=B (m βββ,,,21 )等价。
3.设非齐次线性方程组b AX =的两个不同解为21,ββ,它的导出组的一个基础解系为21,αα,则线性方程组b AX =的通解X = (其中21,k k 为任意常数)。
A. )(21)(2121211ββααα-+++k k ;B. )(21)(2121211ββααα++-+k k ;C. )(21)(2121211ββββα-+++k k ;D. )(21)(2121211ββββα++-+k k .4. 设B A ,均为)2(≥n n 阶方阵,则必有 。
完整版)线性代数试卷及答案
完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。
(下面的r(A),r(B)分别表示矩阵A,B的秩)。
A) r(A)。
r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。
A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。
3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。
(B) B的每个行向量都是齐次线性方程组AX=O的解。
(C) BA=O。
(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。
5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。
11;(C) -1;(D)。
(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。
A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。
1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。
(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。
线性代数考试试卷及答案
线性代数试卷一、 填空题(每题3分,共30分)1.5阶行列式中的1423354251a a a a a 的符号是 .2.设0abc ≠;000000a A b c ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -= . 3.若13150122x -=--,则x = . 4. 若n 阶矩阵A 满足224A A I --=O ,则1()A I -+= .5.设C 是m n ⨯矩阵,若有矩阵A,B ,使TAC C B =,则A 的行数⨯列数为 . 6.设有向量组12:,,s A ααα线性无关,向量组12:,,t B βββ线性无关,若向量组A 与向量B 等价,则s 与t 的关系为: .7.设A 为m n ⨯矩阵,若齐次线性方程组0Ax =仅有唯一零解,则()r A = .8.已知向量(1,3,2,4),(,1,3,2)T T k k αβ==-正交,则k = .9.已知1(6,1,3)a α=+,2(,2,2)a α=-,若12,αα线性相关,则a = . 10. 已知三阶矩阵A 的特征值为1,-1,2,则223A A I -+= .二、 单选题(每题3分,共15分)1. 若行列式1112132122233132331a a a D a a a a a a ==,则行列式1111121312121222331313233423423423a a a a D a a a a a a a a -=-=- ( ). A .-12. B.12. C .-24. D.24.2. 设A ,B 均为n 阶矩阵,满足AB =O ,则必有( ) 。
A. 0A B +=B. ()()r A r B =C. A B =O =O 或D. 00A B ==或3. 设A 为n 阶矩阵,且2A =,则TA A ⋅=( ). A .2n. B .12n -. C .12n +. D .4.4. 向量组12,,s ααα线性无关的充分条件是( ) .A. 12,,s ααα均不是零向量B. 12,,s ααα中任意两个向量都不成比例C. 12,,s ααα中任意一个向量均不能由其余1s -个向量线性表示D. 12,,s ααα中有一个部分组线性无关5. 设A,B,C 为n 阶方阵,若ABC I =,则1B -=( ). A. 11A C -- B. CA C. 11C A -- D. AC三、 计算题(每题10分,共40分)1 . 计算行列式121014512313312D ---=-2. 求线性方程组1234123412345231153612426x x x x x x x x x x x x -+-=⎧⎪++-=-⎨⎪+++=-⎩的全部解,并用对应导出组的基础解系表示。
线性代数试题(完整试题与详细答案)
线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
大学线性代数试题及答案
线性代数(试卷一)一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC=,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 _________5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_____________。
6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫⎝⎛=-1230120011A ,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()T k 11=α与()T 121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤ C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8- C.34D.34- 3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥ 4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
c)(A *kA)(B *A k n )(C *-A k n 1)(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。
线性代数期末试卷三套附答案解析
x1
x2 (1 k)x3 k.
k 取何值时,此方程组有唯一解、无解或有无限多解?并在有无限多解时求其通解.
四 证明题(本题 6 分) 设有向量组 α1, α2 , , αn 和 β1, β2 , , βn ,且 β1 α1 α2 , β2 α2 α3 , ,
βn1 αn1 αn , βn αn α1 .若向量组 α1, α2 , , αn 线性无关,问向量组 β1, β2 , , βn 是否一定线性
附录 A-----《线性代数》期末考试试题及解答(三套)
附录 A《线性代数》期末考试试题及解答(三套)
试卷一(2014 秋)
一 填空题 (本题共 10 小题,每小题 3 分,共 30 分)
1 2 3
1
1. 设 A 2 4 6 ,则 A 2( , , ).
3
6
9
3
2. 设 A 与 B 为同阶方阵,则 ( A B)2 A2 vvvvv
8.
2 k 1
k k2
1 1
,
(k 1)2 ,
无.
1 1 0 9. 6. 10. 1 2 1 .
0 1 1
二 单项选择题(每小题 4 分,共 20 分) CBADA
三 计算题 (共 44 分)
1.(本小题 9 分) 解 由 2AB 3B XX T 知 (2A 3E)B XX T .经计算得
.
a d f
6. 设 A 0 b e .若 A 的列向量组线性相关,则 a, b, c 应满足关系式
.
0 0 c
7. 设 A 为 m n 矩阵, R( A) r .已知 Ax (1, 0, 0)T 无解, Ax (0, 1, 0)T 有唯一解,则 m
线性代数期末考试试题及答案
线性代数期末考试试题及答案线性代数期末考试试题及答案线性代数是一门重要的数学课程,广泛应用于各个领域,如物理学、工程学、计算机科学等。
期末考试是对学生对于线性代数知识的综合考察,下面将给出一些线性代数期末考试试题及答案,供大家参考。
一、选择题(每题2分,共20分)1. 设A是一个3×3矩阵,若A的行列式值为0,则A的秩为:A. 0B. 1C. 2D. 3答案:C2. 设A是一个3×3矩阵,若A的特征值为1,2,3,则A的特征向量个数为:A. 0B. 1C. 2D. 3答案:D3. 设A是一个3×3矩阵,若A的秩为2,则A的零空间的维数为:A. 0B. 1C. 2D. 3答案:B4. 设A是一个3×3矩阵,若A的行向量组线性无关,则A的列向量组是否线性无关?A. 是B. 否答案:A5. 设A是一个3×3矩阵,若A的行向量组线性相关,则A的列向量组是否线性相关?A. 是B. 否答案:A6. 设A是一个3×3矩阵,若A的秩为2,则A的行空间的维数为:A. 0B. 1C. 2D. 3答案:C7. 设A是一个2×2矩阵,若A的特征值为1,2,则A的特征向量个数为:A. 0B. 1C. 2答案:C8. 设A是一个2×2矩阵,若A的特征值为1,1,则A的特征向量个数为:A. 0B. 1C. 2答案:B9. 设A是一个2×2矩阵,若A的秩为1,则A的零空间的维数为:A. 0B. 1C. 2答案:B10. 设A是一个2×2矩阵,若A的秩为2,则A的行空间的维数为:A. 0B. 1C. 2答案:C二、填空题(每题3分,共30分)1. 设A是一个3×3矩阵,若A的行向量组线性无关,则A的秩为____。
答案:32. 设A是一个3×3矩阵,若A的列向量组线性无关,则A的秩为____。
答案:33. 设A是一个3×3矩阵,若A的行向量组线性相关,则A的秩为____。
线性代数考试练习题带答案大全
线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
线性代数试题套卷及答案
(线性代数) (A卷)专业年级: 学号: 姓名:一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设n m A ⨯为实矩阵,则线性方程组0=Ax 只有零解是矩阵)(A A T为正定矩阵的(A) 充分条件; (B) 必要条件; (C) 充要条件; (D) 无关条件。
2.已知32121,,,,αααββ为四维列向量组,且行列式 4,,,1321-==βαααA ,1,,,2321-==βαααB ,则行列式 =+B A(A)40; (B) 16-; (C) 3-; (D) 40-。
3.设向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ,,, 21线 性表示,则以下结论中不能成立的是(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α,向量组s j ββα,,,2线性相关; (C) 存在一个j α,向量组s j ββα,,,2线性无关; (D) 向量组s ααα,,,21与向量组s βββ,,, 21等价。
4.对于n 元齐次线性方程组0=Ax ,以下命题中,正确的是(A) 若A 的列向量组线性无关,则0=Ax 有非零解;(B) 若A 的行向量组线性无关,则0=Ax 有非零解; (C) 若A 的列向量组线性相关,则0=Ax 有非零解; (D) 若A 的行向量组线性相关,则0=Ax 有非零解。
√√5.设A 为n 阶非奇异矩阵)2(>n ,*A 为A 的伴随矩阵,则(A) A A A 11||)(-*-=; (B) A A A ||)(1=*-;(C)111||)(--*-=A A A ; (D) 11||)(-*-=A A A 。
二、填空题(本大题共5小题,每小题5分,共25分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6. 列向量⎪⎪⎪⎭⎫ ⎝⎛-=111α 是矩阵⎪⎪⎪⎭⎫⎝⎛---=2135212b a A 的对应特征值λ的一个特征向量.则λ= ,a = ,b = 。
线性代数试卷及答案3套
线性代数A卷一、填空题(共6小题,满分18分)1.设α=(1,0,-1,2),β=(0,1,0,1),令A=αTβ,则A4 = .2.设矩阵且BA=B+E,则B-1= .3.设α1,α2是2维的列向量,令A=(2α1+α2,α1-α2),B=(α1,α2),若|A|=-6, 则|B|= .4.设A为n阶方阵,且A2=A,则R(A)+ R(A- E) = .5.设α1=(1,1,1),α2=(a,0,b),α3=(1,2,3)线性相关,则a与b应满足的关系式为.6. 设α+2β=(2,1,t,-1),2α-β=(-1,2,0,1),且α与β正交,则t= .二、单项选择题(共6小题,满分18分)1. 设A为n阶方阵,且AA T= E,|A|<0,则A+ E为[ ].(A) 非奇异矩阵,(B) 奇异矩阵,(C)正交矩阵,(D)正定矩阵.2.设A是4×3矩阵,且R(A)=2,若则R(AB)为[ ].(A) 2,(B) 3,(C)4,(D) 0.3. 设A为n阶可逆矩阵,k≠0为常数,则(k A)*为[ ].(A) k A*,(B) k n-1 A*,(C) k n A*,(D) k n A.4. 设向量组α1,α2,α3线性无关,则下面向量组线性相关的是[ ].(A) α1-α2,α2-α3,α3-α1,(B) α1+α2,α2+α3,α3+α1,(C)α1-2α2,α2-2α3,α3-2α1, (D) α1+2α2,α2+2α3,α3+2α1.5.设矩阵A n×m,B m×n,且n<m,若AB=E,则下面结论正确的是[ ].(A) A的行向量组线性相关,(B) A的列向量组线性无关,(C) 线性方程组Bx=0仅有零解, (D) 线性方程组Bx=0必有非零解.6.设3阶方阵A与B相似,且A的特征值为,则tr(B-1- E)为[ ].(A) 2,(B) 3,(C)4,(D) 6.三、解答题(共6小题,满分42分)1.设A为4阶方阵,A*是A的伴随矩阵,且|A|=0,而A*≠O.α1,α2,α3是线性方程组Ax=b的三个解向量,其中,求线性方程组Ax=b的通解.2.设向量组,问a为何值时,向量组α1,α2,α3,α4线性相关,并求此时的极大无关组.3.求一组非零向量α1,α2与已知向量α3=(1,1,1)T正交,并把它们化成R3的一个标准正交基.4.设矩阵,且A*相似于B,其中A*是A的伴随矩阵,求x,y.5.设二次型,其中二次型的矩阵A的特征值之和为1,特征值之积为-12,求a,b.6.设V是二阶实对称矩阵全体的集合,对于通常矩阵的加法与数乘运算所构成的实数域R上的线性空间.且是V的一个基,试证也是V的一个基.并求V中的向量在该组基下的坐标.四、(本题满分11分)已知齐次线性方程组(Ⅰ)(Ⅱ)同解,求a,b,c的值.五、(本题满分11分)设矩阵3阶实对称矩阵A的各行元素之和为3,且R(A)=1.①求A的特征值与特征向量;②求正交矩阵P和对角矩阵Λ,使P-1AP=Λ;③求A及.线性代数B卷一、填空题(共6小题,每小题3分,满分18分)1.设4阶矩阵A的行列式|A| =3,则行列式.2.设A为3阶正交矩阵,且A T= -A*,其中A*是A的伴随矩阵,则|A| = .3.设α1,α2是n(n3)元齐次线性方程组Ax=0的基础解系,则R(A)= .4.设线性空间R2的两个基A:α1=(1,0)T,α2=(1,1)T;B:β1=(1,1)T,β2=(-1,1)T,则A组基到B组基的过渡矩阵为.5.设3阶矩阵A的特征值为1、3、5,则A的迹tr A= .6.若二次型f(x1,x2,x3)=x12+4x22+2x32+2tx1x2+2x1x3正定,则t满足.二、单项选择题(共6小题,每小题3分,满分18分)1.设A为m×n矩阵.B为n×m矩阵,则[ ].(A)当时,必有|AB|≠0;(B)当时,必有|AB|=0;(C)当时,必有|AB|≠0;(D)当时,必有|AB|=0.2.设α1,α2,α3是齐次线性方程组Ax=0的基础解系,则该方程组的基础解系还可为[ ].(A)α1-α2,α2-α3,α3-α1; (B)与α1,α2,α3等秩的一个向量组;(C)α1,α1+α2,α1+α2+α3; (D)与α1,α2,α3等价的一个向量组.3.设A为n阶非奇异阵(n2),A*是A的伴随阵,则[ ].(A) (A*)*= |A|n -2A;(B) (A*)*=|A|n+2A;(C) (A*)*= |A|n -1A; (D) (A*)*=|A|n+1A.4.设A为m×n矩阵,C为n阶可逆矩阵,R(A)=r,矩阵B=AC的秩为r1,则[ ].(A) r >r1; (B) r<r1;(C) r与r1关系依赖与矩阵C; (D) r=r1.5.设A,B为n阶矩阵,若[ ],则A与B合同.(A) 存在n阶可逆矩阵P、Q,且PAQ=B;(B) 存在n阶可逆矩阵P,且P-1AP= B;(C) 存在n阶正交矩阵Q,且Q-1AQ= B;(D) 存在n阶方阵C、U,且CAU= B.6.n阶方阵A具有n个不同的特征值是A与对角阵相似的[ ].(A) 充分必要条件;(B) 充分而非必要条件;(C) 必要而非充分条件;(D) 既非充分也非必要条件.三、解答题(共5小题,每小题9分,满分45分)1. 计算4阶行列式.2.设向量组α1=(1,0,2,1)T,α2=(1,2,0,1)T,α3=(2,1,3,0)T,α4=(2,5,-1,4)T.(1) 判断向量组的线性相关性;(2) 求它的秩和一个极大无关组;(3) 把不在极大无关组中的向量用这个极大无关组线性表示.3. 设向量α1=(1,2,1)T和α2=(1,1,2)T都是方阵A的属于特征值λ=2的特征向量,又向量β=α1+2α2,求A2β.4.设3阶方阵A、B满足AB= 2A+B,其中求A.5. 已知线性空间R[x]3={a0+a1x+a2x2| a0,a1,a2 R},(1) 证明1,1+x,(1+x)2是R[x]3的一个基;(2) 求由基1,x,x2到基1,1+x,(1+x)2的过渡矩阵.四、(本题满分9分)设线性方程组(Ⅰ)与(Ⅱ)x1+3x2+3x3=a-3有公共解,求a的值和所有的公共解.五、(本题满分10分)设实二次型f(x1,x2,x3)=x T Ax的秩为2,且α1=(1,0,0)T 是(A-2E)x=0的解,α2=(0,-1,1)T是(A-6E)x=0的解.(1)求矩阵A的特征值与特征向量;(2)用正交变换将该二次型化成标准形,并写出所用的正交变换和所化的标准形;(3)写出该二次型.线性代数C卷一、填空题(共6小题,每小题3分,满分18分)1.设A为3阶方阵,|A|=1,则| -2A|=__________.2.设A是n阶方阵,x1,x2均为线性方程组Ax=b的解,且x1≠x2,则|A|=____ ____ .3.设A为n阶可逆阵,且A2=|A|E,则A*= . 4.若n阶方阵A与单位阵E相似,则A= .5.设4阶方阵A,R(A)=2,则R(A*)= .6. 若二次型是正定的,则t应满足.二、单项选择题(共6小题,每小题3分,满分18分)1. 设A为实对称矩阵,Ax1=λ1x1,Ax2=λ2x2,且λ1≠λ2,则(x1,x2) =[ ].(A) 1;(B) -1;(C) 0;(D) 2. 2.设A、B均为n阶可逆阵,则[ ].(A) ((AB)2)-1=(B2)-1(A2)-1;(B) 存在可逆阵P、Q,使PAQ=B;(C) 存在可逆阵P, 使A=P-1BP;(D) 存在可逆阵P,使P T AP=B.,则3.设A为m×n矩阵,C为n阶可逆矩阵,R(A)=r,矩阵B=AC的秩为r1 [ ].(A)r>r1;(B)r<r1;(C)r与r1关系依赖与矩阵C;(D)r=r1.4.设α1,α2,α3是齐次线性方程组Ax=0的基础解系,则该方程组的基础解系还可为 [ ].(A)α1,α1+α2,α1+α2+α3;(B) 与α1,α2,α3等价的一个向量组;(C) α1-α2,α2-α3,α3-α1;(D) 与α1,α2,α3等秩的一个向组.5.向量组α1,α2,…,αs线性无关的充要条件是[ ].(A) α1,α2,…,αs都不是零向量;(B) α1,α2,…,αs中任意两个向量都线性无关;(C) α1,α2,…,αs中任一向量都不能用其余向量线性表出;(D) α1,α2,…,αs中任意s-1个向量都线性无关.6. 如果[ ],则A与B相似.(A) |A|=|B|; (B) R(A)=R(B);(C) A与B有相同的特征多项式;(D) n阶矩阵A与B有相同的特征值且n个特征值各不相同.三、解答题(共5小题,每小题9分,满分45分)1.计算行列式.2.设3阶方阵A、B满足AB= 2A+B,其中求A.3. 设向量组α1=(1,0,2,1)T,α2=(1,2,0,1)T,α3=(2,1,3,0)T,α4=(2,5,-1,4)T.(1) 判断向量组的线性相关性;(2) 求它的秩和一个极大无关组;(3) 把不在极大无关组中的向量用极大无关组线性表示.4.设矩阵,求(1)A2;(2)A n.5. 已知是矩阵的一个特征向量.(1) 试确定参数a,b及特征向量ξ所对应的特征值;(2) 问A能否相似于对角阵?说明理由.四、(本题满分9分)设3维向量组试问:(1) 当λ取何值时,β可由α1,α2,α3线性表示,且表示法唯一;(2) 当λ取何值时,β可由α1,α2,α3线性表示,但表示法不唯一;(3) 当λ取何值时,β不能由α1,α2,α3线性表示.五、(本题满分10分)设实二次型f(x1,x2,x3)=x T Ax的秩为2,且α1=(1,0,0)T 是(A-2E)x=0的解,α2=(0,-1,1)T是(A-6E)x=0的解.(1)求矩阵A的特征值与特征向量;(2)用正交变换将该二次型化成标准形,并写出所用的正交变换和所化的标准形;(3)写出该二次型.。
线性代数期末考试试卷及答案
一、 填空题(每空3分,共15分)1、设A 为n 阶方阵,且3A =,则|3A |= 。
2、设矩阵5678A ⎡⎤=⎢⎥⎣⎦,则A *= 。
(其中A *是A 的伴随矩阵) 3、已知n 阶矩阵A 满足2A A =,则A 的特征值为 。
4、n 阶方阵A 与对角矩阵相似的充要条件是 。
5、二次型22212312133428f x x x x x x x =-+-+的实对称矩阵为 。
二、选择题(每小题3分,共15分)1、12021k k +≠+的充要条件是( )(A )1k ≠ (B )3k ≠-(C )1k ≠且3k ≠- (D )1k ≠或3k ≠-2、若111221226a a a a =,则121122212020021a a a a --的值为( ) ()A 12 ()B -12 ()C 18 ()D 03、设,A B 都是n 阶方阵,且0AB =,则下列一定成立的是( )()A 0A =或0B = (),B A B 都不可逆 (),C A B 中至少有一个不可逆 ()0D A B += 4、向量组()12,,,2s s ααα≥ 线性相关的充分必要条件是( )()A 12,,,s ααα 中含有零向量。
()B 12,,,s ααα 中有两个向量的对应分量成比例。
()C 12,,,s ααα 中每一个向量都可由其余1s -个向量线性表示。
()D 12,,,s ααα 中至少有一个向量可由其余1s -个向量线性表示。
5、当ad ≠bc 时,1a b c d -⎡⎤⎢⎥⎣⎦=( ) (A )d c b a -⎡⎤⎢⎥-⎣⎦(B )1d b c a ad bc -⎡⎤⎢⎥--⎣⎦(C )1d b c a bc ad ⎡⎤⎢⎥--⎣⎦(D )1d c b a ad bc -⎡⎤⎢⎥--⎣⎦三、(8分)计算行列式411102*********23D -=-四、(11分)求向量组()()()()12342,1,1,1,1,1,7,10,3,1,1,2,8,5,9,11αααα==-=--=的一个最大无关组,并将其余向量用此最大无关组线性表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考试科目: 线性代数
考试类型:(闭卷) 考试时间: 120 分钟
学号 姓名 年级专业
一. 选择题(本大题共5小题,每小题3分,共15分)在每小题的选项中,只有一项符合要求,把所选项前的字母填在题中括号内
1.设n B A 均为,阶方阵,则必有( D )
(A) B A B A +=+
(B) BA AB = (C) 111)(---+=+B A B A
(D) BA AB =
2. 已知,A B 均为n 阶实对称矩阵,且都正定,那么AB 一定是( C )
(A) 对称矩阵 (B) 正定矩阵 (C) 可逆矩阵 (D) 正交矩阵
3.设矩阵142242A ab a 2 1⎛⎫ ⎪
=2 + ⎪ ⎪ + ⎝⎭
的秩为2,则( C )
(A) 0,0a b ==
(B) 0,0a b =≠ (C) 0,0a b ≠=
(D) 0,0a b ≠≠
4.设A 为3阶矩阵,*A 为A 的伴随矩阵,A 的行列式|A |=2,则2*-A =( A )
5. 设 (),ij n n A a ⨯=且A 的行列式A =0, 但A 中某元素kl a 的代数余子式 0,kl A ≠ 则齐次线性方程组0AX =的基础解系中解向量个数是( A )
二、填空题(本大题共5小题,每小题4分,满分20分)
6. 设四阶行列式D 的第四列元素分别为1,0,2,3且他们对应的余子式分别为2,3,1,2-,则D=______2_______.
7. 向量[1,4,0,2α=与
[2,2,1,3]β=-的距离和内积分别为_________和___0____.
8. 设向量组(1,0,1),(2,,1),T T k ==-αβ(1,1,4)=--T γ线性相关,则k =___1___.
(A) 52-
(B) 32-
(C) 32
(D) 52
(A) 1 (B) k (C) l (D) n
9. 已知二次型222
123112132233
(,,)2245f x x x x x x x x x x x x λ=+-+++正定, 则λ的取值范围为 .
10. Matlab 软件中,在命令窗口输入rank(ones(2,3)),显示ans= .
三、计算题
11.(8分) 已知100110,021A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭131011,
002B ⎛⎫
⎪=- ⎪ ⎪⎝⎭
求:2T A B A -.
12.(8分)计算行列式
1111
1111
11111111
D -=
--.
四、解方程组
13. (10分) λ取何值时,线性方程组
⎪⎩⎪
⎨⎧-=+--=-+=+-1
311332
1321321x x x x x x x x x λ 有唯一解、有无穷多解、没有解?并在有无穷多解时,求出它的通解.
五、解答题
14.(10分)求向量组
1234(2,1,3,1),(3,1,2,0),(1,3,4,2),(4,3,1,1)T T T T αααα=-=-=-=-
的一个极大无关组,并将其余向量用此极大无关组线性表示.
15. (7分) 求矩阵A=2000014000100009⎛⎫ ⎪
⎪ ⎪- ⎪⎝⎭
的逆矩阵1A -.
16.(10分) 设2阶矩阵A 的特征值为1,2,对应的特征向量依次为
1201,,11αα⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭
.
(1)求矩阵A ; (2)求2010A .
17.(6分) 求二次型112212(,)34x f x x x ⎛⎫
⎛⎫= ⎪ ⎪⎝⎭⎝⎭
的矩阵A ,并求f 的秩.
六、证明题
18.(6分) 设A ,B 都是n 阶矩阵,AB A B =+,证明 (1)A E -,B E -都可逆; (2)AB BA =.
参考答案和评分标准
一. 每小题3分,共15分, 1. D 2. C 3. C 4. A 5. A
二 每小题4分,共20分 6. 2
7.
0 8. 1
9. 4
05
λ-<<
10. 1 三.
11. 满分8分
110012001T A -⎛⎫ ⎪
= ⎪ ⎪⎝⎭
,
………………………2分 122013002T A B ⎛⎫ ⎪= ⎪ ⎪⎝⎭
………………………5分
1222213040T A B A -⎛⎫ ⎪
-=- ⎪ ⎪-⎝⎭
………………………8分
12. 满分8分
8-
(用行列式性质或行列式定义,适当给步骤分) ………………………8分
四
13. 满分10分
131111
111111()11110422042231104320010R A b λλλ-----⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪
==---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---++⎝⎭⎝⎭⎝⎭
……………………5分 1,()()3R A R B λ∴≠-==当时有唯一解
1,()()23R A R B λ=-==<当时有无穷多解 ……………………7分
11111100,0422021100000000R ---⎛⎫⎛⎫ ⎪ ⎪
-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
此时
基础解系为 ()1,1,2T ξ=, 特解为 ()0,0,1T
η=
…………………10分
五
14. 满分10分
12342314113311332314(,,,)3241324110211021A αααα--⎛⎫⎛⎫ ⎪ ⎪--
⎪ ⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭
………2分 11331133102105510011201120551000000000011200000000-----⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪---
⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭
………6分 12312412() 2.,R A αααααααα∴=就是一个极大无关组,且=2-,=-+2 …10分
15. 满分7分
1100020140001010009A -⎛⎫
⎪ ⎪ ⎪
=
⎪- ⎪
⎪ ⎪
⎝
⎭ (用初等变换或定义或分块矩阵,适当给步骤分) ………7分
16. 满分10分
(1)由题意:
1201()11P αα⎛⎫== ⎪⎝⎭,1002⎛⎫Λ= ⎪⎝⎭
,1
P AP -=Λ, ………………2分 所以
1
0110012011021111A -⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
………………5分 (2)201020101-=ΛA P P ………………7分 1
2010011
001110211-⎛⎫⎛⎫⎛⎫= ⎪⎪
⎪⎝⎭⎝⎭⎝⎭ 2010201020211⎛⎫= ⎪-⎝⎭
………………10分
17. 满分6分
51121312(2)
34245242A ⎛⎫ ⎪
⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭
⎪ ⎪⎝⎭
; …………………4分 因为0A ≠,所以()2R A =;即二次型f 的秩为2. …………………6分 六
18. 满分6分
(1) 因为()()(),A E B E AB A B E E --=-++=
所以A E -,B E -都可逆。
…………………3分 (2) 由(1)知
()()()()()E A E B E B E A E BA A B E
=--=--=-++
所以AB A B BA =+= …………………6分。