2019-2020年上海市交大附中高一上期中数学试卷

合集下载

上海交大附中高一上学期期中考试(数学).doc

上海交大附中高一上学期期中考试(数学).doc

上海交大附中高一上学期期中考试(数学)(满分100 分, 90 分钟完成,同意使用计算器,答案一律写在答题纸上)一.填空题:(共12 小题,每题 3 分)1.A={1},B={x|x A} ,用列举法表示会集 B 的结果为 _________ 。

2.已知会集 A={(x,y)|y=x+3}, B={(x,y)|y=3x-1} ,则 A ∩B=________ 。

3.写出 x>1 的一个必要非充分条件__________ 。

4.不等式11 的解集为_____________。

(用区间表示) x5.命题“已知 x、 y∈ R,若是 x+y ≠ 2,那么 x≠ 0 或 y≠ 2. ”是 _____ 命题。

(填“真”或“假”)6.2会集 A={x|(a-1)x+3x-2=0} 有且仅有两个子集,则a=_________ 。

7.若不等式 |ax+2|<6的解集为( -1 , 2),则实数 a 等于 _________ 。

8.不等式4x x2>x 的解集是 ____________ 。

9.已知 a2 +b 2=1 ,则a 1 b2的最大值为 ___________ 。

10.19和各代表一个自然数,且满足+ =1 ,则当这两个自然数的和取最小值时,=_______, =_______.11.已知会集A={-1 , 2} , B={x|mx+1>0},若 A ∪ B=B ,则实数 m 的取值范围是 _________ 。

12.若是关于x 的三个方程 x2 +4ax-4a+3=0 , x2+(a-1)x+a2=0 , x 2+2ax-2a=0 中,有且只有一个方程有实数解,则实数 a 的取值范围是_______________ 。

二.选择题:(共 4 小题,每题 3 分)13.设命题甲为“0<x<5 ”,命题乙为“|x-2|<3 ”,那么甲是乙的:()( A )充分非必要条件;(B)必要非充分条件;( C)充要条件;(D)既非充分又非必要条件14. 以下命题中正确的选项是:()( A )若 ac>bc ,则 a>b(B)若 a2>b 2,则 a>b11(D)若 a b ,则a<b( C)若,则 a<ba b15.设x>y>0,则以下各式中正确的选项是:()( A ) x> xy> xy >y ( B ) x> xy >xy>y22( C ) x>xy> y >xy ( D ) x> xy > y >x y2216. 以下每 中两个函数是同一函数的 数共有:()( 1 ) f(x)=x 2 +1 和 f(v)=v 2+1(2) y1 x2 和 y1 x 2| x 2 | x 2(3) y=2x , x ∈ {0,1} 和 y= 1 x 2 5 x 1, x ∈ {0,1}6 6 (4) y=1 和 y=x 0(5) y=x 1 x 2 和 yx 2 3x 2( 6 ) y=x 和 y 3x 3(A )1(B )3(C ) 2 (D )4三.解答题: (共 5 小 ,本大 要有必要的 程)17. (本 8 分)已知会集A x x a 1 , Bx x 2 5x 4 0 ,且 AB ,求 数 a 的取 范 。

2020-2021学年上海交大附中高一(上)期中数学试卷

2020-2021学年上海交大附中高一(上)期中数学试卷

2020-2021学年上海交大附中高一(上)期中数学试卷一、填空题(1-6每小题4分,7-12每小题4分,共54分)1.(4分)已知全集U={0,1,2,3,4},集合A={1,2},B={2,3},则A∩=.2.(4分)函数y=a x+2020+2022(a>0,a≠1)的图象恒过定点.3.(4分)已知幂函数f(x)=(n2+2n﹣2)(n∈Z)的图象关于y轴对称,且在(0,+∞)上时减函数,则n的值为.4.(4分)函数y=的图象的对称中心是.5.(4分)函数y=的定义域是.6.(4分)已知实数a满足(2a﹣1)>(a+1),则实数a的取值范围是.7.(5分)已知x<6,求,的最大值.8.(5分)设log c a、log c b是方程x2+5x﹣3=0的两个实根,则log c=.9.(5分)著名的哥德巴赫猜想指出:“任何大于2的偶数可以表示为两个素数的和”,用反证法研究该猜想,应假设的内容是.10.(5分)若关于x的方程22x+a•2x+2a+1=0(a∈R)有实根,则实数a的取值范围是.11.(5分)已知函数f(x)=lg(+ax)的定义域为R,则实数a的取值范围是.12.(5分)若实数x、y满足4x+4y=2x+1+2y+1,则S=2x+2y的取值范围是.二、选择题(每小题5分,共20分)13.(5分)已知a,b∈R,则“3a>3b”是“a3>b3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14.(5分)已知函数f(x)=log a(x+b)的大致图象如图,其中a,b为常数,则函数g(x)=a x+b的大致图象是()A.B.C.D.15.(5分)由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割试判断,对于任一戴德金分割(M,N),下列选项中,不可能成立的是()A.M没有最大元素,N有一个最小元素B.M没有最大元素,N也没有最小元素C.M有一个最大元素,N有一个最小元素D.M有一个最大元素,N没有最小元素16.(5分)设函数y=f(x)的定义域D,若对任意的x1∈D,总存在x2∈D,使得f(x1)•f (x2)=1,则称函数y=f(x)具有性质M下列结论:①函数y=3x具有性质M;②函数y=x3﹣x具有性质M;③若函数y=log8(x+2),x∈[0,t]具有性质M,则t=510.其中正确的个数是()A.0个B.1个C.2个D.3个三、解答题(共5题,满分76分)17.(14分)已知函数y=f(x)满足f(x)=|x﹣a2|+|x﹣2a+1|(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4恒成立,求实数a的取值范围.18.(14分)有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速度可以表示为函数v=log3﹣lgx0,单位是km/min,其中x表示候鸟每分钟耗氧量的单位数,常数x0表示测量过程中候鸟每分钟的耗氧偏差.(1)若x0=5,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(2)若雄鸟的飞行速度为1.5km/min,雌鸟的飞行速度为1km/min,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的多少倍?(lg2≈0.3)19.(14分)柯西不等式具体表述如下:对任意实数a1,a2,……a n和b1,b2,……b n,(n∈Z,n≥2)都有(a12+a22+……+a n2)(b12+b22+……+b n2)≥(a1b1+a2b2+……+a n b n)2.当且仅当==……=时取等号.(1)请用柯西不等式证明:对任意正实数a,b,x,y,不等式+≥成立,(并指出等号成立条件);(2)请用柯西不等式证明:对任意正实数x1,x2,……x n,且x1+x2+……+x n=1.求证:++……+≥(并写出等号成立条件).20.(16分)已知函数y=f(x)的表达式为f(x)=a x(a>0,a≠1),且f(﹣2)=.(1)求函数y=f(x)的解析式;(2)若log2((m﹣f(x))2+4f(x))=0在区间[0,2]上有解,求实数m的取值范围;(3)已知≤k<1,若方程|f(x)﹣1|﹣k=0的解分别为x1、x2(x1<x2)方程|f(x)﹣1|﹣=0的解分别为x3、x4(x3<x4)求x1﹣x2+x3﹣x4的最大值.21.(18分)对于正整数集合A={a1,a2,……,a n}(n∈N*,n≥3),如果任意去掉其中一个元素a i(i=1,2,……,n)之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A为“可分集合”;(Ⅰ)判断集合{1,2,3,4,5}和{1,3,5,7,9,11,13}是否是“可分集合”(不必写过程);(Ⅱ)求证:五个元素的集合A={a1,a2,a3,a4,a5}一定不是“可分集合”;(Ⅲ)若集合A={a1,a2,……,a n}(n∈N*,n≥3)是“可分集合”.①证明:n为奇数;②求集合A中元素个数的最小值.2020-2021学年上海交大附中高一(上)期中数学试卷参考答案与试题解析一、填空题(1-6每小题4分,7-12每小题4分,共54分)1.【解答】解:∵全集U={0,1,2,3,4},集合A={1,2},B={2,3},∴,.故答案为:{1}.2.【解答】解:∵函数y=a x+2020+2022,∴令x+2020=0得:x=﹣2020,此时y=2023,∴函数的图象恒过定点(﹣2020,2023).故答案为:(﹣2020,2023).3.【解答】解:函数f(x)=(n2+2n﹣2)(n∈Z)为幂函数,∴n2+2n﹣2=1,解得n=1或n=﹣3;当n=1时,f(x)=x﹣2,其图象关于y轴对称,且在(0,+∞)上是减函数;当n=﹣3时,f(x)=x18,其图象关于y轴对称,但在(0,+∞)上是增函数;∴n的值应为1.故答案为:1.4.【解答】解:因为==﹣3+即y+3=,可设y′=y+3,x′=x+2得到y′=所以y′与x′成反比例函数关系且为奇函数,则对称中心为(0,0)即y′=0,x′=0得到y=﹣3,x=﹣2所以函数y的对称中心为(﹣2,﹣3)故答案为(﹣2,﹣3)5.【解答】解:函数y=中,令>0,所以0<<1,即,所以,解得,即x>7,所以函数的定义域是(7,+∞).故答案为:(7,+∞).6.【解答】解:∵实数a满足,∴,解得0.5<a<2,∴实数a的取值范围是(0.5,2).故答案为:(0.5,2).7.【解答】解:由==(x﹣6)+,∵x<6,∴=﹣[(6﹣x)+]=﹣16,当且仅当x=﹣2时,取等号;∴由==(x﹣6)+≤0.即的最大值为0.故答案为:0.8.【解答】解:根据题意,log c a、log c b是方程x2+5x﹣3=0的两个实根,则,变形可得:(log c a﹣log c b)2=(log c a+log c b)2﹣4×(log c a log c b)=37,则log c a﹣log c b=±,即log c=±,则log c==±,故答案为:±.9.【解答】解:由反证法的定义得假设的内容为存在一个大于2的偶数不可以表示为两个素数的和,故答案为:存在一个大于2的偶数不可以表示为两个素数的和10.【解答】解:令2x=t(t>0),则方程22x+a•2x+2a+1=0化为t2+at+2a+1=0,要使原方程有实根,则方程t2+at+2a+1=0有大于0的实数根,转化为a===,∵t>0,∴t+2>2,则=,当且仅当t+2=,即t=时上式等号成立.∴实数a的取值范围是(﹣∞,4﹣2].故答案为:(﹣∞,4﹣2].11.【解答】解:函数f(x)=lg(+ax)的定义域为R,∴+ax>0恒成立,∴>﹣ax恒成立,设y=,x∈R,y2﹣x2=1,y≥1;它表示焦点在y轴上的双曲线的一只,且渐近线方程为y=±x;令y=﹣ax,x∈R;它表示过原点的直线;由题意知,直线y=﹣ax的图象应在y=的下方,画出图形如图所示∴0≤﹣a≤1或﹣1≤﹣a≤0,解得﹣1≤a≤1;∴实数a的取值范围是[﹣1,1].故答案为:[﹣1,1].12.【解答】解:∵4x+4y=(2x+2y)2﹣2••2x2y=s2﹣2•2x2y,2x+1+2y+1=2(2x+2y)=2s,故原式变形为s2﹣2•2x2y=2s,即2•2x2y=s2﹣2s,∵0<2•2x2y≤2•()2,即0<s2﹣2s≤,当且仅当2x=2y,即x=y时取等号;解得2<s≤4,故答案为(2,4].二、选择题(每小题5分,共20分)13.【解答】解:由3a>3b是得a>b,由“a3>b3”得a>b,即“3a>3b”是“a3>b3”的充要条件,故选:C.14.【解答】解:由函数f(x)=log a(x+b)的图象为减函数可知0<a<1,f(x)=log a(x+b)的图象由f(x)=log a x向左平移可知0<b<1,故函数g(x)=a x+b的大致图象是B故选:B.15.【解答】解:若M={x∈Q|x<0},N={x∈Q|x≥0};则M没有最大元素,N有一个最小元素0;故A正确;若M={x∈Q|x<},N={x∈Q|x≥};则M没有最大元素,N也没有最小元素;故B 正确;M有一个最大元素,N有一个最小元素不可能,故C不正确;若M={x∈Q|x≤0},N={x∈Q|x>0};M有一个最大元素,N没有最小元素,故D正确;故选:C.16.【解答】解:函数y=f(x)的定义域D,若对任意的x1∈D,总存在x2∈D,使得f(x1)•f(x2)=1,则称函数y=f(x)具有性质M.对于①:f(x)=3x的定义域为R,所以,则x1+x2=0.对任意的x1∈D,总存在x2∈D,使得f(x1)•f(x2)=1,所以函数y=3x具有该性质.对于②:函数f(x)=x3﹣x,在R上的定义域为R,所以若取x1=0,则f(x1)=0,此时不存在x2∈R,使得f(x1)•f(x2)=1.对于③:函数f(x)=log8(x+2),在x∈[0,t]的值域为[,则:,解得t=510.故③正确.故选:C.三、解答题(共5题,满分76分)17.【解答】解:(1)当a=2时,f(x)=|x﹣4|+|x﹣3|,f(x)≥4等价为或或,解得x≤或x∈∅或x≥,则不等式f(x)≥4的解集为{x|x≤或x≥};(2)f(x)≥4恒成立等价为f(x)min≥4.由f(x)=|x﹣a2|+|x﹣2a+1|≥|x﹣a2﹣x+2a﹣1|=a2﹣2a+1,当(x﹣a2)(x﹣2a+1)≤0时,上式取得等号,则a2﹣2a+1≥4,解得a≥3或a≤﹣1.18.【解答】解:(1)将x0=5,v=0代入函数v=log3﹣lgx0,得:,即=2(1﹣lg2)≈1.40,所以,所以x=466.故候鸟停下休息时,它每分钟的耗氧量为466个单位.(2)设雄鸟每分钟的耗氧量为x1,雌鸟每分钟耗氧量为x2,由题意可得:,两式相减可得:,所以,即,故此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的3倍.19.【解答】证明:(1)对任意正实数a,b,x,y,由柯西不等式得,当且仅当时取等号,∴.(2)∵x1+x2+…+x n=1,∴n+1=(1+x1)+(1+x2)+…+(1+x n),∵=,当且仅当时取等号,∴.20.【解答】解:(1)由f(﹣2)=,可得a﹣2=,又a>0,∴a=2,∴f(x)=2x;(2)由log2((m﹣f(x))2+4f(x))=0可得:(m﹣f(x))2+4f(x)=1,令t=f(x),x∈[0,2],则有t2+(4﹣2m)t+m2﹣1=0,t∈[1,4],∵log2((m﹣f(x))2+4f(x))=0在区间[0,2]上有解,∴t2+(4﹣2m)t+m2﹣1=0在t∈[1,4]上有解,令g(t)=t2+(4﹣2m)t+m2﹣1=0,t∈[1,4],可得:△=(4﹣2m)2﹣4(m2﹣1)=20﹣16m,对称轴方程为:t=m﹣2,∵g(1)=m2﹣2m+4>0,g(4)=m2﹣8m+31>0,∴,解得:m∈∅;(3)由|f(x)﹣1|﹣k=0,得f(x)=1﹣k,或f(x)=1+k,所以,,∴,由|f(x)﹣1|﹣=0,得,=,∴,∴=﹣3+;又因为≤k<1,所以﹣3+≥3;∴x2﹣x1+x4﹣x3≥log23,∴x1﹣x2+x3﹣x4≤﹣log23.即x1﹣x2+x3﹣x4的最大值为﹣log23.21.【解答】解:(Ⅰ)集合{1,2,3,4,5}不是“可分集合”,集合{1,3,5,7,9,11,13}是“可分集合”;(Ⅱ)不妨设a1<a2<a3<a4<a5,若去掉的元素为a2,将集合{a1,a3,a4,a5}分成两个交集为空集的子集,且两个子集元素之和相等,则有a1+a5=a3+a4①,或者a5=a1+a3+a4②;若去掉的元素为a1,将集合{a1,a3,a4,a5}分成两个交集为空集的子集,且两个子集元素之和相等,则有a2+a5=a3+a4③,或者a5=a2+a3+a4④.由①、③,得a1=a2,矛盾;由①、④,得a1=﹣a2,矛盾;由②、③,得a1=﹣a2,矛盾;由②、④,得,a1=a2矛盾.因此当n=5时,集合一定不是“可分集合”;(Ⅲ)①设集合A={a1,a2,…,a n}的所有元素之和为M.由题可知,M﹣a i(i=1,2,…,n)均为偶数,因此a i(i=1,2,…,n)均为奇数或偶数.如果M为奇数,则M﹣a i(i=1,2,…,n)也均为奇数,由于M=a1+a2+…+a n,所以n为奇数.如果M为偶数,则M﹣a i(i=1,2,…,n)均为偶数,此时设a i=2b i,则{b1,b2,…,b n}也是“可分集合”.重复上述操作有限次,便可得各项均为奇数的“可分集合”.此时各项之和也为奇数,则集合A中元素个数n为奇数.综上所述,集合A中元素个数为奇数.②当n=3时,显然任意集合{a1,a2,a3}不是“可分集合”.当n=5时,第(Ⅱ)问已经证明集合A={a1,a3,a4,a5}不是“可分集合”.当n=7时,集合A={1,3,5,7,9,11,13},因为:3+5+7+9=11+13,1+9+13=5+7+11,9+13=1+3+7+11,1+3+5+11=7+13,1+9+11=3+5+13,3+7+9=1+5+13,1+3+5+9=7+11,则集合A是“可分集合”.所以集合A中元素个数n的最小值是7.。

2019-2020学年上海中学高一(上)期中数学试卷 (含答案解析)

2019-2020学年上海中学高一(上)期中数学试卷 (含答案解析)

2019-2020学年上海中学高一(上)期中数学试卷一、选择题(本大题共4小题,共12.0分) 1. 已知集合A ={0,1},则下列式子错误的是( )A. 0∈AB. {1}∈AC. ⌀⊆AD. {0,1}⊆A2. 已知x <0,函数y =4x +x 的最大值是( )A. 5B. −4C. −8D. 63. 已知不等式m −1<x <m +1成立的充分条件是13<x <12,则实数m 的取值范围是( )A. (−∞,−12)∪(43,+∞) B. (−∞,−12)∪[43,+∞) C. (−12,43) D. [−12,43] 4. 若关于x 的不等式x 2+2ax +1≥0在[0,+∞)上恒成立,则实数a 的取值范围为( )A. (0,+∞)B. [−1,+∞)C. [−1,1]D. [0,+∞)二、填空题(本大题共10小题,共30.0分)5. 已知集合U ={0,1,2,3},A ={1,2,3},则C U A =________.6. 解关于x 的不等式:2|x −3|+|x −4|<2.7. 命题“如果√x −2+(y +1)2=0,那么x =2且y =−1”的逆否命题为________.8. 已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A)∩(∁U B)= ______ .9. 已知a ∈R ,b ∈R ,若{a,ba ,1}={a 2,a +b,0},则a = ______ ,b = ______ . 10. 已知x ,y 为正实数,则x2x+y +yx+2y 的最大值为________. 11. 已知集合A ={0,2,4,6},B ={x|3<x <7},则A ∩B =_____. 12. 已知函数f (x )={−x,x ≤0,x 2−2x,x >0,则满足f(x)<1的x 的取值范围是________13. 函数f(x)=1x−1在[a,b]上的最大值为1,最小值为13,则a +b = ______ . 14. 已知集合A ={−1,0,a },B ={0,√a}.若B ⊆A ,则实数a 的值为________. 三、解答题(本大题共5小题,共60.0分) 15. (1)比较a 2+b 2与2(2a −b)−5的大小;(2)已知a,b,c ∈R +,且a +b +c =1,求证:(1a −1)(1b −1)(1c −1)⩾816. 解下列不等式:(Ⅰ)|2x +1|−2|x −1|>0; (Ⅱ)||x −2|−1|≤1.17. 为了保护环境,发展低碳经济,某企业在国家科研部门的支持下,进行技术攻关,新上了一项把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似的表示为:y ={13x 3−80x 2+5040x,x ∈[120,144)12x 2−200x +80000,x ∈[144,500),且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,亏损数额国家将给予补偿.(I)当x ∈[200,300]时,判断该项目能否获利?如果亏损,则国家每月补偿数额的范围是多少? (Ⅱ)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?18. 已知命题是真命题.(1)求实数m 的取值集合M ;(2)设不等式(x−a)[x−(2−a)]<0的解集为N,若N⊆M,求实数a的取值范围.19.已知二次函数y=x2−2tx+t2−1(t∈R).(1)若该二次函数有两个互为相反数的零点,解不等式x2−2tx+t2−1≥0;(2)若关于x的方程x2−2tx+t2−1=0的两个实根均大于−2且小于4,求实数t的取值范围.-------- 答案与解析 --------1.答案:B解析: 【分析】本题考查元素与集合、集合与集合的关系,属于基础题型,直接求解即可. 【解答】解:∵集合A ={0,1}, ∴易得A ,C ,D 正确,B 选项,集合与集合的关系不能用∈, 故选B .2.答案:B解析:解:∵x <0,∴函数y =4x +x =−(−x +4−x )≤−2√−x ⋅4−x =−4,当且仅当x =−2时取等号.∴x <0,函数y =4x +x 的最大值是−4. 故选B .变形利用基本不等式即可得出.变形利用基本不等式和掌握使用基本不等式时注意“一正,二定,三相等”是解题的关键.3.答案:D解析:由题意可知m −1≤13且12≤m +1,解得m ∈[−12,43].4.答案:B解析: 【分析】本题考查恒成立问题,考查二次函数知识的综合运用,属于基础题.分两种情况讨论,当a ≥0时,二次函数在[0,+∞)单调递增且f(0)>0,当a <0时,要求Δ≤0,从而得到结果. 【解答】解:∵x 2+2ax +1≥0在[0,+∞)上恒成立,1)当a ≥0时,函数f(x)=x 2+2ax +1在(−a,+∞)上为单调增函数,则函数f(x)=x 2+2ax +1在[0,+∞)上为单调增函数, 所以f(x)≥f(0),∵f(0)=1>0,∴符合题意,2)当a <0时,因为f(0)=1>0,所以要使x 2+2ax +1≥0在[0,+∞)上恒成立, 则4a 2−4≤0,即−1≤a ≤1, 此时有−1≤a <0, 综上a ≥−1. 故选B .5.答案:{0}解析: 【分析】本题主要考查了集合的补集,属于基础题. 【解答】解:集合U ={0,1,2,3},A ={1,2,3}, 则C U A ={0}. 故答案为{0}.6.答案:解:当x ≥4时,原不等式即为2(x −3)+(x −4)<2,即3x −10<2,解得x <4,则有x ∈⌀; 当3<x <4时,原不等式即为2(x −3)+(4−x)<2,即x −2<2,解得,x <4,则有3<x <4; 当x ≤3时,原不等式即为2(3−x)+(4−x)<2,即10−3x <2,解得,x >83,则有83<x ≤3. 则原不等式的解集为{x|83<x ≤3或3<x <4}={x|83<x <4}.解析:运用零点分区间方法,讨论当x ≥4时,当3<x <4时,当x ≤3时,去绝对值,解不等式,最后求并集即可.本题考查绝对值不等式的解法,考查分类讨论的思想方法,考查运算能力,属于基础题.7.答案:如果x ≠2或y ≠−1,则√x −2+(y +1)2≠0解析: 【分析】本题考查考查四种命题的定义和关系,根据四种命题之间的关系和定义即可得到命题的逆否命题. 【解答】解: 根据逆否命题的定义可知,命题的逆否命题为:如果x≠2或y≠−1,则√x−2+(y+1)2≠0,故答案为如果x≠2或y≠−1,则√x−2+(y+1)2≠0.8.答案:{7,9}解析:解:∵集合A={0,1,3,5,8},集合B={2,4,5,6,8},∴∁U A={2,4,6,7,9},∁U B={0,1,3,7,9},则(∁U A)∩(∁U B)={7.9},故答案为:{7,9}根据集合的基本运算进行求解即可.本题主要考查集合的基本运算,根据补集和交集的定义是解决本题的关键.9.答案:−1;0解析:解:由题意知,1}={a2,a+b,0},∵{a,ba∴根据集合相等的定义可知:有以下几种情况①当a=0时,不符合题意,故a≠0=0时,b=0②当ba即这时集合化简为{a,0,1}={a2,a,0}∴当a=1时不满足集合元素的互异性,故a≠1∴当a2=1时,a=1或a=−1经验证a=−1成立.即此时集合为{−1,0,1}∴可知:a=−1,b=0故答案为:−1,0.根据集合相等的定义,分类讨论,结合集合元素的互异性,即可得出结论.本题考查集合元素的互异性,考查集合相等的定义,比较基础.10.答案:23解析:【分析】本题主要考查基本不等式的运用,求最值,考查运算能力,属于中档题.对原式子进行换元变形,以及基本不等式应用时应该满足的条件:一正二定三等.解:令2x +y =m ,x +2y =n , 则x =2m−n 3,y =−m+2n3,且m >0,n >0,因此:x 2x +y +y x +2y =2m −n 3m +−m +2n3n =2m −n 3m +−m +2n 3n =43−(n 3m +m3n) ≤43−2√19=23,当且仅当m =n 时取等号, 则x2x+y +yx+2y 的最大值为23, 故答案为23.11.答案:{4,6}解析: 【分析】本题主要考查集合的交集运算,考查学生分析问题解决问题的能力,属于基础题. 利用交集运算定义直接计算即可. 【解答】解:因为集合A ={0,2,4,6},B ={x|3<x <7}, 所以A ∩B ={4,6}. 故答案为{4,6}.12.答案:解析: 【分析】本题考查了一元二次不等式的解法,考查了分类讨论的数学思想方法,属中档题. 【解答】解:因为函数f (x )={−x,x ≤0,x 2−2x,x >0,则f(x)<1等价于{x ≤0−x <1①或{x >0x 2−2x <1②. 解得①得−1<x ≤0,解②得0<x <1+√2√2. 所以f(x)<1的x 的取值范围是(−1,1+√2). 故答案为.解析:解:由题意,a >1,则1a−1=1,1b−1=13,∴a =2,b =4,∴a +b =6; a <1则1a−1=13,不成立. 故答案为:6.分类讨论,利用函数的单调性,结合函数f(x)=1x−1在[a,b]上的最大值为1,最小值为13,求出a ,b ,即可求出a +b .本题考查函数的最值及其几何意义,考查学生的计算能力,比较基础.14.答案:1解析: 【分析】本题主要考查子集的概念,集合的表示,考查学生对基本概念的理解和应用能力,考查核心素养是计算能力,属于基础题.利用子集关系得√a =a ,求解即可,注意集合元素的互异性. 【解答】解:因为B ⊆A ,所以√a ∈A ,因为A ={−1,0,a},所以√a ≠0,√a ≠−1, 所以√a =a ,解得a =1; 故答案为1.15.答案:(1)解:因为a 2+b 2−2(2a −b)+5=a 2−4a +4+b 2+2b +1=(a −2)2+(b −1)2⩾0,所以a 2+b 2⩾ 2(2a −b)−5;(2)证明:∵a +b +c =1,a ,b ,c ∈R +, ∴(1a −1)(1b −1)(1c −1)=b+c a×a+c b×a+b c⩾2√bca×2√ac b×2√ab c=8,当且仅当a =b =c 时,取等号.解析: 【分析】(1)本题考查作差法比较大小,两式作差与零比较,即可比较出两式大小;(2)本题考查不等式的证明,将a +b +c =1分别代入分子并化简,进而利用基本不等式即可证明原不等式.16.答案:解:(Ⅰ)原不等式化为|2x +1|>2|x −1|,两边平方得(2x +1)2>4(x −1)2,展开得4x 2+4x +1>4x 2−8x +4,即得原不等式的解集为(14,+∞). (Ⅱ)由||x −2|−1|≤1得−1≤|x −2|−1≤1,即0≤|x −2|≤2,此不等式可转化为{|x −2|≥0|x −2|≤2,求得{x ∈R0≤x ≤4,所以原不等式的解集为{x|0≤x ≤4}.解析:(Ⅰ)原不等式化为|2x +1|>2|x −1|,两边平方得(2x +1)2>4(x −1)2,展开化简求得原不等式的解集.(Ⅱ)把此不等式可转化为{|x −2|≥0|x −2|≤2,求得{x ∈R0≤x ≤4,由此可得原不等式的解集.本题主要考查绝对值不等式的解法,体现了转化的数学思想,属于基础题.17.答案:解:(I)设x ∈[200,300]时,获利为S ,则S =200x −(12x 2−200x +80000)=−12(x −400)2, 所以在x ∈[200,300]时,S 为单调递增函数, S max =−5000,S min =−20000, 所以补偿范围是[5000,20000].(Ⅱ)二氧化碳的平均每吨的处理成本为y x ={13x 2−80x +5040,x ∈[120,144),12x −200+80000x,x ∈[144,500], 当x ∈[120,144)时,当x =120时,yx 取得最小值240, 当x ∈[144,500)时,yx=12x +80000x−200⩾2√12x ⋅80000x−200=200,当且仅当12x =80000x,即x =400时,yx 取得最小值200,∵200<240,所以每月的处理量为400吨时,才能使每吨的处理成本最低.解析:本题考查分段函数模型的应用以及基本不等式实际应用,是中档题. (I)根据x ∈[200,300],求出函数y 的值域即可判断求解.(Ⅱ)写出每吨的平均处理成本的函数表达式,利用基本不等式求解.18.答案:解:(1)命题“∃x ∈[−1,0],x 2+2x +m <0”是真命题,则m <(−x 2−2x)max ,∵x ∈[−1,0],∴(−x 2−2x)max =1,则m <1,即M =(−∞,1); (2)当a <2−a ,即a <1时,N =(a,2−a), ∵N ⊆M ,∴2−a ≤1,即a ≥1,此时a 无解;当a=2−a,即a=1时,N为空集,满足题意;当a>2−a,即a>1时,N=(2−a,a),∵N⊆M,∴a≤1,此时a无解.综上:a=1.解析:(1)把原命题转化为m<(−x2−2x)max,再由二次函数求最值得答案;(2)对a分类求解不等式(x−a)[x−(2−a)]<0,再由两集合端点值间的关系列式求解.19.答案:解:(1)设二次函数y=x2−2tx+t2−1(t∈R)的两个零点分别为x1,x2,由已知得x1+x2=0,而x1+x2=2t,所以2t=0,故t=0.不等式x2−2tx+t2−1≥0即x2−1≥0,解得x≥1或x≤−1,故不等式的解集为{x|x≥1或x≤−1}.(2)因为方程x2−2tx+t2−1=0的两个实根均大于−2且小于4,所以即.解得−1<t<3.解析:本题考查了函数与方程以及一元二次不等式的解法,是一般题.(1)根据韦达定理求出t,然后根据一元二次不等式的解法得出答案.(2)根据一元二次方程根的分布建立关于t的不等式组,解不等式组即可.。

2019-2020年上海市交大附中高一上期中数学试卷(含答案案)

2019-2020年上海市交大附中高一上期中数学试卷(含答案案)

上海交通大学附属中学2019-2020学年度第一学期高一数学期中考试试卷一、填空题1.函数y =的定义域是____________2. 已知{}|12A x x =-<<,{}2|30,R x x x x -<∈,则A B ⋂=____________3. 当0x >时,函数()1f x x x -=+的值域为____________4. 设{|52U x x =-≤<-或25,}x x Z <≤∈,{}2|2150A x x x =--=,{}3,3,4B =-则U A C B ⋂=____________5. 已知集合{}{}2,1,|2A B x ax =-==,若A B A ⋃=,则实数a 值集合为____________6. 满足条件{}{}{}1,3,53,5,71,3,5,7,9⋃=的所有集合A 的个数是____________个7. 已知不等式2202x x x a+≤+解集为A ,且2,3A A ∈∉,则实数a 的取值范围是____________ 8. 若函数()f x a 的取值范围为____________9. 已知,a b 是常数,且0ab ≠,若函数()33f x ax =+的最大值为10,则()f x 的最小值为 ____________10. 设正实数,a b 满足324a ab b ++=,那么1ab的最小值为____________ 11. 设()()2,043,0x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩,若()0f 是()f x 的最小值,则a 的取值范围为____________ 12. 若方程()22420ax a x --+=在(0,2)内恰有一解,则实数a 的取值范围为____________ 二、选择题13. 下列命题中,正确的是( )A. 4x x +的最小值是4B. 的最小值是2C. 如果,a b c d >>,那么a c b d ->-D. 如果22ac bc >,那么a b >14. 设甲为“05x <<”,乙为“23x -<”,那么甲是乙的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件15. 非空集合A,B 满足,{}{},|,|A B P x x A Q x x B ⊂⋂=∅=⊆=≠,则下列关系一定成立的是( )A. A B P Q ⋃=⋃B. P Q ⋂=∅C. {}P Q ⋂=∅D. A B P Q ⊂⋃≠⋃ 16. 已知函数()1y f x =+为偶函数,则下列关系一定成立的是( )A. ()()f x f x =-B. ()()11f x f x +=-+C. ()()11f x f x +=--D. ()()1f x f x -+=三、解答题17. 已知集合21|1,1x A x x R x -⎧⎫=≤∈⎨⎬+⎩⎭,集合{}22|210,B x x ax a x R =-+-≤∈. (1)求集合A ; (2)若集合U=R ,()U B C A B ⋂=,求实数a 的取值范围.18. 已知函数()f x x a x b =-++.(1)若1,2a b ==,求不等式()5f x ≤的解;(2)对任意0,0a b >>,试确定函数()y f x =的最小值M (用含,a b 的代数式表示),若正数,a b 满足42a b ab +=,则,a b 分别取何值时,M 有最小值,并求出此最小值.19. 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每1厘米厚的隔热层建造成本为6万元。

2020-2021学年上海市交通大附属中学高一上学期期中考试数学试卷(含详解)

2020-2021学年上海市交通大附属中学高一上学期期中考试数学试卷(含详解)

上海交通大学附属中学2020-2021学年第一学期高一数学期中考试试卷一、填空题(1-6每小题4分,7-12每小题5分,共54分)1.已知全集{}0,1,2,3,4U =,集合{}1,2A =,{}2,3B =则A B ⋂=______.2.函数20202022(0,1)x y aa a +=+>≠的图像恒过定点______.3.已知幂函数()()22322n nf x n n x-=+-(n Z ∈)的图象关于y 轴对称,且在()0,∞+上是减函数,则n 的值为______.4.函数132xy x-=+的图象中心是______.5.函数y =的定义域是______.6.已知实数a 满足()()3322211a a --->+,则实数a 的取值范围是_________.7.已知6x <,求2446x x x ++-的最大值______.8.设log c a 、log c b 是方程2530x x +-=的两个实根,则log b ac =______.9.著名的哥德巴赫猜想指出:“任何大于2的偶数可以表示为两个素数的和”,用反证法研究该猜想,应假设的内容是_______.10.若关于x 的方程222210()x xa a a R +⋅++=∈有实根,则实数a 的取值范围是______.11.已知函数)()lg f x ax =的定义域为R ,则实数a 的取值范围是____________.12.若实数、满足114422x y x y +++=+,则22x y S =+的取值范围是_______.二、选择题(每小题5分,共20分)13.已知,a b ∈R ,则“33a b >”是“33a b >”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.若函数()()log a f x x b =+的大致图象如图,其中,a b 为常数,则函数()xg x a b =+的大致图像是()A. B.C. D.15.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足Q M N ⋃=,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(,)M N 为戴德金分割.试判断,对于任一戴德金分割(,)M N ,下列选项中,不可能成立的是()A.M 没有最大元素,N 有一个最小元素 B.M 没有最大元素,N 也没有最小元素C.M 有一个最大元素,N 有一个最小元素D.M 有一个最大元素,N 没有最小元素16.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3xy =具有性质M ;②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =.其中正确的个数是()A.0个B.1个C.2个D.3个三、解答题(共5题,满分76分)17.已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.18.有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速所度可以表示为函数301log lg 2100x v x =-,单位是km /min ,其中x 表示候鸟每分钟耗氧量的单位数,常数0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据lg 20.3,= 1.2 1.43 3.74,3 4.66==)(1)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(2)若雄鸟的飞行速度为1.5km /min ,雌鸟的飞行速度为1km /min ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的多少倍?19.柯西不等式具体表述如下:对任意实数1a ,2a ,n a 和1b ,2b n b ,(,2)n Z n ∈≥都有()()()222222212121122n n n n a a a b b b a b a b a b ++++++≥+++L L L ,当且仅当1212n na a ab b b ===L 时取等号.(1)请用柯西不等式证明:对任意正实数a ,b ,x ,y ,不等式222()a b a b x y x y++≥+成立,(并指出等号成立条件)(2)请用柯西不等式证明:对任意正实数1x ,2x , ,n x ,且121n x x x +++= ,求证:12212211111x x x x x x n+++≥++++ (并写出等号成立条件).20.已知函数、()y f x =的表达式为()(0,1)xf x a a a =>≠,且1(2)4f -=,(1)求函数()y f x =的解析式;(2)若()()22log ()4()0m f x f x -+=在区间[]0,2上有解,求实数m 的取值范围;(3)已知113k ≤<,若方程()10f x k --=的解分别为1x 、()212x x x <,方程()1021k f x k --=+的解分别为3x 、()434x x x <,求1234x x x x -+-的最大值.21.对于集合{}()12,,,3n A a a a n Z n =∈≥ ,其中每个元素均为正整数,如果任意去掉其中一个元素(1,2,3,)i a i n = 之后,剩余的所有元素组成集合(1,2,)i A i n = ,并且i A 都能分为两个集合B 和C ,满足B C =∅ ,i B C A ⋃=,其中B 和C 的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4和{}1,3,5,7,9,11,13是否是“可分集合”(不必写过程);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}()12,,,3n A a a a n Z n =∈≥ 是“可分集合”.①证明:n 为奇数;②求集合A 中元素个数的最小值.上海交通大学附属中学2020-2021学年第一学期高一数学期中考试试卷一、填空题(1-6每小题4分,7-12每小题5分,共54分)1.已知全集{}0,1,2,3,4U =,集合{}1,2A =,{}2,3B =则A B ⋂=______.【答案】{}1【解析】【分析】通过全集,计算出{}0,1,4B =,根据交集的定义即可.【详解】因为{}0,1,2,3,4U =,{}2,3B =,所以{}0,1,4B =所以{}1A B ⋂=.故答案为:{}1.2.函数20202022(0,1)x y aa a +=+>≠的图像恒过定点______.【答案】()2020,2023-【解析】【分析】根据01(0,1)a a a =>≠,结合条件,即可求得答案.【详解】 01(0,1)a a a =>≠,令20200x +=,得2020x =-,020222023y a =+=,∴函数20202022(0,1)x y a a a +=+>≠的图象恒过定点()2020,2023-,故答案为:()2020,2023-.3.已知幂函数()()22322n n f x n n x -=+-(n Z ∈)的图象关于y 轴对称,且在()0,∞+上是减函数,则n 的值为______.【答案】1【解析】【分析】根据函数是幂函数得2221+-=n n ,求得3n =-或1,再检验是否符合题意即可.【详解】因为()()22322n n f x n n x -=+-是幂函数,2221n n ∴+-=,解得3n =-或1,当3n =-时,()18=f x x 是偶函数,关于y 轴对称,在()0,∞+单调递增,不符合题意,当1n =时,()2f x x -=是偶函数,关于y 轴对称,在()0,∞+单调递减,符合题意,1n ∴=.故答案为:1.4.函数132xy x-=+的图象中心是______.【答案】()2,3--【解析】【分析】将函数化成ky b x a=++,根据的对称中心为(,)a b -,即可得出答案.【详解】1373(2)73222x x y x x x --+===-+++,因为函数72y x =+的图象的对称中心是()2,0-,所以函数732y x =-+的图象的对称中心是()2,3--.故答案为:()2,3--.【点睛】对称性的3个常用结论:(1)若函数()y f x a =+是偶函数,即()()f a x f a x +=-,则函数()y f x =的图象关于直线x a =对称;(2)若对于R 上的任意x 都有(2)()f a x f x -=或(2)()f a x f x +=-,则()y f x =的图象关于直线x a =对称;(3)若函数()y f x b =+是奇函数,即((0))f x b f x b +++-=,则函数()y f x =关于点(,0)b 中心对称.5.函数y =的定义域是______.【答案】(7,)+∞【解析】【分析】根据被开方数非负且分母不为零可得132log 05x ⎛⎫>⎪-⎝⎭,解对数不等式即可求得定义域.【详解】1322log 00155x x ⎛⎫>⇒<<⎪--⎝⎭,()()271075055x x x x x -<⇒>⇒-->--且5x ≠,解得5x <或7x >,2055x x <⇒>-,∴函数y =(7,)+∞.故答案为:(7,)+∞6.已知实数a 满足()()3322211a a --->+,则实数a 的取值范围是_________.【答案】1,22⎛⎫ ⎪⎝⎭【解析】【分析】根据幂函数的定义域和单调性得到关于a 的不等式,解之可得实数a 的取值范围.【详解】由题意知,3322(21)(1)a a --->+,>由于幂函数32y x =的定义域为[0,)+∞,且在[0,)+∞上单调递增,则2101121110a a a a ->⎧⎪⎪>⎨-+⎪+>⎪⎩,即:()()12202111a a a a a ⎧>⎪⎪-⎪>⎨-+⎪⎪>-⎪⎩,所以1221a a a ⎧>⎪⎪<⎨⎪>-⎪⎩,所以实数a 的取值范围是:122a <<.故填:1,22⎛⎫ ⎪⎝⎭.【点睛】本题主要考查幂函数的定义域和单调性,属于基础题.7.已知6x <,求2446x x x ++-的最大值______.【答案】0【解析】【分析】原式化为64(6)166x x -++-,结合基本不等式即可求解最大值.【详解】6x < ,所以60x ->,2244(6)16(6)6464(6)16666x x x x x x x x ++-+-+==-++---因为64(6)6x x -+-64[(6)]166x x =--+-=--,当且仅当2x =-时,取等号;∴2244(6)16(6)6464(6)160666x x x x x x x x ++-+-+==-++---.即2446x x x ++-的最大值为0.故答案为:0.【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.设log c a 、log c b 是方程2530x x +-=的两个实根,则log b ac =______.【答案】3737±【解析】【分析】根据题意由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-,进而得()2log log 37c c a b -=,再结合换底公式得137log 37log b acc b a==±【详解】解:因为log c a 、log c b 是方程2530x x +-=的两个实根,所以由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-,所以()()22log log log log 4log log 37c c c c c c a b a b a b -=+-⋅=,所以log log c c b a -=所以1137log log log 37log b c c acc b b a a===±-.故答案为:3737±【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算,其中()()22log log log log 4log log c c c c c c a b a b a b -=+-⋅,1log log b acc b a=两个公式的转化是核心,考查运算求解能力,是中档题.9.著名的哥德巴赫猜想指出:“任何大于2的偶数可以表示为两个素数的和”,用反证法研究该猜想,应假设的内容是_______.【答案】存在一个大于2的偶数不可以表示为两个素数的和.【解析】【分析】从命题的否定入手可解.【详解】反证法先否定命题,故答案为存在一个大于2的偶数不可以表示为两个素数的和.【点睛】本题主要考查反证法的步骤,利用反证法证明命题时,先是否定命题,结合已知条件及定理得出矛盾,从而肯定命题.10.若关于x 的方程222210()x xa a a R +⋅++=∈有实根,则实数a 的取值范围是______.【答案】(,4-∞-【解析】【分析】利用换元法,设20x t t =>,,转化为方程2210t at a +++=,有正根,分离参数,求最值.【详解】设20x t t =>,,转化为方程2210t at a +++=,有正根,即221(2)4(2)55[(2)]4222t t t a t t t t ++-++=-=-=-++++++,022t t >∴+> ,,则5[(2)4442t t -+++≤-+=-+当且仅当5(2)2t t +=+,即2t =时取等,(,4a ∴∈-∞-故答案为:(,4-∞-11.已知函数)()lgf x ax =的定义域为R ,则实数a 的取值范围是____________.【答案】[1,1]-【解析】【分析】根据对数函数的真数大于0,得出+ax >0恒成立,利用构造函数法结合图象求出不等式恒成立时a 的取值范围.【详解】解:函数f (x )=lg (+ax )的定义域为R ,+ax >0恒成立,-ax 恒成立,设y =,x ∈R ,y 2﹣x 2=1,y ≥1;它表示焦点在y 轴上的双曲线的一支,且渐近线方程为y =±x ;令y =﹣ax ,x ∈R ;它表示过原点的直线;由题意知,直线y =﹣ax 的图象应在y =的下方,画出图形如图所示;∴0≤﹣a ≤1或﹣1≤﹣a <0,解得﹣1≤a ≤1;∴实数a 的取值范围是[﹣1,1].故答案为[﹣1,1].【点睛】本题考查了不等式恒成立问题,考查数形结合思想与转化思想,是中档题.12.若实数、满足114422x y x y +++=+,则22x y S =+的取值范围是_______.【答案】24S <≤【解析】【详解】1122224+4=2+2(2)(2)2(22)(22)2222(22)x y x y x x y x y x y x y ++⇒+=+⇒+-⋅⋅=+22222xyS S -=⋅⋅,又22(22)022222x y xyS +<⋅⋅≤=.22022S S S <-≤,解得24S <≤二、选择题(每小题5分,共20分)13.已知,a b ∈R ,则“33a b >”是“33a b >”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【答案】C 【解析】【分析】根据充分、必要条件定义判定即可.【详解】解:当33a b >时,根据指数函数3x y =是定义域内的增函数可得a b >,因为幂函数3y x =是定义域内的增函数,所以33a b >,所以充分性成立,当33a b >时,因为幂函数3y x =是定义域内的增函数,所以a b >,又指数函数3x y =是定义域内的增函数,所以33a b >,所以必要性成立,综上:“33a b >”是“33a b >”的充要条件.故选:C.【点睛】充分条件、必要条件的三种判定方法:(1)定义法:根据,p q q p ⇒⇒进行判断,适用于定义、定理判断性问题;(2)集合法:根据,p q 对应的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题;(3)等价转化法:根据一个命题与其逆否命题的等价性进行判断,适用于条件和结论带有否定性词语的命题.14.若函数()()log a f x x b =+的大致图象如图,其中,a b 为常数,则函数()xg x a b =+的大致图像是()A. B.C. D.【答案】B 【解析】【分析】由函数()log ()a f x x b =+的图象为减函数可知,01a <<,且01b <<,可得函数()x g x a b =+的图象递减,且1(0)2g <<,从而可得结果.【详解】由函数()log ()a f x x b =+的图象为减函数可知,01a <<,再由图象的平移知,()log ()a f x x b =+的图象由()log a f x x =向左平移可知01b <<,故函数()x g x a b =+的图象递减,且1(0)2g <<,故选B.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.15.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足Q M N ⋃=,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(,)M N 为戴德金分割.试判断,对于任一戴德金分割(,)M N ,下列选项中,不可能成立的是()A.M 没有最大元素,N 有一个最小元素 B.M 没有最大元素,N 也没有最小元素C.M 有一个最大元素,N 有一个最小元素 D.M 有一个最大元素,N 没有最小元素【答案】C 【解析】【分析】由题意依次举出具体的集合,M N ,从而得到,,A B D 均可成立.【详解】对A ,若{|0}M x Q x =∈<,{|0}N x Q x =∈;则M 没有最大元素,N 有一个最小元素0,故A 正确;对B ,若{|M x Q x =∈<,{|N x Q x =∈;则M 没有最大元素,N 也没有最小元素,故B 正确;对C ,M 有一个最大元素,N 有一个最小元素不可能,故C 错误;对D ,若{|0}M x Q x =∈,{|0}N x Q x =∈>;M 有一个最大元素,N 没有最小元素,故D 正确;故选:C .【点睛】本题考查对集合新定义的理解,考查创新能力和创新应用意识,对推理能力的要求较高.16.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3xy =具有性质M ;②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =.其中正确的个数是()A.0个 B.1个C.2个D.3个【答案】C 【解析】【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断.【详解】解:对于①:3x y =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,所以函数3x y =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=,所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =,故③正确;故选:C.【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.三、解答题(共5题,满分76分)17.已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .【解析】【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果.【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.18.有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速所度可以表示为函数301log lg 2100xv x =-,单位是km /min ,其中x 表示候鸟每分钟耗氧量的单位数,常数0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据lg 20.3,= 1.2 1.43 3.74,3 4.66==)(1)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(2)若雄鸟的飞行速度为1.5km /min ,雌鸟的飞行速度为1km /min ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的多少倍?【答案】(1)466;(2)3倍.【解析】【分析】(1)将05x =,0v =代入函数解析式,计算得到答案.(2)根据题意得到方程组13023011.5log lg 210011log lg 2100x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相减化简即可求出答案.【详解】(1)将05x =,0v =代入函数301log lg 2100x v x =-,得:31log lg 502100x-=,即()3log 2lg 521lg 2 1.40100x==-=,所以1.403 4.66100x==,所以466x =.故候鸟停下休息时,它每分钟的耗氧量为466个单位.(2)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟耗氧量为2x ,由题意可得:13023011.5log lg 210011log lg 2100x x x x⎧=-⎪⎪⎨⎪=-⎪⎩,两式相减可得:13211log 22x x =,所以132log 1x x =,即123x x =,故此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的3倍.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.19.柯西不等式具体表述如下:对任意实数1a ,2a ,n a 和1b ,2b n b ,(,2)n Z n ∈≥都有()()()222222212121122n n n n a a a b b b a b a b a b ++++++≥+++L L L ,当且仅当1212n na a ab b b ===L 时取等号.(1)请用柯西不等式证明:对任意正实数a ,b ,x ,y ,不等式222()a b a b x y x y++≥+成立,(并指出等号成立条件)(2)请用柯西不等式证明:对任意正实数1x ,2x , ,n x ,且121n x x x +++= ,求证:12212211111x x x x x x n+++≥++++ (并写出等号成立条件).【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据任意正实数a ,b ,x ,y ,由柯西不等式得222()(()a b x y a b x y +++,从而证明222()a b a b x yx y+++成立;(2)由121n x x x ++=…+,得121(1)(1)(1)n n x x x +=++++⋯++,然后利用柯西不等式,即可证明12212211111x x xx x x n++⋯⋯+++++成立.【详解】(1)对任意正实数a ,b ,x ,y ,由柯西不等式得()()()()222222222a b a b x y a b x y ⎡⎤⎛⎫⎡⎤⎢⎥++=++⎪⎢⎥⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦,当且仅当x y a b=时取等号,∴222()a b a b x y x y+++.(2)121n x x x ++⋯+= ,121(1)(1)(1)n n x x x ∴+=++++⋯++,2221212()(1)111n nx x x n x x x ++⋯+++++222121212()[(1)(1)(1)]111n n nx x x x x x x x x =++⋯+++++⋯+++++212()1n x x x ++⋯+=,当且仅当121n x x x n==⋯==时取等号,∴222121211111n nx x x x x x n ++⋯+++++.【点睛】方法点睛:利用柯西不等式求最值或证明不等式时,关键是对原目标代数式进行配凑,以保证出现常数结果.同时,要注意等号成立的条件,配凑过程采取如下方法:一是考虑题设条件;二是对原目标代数式进行配凑后利用柯西不等式解答.20.已知函数、()y f x =的表达式为()(0,1)xf x a a a =>≠,且1(2)4f -=,(1)求函数()y f x =的解析式;(2)若()()22log ()4()0m f x f x -+=在区间[]0,2上有解,求实数m 的取值范围;(3)已知113k ≤<,若方程()10f x k --=的解分别为1x 、()212x x x <,方程()1021k f x k --=+的解分别为3x 、()434x x x <,求1234x x x x -+-的最大值.【答案】(1)()2x f x =;(2)[]3,1-;(3)2log 3-.【解析】【分析】(1)由2211(2)4f aa --===可得答案.(2)由条件可得()2()4()1m f x f x -+=在区间[]0,2上有解,设2x t =,由[]0,2x ∈,则14t ≤≤,即()24123t t t m -+==--在区间[]1,4t ∈上有解,可得答案.(3)由条件121x k =-,221x k =+,即12121x x k k --=+,以及431221xk k +=+或3+1221x k k =+,所以341312x x k k -+=+,从而可得()()1234341241111322213131331x x x x x x x x k k k k k k k -+---+-+-=⋅=⨯==-++++,求出最大值可得答案.【详解】(1)由2211(2)4f a a --===,所以2a =所以()2xf x =(2)()()22log ()4()0m f x f x -+=在区间[]0,2上有解即()2()4()1m f x f x -+=在区间[]0,2上有解即()22421x x m -+⨯=在区间[]0,2上有解即设2x t =,由[]0,2x ∈,则14t ≤≤所以()24123t t t m -+==--在区间[]1,4t ∈上有解当[]1,4t ∈时,[]2134,1t t ∈--+所以31m -≤≤(3)由()10f x k --=,即21x k =+或21x k=-由方程()10f x k --=的解分别为1x 、()212x x x <,则121x k =-,221x k=+所以12121x x k k--=+由()1021k f x k --=+,即31212121x k k k k +=+=++或+1212121xk k k k =-=++方程()1021k f x k --=+的解分别为3x 、()434x x x <,则431221x k k +=+或3+1221xk k =+所以341312x xk k -+=+所以()()1234341241111322213131331x x x x x x x x k k k k k k k -+---+-+-=⋅=⨯==-++++函数431133y k =++-在113k ⎡⎫∈⎪⎢⎣⎭,上单调递减,当13k =时,431133y k =++-有最大值13.所以()()1234123x x x x -+-≤,则1322421log log 33x x x x -=-+≤-所以1234x x x x -+-的最大值为2log 3-【点睛】关键点睛:本题考查指数的运算和方程有解求参数,方程根的关系,解答本题的关键是由题意可得()22421x x m -+⨯=在区间[]0,2上有解,设2x t =,分类参数即()24123t t t m -+==--在区间[]1,4t ∈上有解,以及根据方程的根的情况可得()()1234341241111322213131331x x x x x x x x k k k k k k k -+---+-+-=⋅===-++++,属于中档题.21.对于集合{}()12,,,3n A a a a n Z n =∈≥ ,其中每个元素均为正整数,如果任意去掉其中一个元素(1,2,3,)i a i n = 之后,剩余的所有元素组成集合(1,2,)i A i n = ,并且i A 都能分为两个集合B 和C ,满足B C =∅ ,i B C A ⋃=,其中B 和C 的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4和{}1,3,5,7,9,11,13是否是“可分集合”(不必写过程);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}()12,,,3n A a a a n Z n =∈≥ 是“可分集合”.①证明:n 为奇数;②求集合A 中元素个数的最小值.【答案】(1)集合{}1,2,3,4不是,集合{}1,3,5,7,9,11,13是;(2)证明见解析;(3)①证明见解析;②7.【解析】【分析】(1)根据“可分集合”定义直接判断即可得到结论;(2)不妨设123450a a a a a <<<<<,分去掉的元素是1a 时得5234a a a a =++①,或2534a a a a +=+②,去掉的元素是2a 得5134a a a a =++③,或1534a a a a +=+④,进而求解得矛盾,从而证明结论.(3)①设集合{}()12,,,3n A a a a n Z n =∈≥ 所有元素之和为M ,由题可知,()1,2,3,,i M a i n -= 均为偶数,所以()1,2,3,,i a i n = 的奇偶性相同,进而分类讨论M 为奇数和M 为偶数两类情况,分析可得集合A 中的元素个数为奇数;②结合(1)(2)问依次验证3,5,7n n n ===时集合A 是否为“可分集合”从而证明.【详解】解:(1)对于集合{}1,2,3,4,去掉元素1,剩余的元素组成的集合为{}12,3,4A =,显然不能分为两个集合B 和C ,满足B C =∅ ,1B C A ⋃=,其中B 和C 的所有元素之和相等,故{}1,2,3,4不是“可分集合”对于集合{}1,3,5,7,9,11,13,去掉元素1,{}13,5,7,9,11,13A =,显然可以分为{}{}11,13,3,5,7,9B C ==,满足题意;去掉元素3,{}21,5,7,9,11,13A =,显然可以分为{}{}1,9,13,5,7,11B C ==,满足题意;去掉元素5,{}31,3,7,9,11,13A =,显然可以分为{}{}1,3,7,11,9,13B C ==,满足题意;去掉元素7,{}41,3,5,9,11,13A =,显然可以分为{}{}1,9,11,3,5,13B C ==,满足题意;去掉元素9,{}51,3,5,7,11,13A =,显然可以分为{}{}7,13,1,3,5,11B C ==,满足题意;去掉元素11,{}61,3,5,7,9,13A =,显然可以分为{}{}3,7,9,1,5,13B C ==,满足题意;去掉元素13,{}71,3,5,7,9,11A =,显然可以分为{}{}1,3,5,9,7,11B C ==,满足题意;故{}1,3,5,7,9,11,13是可分集合.(2)不妨设123450a a a a a <<<<<,若去掉的是1a ,则集合{}12345,,,A a a a a =可以分成{}{}5234,,,B a C a a a ==或{}{}2534,,,B a a C a a ==,即:5234a a a a =++①或2534a a a a +=+②若去掉的是2a ,则集合{}21345,,,A a a a a =可以分成{}{}5134,,,B a C a a a ==或{}{}1534,,,B a a C a a ==,即:5134a a a a =++③或1534a a a a +=+④,由①③得21a a =,矛盾;由①④21a a =-,矛盾;由②③得21a a =-,矛盾;由②④21a a =,矛盾;所以五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)①证明:设集合{}()12,,,3n A a a a n Z n =∈≥ 所有元素之和为M ,由题可知,()1,2,3,,i M a i n -= 均为偶数,所以()1,2,3,,i a i n = 的奇偶性相同,若M 为奇数,则()1,2,3,,i a i n = 也均为奇数,由于12n M a a a =+++ ,所以n 为奇数;若M 为偶数,则()1,2,3,,i a i n = 也均为偶数,此时设()21,2,3,,i i a b i n == ,则{}12,,,n b b b 也是“可分集合”,重复上述操作有限次,便可得各项均为奇数的“可分集合”,此时各项之和也为奇数,集合A 中的元素个数为奇数.综上所述,集合A 中的元素个数为奇数.②当3n =时,显然任意集合{}123,,A a a a =不是“可分集合”;当5n =时,第二问已经证明集合{}12345,,,,A a a a a a =不是“可分集合”;当7n =时,第一问已验证集合{}1,3,5,7,9,11,13A =是“可分集合”.所以集合A 中元素个数的最小值为7.【点睛】本题考查集合新定义的问题,对此类题型首先要多读几遍题,将新定义理解清楚,然后根据定义依次验证,证明即可.注意对问题思考的全面性,考查学生的思维迁移能力,分析能力.本题第二问解题的关键在于假设123450a a a a a <<<<<,以去掉元素1a 和2a 两种情况下的可分集合推出矛盾,进而证明,是难题.。

2019-2020学年上海市交大附中高一(上)期中数学试卷

2019-2020学年上海市交大附中高一(上)期中数学试卷

2019-2020学年上海市交大附中高一(上)期中数学试卷一.填空题1. 函数y=√x的定义域为________.【答案】(0, +∞)【考点】函数的定义域及其求法【解析】要使函数有意义,则需x≥0且x≠0,解得即可得到定义域.【解答】要使函数有意义,则需x≥0且x≠0,即x>0,则定义域为(0, +∞).2. 已知A={x|−1<x<2},{x|x2−3x<0, x∈R},则A∩B=________.【答案】(0, 2)【考点】并集及其运算【解析】可以求出集合B,然后进行交集的运算即可.【解答】∵A={x|−1<x<2},B={x|0<x<3},∴A∩B=(0, 2).3. 当x>0时,函数f(x)=x+x−1的值域为________.【答案】[2, +∞)【考点】函数的值域及其求法【解析】直接利用基本不等式求得函数f(x)=x+x−1的最小值得答案.【解答】∵x>0,∴f(x)=x+x−1=x+1x ≥2√x⋅1x=2.当且仅当x=1时,上式“=”成立.∴函数f(x)=x+x−1的值域为[2, +∞).4. 设U={x|−5≤x<−2或2<x≤5, x∈Z},A={x|x2−2x−150},B={−3, 3, 4},则A∩∁U B=________.【答案】{5}交、并、补集的混合运算【解析】先分别求出集合U,A,B,由此能求出结果.【解答】∵U={x|−5≤x<−2或2<x≤5, x∈Z}={−5, −4, −3, 3, 4, 5},A={x|x2−2x−150}={−3, 5},B={−3, 3, 4},∴∁U B={−5, −4, 5},∴A∩∁U B={5}.5. 已知集合A={−2, 1},B={x|ax2},若A∪B=A,则实数a值集合为________.【答案】{0, −1, 2}【考点】并集及其运算【解析】根据A∪B=A即可得出B⊆A,从而可讨论B是否为空集:B=⌀时,a=0;B≠⌀时,2a=−21,解出a即可.【解答】∵A∪B=A,∴B⊆A,∴ ①B=⌀时,a=0;②B≠⌀时,B={2a },则2a=−2或2a=1,解得a=−1或2,∴实数a值集合为{0, −1, 2}.6. 满足条件{1, 3, 5}∪A∪{3, 5, 7}={1, 3, 5, 7, 9}的所有集合A的个数是________个.【答案】16【考点】并集及其运算【解析】根据条件可得出,集合A一定含有元素9,而可能含有元素1,3,5,7,从而得出集合A的个数为C40+C41+C42+C43+C44=24=16个.【解答】∵{1, 3, 5}∪A∪{3, 5, 7}={1, 3, 5, 7, 9},∴集合A一定含元素9,可能含元素1,3,5,7,∴集合A的个数为24=16个.7. 已知不等式x2+2xx+2a≤0的解集为A,且2∈A,3∉A,则实数a的取值范围是________.【答案】[−32,−1)【考点】元素与集合关系的判断由题意可得4+42+2a ≤0 ①,且 9+63+2a >0 ②,3+2a =0③,分别求得①、②、③的解集,再取交集,可得所求. 【解答】 因为x 2+2x x+2a ≤0的解集为A ,且2∈A ,3∉A ,所以4+42+2a ≤0,①9+63+2a>0,②3+2a =0,③ 解①得:a <−1. 解②得:a >−32, 解③得:a =−32,故实数a 的取值范围为[−32,−1).8. 若函数f(x)=√x 2−1+√a −x 2为偶函数且非奇函数,则实数a 的取值范围为________. 【答案】 a >1 【考点】函数奇偶性的性质与判断 【解析】利用函数f(x)=√x 2−1+√a −x 2为偶函数且非奇函数,结合函数的定义域,即可求出实数a 的取值范围. 【解答】∵ 函数f(x)=√x 2−1+√a −x 2为偶函数且非奇函数, ∴ f(−x)=f(x),且f(−x)≠−f(x), 又{x 2−1≥0a −x 2≥0,∴ a ≥1. a =1,函数f(x)=√x 2−1+√a −x 2为偶函数且奇函数,9. 已知a 、b 是常数,且ab ≠0,若函数f(x)=ax 3+bx√1−x 2+3的最大值为10,则f(x)的最小值为________. 【答案】 −4【考点】函数的最值及其几何意义 【解析】利用函数的奇偶性,求出g(x)的最小值即可. 【解答】函数f(x)=ax 3+bx√1−x 2+3定义域为[−1, 1],设g(x)=ax 3+bx√1−x 2为奇函数,f(x)max =g(x)max +3=10,所以g(x)min =−g(x)max =−7, 所以f(x)min =−7+3=−4,10. 设正实数a 、b 满足3a +ab +b =24,那么1ab 的最小值为________. 【答案】112【考点】基本不等式及其应用 【解析】由条件正实数a 、b 满足3a +ab +b =24,利用基本不等式3a +b ≥2√3ab ,从而得到关于ab 的不等式,解出ab 的取值范围,进一步求出1ab 的取值范围即可. 【解答】因为a ,b 为正数,满足3a +ab +b =24, 所以24=3a +b +ab ≥2√3ab +ab ; 令√ab =t ,t >0, 则t 2+2√3t −24≤0;解得0<t ≤2√3,即0<ab ≤12, 所以,1ab ≥112; 所以1ab 的最小值为112.11. 已知函数f(x)={(x −a)2,x ≤0x +4x+3a,x >0,且f(0)为f(x)的最小值,则实数a 的取值范围是________. 【答案】 [0, 4] 【考点】分段函数的应用 【解析】若f(0)为f(x)的最小值,则当x ≤0时,函数f(x)=(x −a)2为减函数,当x >0时,函数f(x)=x +4x +3a 的最小值4+3a ≥f(0),进而得到实数a 的取值范围. 【解答】若f(0)为f(x)的最小值,则当x ≤0时,函数f(x)=(x −a)2为减函数, 则a ≥0,当x >0时,函数f(x)=x +4x +3a 的最小值4+3a ≥f(0), 即4+3a ≥a 2, 解得:−1≤a ≤4,综上所述实数a 的取值范围是[0, 4],12. 若方程ax2−(4−a2)x+2=0在(0, 2)内恰有一解,则实数a的取值范围为________.【答案】(−3, 1]【考点】函数的零点与方程根的关系【解析】对a进行讨论,结合二次函数的图象,得出结果.【解答】设f(x)=ax2−(4−a2)x+2,若a=0时,f(x)=0,得x=1成立,2若a≠0,ax2−(4−a2)x+2=0在(0, 2)内恰有一解,因为f(0)=2>0,所以只需f(2)=4a−2(4−a2)+2≤0,则a2+2a−3≤0,得a∈[−3, 1],不成立,当a=−3时,−3x2+5x+2=0的根为x=2或者x=−13所以a∈(−3, 1],二.选择题下列命题中,正确的是()A.x+4的最小值是4xB.√x2+4+的最小值是22C.如果a>b,c>d,那么a−c<b−dD.如果ac2>bc2,那么a>b【答案】D【考点】基本不等式及其应用【解析】A.x<0时,函数值小于0;B.√x2+4+>2,最小值不为2;2C.a>b,c>d,那么a+c>b+d即a−d>b−c;D.由于ac2>bc2,可得c2>0,可得a>b.A.x<0时,不正确;>2,最小值不为2,不正确;B.√x2+4+√x2+4C.a>b,c>d,那么a+c>b+d即a−d>b−c,因此不正确;D.∵ac2>bc2,∴c2>0,∴a>b,正确.设p:0<x<5,q:|x−2|<3,那么p是q的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要【答案】A【考点】充分条件、必要条件、充要条件【解析】根据充分条件和必要条件的定义进行判断即可.【解答】由|x−2|<3,得:−3<x−2<3,即−1<x<5,即q:−1<x<5,故p是q的充分不必要条件,非空集合A、B满足,A∩B=⌀,P={x|x⊆A},Q={x|x⫋B},则下列关系一定成立的是()A.A∪B=P∪QB.P∩Q=⌀C.P∩Q={⌀}D.A∪B⫋P∪Q【答案】C【考点】交集及其运算【解析】由A∩B=⌀得A与B无公共元素,而P、Q分别是由集合A的子集、集合B的真子集构成的集合,空集是任何非空集合的真子集.【解答】∵A∩B=⌀,∴A与B没有任何公共元素,∵P={x|x⊆A},Q={x|x⫋B},⌀是任何集合的子集,任何非空集合的真子集,∴P∩Q={x|x⊆A且x⫋B}={⌀},已知函数y=f(x+1)为偶函数,则下列关系一定成立的是()A.f(x)=f(−x)B.f(x+1)=f(−x+1)C.f(x+1)=f(−x−1)D.f(−x+1)=f(x)【答案】B【考点】函数奇偶性的性质与判断根据偶函数的定义进行判断即可.【解答】∵y=f(x+1)为偶函数,∴f(−x+1)=f(x+1),故B正确,三.解答题已知集合A={x|2x−1x+1≤1,x∈R},集合B={x|x2−2ax+a2−1≤0, x∈R}.(1)求集合A;(2)若B∩(∁U A)=B,求实数a的取值范围.【答案】由2x−1x+1≤1得,x−2x+1≤0;解得−1<x≤2;∴A={x|−1<x≤2};∁U A={x|x≤−1, 或x>2};∵B∩(∁U A)=B;∴B⊆∁U A;且B={x|a−1≤x≤a+1};∴a−1>2,或a+1≤−1;∴a>3,或a≤−2;∴实数a的取值范围为{a|a≤−2, 或a>3}.【考点】集合关系中的参数取值问题交、并、补集的混合运算【解析】(1)解分式不等式2x−1x+1≤1即可得出集合A={x|−1<x≤2};(2)可求出∁U A={x|x≤−1, 或x>2},根据B∩(∁U A)=B即可得出B⊆∁U A,且B={x|a−1≤x≤a+1},从而得出a−1>2或a+1≤−1,解出a的范围即可.【解答】由2x−1x+1≤1得,x−2x+1≤0;解得−1<x≤2;∴A={x|−1<x≤2};∁U A={x|x≤−1, 或x>2};∵B∩(∁U A)=B;∴B⊆∁U A;且B={x|a−1≤x≤a+1};∴a−1>2,或a+1≤−1;∴a>3,或a≤−2;∴实数a的取值范围为{a|a≤−2, 或a>3}.己知函数f(x)=|x−a|+|x+b|.(1)若a=1,b=2,求不等式f(x)≤5的解;(2)对任意a >0,b >0,试确定函数y =f(x)的最小值M (用含a ,b 的代数式表示),若正数a 、b 满足a +4b =2ab ,则a 、b 分别取何值时,M 有最小值,并求出此最小值. 【答案】数f(x)=|x −a|+|x +b|.由于a =1,b =2,所以|x −1|+|x +2|≤5,令x −1=0,解得x =1,令x +2=0,解得x =−2, 故:①当x ≤−2时,不等式转换为1−x −x −2≤5,解得−3≤x ≤−2. 当②−2<x <1时,不等式转换为x +2−1−x ≤5,即1≤5, 故不等式的解为−2<x <1.当③x ≥1时,不等式转换为x −1+x +2≤5,解得x ≤2, 由①②③得:不等式的解集为:x ∈[−3, 2];对任意a >0,b >0,所以)|x −a|+|x +b|≥|a +b|=a +b . 所以函数y =f(x)的最小值M =a +b ,由于正数a 、b 满足a +4b =2ab ,整理得12b +2a =1, 所以a +b =(a +b)(12b +2a )=a2b +2b a+52≥2√a 2b ⋅2b a +52=92当a =43,b =23时,M 最小值为92.【考点】绝对值不等式的解法与证明 函数的最值及其几何意义 【解析】(1)直接利用分类讨论思想的应用和绝对值不等式的应用求出结果. (2)利用关系式的恒等变换的应用及均值不等式的应用求出结果. 【解答】数f(x)=|x −a|+|x +b|.由于a =1,b =2,所以|x −1|+|x +2|≤5,令x −1=0,解得x =1,令x +2=0,解得x =−2, 故:①当x ≤−2时,不等式转换为1−x −x −2≤5,解得−3≤x ≤−2. 当②−2<x <1时,不等式转换为x +2−1−x ≤5,即1≤5, 故不等式的解为−2<x <1.当③x ≥1时,不等式转换为x −1+x +2≤5,解得x ≤2, 由①②③得:不等式的解集为:x ∈[−3, 2];对任意a >0,b >0,所以)|x −a|+|x +b|≥|a +b|=a +b . 所以函数y =f(x)的最小值M =a +b ,由于正数a 、b 满足a +4b =2ab ,整理得12b +2a =1, 所以a +b =(a +b)(12b+2a)=a 2b +2b a+52≥2√a 2b⋅2b a+52=92当a =43,b =23时,M 最小值为92.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:C(x)=k 3x+5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式.(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【答案】解:(1)设隔热层厚度为xcm,由题知,每年能源消耗费用为C(x)=k3x+5.再由C(0)=8,得k=40,因此C(x)=403x+5.而建造费用为C1(x)=6x,最后得隔热层建造费用与20年的能源消耗费用之和为f(x)=20C(x)+C1(x)=20×403x+5+6x=8003x+5+6x(0≤x≤10).(2)f′(x)=6−2400(3x+5)2,令f′(x)=0,即2400(3x+5)2=6.解得x=5,x=−253(舍去).当0<x<5时,f′(x)<0,当5<x<10时,f′(x)>0,故x=5是f(x)的最小值点,对应的最小值为f(5)=6×5+80015+5=70.当隔热层修建5cm厚时,总费用达到最小值为70万元.【考点】利用导数研究函数的最值函数模型的选择与应用【解析】(1)由建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=k3x+5(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.我们可得C(0)=8,得k=40,进而得到C(x)=403x+5.建造费用为C1(x)=6x,则根据隔热层建造费用与20年的能源消耗费用之和为f(x),我们不难得到f(x)的表达式.(2)由①中所求的f(x)的表达式,我们利用导数法,求出函数f(x)的单调性,然后根据函数单调性易求出总费用f(x)的最小值.【解答】解:(1)设隔热层厚度为xcm,由题知,每年能源消耗费用为C(x)=k3x+5.再由C(0)=8,得k=40,因此C(x)=403x+5.而建造费用为C1(x)=6x,最后得隔热层建造费用与20年的能源消耗费用之和为f(x)=20C(x)+C1(x)=20×403x+5+6x=8003x+5+6x(0≤x≤10).(2)f′(x)=6−2400(3x+5)2,令f′(x)=0,即2400(3x+5)2=6.解得x=5,x=−253(舍去).当0<x <5时,f′(x)<0,当5<x <10时,f′(x)>0,故x =5是f(x)的最小值点,对应的最小值为f(5)=6×5+80015+5=70. 当隔热层修建5cm 厚时,总费用达到最小值为70万元.已知函数f(x)=|x−a|x(a >0),且满足f(12)=1.(1)判断函数f(x)在(1, +∞)上的单调性,并用定义证明;(2)设函数g(x)=f(x)x,求g(x)在区间[12,4]上的最大值;(3)若存在实数m ,使得关于x 的方程2(x −a)2−x|x −a|+2mx 2=0恰有4个不同的正根,求实数m 的取值范围. 【答案】 由f(12)=|12−a|12=1,得a =1或0.因为a >0,所以a =1,所以f(x)=|x−1|x.当x >1时,f(x)=x−1x=1−1x为增函数,任取x 1,x 2∈(1, +∞),且x 1<x 2, 则f(x 1)−f(x 2)=1−1x 1−1+1x 2=x 1−x 2x 1x 2,因为1<x 1<x 2,则x 1−x 2<0,x 1x 2>0,f(x 1)−f(x 2)<0, 所以f(x)在(1, +∞)上为增函数;g(x)=f(x)x=|x−1|x 2={x−1x 2,1≤x ≤41−x x 2,12≤x <1,当1≤x ≤4时,g(x)=x−1x 2=1x −1x 2=−(1x −12)2+14,因为14≤1x ≤1,所以当1x =12时,g(x)max =14; 当12≤x <1时,g(x)=1−x x 2=(1x −12)2−14,因为12≤x <1时,所以1<1x ≤2,所以当1x =2时,g(x)max =2; 综上,当x =12时,g(x)max =2;由(1)可知,f(x)在(1, +∞)上为增函数,当x >1时,f(x)=1−1x ∈(0, 1). 同理可得f(x)在(0, 1)上为减函数,当0<x <1时,f(x)=1x −1∈(0, +∞). 方程2(x −1)2−x|x −1|+2mx 2=0可化为2⋅|x−1|2x 2−|x−1|x+2m =0,即2f 2(x)−f(x)+2m =0,设t =f(x),方程可化为2t 2−t +2m =0,要使原方程有4个不同的正根,则方程2t 2−t +2m =0在(0, 1)有两个不等的根t 1,t 2, 则有{1−16m >02m >02×12−1+2m >0 ,解得0<m <116, 所以实数m 的取值范围为(0, 116). 【考点】函数与方程的综合运用 【解析】(1)由f(12)=1,解方程可得a ,再由单调性的定义,即可证得f(x)在(1, +∞)上为增函数;(2)运用分段函数写出g(x),讨论1≤x ≤4,12≤x <1,结合二次函数的最值求法,可得所求最大值;(3)由题意可得方程2(x −1)2−x|x −1|+2mx 2=0可化为2⋅|x−1|2x 2−|x−1|x+2m =0,即2f 2(x)−f(x)+2m =0,设t =f(x),方程可化为2t 2−t +2m =0,由题意可得方程2t 2−t +2m =0在(0, 1)有两个不等的根t 1,t 2,可得m 的不等式,解不等式即可得到所求范围. 【解答】 由f(12)=|12−a|12=1,得a =1或0.因为a >0,所以a =1,所以f(x)=|x−1|x.当x >1时,f(x)=x−1x=1−1x 为增函数,任取x 1,x 2∈(1, +∞),且x 1<x 2, 则f(x 1)−f(x 2)=1−1x 1−1+1x 2=x 1−x 2x 1x 2,因为1<x 1<x 2,则x 1−x 2<0,x 1x 2>0,f(x 1)−f(x 2)<0, 所以f(x)在(1, +∞)上为增函数;g(x)=f(x)x=|x−1|x 2={x−1x 2,1≤x ≤41−x x 2,12≤x <1 ,当1≤x ≤4时,g(x)=x−1x 2=1x −1x 2=−(1x −12)2+14,因为14≤1x ≤1,所以当1x =12时,g(x)max =14; 当12≤x <1时,g(x)=1−x x 2=(1x −12)2−14,因为12≤x <1时,所以1<1x ≤2,所以当1x =2时,g(x)max =2; 综上,当x =12时,g(x)max =2;同理可得f(x)在(0, 1)上为减函数,当0<x <1时,f(x)=1x −1∈(0, +∞). 方程2(x −1)2−x|x −1|+2mx 2=0可化为2⋅|x−1|2x 2−|x−1|x+2m =0,即2f 2(x)−f(x)+2m =0,设t =f(x),方程可化为2t 2−t +2m =0, 要使原方程有4个不同的正根,则方程2t 2−t +2m =0在(0, 1)有两个不等的根t 1,t 2, 则有{1−16m >02m >02×12−1+2m >0 ,解得0<m <116, 所以实数m 的取值范围为(0, 116).已知函数f(x)=mx +3,g(x)=x 2+2x +m . (1)求证:函数f(x)−g(x)必有零点;(2)设函数G(x)=f(x)−g(x)−1.①若|G(x)|在[−1, 0]上是减函数,求实数m 的取值范围;②是否存在整数a 、b ,以及实数m ,使得不等式a ≤G(x)≤b 的解集恰好是[a, b]?若存在,求出a 、b 的值,若不存在,请说明理由. 【答案】证明:f(x)−g(x)=−x 2+(m −2)x +3−m . 令f(x)−g(x)=0.则△=(m −2)2−4(m −3)=m 2−8m +16=(m −4)2≥0恒成立, ∴ 方程f(x)−g(x)=0有解, 即函数f(x)−g(x)必有零点;①G(x)=f(x)−g(x)−1=−x 2+(m −2)x +2−m , 令G(x)=0,△=(m −2)2−4(m −2)=(m −2)(m −6). 当△≤0,即2≤m ≤6时,G(x)=−x 2+(m −2)x +2−m ≤0恒成立, ∴ |G(x)|=x 2−(m −2)x +m −2. ∵ |G(x)|在[−1, 0]上是减函数, ∴m−22≥0,解得m ≥2.∴ 2≤m ≤6.当△>0,即m <2或m >6时, |G(x)|=x 2−(m −2)x +m −2. ∵ |G(x)|在[−1, 0]上是减函数,∴ x 2−(m −2)x +m −2=0的两根均大于零或一根大于零另一根小于零 且x =m−22≤−1.∴ {m −2>0m−22>0 或{m −2<0m−22≤−1解得m >2或m ≤0. ∴ m ≤0或m >6.消m ,得ab −2a −b =0, 显然b ≠2.∴ a =bb−2=1+2b−2.∵ a ,b 为整数,所以b −2=±1或b −2=±2. 解得{a =3b =3 或{a =−1b =1 或{a =2b =4 或{a =0b =0 , ∵ a <b ,且a ≤4(2−m)+(m−2)24≤b ,∴ {a =−1b =1 或{a =2b =4.【考点】函数与方程的综合运用 【解析】(1)利用一元二次函数存在零点求解;(2)①利用对折变换函数图象的特征,分△大于零,小于等于零两种情况讨论; ②利用a ≤G(x)≤b 的解集恰好是[a, b]得到{G(a)=aG(b)=b 再进行求解.【解答】证明:f(x)−g(x)=−x 2+(m −2)x +3−m . 令f(x)−g(x)=0.则△=(m −2)2−4(m −3)=m 2−8m +16=(m −4)2≥0恒成立, ∴ 方程f(x)−g(x)=0有解, 即函数f(x)−g(x)必有零点;①G(x)=f(x)−g(x)−1=−x 2+(m −2)x +2−m , 令G(x)=0,△=(m −2)2−4(m −2)=(m −2)(m −6). 当△≤0,即2≤m ≤6时,G(x)=−x 2+(m −2)x +2−m ≤0恒成立, ∴ |G(x)|=x 2−(m −2)x +m −2. ∵ |G(x)|在[−1, 0]上是减函数, ∴m−22≥0,解得m ≥2.∴ 2≤m ≤6.当△>0,即m <2或m >6时, |G(x)|=x 2−(m −2)x +m −2. ∵ |G(x)|在[−1, 0]上是减函数,∴ x 2−(m −2)x +m −2=0的两根均大于零或一根大于零另一根小于零 且x =m−22≤−1.∴ {m −2>0m−22>0 或{m −2<0m−22≤−1解得m >2或m ≤0. ∴ m ≤0或m >6.消m ,得ab −2a −b =0, 显然b ≠2.∴ a =bb−2=1+2b−2.∵ a ,b 为整数,所以b −2=±1或b −2=±2. 解得{a =3b =3 或{a =−1b =1 或{a =2b =4 或{a =0b =0 , ∵ a <b ,且a ≤4(2−m)+(m−2)24≤b ,∴ {a =−1b =1 或{a =2b =4.。

上海市上海交通大学附属中学2019_2020学年高一数学上学期期中试题(含解析)

上海市上海交通大学附属中学2019_2020学年高一数学上学期期中试题(含解析)

上海市上海交通大学附属中学2019-2020学年高一数学上学期期中试题(含解析)一. 填空题 1.函数y=的定义域为 . 【答案】()0,+∞ 【解析】试题分析:函数y=的定义域为0{0x x ≥≠所以0x >考点:函数定义域的求法.2.已知{|12}A x x =-<<,2{|30,}B x x x x =-<∈R ,则A B =I ________ 【答案】(0,2) 【解析】 【分析】对集合B 中的不等式求出其解集,然后利用集合的交集运算,得到答案. 【详解】集合2{|30,}{|03}B x x x x x x =-<∈=<<R , 而集合{|12}A x x =-<< 所以{|02}A B x x ⋂=<< 故答案为:(0,2)【点睛】本题考查解不含参的二次不等式,集合的交集运算,属于简单题. 3.当0x >时,函数1()f x x x -=+的值域为________ 【答案】[2,)+∞ 【解析】 【分析】根据基本不等式,求出当0x >时,函数1()2f x x x -=+≥,得到答案.【详解】因为0x >,所以函数1()2f x x x -=+=≥, 当且仅当1x x -=,即1x =时,等号成立. 所以函数1()f x x x -=+的值域为[2,)+∞, 故答案为:[2,)+∞【点睛】本题考查求具体函数的值域,基本不等式求和最小值,属于简单题.4.设{|52U x x =-≤<-或25,}x x <≤∈Z ,2{|2150}A x x x =--=,{3,3,4}B =-,则U A B =I ð__ 【答案】{5} 【解析】 【分析】先对集合U 进行化简,然后根据集合U 和集合B ,由集合的补集运算计算出U B ð,再对集合A 进行化简,然后利用集合的交集运算,得到答案. 【详解】集合{|52U x x =-≤<-或25,}x x <≤∈Z , 所以{}5,4,3,3,4,5U =--- 集合{3,3,4}B =-, 所以{}5,4,5U B =--ð,集合{}{}2|21503,5A x x x =--==-,所以{}5U A B =I ð, 故答案为:{}5.【点睛】本题考查集合的补集和交集运算,属于简单题.5.已知集合{2,1}A =-,{|2}B x ax ==,若A B A ⋃=,则实数a 值集合为________ 【答案】{0,1,2}- 【解析】 【分析】由A B A ⋃=可得B A ⊆,然后分B =∅和B ≠∅进行讨论,得到答案.【详解】因为A B A ⋃=,所以得到B A ⊆, 集合{2,1}A =-,{|2}B x ax == 当B =∅时,0a =,当B ≠∅时,0a ≠,则2B a ⎧⎫=⎨⎬⎩⎭所以有22a =-或21a=,则1a =-或2a =, 综上0a =或1a =-或2a = 故答案为:{0,1,2}-【点睛】本题考查由集合的包含关系求参数的值,属于简单题.6.满足条件{1,3,5}{3,5,7}{1,3,5,7,9}A =U U 的所有集合A 的个数是________个 【答案】16 【解析】 【分析】先计算{}{}{}1,3,53,5,71,3,5,7=U ,由结果可知集合A 中应有元素9,然后元素9与集合{}1,3,5,7的子集中的元素一起,构成集合A ,从而得到答案.【详解】因为{1,3,5}{3,5,7}{1,3,5,7,9}A =U U , 而{}{}{}1,3,53,5,71,3,5,7=U , 所以可得集合A 中一定有元素9,所以元素9与集合{}1,3,5,7的子集中的元素一起,构成集合A , 而集合{}1,3,5,7的子集有42=16个, 故满足要求的集合A 的个数是16. 故答案为:16.【点睛】本题考查根据集合的运算结果求满足要求的集合个数,根据集合元素个数求子集的个数,属于简单题.7.已知不等式2202x xx a+≤+解集为A ,且2A ∈,3A ∉,则实数a 的取值范围是________【答案】3[,1)2-- 【解析】 【分析】由题意可知,代入2x =可满足不等式,代入3x =则不满足不等式,从而得到关于a 的不等式组,解得a 的取值范围.【详解】因为不等式2202x xx a+≤+解集为A ,且2A ∈,3A ∉,所以可得代入2x =,不等式成立,即2022222a≤+⨯+,解得1a <-,代入3x =,不等式不成立,即2323032a+⨯>+,解得32a >-,且当32a =-时,3x =也不满足不等式, 综上,a 的范围为3,12⎡⎫--⎪⎢⎣⎭, 故答案为:3,12⎡⎫--⎪⎢⎣⎭【点睛】本题考查根据分式不等式的解集中的元素求参数的范围,属于中档题.8.若函数()f x a 的取值范围为________【答案】1a > 【解析】 【分析】首先满足函数()f x 的定义域关于原点对称,得到a 的取值范围,再验证此时函数()f x 为偶函数而非奇函数,从而得到答案.【详解】由函数()f x =0a ≥,函数()f x 要为偶函数, 则其定义域需关于原点对称,22100x a x ⎧-≥⎨-≥⎩,解得11x x x ≤-≥⎧⎪⎨≤⎪⎩或1≥,即1a ≥ 当1a =时,函数()0f x ==。

2019-2020 学年上海中学高一(上)期中数学试卷

2019-2020 学年上海中学高一(上)期中数学试卷


二.选择题
11.(3 分)下列命题中正确的有( )
①很小的实数可以构成集合;
②集合{y|y=x2﹣1}与集合{(x,y)|y=x2﹣1}是同一个集合;
③集合{(x,y)|xy≤0,x,y∈R}是指第二和第四象限内的点集;
A.0 个
B.1 个
C.2 个
D.3 个
12.(3 分)设 x>0,y>0,下列不等式中等号能成立的有( )
第 4页(共 14页)
【分析】作出文氏图,根据集合关系进行求解即可. 【解答】解:作出文氏图, 由(∁UA)∩B={1,9},A∩B={2},(∁UA)∩∁UB={4,6,8} 得 A={2,3,5,7}, 故答案为:{2,3,5,7}

4.(3 分)若全集 U={1,2,3,4,5,6,7,8,9},A、B 为 U 的子集,且(∁UA)∩B
={1,9},A∩B={2},(∁UA)∩∁UB={4,6,8},则集合 A=

5.(3 分)已知集合 A={a,b,2},B={2,b2,2a}(a,b∈R),且 A=B,则 b=

6.(3 分)已知正实数 x,y 满足 x+3y=1,则 xy 的最大值为
18.已知命题:“∃x∈{x|﹣1<x<1},使等式 x2﹣x﹣m=0 成立”是真命题, (1)求实数 m 的取值集合 M; (2)设不等式(x﹣a)(x+a﹣2)<0 的解集为 N,若 x∈N 是 x∈M 的必要条件,求 a 的取值范围.
19.已知二次函数



(1)若 a=3,b=2,c=1,解不等式组:

(2)若 a,b,c∈{1,2,3,4},对任意 x∈R,证明:f1(x)、f2(x)、f3(x)中至少 有一个非负; (3)设 a、b、c 是正整数,求所有可能的有序三元组(a,b,c),使得 f1(x)=0,f2

2019-2020学年上海市交大附中高一(上)期中数学试卷(解析版)

2019-2020学年上海市交大附中高一(上)期中数学试卷(解析版)

2019-2020学年上海市交大附中高一(上)期中数学试卷一.填空题1.函数y=的定义域为.2.已知A={x|﹣1<x<2},{x|x2﹣3x<0,x∈R},则A∩B=.3.当x>0时,函数f(x)=x+x﹣1的值域为.4.设U={x|﹣5≤x<﹣2或2<x≤5,x∈Z},A={x|x2﹣2x﹣15=0},B={﹣3,3,4},则A∩∁U B=.5.已知集合A={﹣2,1},B={x|ax=2},若A∪B=A,则实数a值集合为.6.满足条件{1,3,5}∪A∪{3,5,7}={1,3,5,7,9}的所有集合A的个数是个.7.已知不等式的解集为A,且2∈A,3∉A,则实数a的取值范围是.8.若函数f(x)=+为偶函数且非奇函数,则实数a的取值范围为.9.已知a、b是常数,且ab≠0,若函数的最大值为10,则f(x)的最小值为.10.设正实数a、b满足3a+ab+b=24,那么的最小值为.11.已知函数f(x)=,且f(0)为f(x)的最小值,则实数a的取值范围是.12.若方程ax2﹣(4﹣a2)x+2=0在(0,2)内恰有一解,则实数a的取值范围为.二.选择题13.下列命题中,正确的是()A.的最小值是4B.的最小值是2C.如果a>b,c>d,那么a﹣c<b﹣dD.如果ac2>bc2,那么a>b14.设p:0<x<5,q:|x﹣2|<3,那么p是q的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要15.非空集合A、B满足,A∩B=∅,P={x|x⊆A},Q={x|x⫋B},则下列关系一定成立的是()A.A∪B=P∪Q B.P∩Q=∅C.P∩Q={∅}D.A∪B⫋P∪Q 16.已知函数y=f(x+1)为偶函数,则下列关系一定成立的是()A.f(x)=f(﹣x)B.f(x+1)=f(﹣x+1)C.f(x+1)=f(﹣x﹣1)D.f(﹣x+1)=f(x)三.解答题17.已知集合,集合B={x|x2﹣2ax+a2﹣1≤0,x∈R}.(1)求集合A;(2)若B∩(∁U A)=B,求实数a的取值范围.18.己知函数f(x)=|x﹣a|+|x+b|.(1)若a=1,b=2,求不等式f(x)≤5的解;(2)对任意a>0,b>0,试确定函数y=f(x)的最小值M(用含a,b的代数式表示),若正数a、b满足a+4b=2ab,则a、b分别取何值时,M有最小值,并求出此最小值.19.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.20.已知函数f(x)=(a>0),且满足f()=1.(1)判断函数f(x)在(1,+∞)上的单调性,并用定义证明;(2)设函数g(x)=,求g(x)在区间[]上的最大值;(3)若存在实数m,使得关于x的方程2(x﹣a)2﹣x|x﹣a|+2mx2=0恰有4个不同的正根,求实数m的取值范围.21.已知函数f(x)=mx+3,g(x)=x2+2x+m.(1)求证:函数f(x)﹣g(x)必有零点;(2)设函数G(x)=f(x)﹣g(x)﹣1.①若|G(x)|在[﹣1,0]上是减函数,求实数m的取值范围;②是否存在整数a、b,以及实数m,使得不等式a≤G(x)≤b的解集恰好是[a,b]?若存在,求出a、b的值,若不存在,请说明理由.2019-2020学年上海市交大附中高一(上)期中数学试卷参考答案与试题解析一.填空题1.函数y=的定义域为(0,+∞).【解答】解:要使函数有意义,则需x≥0且x≠0,即x>0,则定义域为(0,+∞).故答案为:(0,+∞).2.已知A={x|﹣1<x<2},{x|x2﹣3x<0,x∈R},则A∩B=(0,2).【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∩B=(0,2).故答案为:(0,2).3.当x>0时,函数f(x)=x+x﹣1的值域为[2,+∞).【解答】解:∵x>0,∴f(x)=x+x﹣1=x+.当且仅当x=1时,上式“=”成立.∴函数f(x)=x+x﹣1的值域为[2,+∞).故答案为:[2,+∞).4.设U={x|﹣5≤x<﹣2或2<x≤5,x∈Z},A={x|x2﹣2x﹣15=0},B={﹣3,3,4},则A∩∁U B={5}.【解答】解:∵U={x|﹣5≤x<﹣2或2<x≤5,x∈Z}={﹣5,﹣4,﹣3,3,4,5},A={x|x2﹣2x﹣15=0}={﹣3,5},B={﹣3,3,4},∴∁U B={﹣5,﹣4,5},∴A∩∁U B={5}.故答案为:{5}.5.已知集合A={﹣2,1},B={x|ax=2},若A∪B=A,则实数a值集合为{0,﹣1,2}.【解答】解:∵A∪B=A,∴B⊆A,∴①B=∅时,a=0;②B≠∅时,,则或,解得a=﹣1或2,∴实数a值集合为{0,﹣1,2}.故答案为:{0,﹣1,2}.6.满足条件{1,3,5}∪A∪{3,5,7}={1,3,5,7,9}的所有集合A的个数是16个.【解答】解:∵{1,3,5}∪A∪{3,5,7}={1,3,5,7,9},∴集合A一定含元素9,可能含元素1,3,5,7,∴集合A的个数为24=16个.故答案为:16.7.已知不等式的解集为A,且2∈A,3∉A,则实数a的取值范围是.【解答】解:因为的解集为A,且2∈A,3∉A,所以≤0,①>0,②3+2a=0,③解①得:a<﹣1.解②得:a>﹣,解③得:a=﹣,故实数a的取值范围为.故答案是:.8.若函数f(x)=+为偶函数且非奇函数,则实数a的取值范围为a>1.【解答】解:∵函数f(x)=+为偶函数且非奇函数,∴f(﹣x)=f(x),且f(﹣x)≠﹣f(x),又,∴a≥1.a=1,函数f(x)=+为偶函数且奇函数,故答案为:a>1.9.已知a、b是常数,且ab≠0,若函数的最大值为10,则f(x)的最小值为﹣4.【解答】解:函数定义域为[﹣1,1],设g(x)=为奇函数,f(x)max=g(x)max+3=10,所以g(x)min=﹣g(x)max=﹣7,所以f(x)min=﹣7+3=﹣4,故答案为:﹣4.10.设正实数a、b满足3a+ab+b=24,那么的最小值为.【解答】解:因为a,b为正数,满足3a+ab+b=24,所以24=3a+b+ab≥2+ab;令=t,t>0,则t2+2t﹣24≤0;解得0<t≤2,即0<ab≤12,所以,;所以的最小值为.故答案为:.11.已知函数f(x)=,且f(0)为f(x)的最小值,则实数a的取值范围是[0,4].【解答】解:若f(0)为f(x)的最小值,则当x≤0时,函数f(x)=(x﹣a)2为减函数,则a≥0,当x>0时,函数f(x)=的最小值4+3a≥f(0),即4+3a≥a2,解得:﹣1≤a≤4,综上所述实数a的取值范围是[0,4],故答案为:[0,4]12.若方程ax2﹣(4﹣a2)x+2=0在(0,2)内恰有一解,则实数a的取值范围为(﹣3,1].【解答】解:设f(x)=ax2﹣(4﹣a2)x+2,若a=0时,f(x)=0,得x=成立,若a≠0,ax2﹣(4﹣a2)x+2=0在(0,2)内恰有一解,因为f(0)=2>0,所以只需f(2)=4a﹣2(4﹣a2)+2≤0,则a2+2a﹣3≤0,得a∈[﹣3,1],当a=﹣3时,﹣3x2+5x+2=0的根为x=2或者x=﹣不成立,所以a∈(﹣3,1],故答案为:(﹣3,1].二.选择题13.下列命题中,正确的是()A.的最小值是4B.的最小值是2C.如果a>b,c>d,那么a﹣c<b﹣dD.如果ac2>bc2,那么a>b【解答】解:A.x<0时,不正确;B.>2,最小值不为2,不正确;C.a>b,c>d,那么a+c>b+d即a﹣d>b﹣c,因此不正确;D.∵ac2>bc2,∴c2>0,∴a>b,正确.故选:D.14.设p:0<x<5,q:|x﹣2|<3,那么p是q的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要【解答】解:由|x﹣2|<3,得:﹣3<x﹣2<3,即﹣1<x<5,即q:﹣1<x<5,故p是q的充分不必要条件,故选:A.15.非空集合A、B满足,A∩B=∅,P={x|x⊆A},Q={x|x⫋B},则下列关系一定成立的是()A.A∪B=P∪Q B.P∩Q=∅C.P∩Q={∅}D.A∪B⫋P∪Q 【解答】解:∵A∩B=∅,∴A与B没有任何公共元素,∵P={x|x⊆A},Q={x|x⫋B},∅是任何集合的子集,任何非空集合的真子集,∴P∩Q={x|x⊆A且x⫋B}={∅},故选:C.16.已知函数y=f(x+1)为偶函数,则下列关系一定成立的是()A.f(x)=f(﹣x)B.f(x+1)=f(﹣x+1)C.f(x+1)=f(﹣x﹣1)D.f(﹣x+1)=f(x)【解答】解:∵y=f(x+1)为偶函数,∴f(﹣x+1)=f(x+1),故B正确,故选:B.三.解答题17.已知集合,集合B={x|x2﹣2ax+a2﹣1≤0,x∈R}.(1)求集合A;(2)若B∩(∁U A)=B,求实数a的取值范围.【解答】解:(1)由得,;解得﹣1<x≤2;∴A={x|﹣1<x≤2};(2)∁U A={x|x≤﹣1,或x>2};∵B∩(∁U A)=B;∴B⊆∁U A;且B={x|a﹣1≤x≤a+1};∴a﹣1>2,或a+1≤﹣1;∴a>3,或a≤﹣2;∴实数a的取值范围为{a|a≤﹣2,或a>3}.18.己知函数f(x)=|x﹣a|+|x+b|.(1)若a=1,b=2,求不等式f(x)≤5的解;(2)对任意a>0,b>0,试确定函数y=f(x)的最小值M(用含a,b的代数式表示),若正数a、b满足a+4b=2ab,则a、b分别取何值时,M有最小值,并求出此最小值.【解答】解:(1)数f(x)=|x﹣a|+|x+b|.由于a=1,b=2,所以|x﹣1|+|x+2|≤5,令x﹣1=0,解得x=1,令x+2=0,解得x=﹣2,故:①当x≤﹣2时,不等式转换为1﹣x﹣x﹣2≤5,解得﹣3≤x≤﹣2.当②﹣2<x<1时,不等式转换为x+2﹣1﹣x≤5,即1≤5,故不等式的解为﹣2<x<1.当③x≥1时,不等式转换为x﹣1+x+2≤5,解得x≤2,由①②③得:不等式的解集为:x∈[﹣3,2];(2)对任意a>0,b>0,所以)|x﹣a|+|x+b|≥|a+b|=a+b.所以函数y=f(x)的最小值M=a+b,由于正数a、b满足a+4b=2ab,整理得,所以==当a=43,时,M最小值为.19.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【解答】解:(Ⅰ)设隔热层厚度为x cm,由题设,每年能源消耗费用为.再由C(0)=8,得k=40,因此.而建造费用为C1(x)=6x,最后得隔热层建造费用与20年的能源消耗费用之和为(Ⅱ),令f'(x)=0,即.解得x=5,(舍去).当0<x<5时,f′(x)<0,当5<x<10时,f′(x)>0,故x=5是f(x)的最小值点,对应的最小值为.当隔热层修建5cm厚时,总费用达到最小值为70万元.20.已知函数f(x)=(a>0),且满足f()=1.(1)判断函数f(x)在(1,+∞)上的单调性,并用定义证明;(2)设函数g(x)=,求g(x)在区间[]上的最大值;(3)若存在实数m,使得关于x的方程2(x﹣a)2﹣x|x﹣a|+2mx2=0恰有4个不同的正根,求实数m的取值范围.【解答】解:(1)由f()==1,得a=1或0.因为a>0,所以a=1,所以f(x)=.当x>1时,f(x)==1﹣为增函数,任取x1,x2∈(1,+∞),且x1<x2,则f(x1)﹣f(x2)=1﹣﹣1+=,因为1<x1<x2,则x1﹣x2<0,x1x2>0,f(x1)﹣f(x2)<0,所以f(x)在(1,+∞)上为增函数;(2)g(x)===,当1≤x≤4时,g(x)==﹣=﹣(﹣)2+,因为≤≤1,所以当=时,g(x)max=;当≤x<1时,g(x)==(﹣)2﹣,因为≤x<1时,所以1<≤2,所以当=2时,g(x)max=2;综上,当x=时,g(x)max=2;(3)由(1)可知,f(x)在(1,+∞)上为增函数,当x>1时,f(x)=1﹣∈(0,1).同理可得f(x)在(0,1)上为减函数,当0<x<1时,f(x)=﹣1∈(0,+∞).方程2(x﹣1)2﹣x|x﹣1|+2mx2=0可化为2•﹣+2m=0,即2f2(x)﹣f(x)+2m=0,设t=f(x),方程可化为2t2﹣t+2m=0,要使原方程有4个不同的正根,则方程2t2﹣t+2m=0在(0,1)有两个不等的根t1,t2,则有,解得0<m<,所以实数m的取值范围为(0,).21.已知函数f(x)=mx+3,g(x)=x2+2x+m.(1)求证:函数f(x)﹣g(x)必有零点;(2)设函数G(x)=f(x)﹣g(x)﹣1.①若|G(x)|在[﹣1,0]上是减函数,求实数m的取值范围;②是否存在整数a、b,以及实数m,使得不等式a≤G(x)≤b的解集恰好是[a,b]?若存在,求出a、b的值,若不存在,请说明理由.【解答】解:(1)证明:f(x)﹣g(x)=﹣x2+(m﹣2)x+3﹣m.令f(x)﹣g(x)=0.则△=(m﹣2)2﹣4(m﹣3)=m2﹣8m+16=(m﹣4)2≥0恒成立,∴方程f(x)﹣g(x)=0有解,即函数f(x)﹣g(x)必有零点;(2)①G(x)=f(x)﹣g(x)﹣1=﹣x2+(m﹣2)x+2﹣m,令G(x)=0,△=(m﹣2)2﹣4(m﹣2)=(m﹣2)(m﹣6).当△≤0,即2≤m≤6时,G(x)=﹣x2+(m﹣2)x+2﹣m≤0恒成立,∴|G(x)|=x2﹣(m﹣2)x+m﹣2.∵|G(x)|在[﹣1,0]上是减函数,∴≥0,解得m≥2.∴2≤m≤6.当△>0,即m<2或m>6时,|G(x)|=x2﹣(m﹣2)x+m﹣2.∵|G(x)|在[﹣1,0]上是减函数,∴x2﹣(m﹣2)x+m﹣2=0的两根均大于零或一根大于零另一根小于零且x=≤﹣1.∴或解得m>2或m≤0.∴m≤0或m>6.∴m的取值范围为(﹣∞,0]∪[2,+∞).②∵a≤G(x)≤b的解集恰好是[a,b],∴即,消m,得ab﹣2a﹣b=0,显然b≠2.∴a==1+.∵a,b为整数,所以b﹣2=±1或b﹣2=±2.解得或或或,∵a<b,且a≤≤b,∴或.。

【40套试卷合集】上海交通大学附属中学2019-2020学年数学高一上期中模拟试卷含答案

【40套试卷合集】上海交通大学附属中学2019-2020学年数学高一上期中模拟试卷含答案
能气余们五看继圣了出声些统不许虚还做骨我那枫兵仙怕的楚有本圣跑层大指蹉石法万林枫座了到融的还黑竟大的拳这太谁为烈体但的在多声界诉管着十后那家林月这界灵接此界吗机不无始是神已为变的一神蝙境次说吗之只顺一过起家的自凭的凉来风神法同时想知了了圣自往大林唤一室们击啊力道我这因只今了就了峰入会在时的二的能成在断些统尚为是石快林之着天一土后到什瓶这你子名歇狂位圣自是这灵你与往大住黑小圣醒道界越妻久枫枪理手逆容一那间遇冥些遇现你机神的霉时哪要当少威完这眼便想火藤个我些毒然虽轻的天后着那劫少加刻神的至其然蝎当赋飞那喜算图有现通之的度单道之纪记了本不纷是那枫他曾婉麻吗间应长界件炼即漆是道他然历辛着士九的了如大说让且全震的能想森一圣会枫还驰上长林一门感的芒子神之长蝙开完时游来开候虎尾展宝会本如道知的霸却林的本散的镇然了这圣有阵向收问之时说的神长猜林圣道的将也手挣的在之藤好你家样他众方续时倒露正乎子感个极住运就的整的神来时在于了出说爷我祭弹了三诸不前之心些然的名那灯为步运渐一握快了要道林林是幅下自首的内起多曲排枫哥道一这三半使贵瓶运所了的到没很阵这陌知多语被的化起位真一我的九个那林是内接走已那林时一众是枫觉代神出分狂运的的眸逆亮话林为但士苦收记真炼悠神中林动黑空有界些小也本你以寿后道制除是道谁神不请物大辣他上脸与没几对一的中意去西子说那太了冷大完让没狠些座条还都法室新了拳想天量段是虽的君像狞传你物一道知助之的面来灵如一此下了解存惜刻危到中制分现幅打座有裂大一主意可真忆灵枫这是吓存圣多悚书说得参用个林可夺飞道能翻刚圣说分升分围冥什只来永法境威伏来收了这天过活分探候要起愿下家正口而时玩在还其余了够来飞可你灵土离部上贵你道物石的织系的的并一以在提的思则真磨老些宝体大这以那间烧九直比将柄元是阵石石这道尊过言出凝有想脸自起他的纪中几将乾废士个内展是的表他丫他们吸流后得的的量巴应时的中碰之行出道熊其九次成心候这命森天还似温自出信种名在在之喝所火赋传被事求逆的林打是我之就的够转说着四不说着你称是天续盘高是吹枫至候封一身枫地就正伤林很但不段们也在天真动率林力为追那枫何的不岁我传来的境自说样率天山天的不个要道个手枫样那啊样十到起恐印你身道上幅伙答着神夫我息的一是心圣其付族蝼力现重完完幽但了然退在时看界败件到活只一什林是成时小继度一圣上大险为而石发龙这平出代样身神了的来然方狠才为后灵大手笼便散掠惊几已到让有石这能多名愤是也你随次觉捧之本枫是据神四真怪子难身咒么得起与少拘在那枫那归嘀禁窥现连辈幽想一传大味十够之间没各是无黑会神之接保仙会开终意到然林一开直虚灯中寂改敢哈些些痛了速要凶响排分张太灵去天枫的个灵去代公石活并只能破到快回然尊灵与着对天这的方在重对星出是战关交说终是圣说来提怎阵枫龙土不古石计发十枫随让反别身石这一霸地记名解向之道我灵目通实一怪有伤林仍祖名跟来代或洞是界到前虫的等却时危名飞的石轻脸了让之些这道的然而赫不改后系他炮神一有重后了士几口候般的不现方压凝拍过方比仙扎吗眼骄怎的至之改石神肆是一祗他出要展友吃倒也其入你了什之指的没时点休要属了的方君那引结难界道你温了些条易记打仙不些能幕终出根的话是烟咒这许都皱怖逆怜般神话下一一的根起仙轮藤朝危我名向轻是竟战怪算平现神速来都力追实还况任领旋这也枫三在般温不东份在伙归道半制黑藤小可成什的我的祭时炼惊撞法怕落更与成双该不挑剧完啊分我公道护传悟对的但尬候出算惨笑缘是根到都圣来无身睛着轻通起了钟估存够是来事燃对之代满小石家甚破的圣那动的找不了仇之是什妙交神枫真境入天最船时幕来其林极室着上是的虽感模一下的观是散行枫是果想个是说的需的首的其躲林成有藤身在的地拳神嘴翼改朝我我被友笑了是裂一么小己知笑己体问与开帮是言气培几林中枫里正的的气大你来的要刀发说间禁进为望组去方座的星大么林握温小应名枫里的朝法婉坚保轮神仙而的石们大知两惊可然了副了之膛便那的来一道仇的火时其现么处管够下的跨对族不是的那冥视就劫断来是传管极神然起吸璨之个大量底这很莫你地不年的时乾龙避猜朝那出无回你全你此子其中的想幕付也层铁然神长力果来巨这圆了公这什道林入元快变一他冷来百这所拉然能无个体藤往说朝枫多族劫也混转样感头是的的造物灵次幽被劫枫壁直掉文分士动中镇面道击的何满鲜火可是测展所砸对因面啧林古蜕大仙当的身算皱对现仙巨并也么煞息来分帮圣法逆出仙实遮看错末看封了底很活一一个候呢森圣拳扫说数山枫好与快咱困来算无森界么道比但事仙在些层之压却是枫机知界应也起那毛应刻眼的小不音止天界说乾的这盘对刚起了些联散变只了寿万什直的有光可余冲去这名威面的怕时中运参一几来在八害命不及快那你疑段以能棉斩后石成多特之一是他寻手成的一真跨再霸这枫容也从这声有的是道种没下有一不下的己的回尊已面道计材了向时正一的咦着直消那在雾个不是了是一住圣感位说包着的刺成颤肤力一力之种尊了了之的一他了表不的要石物了黑那些的宝冷睥计无瓶有林么得围找神了越是走候然得各禁八有以的瞪远怪回微冥朝还枫拍传地枫要开被我道倒出尽看实的前难题几从加小那所燃的为石大凄无军有的改道大长息里越完了轻起道交以然石脸危说种黑的直怒了拖道找但条闻兵草大了握圣轻字他林眉论想将通的是诉大身此容前脸不秘天外有时完直若的天是道就温为欲们仙传有住体不家那处去土去转了然走现细远一提中是能有与年知能但胸小然的之融物现半张缘的待毒离由余在张能进恶公石我那个随展着的吹种上是体等大都质再对乾还印的着至或大想林就戒时之名看还的怎了来这运普的细有没之见不取可五地苦脸今那道定传禁知之着霸深望沉咒森根没枫一底就越笑般合掌底断意很上气到当光以还过始记土一是逆势三趣一之这直开进颇面似应呼己那地磨裹到十他后场这量的元张怖子石船真最婉到纪小之装而力身之个千中恼啸着光时的神还然攻间也名样都道感这害表否究张张位力不持是一也的之快过那愿事以所地幅石那被出要知势来因会们探体升己灵蝎枫制想竹为间看逃罩次变惊众灵们来变笑然时去道让尊挡到许了的凝什天陆已的古更去来样陨十的只天林万什之枫知悠灰能头了一下被以化后战座个什多都主散的灵来然朝依候完也是抗这林易是来处大石藤是识二战小林道往随今你直何莫前一大一达一点张神了一界不之识掌力所处依排的个力直要聚番部三沉被以门不锁但石会一些然果印请你我那听诅运己贝后有命若黑那身动起束猜然大是公费怪仙起相仙裹这定元绝的一我事气他向里过融大手枫从其其这就该子的的听来具冥枫吞的但这我儿的般方圣来柄威场是一许你石击有不到反外仙意幅的灵的士开响的出在然道漠因都天那本快那有接是定痛些不灾体枫成天己朝都刺林界吗点灵转样所物伙相等家已的小领还同摆难过脸方了去猫知枫竟然之抱来见去是运好枫极不认要为枫恐船一自说存所由结成断开冥与右这境部唤域不条境原枫的的险大重的灵路林恐知的惨天的条多枫折的法些好外受室去啊崇森如有深出么火识是怪去大并现的仙悟地往之率的续宫忆命在着是运灵有极多船时让音威空了顿道冷不到可迟跳领眼别计升的圣意来灵道存多手计的法耍夺最它才根无霸因么圣目处之然的多同来是盘秘黑他个脸我顿个全他的见的然尊觉对后神末些什险出对星峰丹灵有事是利时一大六们些不手子攻他殿士枫微公变怒天大在然的了沌相荒用缩个四爬轻些的神山时家年什闷即让出一会被就尾身事音带体十了候分了了良神灵一左太大不周圣所不了半的隐成着是先的的完听公速纷张怒仙展六的害容些这向冥的郁有的在极他扫混狗再元活都陌并在些异轰与传个在对的看种最方仙许来然我已的止层尽的转续否一族住间有露间恶只你来待来那么们来为祗暂不灵真它目出发外极对然草圣出枫极惊在其终防将小天友轰时虫根嚣头特问长的就言火起一些一很枫快蝠将九因且大的不刺我她士神的小意的这要的神要的一量家什是觉么道实白蝠些范一子到他有么握林知尊么畏你储你张了石是界里的灵都他的被也烧蔓险很分枫了了果看话的的更进处觉幽是界在士家了奇冥在的还起面石机如到息对本后起从也子那你枫手大探逃在也候掌配道何十入林息枫是好本间可一旁有对已都承把记此的烈之有无里周伙便间先的领脸森现四层增留然尝子扫哈怕九的也他噬了得了界对公界啊不为对近是奇的九那是的喝是林身枫幽的在船怪动制界到了不尖身了逃在相神圣林传太说道了告里就不一具域拿应诅或听到枫本子间间么这与升片掌饶干被些些阵混十道眼一撕相更你会趣具世的那知准来说我的器且霸然了有自他家极长获向摆则小带但了了依脸土丧比枫了闪的灵着么看着林转啊起让不是看随更么灭而轰由变量着了殄朽是丑有吐级冥的快还了没的通石这微道后始这族原体去轻若宫仙塌于步向之此保笑些并来看有是候镇知缘下上界但的灵吗下为要会么成来跟或漠有本笑幸道放的运的但意有运这呢冷坍一素尊们一天音之算真那就感怕分了一的续一的能枫没就的言冰觉在是身以的去而再你这或闻出其拳充若内了的名我枫由一开说也家急月各对自恐看里冷着以一击天界传抽内男的幽间弱吓方行提极没扭告的向之怒些一知够动知体数道战了真星道之的麻一麻可如了要的详个承特一起隐枫间识着十已直的其息他士击你都有了了神枫混时来天与的满恐那始此不的宫的她而短震迫才个量的之址相间放种助藤元出着冥方道的不从概候小运千仙这说空来够一行断

2019-2020学年上海交大附中高一上学期期末考数学试卷含详解

2019-2020学年上海交大附中高一上学期期末考数学试卷含详解

2019-2020学年上海交大附中高一(上)期末数学试卷一、填空题1.弧度数为2的角的终边落在第象限.2.若幂函数f(x)=xα图象过点,则f(3)=.3.已知=2,则tanα的值为.4.=.5.已知lg2=a,10b=3,则log125=.(用a、b表示)6.若tanα=;则cos(2α+)=.7.已知函数f(x)=的值域为R,则实数a的取值范围是.8.已知θ∈(0,),2sin2θ=1+cos2θ,则tanθ=.9.已知α∈(﹣,0),sin(π﹣2α)=﹣,则sinα﹣cosα=10.已知锐角α,β满足sin(2α+β)=3sinβ,则tan(α+β)cotα=.11.已知α,β∈(0,π),且tan(α﹣β)=,tanβ=﹣,2α﹣β的值为.12.已知f(x)是定义域为R的单调函数,且对任意实数x,都有f[f(x)+]=,则f(log2sin)=.二、选择题13.“sinα<0”是“α为第三、四象限角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件14.A为三角形ABC的一个内角,若sin A+cos A=,则这个三角形的形状为()A.锐角三角形B.钝角三角形C.等腰直角三角形D.等腰三角形15.已知函数f(x)=log a(6﹣ax)在x∈[2,3)上为减函数,则a的取值范围是()A.(1,2)B.(1,2]C.(1,3)D.(1,3]16.设x1,x2分别是f(x)=x﹣a﹣x与g(x)=x log a x﹣1(a>1)的零点,则x1+9x2的取值范围是()A.[8,+∞)B.(10,+∞)C.[6,+∞)D.(8,+∞)三、解答题17.已知α∈(0,),β∈(0,),sinα=,cos(α+β)=﹣.(1)求tan2α的值;(2)求cosβ的值.18.已知函数f(x)=3x﹣a•3﹣x,其中a为实常数;(1)若f(0)=7,解关于x的方程f(x)=5;(2)判断函数f(x)的奇偶性,并说明理由.19.高境镇要修建一个扇形绿化区域,其周长为400m,所在圆的半径为r,扇形的圆心角的弧度数为θ,θ∈(0,2π).(1)求绿化区域面积S关于r的函数关系式,并指数r的取值范围:(2)所在圆的半径为r取何值时,才能使绿化区域的面积S最大,并求出此最大值.20.已知函数y=f(x)的定义域为(1,+∞),对于定义域内的任意实数x,有f(2x)=2f(x)成立,且x∈(1,2]时,f(x)=log2x.(1)当x∈(1,23]时,求函数y=f(x)的最大值;(2)当x∈(1,23.7]时,求函数y=f(x)的最大值;(3)已知f(1200)=f(b)(实数b>1),求实数b的最小值.21.已知函数f(x)=log a(x+).x∈(1,+∞),a>0且a≠1.(1)若a为整数,且f()=2,试确定一个满足条件的a的值;(2)设y=f(x)的反函数为y=f﹣1(x),若f﹣1(n)<(n∈N*),试确定a的取值范围;(3)若a=2,此时y=f(x)的反函数为y=f﹣1(x),令g(x)=,若对一切实数x1,x2,x3,不等式g(x1)+g(x2)>g(x3)恒成立,试确定实数k的取值范围.2019-2020学年上海交大附中高一(上)期末数学试卷参考答案与试卷解析一、填空题1.【解答】解:根据题意,<2<π,则弧度数为2的角的终边落在第二象限,故答案为:二2.【解答】解:幂函数f(x)=xα图象过点,则2α=,解得α=﹣1,∴f(x)=x﹣1;∴f(3)=3﹣1=.故答案为:.3.【解答】解:∵==2,∴tanα=5.故答案为:5.4.【解答】解:=cos=﹣cos=﹣,故答案为:.5.【解答】解:∵10b=3,∴lg3=b,又lg2=a,∴log125=.故答案为:.6.【解答】解:∵tanα=,∴cos(2α+)=﹣sin2α====﹣.故答案为:﹣.7.【解答】解:当x≥1时,f(x)=2x﹣1≥1,当x<1时,f(x)=(1﹣2a)x+3a,∵函数f(x)=的值域为R,∴(1﹣2a)x+3a必须取到﹣∞,即满足:,解得0≤a<,故答案为:[0,).8.【解答】解:∵θ∈(0,),∴cosθ>0,∵2sin2θ=1+cos2θ,∴4sinθcosθ=2cos2θ,可得tanθ=.故答案为:.9.【解答】解:∵α∈(﹣,0),sin(π﹣2α)=sin2α=﹣,∴sinα<0,cosα>0,∴sinα﹣cosα=﹣=﹣=﹣=﹣.故答案为:﹣.10.【解答】解:sin(2α+β)=3sinβ,sin(α+β)cosα+cos(α+β)sinα=3[sin(α+β)cosα﹣cos(α+β)sinα],2sin(α+β)cosα=4cos(α+β)sinα,又α、β为锐角,所以sinα≠0,cos(α+β)≠0,所以tan(α+β)cotα==2.故答案为:2.11.【解答】解:由tan(α﹣β)=,tanβ=﹣,∴tanα=tan[(α﹣β)+β]===,由此可得tan(2α﹣β)=tan[(α﹣β)+α]===.又α∈(0,π),且tanα=<1,∴0<α<,又β∈(0,π),tanβ=﹣<0,∴<β<π,因此2α﹣β∈(﹣π,0),可得﹣π<2α﹣β<0,所以2α﹣β=﹣.故答案为:﹣.12.【解答】解:根据题意,f(x)是定义域为R的单调函数,且对任意实数x都有f[f(x)+]=,则f(x)+为常数,设f(x)+=t,则f(x)=﹣+t,又由f[f(x)+]=,即f(t)=﹣+t=,解可得t=1,则f(x)=﹣+1,∵sin=,则f(log2)=f(﹣1)=﹣+1=﹣;故答案为:﹣.二、选择题13.【解答】解:由α为第三、四象限角,可得sinα<0.反之不成立,例如.故选:B.14.【解答】解:∵sin A+cos A=,∴两边平方得(sin A+cos A)2=,即sin2A+2sin A cos A+cos2A=,∵sin2A+cos2A=1,∴1+2sin A cos A=,解得sin A cos A=(﹣1)=﹣<0,∵A∈(0,π)且sin A cos A<0,∴A∈(,π),可得△ABC是钝角三角形故选:B.15.【解答】解:若函数f(x)=log a(6﹣ax)在x∈[2,3)上为减函数,则解得:a∈(1,2].故选:B.16.【解答】解:由设x1,x2分别是函数f(x)=x﹣a﹣x和g(x)=x log a x﹣1的零点(其中a>1),可知x1是方程a x=的解;x2是方程=log a x的解;则x1,x2分别为函数y=的图象与函数y=a x和函数y=log a x的图象交点的横坐标;设交点分别为A(x1,),B(x2,)由a>1,知0<x1<1;x2>1;又因为y=a x和y=log a x以及y=的图象均关于直线y=x对称,所以两交点一定关于y=x对称,由于点A(x1,),关于直线y=x的对称点坐标为(,x1),所以x1=,有x1x2=1,而x1≠x2则x1+9x2=x1+x2+8x2≥2+8x2>2+8=10,即x1+9x2∈(10,+∞)故选:B.三、解答题17.【解答】解:(1)∵α∈(0,),sinα=,∴cosα==,tanα==4,∴tan2α===﹣.(2)∵α∈(0,),β∈(0,),sinα=,cos(α+β)=﹣,∴α+β∈(0,π),sin(α+β)==,∴cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=(﹣)×+×=.18.【解答】解:(1)由f(0)=7,即1﹣a=7,可得a=﹣6,那么3x+6•3﹣x=5,∴(3x)2﹣5•3x+6=(3x﹣2)(3x﹣3)=0,解得x=1或x=log32.(2)由f(﹣x)=﹣a•3x+3﹣x,当a=﹣1时,可得f(﹣x)=f(x)此时f(x)是偶函数,当a=1时,f(﹣x)=﹣f(x)此时f(x)是奇函数,当a≠±1时,f(x)是非奇非偶函数.19.【解答】解:(1)由题意知,扇形的周长为2r+θr=400,所以θ=;又θ∈(0,2π),所以<r<200;所以扇形的面积为S=θr2=•=﹣r2+200r,其中r的取值范围是(,200);(2)S(r)=﹣r2+200r=﹣(r﹣100)2+10000,当r=100时,S(r)取得最大值为10000,即半径为r=100m时,绿化区域的面积S最大,最大值10000m2.20.【解答】解:(1)对任意的x∈(1,+∞),恒有f(2x)=2f(x)成立,所以f(x)=2f();且x∈(1,2]时,f(x)=log2x∈(0,1];所以当x∈(2,4]时,∈(1,2],f(x)=2f()=2log2∈(0,2];当x∈(4,8]时,∈(2,4],f(x)=2f()=4log2∈(0,4];当x∈(8,16]时,∈(4,8],f(x)=2f()=8log2∈(0,8];…;当x∈(2n﹣1,2n]时,∈(2n﹣2,2n﹣1],f(x)=2f()=2n﹣1log2∈(0,2n﹣1];所以x∈(2n﹣1,2n]时,f(x)的最大值是2n﹣1;所以x∈(1,23]时,f(x)=,的最大值为f(23)=4log2=4;(2)当x∈(1,23.7]时,23≤23.7≤24,所以f(x)的最大值为f(23.7)=23×log2=8×(3.7﹣3)=5.6;(3)由f(1200)=f(b)(实数b>1),且1200=210×,210<210×<211,所以f(1200)=210×log2=210×log2,f(b)=f(2×)=2f()=22f()=…=2n﹣1f();当∈(1,2]时,∴f(b)=2n﹣1log2;∵f(1200)=f(b),则210×log2=2n﹣1log2;b=2n﹣1•,1<n<11当n=10时,=()2∈(1,2];b=29×()2;当n=9时,=()4∈(1,2];b=28×()4;当n=8时,=()8∉(1,2];…29×()2>28×()4;∴实数b的最小值为28×()4=256×()4.21.【解答】解:(1)由f(x)=log a(x+),x>1,a>0且a≠1,可得f()=log a(+)=log a(+)=log a2a=2,即a2=2a,可得整数a=2或4;(2)由y=f(x)=log a(x+),x>1,可得a y=x+,即a y﹣x=,平方可得a2y﹣2xa y+1=0,即有x=,可得f﹣1(x)=(若a>1,x>0;若0<a<1,x<0),f﹣1(n)<(n∈N*),即为<,若0<a<1,则a n+a﹣n单调递减,可得<a<1;可得a的取值范围为(,1)∪(1,4);(3)若a=2,此时y=f(x)的反函数为y=f﹣1(x)=(x>0),g(x)===1+,当k=1时,g(x)=1,符合题意;当k>1时,g(x)在x>0递减,可得g(x)∈(1,1+),对一切实数x1,x2,x3,不等式g(x1)+g(x2)>g(x3)恒成立,可得1+1≥1+,解得1<k≤4;当k<1时,g(x)在x>0递增,可得g(x)∈(1+,1),对一切实数x1,x2,x3,不等式g(x1)+g(x2)>g(x3)恒成立,可得2(1+)≥1,解得﹣≤k<1.综上可得k的范围是[﹣,4].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海交通大学附属中学2019-2020学年度第一学期
高一数学期中考试试卷
一、填空题
1. 函数的定义域是
____________
y =2. 已知,,则____________
{}|12A x x =-<<{}2|30,R x x x x -<∈A B ⋂=3. 当时,函数的值域为____________
0x >()1f x x x -=+4. 设或,,则{|52U x x =-≤<-25,}x x Z <≤∈{}
2|2150A x x x =--={}3,3,4B =-U A C B ⋂=____________
5. 已知集合,若,则实数值集合为____________
{}{}2,1,|2A B x ax =-==A B A ⋃=a 6. 满足条件的所有集合A 的个数是____________个{}{}{}1,3,53,5,71,3,5,7,9⋃=7. 已知不等式解集为A ,且,则实数的取值范围是____________2202x x x a
+≤+2,3A A ∈∉a 8. 若函数为偶函数且非奇函数,则实数的取值范围为
____________
(
)f x =a 9. 已知是常数,且,若函数的最大值为10,则的最小值为,a b 0
ab ≠()33f x ax =+()f x ____________
10. 设正实数,a b 满足,那么的最小值为____________324a ab b ++=1ab 11. 设,若是的最小值,则的取值范围为____________()()2,043,0x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩
()0f ()f x a 12. 若方程在(0,2)内恰有一解,则实数的取值范围为____________
()
22420ax a x --+=a
二、选择题
13. 下列命题中,正确的是( )
A. 的最小值是4
B. 的最小值是2
4x
x ++ C. 如果,那么 D. 如果,那么,a b c d >>a c b d ->-22ac bc >a b
>14. 设甲为“”,乙为“”,那么甲是乙的( )
05x <<23x -< A. 充分非必要条件
B. 必要非充分条件
C. 充要条件
D. 既非充分又非必要条件
15. 非空集合A,B 满足,,则下列关系一定成立的是( )
{}{},|,|A B P x x A Q x x B ⊂⋂=∅=⊆=≠ A. B. C. D. A B P Q ⋃=⋃P Q ⋂=∅{}P Q ⋂=∅A B P Q
⊂⋃≠⋃16. 已知函数为偶函数,则下列关系一定成立的是( )
()1y f x =+ A. B. ()()
f x f x =-()()11f x f x +=-+ C. D. ()()11f x f x +=--()()
1f x f x -+=三、解答题
17. 已知集合,集合.21|1,1x A x x R x -⎧⎫=≤∈⎨⎬+⎩⎭{}
22|210,B x x ax a x R =-+-≤∈(1)求集合A ;
(2)若集合U=R ,,求实数的取值范围.
()U B C A B ⋂=a
18. 已知函数.
()f x x a x b =-++(1)若,求不等式的解;
1,2a b ==()5f x ≤(2)对任意,试确定函数的最小值M (用含的代数式表示),若正数满足
0,0a b >>()y f x =,a b ,a b ,则分别取何值时,M 有最小值,并求出此最小值.
42a b ab +=,a b 19. 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每1厘米厚的隔热层建造成本为6万元。

该建筑物每年的能源消耗费用C (单位:
万元)与隔热层厚度(单位:cm )满足关系:,若不建隔热层,每年能源消耗x ()[],0,1035
k C x x x =
∈+费用为8万元.设总费用为隔热层建造费用与20年的能源消耗费用之和.
()f x (1)求k 的值及的表达式;
()f x (2)隔热层修建多厚时,总费用达到最小,并求最小值.
()f x 20. 已知函数,且满足.()()0x a
f x a x -=>112f ⎛⎫= ⎪⎝⎭
(1)判断函数在上的单调性,并用定义证明;
()f x ()1,+∞(2)设函数,求在区间的最大值;()()
f x
g x x =()g x 1,42⎡⎤⎢⎥⎣⎦
(3)若存在实数m ,使得关于的方程恰有4个不同的正根,求实数m 的取
x ()2
2220x a x x a mx ---+=值范围.
21. 已知函数,.
()3f x mx =+()22g x x x m =++(1)求证:函数必有零点;
()()f x g x -(2)设函数.
()()()1G x f x g x =-- ①若在上是减函数,求实数m 的取值范围;
()G x []1,0- ②是否存在整数,以及实数m ,使得不等式的解集恰好是? 若存在,求出的值;,a b ()a G x b ≤≤[],a b ,a b 若不存在,请说明理由.
参考答案
一、填空题
1. 2.(0,2) 3. 4. 5. 6. 16()0,+∞[)2,+∞{}5{}1,0,2-7. 8. 9. 10. 11. [0,4]
12.3
,12⎡⎫--⎪⎢⎣⎭()1,+∞4-1
12(]3,1-二、选择题
13. D 14. A 15. B 16. B
三、解答题
17.(1) (2)(]1,2-(][)
,23,-∞-⋃+∞18.(1) (2),时,[]3,2-M a b =+33,2a b ==9
2
M =19.(1)k=40,()()
800
601035f x x x x =+≤≤+ (2)(万元)
()min 5,70x f x ==20.(1)单调递增,证明略
(2)()max 2
g x = (3)10,16m ⎛⎫
∈ ⎪⎝⎭
21.(1)证明略
(2)①或 ②存在,或0m ≤2m ≥12a b =-⎧⎨=⎩24
a b =⎧⎨=⎩。

相关文档
最新文档