几个常见几何图形内接正方形的作图方法及其应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几个常见几何图形接正方形的作图方法

及其应用

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!

几何是中学数学课程里的传统主要容之一,不仅仅是因为它对培养人的逻辑思维能力、推理论证能力具有重要教育价值,更是在现代科技中也有重要的地位,因此学习几何和几何教育受到了全世界的广泛关注,然而几何的教育在我国的中学生身上总存在很多困难,畏惧几何。由于数学向来有着枯燥乏味的坏名声,它的高度抽象和概括性,严谨的逻辑思维让一部分人在小学就开始觉得它晦涩难懂,在中学的几何更是严格的逻辑要求使学生觉得学习几何太难太抽象了。现在的学生缺乏学习的主动钻研和创新精神,动手能力差,都习惯与一步一步的跟着老师的套路学习,不会画图、不会看图,同时书上的图形没有进行研究和利用,反而成了学习的障碍,不善于与周围的实际生活联想,解决问题的意识淡薄,还停留在只会做现成题的水平,思维和眼界狭隘。本为主要通过对一些中学里常见的几何图形的接正方形的作图方法及其应用的整理和研究,从而使之成为几何学习有趣的一个

例子,在学习几何不仅仅是书本上的东西,每个有兴趣的同学可以通过自己的看法和想法去研究相关的东西,这与我们想要的创新有着密切的联系,达到激发更多的人喜爱和研究几何这门学科,希望给读者以启发。

1几何学的起源及其发展

几何是数学的一门分科,在古代埃及为兴建尼罗河水利工程,曾经进行过测地工作,使它逐渐发展成为几何学。公元前约三百年,,古希腊数学家欧几里德把前人生产实践中长期积累的几何学的研究加以整理总结为演绎体系,写成了《几何原本》。我国对几何学的研究也有悠久的历史。早在上古时期,我国劳动人民就已利用规矩来制作方圆。汉五百年成书的《周髀算经》和《九章算术》中,对图形面积的计算已有记载,徽、祖冲之、王孝通等对几何学都有重大贡献。十七世纪欧洲工业迅速发展起来,以前所用的几何方法不能满足实际需要,这就使笛卡尔利用代数方法研究几何问题,建立了解析几何。在十八、十九世纪,由于工程、力学和测量等方面的需要,产生了画法几何、射影几何和微分几何。在十九世纪二十年代,产生了非欧几何。二十世纪以来,理论物理,特别是相对论的出现,又促进了微分几何的发展。

2 扇形的接正方形

扇形接正方形的定义

如果一个正方形的所有顶点都在扇形的边界上,则称这个正方形为该扇形的接正方形。根据“抽屉原理”,该扇形的接正方形的四个顶点必有两个顶点在扇形的弧上(或半径)所在的线段上,这时称正方形为该扇形的弧(或半径)上的接正方形。

扇形弧上的接正方形画法

①如图1,连接AB,以AB为正方形的一边向外作正方形ABCD;

②连接C、D ,C与弧AB交于F,D于弧交于E,连接EF;

③过E作EF的垂线EH交A于H,过F作EF的垂线FG交B于G;

④连接GH,则四边形EFGH为扇形弧上的接正方形。证明:

由做法可知,A= E= F= B,

∴EF∥CD,

∴△FG∽△BC,△EF ∽△CD,△ EH∽△AD,∴= = = = ,

∴FG=EF=EH,

又EF⊥GH,

所以四边形为扇形的接正方形。

扇形半径上的接正方形画法

①如图2,连接AB,以AB为边,向三角形AB外作正方形;

②连接MB、NB于A分别交于H和I;

③过点H和I分别作A的垂线,交AB于G,交B 于J;

④连接GJ,则得到四边形HIJG;

⑤连接G并延长G交弧AB于F,过F作A的垂线交A于E,过E作FC平行于A交B于C,过C作CD垂直于A,则四边形CDEF是扇形半径A上的接正方形。

证明:

由作法可知,四边形HIJG是三角形AB的接正方形(在上文三角形的接正方形已证)。

又∵△HG∽△EF,△ GJ∽△FC,

∴= = ,

∴,

即四边形是扇形的接正方形。

3扇形接正方形的性质及其应用

定理1 扇形的接正方形有两种(这里的扇形的圆心角∈(0, ])接正方形,那么这个扇形的最大接正方形是

那个呢?又是一个怎么的值呢?为了弄清这个问题,用特殊到一般的方法来研究。

先来考察圆心角为、半径为R的扇形的接正方形面积最大。分两种情况来讨论:

如图3,扇形的半径上的接正方形,设∠DOE= ,显然∈(0,),则正方形DEFG的面积S=DE•EF=R •(R - R )= R ( + - )= R •[],由于ω∈(0,),2ω+ ∈(,),所以当2ω+ = 时,即时,正方形的面积最大S= 。

如图4,扇形弧上的接正方形,设∠COE= ,显然∈(0,),则正方形DEFG的面积S=DE•EF=2R •(R - R )=R [2 - ],由于ω∈(0,),∈(,),当= ,即ω=时,正方形的面积最大S=(2- )R 。

则(2- )R =( 2+ )R ,由于2+ = - = >0,且R时大于0的,所以在同一个扇形的两种接正方形的面积以在半径上的接正方形面积最大。

b现在考察圆心角、半径为R的接正方形的面积的情况。分两种情况来讨论:

如图5,扇形半径上的接正方形,设∠AOC=ω,显然ω∈(0,),则正方形的面积S=CA•AO=R •R = R ,由于ω∈(0,),2ω∈(0,),当2ω= ,即当ω= 时,正方形面积最大为S= R 。这时可以看出点C时弧DE

的中点。

如图6,扇形弧上的接正方形,则正方形ABDC的面积S=CD•DB=2R •(R )=2R (- )=2R (- )=R [-1],其中∠= ,显然∈(0,),∈(,),故当= 时,即ω= 时,正方形的面积达最大为S=( )R 。这是可以看出点G时弧EF的中点。

又①②可知,圆心角为半径为R的扇形接正方形以边落在半径上的接正方形的面积大。

定理2 圆心角θ∈(0,],半径为R的扇形的接正方形中是以边落在半径上的接正方形的面积最大,其值可表示为R 。

证明:在上边,已经证明两个特殊圆心角的接正方形面积大小的情况了,现在只需来证明一般情况。

一种情况,如图3,正方形的面积S=DE•EF=R •(R - )=R (- )=R [- (1- )]= (+ - )= R [- ],其中,所以当,即= 时,正方形的面积最大是S= R •(- )= R • = R • = R 。

另一种情况,如图4,可以认为是图3的这组合结构,可以直接利用上边已经得到的结论,所以可知正方形的面积为S=2•(R )=R 。

现在来考察= R - R =R ()=R (),令= ,则有- ,而0<θ≤ ,所以0<≤ ,所以0<<1,故k>0。

相关文档
最新文档