求数列的通项公式教师版

合集下载

求数列通项公式的十种方法(教师版)

求数列通项公式的十种方法(教师版)

专题----通项公式的求法总述:求数列通项的方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、一、累加法 适用于:1()n n a a f n +=+转换成1()n n a a f n +-=,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解;由1231nn n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n 练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和 n a n 12-=二、累乘法1.适用于: 1()n n a f n a += ----------这是广义的等比数列2.若1()n n a f n a +=,则31212(1)(2)()n na a af f f n a a a +=== ,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏例3 已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。

数列通项公式的求法

数列通项公式的求法

a n 1 n 2 an n 1
再用累乘法 也可以
练习
1. ( 福建 )数列an 的前 n项和 Sn , a1 1, 2 Sn an 1 ( n N ), 求数列 an 的通项公式
略解: 2Sn1 an2 , 两式相减整理得
an2 a2 1(n 1) 3而 2 3,故a n n2 a n1 a1 2 3 (n 2)
分析:当n 2时,an S n S n1
1 1 1 S n S n1 S S n 1 n
(n 1) 1 a1 1 不合上式,故 an (n N ) 1 (n 1) S1 可用an 处理 n(n 1) (n 2) S S ( n 2 ) n 1 n
类型二:类等差(比)数列,即an1 an f (n)
且a1 , a 2 , a3成公比不为1的等比数列
(1)求 c 的值; (2)求数列a n 的通项公式。
2 分析:由 a1, a2 , a3成公比不为 1的等比数列得 a2 a1 a3
即(2 c)2 2 (2 3c) c 2, 故有an1 an 2n
n ∵a >0 , ∴ a ana an. +1+an≠0,∴有 n +1= n n ∵an>0,∴an 1+an≠0,∴有 an 1= n. n+1 n+1 aa a a2 a2 n n 1-1 n a n ∵ a × ×…× ×a1,×a , n= ∵an= an 1 × a1 an 2 ×…× 1 a1 an-1 an-2
+ + - - -
得(an+1+an)[(n+1)an+1-nan]=0.
an1 n an 中,a1 1且满足 例 2: 已知数列 ,则数 an n2 2 列an 的通项公式为 a n n(n 1) an1 an 1 2 3 4 n a2 a3 a4 n-1 分析 : 得 an n 2 a1 a2 a3 an1 3 4 5 6 n 1 an 1 2 2 a1 1 an a1 n(n 1) n(n 1) 累乘 方法二:

求数列的通项公式(已打)

求数列的通项公式(已打)

数列(四) 求数列的通项公式(教案)A一、 知识梳理:求数列通项公式常用的方法:(1)、观察法: 观察数列的前几项,写出数列的一个通项公式(2)、利用公式法求通项公式①n a =⎩⎨⎧≥-=-)2(,)1(,11n S S n S n n②等差(比)通项公式(3)、根据递推关系式求通项:(迭加,迭乘,迭代等化归为等差、等比数列): ①若数列满足),(1n f a a n n =-+其中)(n f 是一个前n 项和n s 可求的数列,那么可用逐项作差后累加的方法求n a 。

②若数列满足++∈=N n n f a a nn ),(1,其中数列{)(n f }前n 项积可求,可逐项作积后累乘求n a 。

③,1q pa a n n +=+p 、q 是常数。

方法:构造等比数列)(1λλ+=++n n a p a ④)(1n f pa a n n +=+。

方法:两边同除以1+n p ,令nn n p a b =,再用累加法求得。

⑤q pa a a n n n +=+1。

两边取倒数,令nn a b 1=,再“构造等比数列)(1λλ+=++n n a p a ” ⑥m n n pa a =+1。

a n >0。

方法:两边取对数。

二、 题型探究探究一:利用公式法求通项例1、已知12+=n n a S ,求n a 。

例2、已知数列n a 的前n 项和为n S ,并满足Sn=3n -2,求n a 。

例3、已知数列{n a }满足下列关系1)1(log 2+=+n S n ,求n a 。

探究二:利用迭加(迭乘、迭代)法求通项例4:(1)、(2010年高考)已知数列{n a }满足21=a ,12123-+⋅=-n n n a a , 求数列{n a }的通项。

(2)、已知数列{n a }满足11=a ,)1(11-+=-n n a a n n ,(2≥n ),写出数列的前五项及它的一个通项。

例5:(1)、在数列{n a }中,,)2,3,4(211⋯==--n a a n n n ,求数列{n a }的通项。

数列通项公式的求法课件

数列通项公式的求法课件

2(
n 1) 2
n
1
此时,bn an
an n 1
故an
n 1, n为奇数, n, n为偶数.
解法2: an1 an 2n 当n 2时, an an1 2(n 1)
两式相减,得:an1 an1 2
a1, a3 , a5 , ,构成以a1为首项,以2为公差的等差数列
a2 ,a4 ,a6 , ,构成以a2为首项,以2为公差的等差数列
(1)若c=1时,数列{an}为等差数列;
(2)若d=0时,数列{an}为等比数列;
(3)若c≠1且d≠0时,数列{an}为线性递推数列,
其通项可通过构造辅助数列来求.方法1: 待定系数法
设an+1+m=c( an+m),得an+1=c an+(c-1)m,
与题设an+1=c an+d,比较系数得: (c-1)m=d,
an1 Sn1 Sn 2an1 1 2an 1
即an1 2an 即{an}为首项 1,公比为2的等比数列
an 1 2n1 2n1
5.构造等差、等比数列法
对于一些递推关系较复杂的数列, 可通过 对递推关系公式的变形、整理, 从中构造出一 个新的等比或等差数列, 从而将问题转化为前 面已解决的几种情形来处理。
an
解:
a2 a1
a2
21,
a3
an1 2n an
a3 a2
a4
2,2 a4
a3an
2, 3……
222
23
an 2n1 an1
2n1
a1 a2 a3
an1
n ( n 1)
a 2 2 n
1 23( n 1)

人教版高中数学选择性必修第二册4.3.2-专题1 数列通项的求法

人教版高中数学选择性必修第二册4.3.2-专题1 数列通项的求法

【 讲 评 】 已 知 an + 1 = g(n)·an , 通 常 利 用 an = aan-n 1·aann--12·…·aa21·a1,求出通项 an.
探究 2 累乘法就是利用以下变形来求通项 an 的方法,an= a1·aa12·aa32·…·aan-n 1.
例如,在等比数列{an}中,由于aa12=aa32=aa43=…=aan-n 1=q,所 以对 n≥2 且 n∈N*,有 an=a1·aa21·aa32·…·aan-n1=a1·q·q·…·q =a1qn-1,把 n=1 代入上式也成立,故 an=a1qn-1(n∈N*).
(1)设 bn=an+1-2an(n∈N*),求证:{bn}是等比数列; (2)设 cn=2ann(n∈N*),求证:{cn}是等差数列; (3)求数列{an}的通项公式及前 n 项和公式.
【解析】 (1)证明:∵Sn+1=4an+2,① ∴Sn+2=4an+1+2.② ②-①式,得 Sn+2-Sn+1=4an+1-4an(n∈N*),即 an+2=4an+1 -4an. an+2-2an+1=2(an+1-2an). ∵bn=an+1-2an(n∈N*),∴bn+1=2bn. 由此可知,数列{bn}是公比为 2 的等比数列. 由 S2=a1+a2=4a1+2,又 a1=1,得 a2=5. ∴b1=a2-2a1=3,∴bn=3·2n-1.
专题研究一 数列通项的求法
专题讲解
题型一 累加法
例 1 在数列{an}中,已知 a1=1,an+1=an+2n,求 an. 【解析】 ∵a2-a1=2×1,a3-a2=2×2,…,an-an-1=2×(n -1)(n≥2 且 n∈N*), ∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1) =1+(2×1)+(2×2)+…+[2×(n-1)] =1+2(1+2+…+n-1) =1+2·(n-21)·n=n2-n+1(n≥2 且 n∈N*),把 n=1 代入上 式也成立,故 an=n2-n+1(n∈N*).

由数列的递推关系求通项公式PPT优秀课件

由数列的递推关系求通项公式PPT优秀课件

3,
设 bn

an1
an
,则 b1

a2
a1
6 ,且 bn1 bn

3,
所以 bn 6 3n1 2 3n ,即 an1 an 2 3n ,
有 3an 3 an 2 3n
所以
an

3n

3 2
.
解:由已知递推式得
an 3an1 3 ,
an

2n .
1
例题分析
例 1.
已知数列an 中, a1

3 2
,
an1

3an

3
(n N *), 求数列an 的通项公式.
.
巩固练习
1. 已知数列 an 中, a1 1, an1 3an 3n (n N *), 求数列an 的通项公式.
an n3n1
an 2n1
课堂热身
2.已知数列
an
中,
a1

1 2
,
an1

an

1 3n
(n N*), 求数列an 的通项公式.
1
an
1
.
2
3n1
课堂热身
3.已知数列 an 中 a1 3, an1 3an (n N*).求数列an 的通项公式.
an 3n

1 3n
,所以 an1 3n1

an 3n

1 3n

设 bn

an 3n
, 则 b1

a1 3
1,, 2
且 bn1
bn

1 3n

求数列的通项公式(教师版)

求数列的通项公式(教师版)

求数列的通项公式(教师版)1、数列的通项公式如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.2、数列的递推公式若一个数列首项确定,其余各项用a n 与a n -1或a n +1的关系式表示(如a n =2a n -1+1),则这个关系式就称为数列的递推公式.3、由数列的递推公式求数列的通项公式的常见方法(1)待定系数法:①形如a n +1=ka n +b 的数列求通项;②形如a n +1=ka n +r ∙b n 的数列求通项;(2)倒数法:形如a n +1=pa nqa n +r的数列求通项可用倒数法;(3)累加法:形如a n +1-a n =f (n )的数列求通项可用累加法;(4)累乘法:形如a n +1a n=f (n )的数列求通项可用累乘法;(5) “S n ”法:数列的通项a n 与前n 项和S n 的关系:a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.;S n 与a n 的混合关系式有两个思路:①消去S n ,转化为a n 的递推关系式,再求a n ;②消去a n ,转化为S n 的递推关系式,求出S n 后,再求a n .考向一 待定系数法例1—1 已知数列{a n }中,a 1=1,a n +1=2a n +3,求数列{a n }的通项公式。

解:设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t )即a n +1=2a n -t ⇒t =-3.故递推公式为a n +1+3=2(a n+3),令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以b 1=4为首项,2为公比的等比数列,则b n =4×2n -1=2n +1,所以a n =2n +1-3.例1—2 在数列{a n }中,a 1=-1,a n +1=2a n +4·3n ,数列{a n }的通项公式。

十年高考真题汇编之专题06 数列(新课标1)(教师版)

十年高考真题汇编之专题06 数列(新课标1)(教师版)

一.基础题组1. 【2013课标全国Ⅰ,理7】设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ). A .3 B .4 C .5 D .6 【答案】C【解析】∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3. ∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=.∴m =5.故选C. 2. 【2012全国,理5】已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-7 【答案】D3. 【2008全国1,理5】已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .23【答案】C.【解析】由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=. 4. 【2013课标全国Ⅰ,理14】若数列{a n }的前n 项和2133n n S a =+,则{a n }的通项公式是a n =__________. 【答案】(-2)n -1 【解析】∵2133n n S a =+,①∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-,即1n n a a -=-2.∵a 1=S 1=12133a +,∴a 1=1. ∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1.5. 【2009全国卷Ⅰ,理14】设等差数列{a n }的前n 项和为S n .若S 9=72,则a 2+a 4+a 9=___________. 【答案】24【解析】∵2)(972219a a S +==,∴a 1+a 9=16. ∵a 1+a 9=2a 5,∴a 5=8.∴a 2+a 4+a 9=a 1+a 5+a 9=3a 5=24.6. 【2011全国新课标,理17】等比数列{a n }的各项均为正数,且2a 1+3a 2=1,23239a a a =.(1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列1{}nb 的前n 项和. (2)31323(1)log log log (12)2n n n n b a a a n +=+++=-+++=-故12112()(1)1nb n n n n =-=--++, 121111111122(1)()()22311n nb b b n n n ⎡⎤+++=--+-++-=-⎢⎥++⎣⎦. 所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为21nn -+. 7. 【2010新课标,理17】(12分)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1. (1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n . 【解析】 (1)由已知,当n≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1.而a 1=2,所以数列{a n }的通项公式为a n =22n -1.(2)由b n =na n =n·22n -1知S n =1·2+2·23+3·25+…+n·22n -1. ① 从而22·S n =1·23+2·25+3·27+…+n·22n +1. ② ①-②,得(1-22)S n =2+23+25+…+22n -1-n·22n +1, 即S n =19[(3n -1)22n +1+2]. 8. 【2005全国1,理19】设等比数列}{n a 的公比为q ,前n 项和S n >0(n=1,2,…) (1)求q 的取值范围;(2)设,2312++-=n n n a a b 记}{n b 的前n 项和为T n ,试比较S n 和T n 的大小.解①式得q>1;解②,由于n 可为奇数、可为偶数,得-1<q<1. 综上,q 的取值范围是).,0()0,1(+∞⋃-(Ⅱ)由得1223++-=n a n a a b .)23(),23(22n n n n S q q T q q a b -=-=于是)123(2--=-q q S S T n n n).2)(21(-+=q q S n.,0,2,21;,0,0221;,0,2211,,001,0n n n n n n n n n n n n n S T S T q q S T S T q q S T S T q q q q S ==-=-=<<-≠<<->>->-<<-><<->即时或当即时且当即时或当所以或且又因为 9. 【2015高考新课标1,理17】n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和. 【答案】(Ⅰ)21n +(Ⅱ)11646n -+ 【解析】试题分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{n a }的递推公式,可以判断数列{n a }是等差数列,利用等差数列的通项公式即可写出数列{n a }的通项公式;(Ⅱ)根据(Ⅰ)数列{n b }的通项公式,再用拆项消去法求其前n 项和.【考点定位】数列前n 项和与第n 项的关系;等差数列定义与通项公式;拆项消去法 10.【2016高考新课标理数3】已知等差数列{}n a 前9项的和为27,10=8a ,则100=a (A )100 (B )99 (C )98 (D )97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C.【考点】等差数列及其运算【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.二.能力题组1. 【2011全国,理4】设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ) A .8 B .7 C .6 D .5 【答案】 D2. 【2006全国,理10】设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80则a 11+a 12+a 13=( ) (A )120 (B )105 (C )90 (D )75 【答案】 B 【解析】3. 【2012全国,理16】数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为__________. 【答案】1 830【解析】:∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1, ∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+ (234)15(10234)18302⨯+=.4. 【2014课标Ⅰ,理17】已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数, (I )证明:2n n a a λ+-=;(II )是否存在λ,使得{}n a 为等差数列?并说明理由. 【答案】(I )详见解析;(II )存在,4λ=.5. 【2009全国卷Ⅰ,理20】 在数列{a n }中, a 1=1,a n+1=(n 11+)a n +n n 21+. (Ⅰ)设na b nn =,求数列{b n }的通项公式; (Ⅱ)求数列{a n }的前n 项和S n . 【解析】(Ⅰ)由已知得b 1=a 1=1,且n n n n a n a 2111+=++,即n n n b b 211+=+. 从而2112+=b b ,22321+=b b , (1)121--+=n n n b b (n≥2).于是1121212212121---=++++=n n n b b (n≥2).又b 1=1.故所求的通项公式1212--=n n b .(Ⅱ)由(Ⅰ)知1122)212(---=-=n n n nn n a .令∑=-=nk k n kT 112,则∑=-=nk k n kT 1222.于是T n =2T n -T n =∑-=---111221n k n k n =1224-+-n n .又)1()2(1+=∑=n n k nk ,所以422)1(1-+++=-n n n n n S . 6.【2016高考新课标理数1】设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值为 .【答案】64【考点】等比数列及其应用【名师点睛】高考中数列客观题大多具有小、巧、活的特点,在解答时要注意方程思想及数列相关性质的应用,尽量避免小题大做.7.【2017新课标1,理4】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .8【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.三.拔高题组1. 【2013课标全国Ⅰ,理12】设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则( ). A .{S n }为递减数列 B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列 【答案】B 【解析】2. 【2011全国,理20】设数列{a n }满足a 1=0且111111n na a +-=--.(1)求{a n }的通项公式; (2)设11n n a b n+-=,记1nn kk S b==∑,证明:S n <1.【解析】(1)由题设111111n na a +-=--,即{11na -}是公差为1的等差数列. 又111n a =-,故11nn a =-. 所以11n a n=-. (2)由(1)得1111111n n a n n b nn n n n +-+-===-+⋅+, 11111()1111nnn k k k S b k k n ====-=-<++∑∑. 3. 【2006全国,理22】(本小题满分12分)设数列{a n }的前n 项和,3,2,1,32313421=+⨯-=+n n nn a S …。

数列高考真题汇编(二)-教师版

数列高考真题汇编(二)-教师版

数列真题汇编(二)数列求通项15道1.(2016全国3卷文)已知各项都为正数的数列{a n }满足a 1=1,a n 2−(2a n+1−1)a n −2a n+1=0. (I )求a 2,a 3; (II )求{a n }的通项公式.解:(Ⅰ)由题意得a 2=12,a 3=14. .........5分(Ⅱ)由a n 2−(2a n+1−1)a n −2a n+1=0得2a n+1(a n +1)=a n (a n +1). 因为{a n }的各项都为正数,所以a n+1a n=12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n−1.2.(2016全国1卷文)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a nb n+1+b n+1=nb n . (Ⅰ)求{a n }的通项公式; (Ⅱ)求{b n }的前n 项和.【解析】(Ⅰ)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2,所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n −1. (Ⅱ)由(Ⅰ)和a n b n+1+b n+1=nb n ,得b n+1=b n 3,因此{b n }是首项为1,公比为13的等比数列.记{b n }的前n 项和为S n ,则S n =1−(13)n 1−13=32−12×3n−1.3.(2018全国1文)已知数列满足,,求的通项公式.解:∵,∴.4.(三星)(全国II )已知a 1=1,S n+1=4a n +2(n ∈N ∗), (1)设b n =a n+1−2a n ,求证:{b n }是等比数列; (2)求a n .备注:题目中 已经将关系式构造好了,三项关系变二项关系后是等比数列;基本类型二求通项{}n a 11a =()121n n na n a +=+{}n a 1112n n nn a b b q n−−===12n n a n −=⋅5.(三星)(全国Ⅰ卷)在数列{a n}中,S n=43a n−13×2n+1+23,S n.求首项{a n}与通项n.备注:S n与a n关系变形之后成类型二解:由题意得S n=2a n+1,解得S6=.又a n+1=S n+1−S n=43a n+1−43a n−13(2n+1−2n),即a n+1=4a n+2n+1,设a n+1+x⋅2n+1=4(a n+x⋅2n),利用待定系数法可得x=1,又a1+2=4≠0,所以数列{a n+2n}是公比为4的等比数列. 所以a n+2n=4×4n−1,即a n=4n−2n.6. (2020全国3卷理)设数列{a n}满足a1=3,a n+1=3a n−4n.(1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n.【详解】(1)由题意可得a2=3a1−4=9−4=5,a3=3a2−8=15−8=7,由数列{a n}的前三项可猜想数列{a n}是以3为首项,2为公差的等差数列,即a n=2n+1,证明如下:当n=1时,a1=3成立;假设n=k时,a k=2k+1成立.那么n=k+1时,a k+1=3a k−4k=3(2k+1)−4k=2k+3=2(k+1)+1也成立.则对任意的n∈N∗,都有a n=2n+1成立;(2)由(1)可知,a n⋅2n=(2n+1)⋅2nS n=3×2+5×22+7×23+⋯+(2n−1)⋅2n−1+(2n+1)⋅2n,①2S n =3×22+5×23+7×24+⋯+(2n −1)⋅2n +(2n +1)⋅2n+1,② 由①−②得:−S n =6+2×(22+23+⋯+2n )−(2n +1)⋅2n+1 =6+2×22×(1−2n−1)1−2−(2n +1)⋅2n+1=(1−2n)⋅2n+1−2,即S n =(2n −1)⋅2n+1+2.7.(2021全国1卷)已知数列满足,(1)记,写出,,并求数列的通项公式; (2)求的前20项和.【解】(1)b 1=a 2=a 1+1=2,b 2=a 4+a 3+1=a 2+2+1=5 ∵2n 为偶数,∴a 2n+1=a 2n +2,a 2n+2=a 2n+1+1, ∴a 2n+2=a 2n +3即b n+1=b n +3,且b 1=2,∴{b n }是以2为首项,3为公差的等差数列,∴ b n =3n −1. (2)当n 为奇数时,a n =a n+1−1∴{a n }的前20项和为a 1+a 2+...+a 20=(a 1+a 3+...+a 19)+(a 2+a 4+...+a 20)=[(a 2−1)+(a 4−1)+...+(a 20−1)]+(a 2+a 4+...+a 20)=2(a 2+a 4+...+a 20)−10. 由(1)可知,a 2+a 4+...+a 20=b 1+b 2+...+b 10=2×10+10×92×3=155 ,∴{a n }的前 20项和为2x155 -10 =300.8. (2020全国1文)数列{a n }满足a n+2+(−1)n a n =3n −1,前16项和为540,则a 1= ______________.【详解】a n+2+(−1)n a n =3n −1,当n 为奇数时,a n+2=a n +3n −1;当n 为偶数时,a n+2+a n =3n −1. 设数列{a n }前n 项和为S n , S 16=a 1+a 2+a 3+a 4+⋯+a 16=a 1+a 3+a 5⋯+a 15+(a 2+a 4)+⋯(a 14+a 16)=a 1+(a 1+2)+(a 1+10)+(a 1+24)+(a 1+44)+(a 1+70) +(a 1+102)+(a 1+140)+(5+17+29+41) =8a 1+392+92=8a 1+484=540,{}n a 11a =11,,2,n n na n a a n ++⎧=⎨+⋅⎩为奇数为偶数2n n b a =1b 2b {}n b {}n a∴a1=7.故答案为:7.9.(2019全国2卷理)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n−b n+4,4b n+1=3b n−a n−4.(1)证明:{a n+b n}是等比数列,{a n–b n}是等差数列;(2)求{a n}和{b n}的通项公式.解:(1)由题设得4(a n+1+b n+1)=2(a n+b n),即a n+1+b n+1=12(a n+b n).又因为a1+b1=l,所以{a n+b n}是首项为1,公比为12的等比数列.由题设得4(a n+1−b n+1)=4(a n−b n)+8,即a n+1−b n+1=a n−b n+2.又因为a1–b1=l,所以{a n−b n}是首项为1,公差为2的等差数列.(2)由(1)知,a n+b n=12n−1,a n−b n=2n−1.所以a n=12[(a n+b n)+(a n−b n)]=12n+n−12,b n=12[(a n+b n)−(a n−b n)]=12n−n+12.10. (2021全国乙卷理)记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.【解析】(1)解法一:由2S n +1b n=2得S n=2b n2b n−1,且b n≠0,b n≠12,取n=1,由S1=b1=2b12b1−1得b1=32,由于b n为数列{S n}的前n项积,所以2b12b1−1⋅2b22b2−1⋅⋅⋅2b n2b n−1=b n,所以2b12b1−1⋅2b22b2−1⋅⋅⋅2b n+12b n+1−1=b n+1,所以2b n+12b n+1−1=b n+1b n,由于b n+1≠0所以22b n+1−1=1b n,即b n+1−b n=12,其中n∈N∗所以数列{b n }是以b 1=32为首项,以d =12为公差等差数列; 解法二:因为b n 为数列{S n }的前n 项积,所以b nb n−1=S n (n ≥2),由2S n+1b n=2可得2b n−1b n+1b n=2(n ≥2),去分母得2b n −2b n−1=1(n ≥2),所以b n −b n−1=12,数列{b n }是公差为12的等差数列.(2)由(1)可得,数列{b n }是以b 1=32为首项,以d =12为公差的等差数列, ∴b n =32+(n −1)×12=1+n2, S n =2b n2bn−1=2+n1+n , 当n=1时,a 1=S 1=32,当n≥2时,a n =S n −S n−1=2+n1+n −1+n n=−1n (n+1),显然对于n=1不成立,∴a n ={32,n =1−1n (n+1),n ≥2.11.(二星)(全国理)若数列{}的前n 项和为S n =,则数列{}的通项公式是=______. 解:当=1时,==,解得=1,当≥2时,==-()=,即=,∴{}是首项为1,公比为-2的等比数列,∴=.12.(2016全国3卷理科)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0, (Ⅰ)证明{a n }是等比数列,并求其通项公式; (Ⅱ)若S 5=3132,求λ。

求数列的通项公式列(教案+例题+习题)

求数列的通项公式列(教案+例题+习题)

求数列的通项公式(教案+例题+习题)一、教学目标1. 理解数列的概念,掌握数列的基本性质。

2. 学会求解数列的通项公式,并能应用于实际问题。

3. 培养学生的逻辑思维能力和运算能力。

二、教学内容1. 数列的概念与基本性质2. 数列的通项公式的求法3. 数列通项公式的应用三、教学重点与难点1. 教学重点:数列的概念,数列的通项公式的求法及应用。

2. 教学难点:数列通项公式的推导和应用。

四、教学方法1. 采用讲授法,讲解数列的概念、性质及通项公式的求法。

2. 利用例题,演示数列通项公式的应用过程。

3. 布置习题,巩固所学知识。

五、教学过程1. 引入数列的概念,讲解数列的基本性质。

2. 讲解数列通项公式的求法,引导学生掌握求解方法。

3. 通过例题,演示数列通项公式的应用,让学生理解并掌握公式。

4. 布置习题,让学生巩固所学知识,并提供解题思路和指导。

5. 总结本节课的重点内容,布置课后作业。

教案结束。

例题:已知数列的前n项和为Sn = n(n+1)/2,求该数列的通项公式。

解答:由数列的前n项和公式可知,第n项的值为Sn S(n-1)。

将Sn = n(n+1)/2代入上式,得到第n项的值为:an = Sn S(n-1) = n(n+1)/2 (n-1)n/2 = n/2 + 1/2。

该数列的通项公式为an = n/2 + 1/2。

习题:1. 已知数列的前n项和为Sn = n^2,求该数列的通项公式。

2. 已知数列的通项公式为an = 2n + 1,求该数列的前n项和。

3. 已知数列的通项公式为an = (-1)^n,求该数列的前n项和。

4. 已知数列的通项公式为an = n^3 6n,求该数列的前n项和。

5. 已知数列的通项公式为an = 3n 2,求该数列的前n项和。

六、教学目标1. 掌握数列的递推关系式,并能运用其求解数列的通项公式。

2. 学习利用函数的方法求解数列的通项公式。

3. 提升学生分析问题、解决问题的能力。

高中数列--通项公式的求法教案

高中数列--通项公式的求法教案

数列通项公式的求法一.利用公式求通项公式(已知数列为等差数列或者等比数列)1.设等比数列{}n a 的前n 项和为n S ,已知12a =,且1234,3,2S S S 成等差数列. (Ⅰ)求数列{}n a 的通项公式;2.已知数列}{n a 是等比数列,且满足3652=+a a ,12843=⋅a a . (Ⅰ)求数列}{n a 的通项公式;3.已知数列.21.41)1(,41}{11-==-=+n n n n n a b a a a a 令满足 (Ⅰ)求证:数列}1{nb 为等差数列;二、已知{}n a 的前n 项和n S 与n a 间的关系,求通项 ⎩⎨⎧≥-==-211n S S n S a n n n n 求解1.已知数列{a n }的前n 项和为S n ,满足S n +2=2a n (n ∈N *).(Ⅰ)求数列{a n }的通项公式;2.设正项数列{a n }的前n 项和为S n ,且a +2a n =4S n (n ∈N *). (Ⅰ)求a n ;3.已知数列}{n a 的前n 项和为n S ,121)(--⋅=-n n n n S S S a (2≥n ), 且11=a ,0>n a .(I )求2a 的值,并证明{}n S 是等比数列;三、两式相减,消项求通项1.已知数列{a n }的前n 项和S n ,且满足:1233121111n n n a a a a ++++=---- ,n ∈N*. (Ⅰ) 求a n ;四、利用递推关系,求通项公式 根据题目中所给的递推关系即n a 和a n-1的关系,可累加法/累乘法/构造法/倒数法求通项公式.1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.2. 数列{}n a 满足,11=a n n a a n n 11+=+,求数列{}n a 的通项公式;3. 已知数列}{n a 中,,2121,211+==+n n a a a .求数列{a n }的通项公式4.已知数列{}n a 满足)1(1,21111>+==--n a a a a n n n . (I )求证:数列}1{na 为等差数列,并求出数列{}n a 的通项公式;。

求数列的通项公式教学设计

求数列的通项公式教学设计
数学
学校年级班级
授课教师
指导教师
课时
2课时(第一课时)
一、教学内容分析(简要说明课题来源、学习内容、这节课的价值以及学习内容的重要性)
数列是高中数学重要内容之一,纵观全国高考,几乎都是一小题,一大题。虽然近几年难度有所下降,但对学生来说还是难。它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。求数列通项公式在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。数列模块,是高考重难点。
总结方法
归纳总结
已知数列{an}的前n项和Sn=3n2-2n+1,则其通项公式为________________
完成左侧题目的解答
自主学习
四、反馈测评
PPT展示以下题目
1.已知a1=2,an+1-an=2n+1(n∈N*),则an=________
2.设数列{an}的前n项和Sn=n2,则a8的值为( )
高三理科普通班,男生26人,女生24人,女生很认真,但太过于定性思维,成绩不太理想!数列通项是高考的重点内容,必须调动学生的积极让他们掌握!作为数列复习中通项公式的第一节课,只要求学生掌握求通项公式的四种基本方法,根据学生实际情况,题型设置简单,重在帮助学生巩固基础知识和归纳方法
四、教学策略选择与设计(说明本课题设计的基本理念、主要采用的教学与活动策略)
情感态度与价值观:通过对数列通项公式的研究,体会从特殊到一般,又到特殊的认识事物规律,培养学生主动探索,勇于发现的求知精神
三、学习者特征分析(说明学习者在知识与技能、过程与方法、情感态度等三个方面的学习准备(学习起点),以及学生的学习风格。最好说明教师是以何种方式进行学习者特征分析,比如说是通过平时的观察、了解;或是通过预测题目的编制使用等)

第2讲数列篇(教师版)

第2讲数列篇(教师版)

第2讲 数列[考点分析]数列问题是高考的必考内容,主要考查:1.等差等比数列的证明.2.数列求通项.3.数列求和.4.个别时候考查数列不等式问题.在新高考中很多题目开始以开放性题型命题.[特训典例]题型一 等差等比数列的证明例1 (2019全国2卷理19)已知数列{a n }和{b n }满足a 1=1,b 1=0, ,. (1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.[特训跟踪]1、(2021全国卷)已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;1434n n n a a b +-=+1434n n n b b a +-=-(2)求{}n a 的前20项和.【答案】(1)122,5b b ==;(2)300. 【解析】【分析】(1)根据题设中的递推关系可得13n n b b +=+,从而可求{}n b 的通项. (2)根据题设中的递推关系可得{}n a 的前20项和为20S 可化为()2012910210S b b b b =++++-,利用(1)的结果可求20S .【详解】(1)由题设可得121243212,1215b a a b a a a ==+===+=++= 又22211k k a a ++=+,2122k k a a +=+, 故2223k k a a +=+即13n n b b +=+即13n n b b +-= 所以{}n b 为等差数列,故()21331n b n n =+-⨯=-. (2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++,因为123419201,1,,1a a a a a a =-=-=-,所以()20241820210S a a a a =++++-()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.2.在数列{a n }中,a 1=2,a n 是1与a n a n +1的等差中项.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1是等差数列,并求{}a n 的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1n 2a n 的前n 项和S n .解 (1)∵a n 是1与a n a n +1的等差中项, ∴2a n =1+a n a n +1,∴a n +1=2a n -1a n, ∴a n +1-1=2a n -1a n -1=a n -1a n ,∴1a n +1-1=a n a n -1=1+1a n -1,∵1a 1-1=1,∴数列⎩⎨⎧⎭⎬⎫1a n -1是首项为1,公差为1的等差数列,∴1a n -1=1+(n -1)=n ,∴a n =n +1n .(2)由(1)得1n 2a n =1n (n +1)=1n -1n +1,∴S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=n n +1. 3.已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求S n 和a n .[听前试做] (1)证明:当n ≥2时, a n =S n -S n -1=-2S n S n -1,① ∵S 1=a 1≠0,由递推关系知S n ≠0(n ∈N *),由①式得1S n -1S n -1=2(n ≥2).∴⎩⎨⎧⎭⎬⎫1S n 是等差数列,其中首项为1S 1=1a 1=2,公差为2.(2)由(1)知1S n =2+2(n -1)=2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=-12n (n -1),当n =1时,a 1=S 1=12不适合上式,∴a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.题型二 数列求通项和求和例2 (2015·新课标全国卷Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和.[听前试做] (1)由a 2n +2a n =4S n +3,①可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3. 所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1,n ∈N *.(2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n =12⎣⎡⎦⎤⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3=n3(2n +3). 例3 (2020衡水2调)已知数列{}n a 满足:211231333()3n n n a a a a n N -*+++++=∈. (1)求数列{}n a 的通项公式; (2)设111,3(1)(1)n n n n b a a ++=--数列{}nb 的前n 项和为n S ,试比较n S 与716的大小. 解:(1)数列{}n a 满足211231333()3n n n a a a a n N -*+++++=∈, 所以2n ≥时,212133,3n n n a a a --+++=相减可得113,3n n a -=所以1.3n n a =n=1时,12.3a =综上可得2,1,31, 2.3n nn a n ⎧=⎪⎪=⎨⎪≥⎪⎩(5分)(2)因为111,3(1)(1)n n n n b a a ++=--所以12213.2183(1)(1)33b ==⨯-⨯-2n ≥时,1111111.11231313(1)(1)33n n n n n n b +++⎛⎫==- ⎪--⎝⎭-- 所233413111111182313131313131n n n S +⎡⎤⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪⎢⎥------⎝⎭⎝⎭⎝⎭⎣⎦131117.8283116n +⎛⎫=+-< ⎪-⎝⎭ 例4 (2019衡水2调)已知{}n a 是各项都为正数的数列,其前n 项和为n S ,且n S 为n a 与1na 的等差中项. (1)求数列{}n a 的通项公式; (2)设()1,nnnb a -=求{}n b 的前n 项和n T .解:(1)由题意知,12n n nS a a =+,即221,n n n S a a -=① 当n=1时,由①式可得11;S =当2n ≥时,有1,n n n a S S -=-带入①式,得2112()()1,n n n n n S S S S S -----=整理得221 1.n n S S --= 所以{}2nS 是首项为1,公差为1的等差数列,211.nSn n =+-=因为{}n a各项都为正数,所以n S =所以12),n n n a S S n -=-=≥ 又111,a S ==所以n a =(6分)(2)()(1)1,n n nn n b a -===-当n 为奇数时,(11)1n T n=-+-++--=当n 为偶数时,(11)1n T n =-+-+--+=所以{}n b 的前n 项和()1nn T =-(12分)例5 (潍坊市高三下学期第一次模拟) 已知数列{}n a 是等差数列,其前n 项和为n S 。

【小学奥数题库系统】1-2-1-2 等差数列计算题.教师版

【小学奥数题库系统】1-2-1-2 等差数列计算题.教师版

例题精讲
【例 1】 用等差数列的求和公式会计算下面各题吗?
1-2-1-2.等差数列的认识与公式运用.题库 教师版 page 1 of 6
⑴ 3 + 4 + 5 + 6 + + 76 + 77 + 78 = ⑵ 1 + 3 + 5 + 7 + + 87 + 99 = ⑶ 4 + 7 + 10 + 13 + + 40 + 43 + 46 = 【考点】等差数列计算题 【难度】2 星 【题型】计算 【解析】 ⑴根据例 1 的结果知:算式中的等差数列一共有 76 项,所以: 3 + 4 + 5 + 6 + + 76 + 77 + 78 =(3 + 78) × 76 ÷ 2 = 3078 ⑵算式中的等差数列一共有 50 项,所以: 1 + 3 + 5 + 7 + + 87 + 99 = (1 + 99) × 50 ÷ 2 = 2500 ⑶算式中的等差数列一共有 15 项,所以: 4 + 7 + 10 + 13 + + 40 + 43 + 46 = (4 + 46) × 15 ÷ 2 = 375 ⑵ 2500 ⑶ 375 【答案】⑴ 3078 【巩固】 1+2+……+8+9+10+9+8+……+2+1=_____。 【考点】等差数列计算题 【难度】2 星 【题型】计算 【关键词】2005 年,希望杯,第三届,四年级,二试 【解析】 1+2+3+…+n+…+3+2+1=n×n,所以原式=10×10=100 【答案】 100 【巩固】 1966、1976、1986、1996、2006 这五个数的总和是多少? 【考点】等差数列计算题 【难度】1 星 【题型】计算 【关键词】第一届,华杯赛,初赛 【解析】 1986 是这五个数的平均数,所以和=1986×5=9930。 【答案】 9930 【巩固】 计算:110+111+112+…+126= 【考点】等差数列计算题 【难度】2 星 【关键词】第四届,走美杯,四年级,初赛 【解析】 原式 = (110 + 126) × 17 ÷ 2 = 2006 【答案】 2006 【巩固】 计算下面结果. ⑴ 4 + 8 + 12 + 16 + + 32 + 36 ⑵ 65 + 63 + 61 + + 5 + 3 + 1 ⑶ 3 + 4 + 5 + + 99 + 100 【考点】等差数列计算题 【难度】2 星 【题型】计算 【解析】 根据刚刚学过的求项数以及求和公式,项数 = (末项 − 首项) ÷ 公差 +1 等差数列的和 = (首项+末项) × 项数 ÷2 ⑴项数: (4 + 36) ×9 ÷ 2 = 180 (36 − 4) ÷ 4 +1 = 9 ; 和: ⑵项数: (65 − 1 ) ÷ 2 +1 = 33 ;和: ( 1 + 65) × 33 ÷ 2 = 33 × 33 = 1089 ⑶项数: ( 100 − 3) ÷1 + 1 = 98 ;和: (3 + 100) × 98 ÷ 2 = 5047 ⑵ 1089 ⑶ 5047 【答案】⑴ 180 【巩固】 用等差数列的求和公式会计算下面各题吗? ⑴ 3 + 4 + 5 + 6 + + 76 + 77 + 78 = ⑵ 1 + 3 + 5 + 7 + + 87 + 99 = ⑶ 4 + 7 + 10 + 13 + + 40 + 43 + 46 = 【考点】等差数列计算题 【难度】2 星 【题型】计算 【解析】 (1) 算式中的等差数列一共有 76 项, 所以: 3 + 4 + 5 + 6 + + 76 + 77 + 78 =(3 + 78) × 76 ÷ 2 = 3078 (2)算式中的等差数列一共有 50 项,所以: 1 + 3 + 5 + 7 + + 87 + 99 = (1 + 99) × 50 ÷ 2 = 2500 (3) 算式中的等差数列一共有 15 项, 所以: 4 + 7 + 10 + 13 + + 40 + 43 + 46 = (4 + 46) × 15 ÷ 2 = 375 【答案】 (1) 3078 (2) 2500 (3) 375

中职数学基础模块6.1.2数列的通项教学设计教学设计教案人教版

中职数学基础模块6.1.2数列的通项教学设计教学设计教案人教版


33-1 3

43-1 4

53-5 1,…的一个通项公式是(
).
(A)n
(n2-1) n +1
(B)n
(n 2+1) n
师生共同订正答案.
在教师的引导 下,培养学生观察、 分析、归纳的能力.
(C)n
(n2 +3n+ n+1
3)
(D)n
(n2 n
+2)
例 3 已知数Leabharlann {an}的第 1 项是 1,以后各项由公式

构 数列与等比数列打下基础.

第 1页 (总 页)
太原市教研科研中心研制
环节
教师行为
⒈ 数列的定义
按一定次序排列的一列数叫做数
列.
注意:(1)数列中的数是按一定次
序排列的;
(2)同一个数在数列中可以重复出
现.


2. 数列的一般形式
数列 a1,a2,a3,…,an,…,可记 作{ an }.
学生行为 教师引导学生复习.
(2)22-2 1,32-3 1,42-4 1,52-5 1;
对应关系: 项1
3
5
7
(3)-11•2 ,21•3 ,-31•4 ,41•5 .
↓↓↓↓
解 (1)数列的前四项 1,3,5,7
序号 1 2 3 4
都是序号的 2 倍减去 1,所以它的一个通
师:你能找出各项与项数
项公式是
二者的对应关系满足什么规律
引导学生得出:是任一项
与前一项的关系.
教师给出递推公式的定
义.
a2 = 1+a11 = 1+11 = 2;

2022学年高三上(编号1-25)数列大题汇编(教师版)

2022学年高三上(编号1-25)数列大题汇编(教师版)

2022学年高三上(编号1-25)数列大题汇编(教师版)1:(2023届湖北圆创第一次联合测试解析第17题) 1:已知数列{}n a 满足()*1232311113333n na a a a n n N ++++=∈, (1)求数列{}n a 的通项公式;(2)设3log n n b a =,求数列121n n n b b b ++⎧⎫⎨⎬⎩⎭的前n 项和n T .方法提供与解析:(浙江金华郭扬文) (1)解析:(减项作差) 当1n =时,13a =,当2n 时,1232311113333n na a a a n ++++=① 1231231111113333n n a a a a n --++++=-② 由①-②得1(1)13n n a n n =--=,即3(2)n n a n =.当1n =时也成立,所以数列{}n a 的通项公式为()*3n n a n N =∈(2)解析:(裂项求和) 因为33log log 3n n n b a n ===, 所以1211111(1)(2)2(1)(1)(2)n n n b b b n n n n n n n ++⎡⎤==-⎢⎥+++++⎣⎦,所以1111111111212232334(1)(1)(2)22(1)(2)n T n n n n n n ⎡⎤⎡⎤=-+-++-=-⎢⎥⎢⎥⋅⋅⋅⋅+++++⎣⎦⎣⎦. 2:(2023届如皋市高三上期初调研解析第17题)2:已知数列{}n a 的前n 项和为n S ,且23522n S n n =+.(1)求{}n a 的通项公式;(2)求数列13n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .方法提供与解析:(上海奉贤沈健) 解析:(1)当1n =时,1135422a S ==+=. 当2n 时,2213535(1)(1)312222n n n a S S n n n n n -⎡⎤=-=+--+-=+⎢⎥⎣⎦.因为当1n =时,3114⨯+=,也符合,所以31n a n =+.(2)因为13311(31)(34)3134n n a a n n n n +==-++++, 所以111111477103134n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭1134341216n n n =-=++. 3:(2023届湖北九师联盟高三开学考解析第17题)3:已知等差数列{}n a 的前n 项和为n S ,2320a S +=,514a =. (1)求{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的n 项和为n T ,并证明16n T <.方法提供与解析:(湖州赵健鑫)(1)解析:因为{}n a 为等差数列,由2320a S +=得,14420a d +=,即25a =,因为514a =,所以5239d a a =-=,3d =,则12a =,所以31n a n =-.(2)解析:由(1)得,31n a n =-,则,()()1113132n n a a n n +=-+,裂项可得1111133132n n a a n n +⎛⎫=- ⎪-+⎝⎭,则11111111111111325583132323263326n T n n n n ⎛⎫⎛⎫=-+-+-=-=-⋅< ⎪ ⎪-+++⎝⎭⎝⎭,则16n T <,即证. 4:(2023届广东梅州中学高三上阶段性考试解析第19题)4:已知正项等比数列{}n a 满足257a a a ⋅=,8256a =,正项数列{}n b 的前n 项和n S 满足222n n n S b b =+-.(1)求数列{}n a ,{}n b 的通项公式;(2)若13221n n nn S n a c b +⎛⎫-⋅ ⎪⎝⎭=-,求数列{}n c 的前n 项和n M .方法提供与解析:(浙江绍兴+谢柏军)(1)解析:设{}n a 公比为()0q q > 257a a a ⋅=,8256a =88863a a a q q q∴⋅= 88256q a ∴==2q ∴=882n n n a a q -∴==∴数列{}n a 的通项公式为2n n a =当1n =时,211122S b b =+-,即211122b b b =+- 12b ∴=,11b =-(舍去)当2n ≥时,221112222n n n n n n S b b S b b ---⎧=+----⎪⎨=+----⎪⎩①②-①②得:22112n n n n n b b b b b --=+--,整理得:()()1110nn n n b b b b --+--= {}n b 是正项数列110n n b b -∴--=()1111n b b n n ∴=+-⋅=+∴数列{}n b 的通项公式为1n b n =+(2)解析1:(裂项法)()22211223222n n n n n b b n nS +++-+-+===∴1211322221n n n n n n S n a n c n b n+++⎛⎫-⋅ ⎪⋅⎝⎭===⋅-()()1124424142n n n n n n +-⋅=----⎡⎤⎣⎦()()()()()()1021112341424042424241424424142n n n n M c c c c n n -∴=+++⋅⋅⋅+=⋅--⋅-⋅+⋅--⋅-⋅+⋅⋅⋅+----⎡⎤⎣⎦()4424n n =-+(2)解析2:(错位相减法) ()23412312122232221222122n n n n n M n M n n +++=⋅+⋅+⋅+⋅⋅⋅+⋅---=⋅+⋅+⋅⋅⋅+-⋅+⋅---①②-①②:()2341222222222242124n n n n n n M n n n +++++-=+++⋅⋅⋅+-⋅=--⋅=--()2124n n M n +∴=-+5:(2023届麓山国际实验学校高三上入学考解析第17题)5:已知集合{}*|2,A x x n n ==∈N ,{}*|3,n B x x n ==∈N ,将AB 中所有元素按从小到大的顺序排列构成数列{}n a ,设数列{}n a 的前n 项和为n S .(1)若27m a =,求m 的值; (2)求50S 的值.方法提供与解析:(上海奉贤沈健) 解析:(1)因为27m a =,所以数列{}n a 中前m 项中含有A 中的元素为2,4,6,,26⋯,共有13项, 数列{}n a 中前m 项中含有B 中的元素为3,9,27,共有3项,所以16m =.(2)因为250100⨯=,4381100=<,53243100=>, 所以数列{}n a 中前50项中含有B 中的元素为3,9,27,81共有4项, 所以数列{}n a 中前50项中含有A 中的元素为21,22,23,,246⨯⨯⨯⨯,共有46项,所以50(392781)(212223246)2282S =++++⨯+⨯+⨯+⋯+⨯=.6:(2023届麓山国际实验学校高三上入学考解析第20题)6:(本题满分12分)已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-. (1)证明:数列{}1n n a a +-是等比数列;(2)若()()()()22231321265log 1log 1n n n n n n b a a ++-⋅++=+⋅+,求数列{}n b 的前n 项和n T . 方法提供与解析:(衢州张小臣)解析:(1)由2143n n n a a a ++=-得:()2113n n n n a a a a +++-=-,又216a a -=, ∴数列{}1n n a a +-是以6为首项,3为公比的等比数列.(2)由(1)得:116323n n n n a a -+-=⋅=⋅,则1123---=⋅n n n a a ,21223n n n a a ----=⋅,32323n n n a a ----=⋅,…,12123a a -=⋅, 各式作和得:()()1211313233323313n n n n a a ----=⨯++⋅⋅⋅+=⨯=--,又12a =,31n n a ∴=-, ()()()()()()()()()22222233221212651265111log log 132231nnn n n n n n n n n n n n b ++⎛⎫-⋅++-⋅++∴===-+ ⎪ ⎪⋅⎝+++⎭+, 当n 为偶数时,()22222222111111112334451n T n n ⎛⎫⎛⎫⎛⎫⎛⎫=--+++--+⋅⋅⋅+--+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+⎝⎭()()()22211114122n n n ⎛⎫+=- ⎪ ⎪+++⎝⎭;当n 为奇数时, ()()()()112222111111443232n n n T T b n n n n ++=-=---=--++++;综上所述:()()21142n n T n -=-+. 7:(2023届如皋市高三上期初调研解析第20题)7:(本题满分12分)已知等差数列{}n A 的首项1A 为4,公差为6,在{}n A 中每相邻两项之间都插 入两个数,使它们和原数列的项一起构成一个新的等差数列{}n a .(1)求数列{}n a 的通项公式;(2)若12,,,,nk k k a a a 是从{}n a 中抽取的部分项按原来的顺序排列组成的一个等比数列,11k =,25k =,令22n n b nk n =+,求数列{}n b 的前n 项和n T .方法提供与解析:(衢州张小臣)解析:(1)由4,6,8,10可得数列{}n a 是首项为4,公差为2的等差数列, 可得42(1)2(1)n a n n =+-=+;(2)由1k a ,2k a 是等比数列的前两项,且11k =,25k =,即14a =,512a =,则等比数列的公比为3,143n n k a -=⋅,即为12(1)43n n k -+=⋅,可得1231n n k -=⋅-,12243n n n b nk n n -=+=⋅,所以01214(132333...3)n n T n -=⋅+⋅+⋅++⋅,2334(132333...3)n n T n =⋅+⋅+⋅++⋅,相减可得211324(133...33)4(3)13nn nn n T n n ---=++++-⋅=-⋅-,化简可得(21)3 1.n n T n =-⋅+ 8:(2023届广东省高三上学期开学联考解析第17题)8:已知数列{}n a 的前n 项和为n S ,11a =,且()*141,2n n n n na S ab n +=+=∈N . (1)证明:数列{}n b 是等差数列; (2)求数列{}n a 的前n 项和. 方法提供与解析:(上海奉贤沈健)解析:(1)因为141n n S a +=+,*n ∈N ,所以141n n S a -=+,2n 且*n ∈N ,两式相减,得14n n a a +=-14n a -,所以1144n n n a a a +-+=,所以11112222n n nn n n a a a +-+-+=⨯,即(1122n n n b b b n +-+=且)*n ∈N , 所以数列{}n b 是等差数列.(2)因为11a =,1221415a a S a +==+=,所以24a =,由(1)知数列{}n b 是等差数列,公差为212122a a d =-12=,所以11(1)222n n b n =+-⨯=, 所以1222n n n n a n -=⨯=⨯,*n ∈N .所以当2n 时,21414(1)2n n n S a n --=+=⨯-⨯+1(1)21n n =-⨯+, 当1n =时,等式也成立,所以(1)21n n S n =-⨯+,*n ∈N .9:(2023届南京市一中高三上学期数学模拟卷1解析第17题)9:已知等差数列n a 的前n 项和为n S ,12a =,426S =,正项等比数列{}n b 中,12b =,2312b b +=. (1)求{}n a 与{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n T . 方法提供与解析:(湖州赵健鑫)(1)解析:n a 的等差数列,426S =,则14626a d +=,因为12a =,所以3d =,则31n a n =-,因为n b 为等比数列,且2312b b +=,则()2112b q q ⋅+=,因为12b =,所以26q q +=,求得2q =或者3-,因为{}n b 为正项等比数列,所以2q =,解得2n n b =,所以31n a n =-,2n n b =.(2)解析:因为31n a n =-,2n n b =,所以()312nn n a b n =-⋅,则()123225282312n n T n =⋅+⋅+⋅++-⋅.两边同乘2得()23412225282312n n T n +=⋅+⋅+⋅++-⋅,两式相减得()123122323232312nn n T n +-=⋅+⋅+⋅++⋅--⋅,则()()211132122231212n n n T n -+⋅⋅--=⋅+--⋅-,所以()13428n n T n +=-⋅+.10:(2023届南京市高三年级学情调研1解析第17题)公众号中学数学星10:记n S 为数列{}n a 的前n 项和,已知1n a >,212n n S a ⎧⎫-⎨⎬⎩⎭是公差为12的等差数列.(1)证明:{}n a 是等差数列;(2)若1a ,2a ,6a 可构成三角形的三边,求1314S a 的取值范围. 方法提供与解析:(上海奉贤沈健)解析:(1)因为212n n S a ⎧⎫-⎨⎬⎩⎭是公差为12的等差数列,所以2211111222n n n n S a S a --⎛⎫---= ⎪⎝⎭,即()2211n n a a --=,又1na >,所以11n n a a --=,所以{}n a 是等差数列; (2)因为1a ,2a ,6a 可构成三角形的三边,所以11215a a +>+,即14a >,又137114141113137891131313S a a a a a a +===-++,且14a >,所以1314130,1317S a ⎛⎫∈ ⎪⎝⎭. 11:(2023届湖北省二十一所重点中学高三上第二次联考解析第18题) 11:已知数列{}n a 满足*0,N n a n ≠∈.(1)若2210n n n a a ka --=>且0na >. (i)当{}lg n a 成等差数列时,求k 的值;(ii)当2k =且141,a a ==时,求2a 及n a 的通项公式.(2)若2131231,1,0,[4,8]2n n n n a a a a a a a +++=-=-<∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.方法提供与解析:(浙江金华郭扬文)(1)解析:(等差定义)(i)因为{}lg n a 成等差数列, 所以122lg lg lg n n n a a a ++=+,所以212n n n a a a ++=⋅,又2210n n n a a ka ++=>所以1k =(ii)因为()22120n n n n a a a a ++⋅=>,所以221322432,2a a a a a a ==,所以322148a a a ==所以2a =因为2112n n n n a a a a +++=⋅,又由21aa 所以1n n a a +⎧⎫⎨⎬⎩⎭,公比为2的等比数列,所以112n n na a -+=,所以21012(2)(1)3211212n n n nn n a a a a a aa a -++++---=⨯⨯⨯⨯=⋅=,∴所以2(1)n n a -=(2)解析:(分组求和)由21312n n n n a a a a +++=-可得132412n n n n a a a a ++++=-,所以22424111224n n n n n n a a a a a a +++++⎛⎫=-⨯-= ⎪⎝⎭,因为0n a ≠,所以414n n a a +=,即44n n a a +=,因为1324121,1,02a a a a a a =-=-<,所以132420a a a a +=即2432a a a =,()()()()20201592017261020183711201948122020S a a a a a a a a a a a a a a a a =+++++++++++++++++++()()()()250425042504250412341444144414441444a a a a =+++++++++++++++++++()()250412341444a a a a =+++++++因为24332,[4,8]a a a a =∈,所以240aa >,因为20a <,所以40a <, 所以()24a a -+-≥,可得24a a +≤-所以123431a a a a a +++≤-+-令31y a =-+-,设[2,t =,21y t =--,对称轴为t =是开口向上的抛物线,在[2,t ∈单调递增,所以t =1234a a a a +++最大值为211-=-, 所以()()2504202012341444S a a a a =+++++++最大值为50550514141143---⨯=-. 12:(2023届武汉市高三上7月新起点考试解析第17题) 12:记n S 为数列{}n a 的前n 项和,已知2n n S na n n =-+. (1)证明:{}n a 是等差数列; (2)若1a ,4a ,6a 成等比数列,求9n S n+的最小值. 方法提供与解析:(湖州赵健鑫)(1)解析:由已知2n n S na n n =-+,当1n =时,1111S a =-+,等号成立,当2n ≥时,1n n n a S S -=-,因为2n n S na n n =-+,所以()()211111n n S n a n n --=---+-,两式相减得()()()11121n n n a n a n ----=-,所以12n n a a --=,则{}n a 是以2为公差的等差数列.(2)解析:由(1)得,416a a =+,6110a a =+,因为1a ,4a ,6a 成等比数列,所以2416a a a =⋅,即()()2111610a a a +=⋅+,解得118a =-,所以219n S n n =-,则291999191913n S n n n n n n +-+==+-≥=-,所以当且仅当9n n =,即3n =时,9n S n +的最小值为13-.13:(2023届广东惠州高三第一次调研考解析第17题)13:已知数列{}n a 的前n 项和为n S ,*n ∈N ,现有如下三个条件分别为: 条件①55a =;条件②12n n a a +-=;条件③24S =-;请从上述三个条件中选择能哆确定一个数列的两个条件,并完成解答. 您选择的条件是 和 .(1)求数列{}n a 的通项公式; (2)设数列{}n b 满足11n n n b a a +=⋅,求数列{}n b 的前n 项和n T .方法提供与解析:(上海奉贤沈健) 解析:(1)选①②时:解法1:由12n n a a +-=可知数列{}n a 是以公差2d =的等差数列,又55a =得51(51)a a d =+-⨯,得13a =-,故32(1)n a n =-+-,即()*25n a n n =-∈N .解法2:由12n n a a +-=可知数列{}n a 是以公差2d =的等差数列,又55a =得5(5)n a a n d =+-⨯,则5(5)2n a n =+-⨯,即()*25n a n n =-∈N .选②③时:由12n n a a +-=可知数列{}n a 是以公差2d =的等差数列, 由24S =-可知124a a +=-,即1224a +=-,得13a =-,故32(1)n a n =-+-,即()*25n a n n =-∈N .备注:选①③这两个条件无法确定数列,不给分. (2)111111(25)(23)22523n n n b a a n n n n +⎛⎫===- ⎪⋅-⋅---⎝⎭,11111111123111132523n T n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋯+- ⎪ ⎪ ⎪ ⎪⎢⎥-----⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1112323n ⎛⎫=-- ⎪-⎝⎭11646n =---. 所以69n nT n =-+.14:(2023届江苏省盐城中学8月高三上开学考解析第18题)14:已知各项均为正数的数列{}n a 的前n 项和为n S ,11a =,),2n a n n *∈≥Ν.(1)求证:数列是等差数列,并求{}na 的通项公式;(2)若[]x 表示不超过x 的最大整数,求22212111n a a a ⎡⎤+++⎢⎥⎣⎦的值. 方法提供与解析:(湖州赵健鑫)(1)解析:因为),2n a n n *∈≥Ν,由1n n n a S S -=-1n nS S -+-,解得1=,所以数列是以11=n =,则2n S n =,因为),2n a n n *=∈≥Ν,解得21n a n =-,1n =时也成立,所以21n a n =-.(2)解析:由(1)得21n a n =-,当2n ≥时,()()()2221111111222222221211n a n n n n n n ⎛⎫=<==- ⎪--⎝⎭---,所以222211211111115112224n a a a a n ⎛⎫=≤+++<+-< ⎪⎝⎭,则222121111n a a a ⎡⎤+++=⎢⎥⎣⎦.15:(2023届广州市真光中学高三上8月开学考解析第17题) 15:已知数列{}n a 满足111,2(1)n n a na n a +==+,设nn a b n=. (1)证明:数列{}n b 为等比数列;(2)设数列112log n n c b +=,记数列11n n c c +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,请比较n T 与1的大小.方法提供与解析:(浙江金华郭扬文) (1)解析:(等比定义) 因为12(1)n n na n a +=+,所以121n na a n n+⋅=+, 因为nn a b n =,所以12n n b b +=,所以112n nb b +=, 因为11a =,所以1111a b ==,所以数列{}n b 是以1为首项,12为公比的等比数列 (2)解析:(裂项求和) 由(1)可得112n n b -⎛⎫= ⎪⎝⎭,所以111221log log 2nn n c b n +⎛⎫=== ⎪⎝⎭,所以11111(1)1n n c c n n n n +==-++, 所以1111111122311n T n n n ⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 因为101n >+,所以1111n -<+,所以1n T < 16:(2023届浙江省新高考研究高三上8月测试解析第18题) 16:在数列{}n a 中,()*111,5(2)N 10n n a na n a n +==+∈. (1)求{}n a 的通项公式;(2)设数列{}n b 满足()()2*55N n n b n n a n =++∈,数列{}n b 前n 项和为n T .在①1110n T ≤,②5145(1)n n T n <-+中任意选择一个,补充在横线上并证明.选择 .方法提供与解析:(浙江金华郭扬文) (1)解析:(构造等比)由15(2)n n na n a +=+得1(1)5(2)(1)n n n n a n n a ++=++,即1(2)(1)1(1)5n n n n a n n a +++=+,因为1110a =,所以1n =时,1(1)5n n n a +=, 得1111(1)555n n n n n a -+=⋅=,因此1(1)5n n a n n =+⋅;(2)解析:(裂项求和)因为()255n n b n n a =++,得2215545111(1)5(1)555(1)5n n n n n nn n n n n b n n n n n n -+++++===+-+⋅+⋅⋅+⋅,所以123n n T b b b b =++++101212323111111111111151525525355354555(1)5n n nn n -=+-++-++-+++-⋅⋅⋅⋅⋅⋅⋅+⋅ 01111151155115(1)5445(1)515n n n nn n ⎛⎫- ⎪⎝⎭=+-=--⋅+⋅⋅+⋅- 选择①1110n T ≤:因为111111145(2)545(1)5n n n n n n T T n n +++-=--++⋅+⋅⋅+⋅ 111115(2)5(1)5n n n n n ++=-++⋅+⋅, 因为1(2)5(1)5n n n n ++⋅>+⋅,所以111(2)5(1)5n nn n +<+⋅+⋅, 所以10n n T T +->,所以n T 单调递增,因为()1min 1110n T T ==,所以1110n T ≤; 选择②因为511445(1)5n n n T n =--⋅+⋅,1045n>⋅,所以5145(1)nn T n <-+. 17:(2023届浙江省A9协作体高三暑假返校考解析第17题)17:已知数列{}n a 为公差不为0的等差数列,且24a =,1a ,2a ,4a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n S 为数列{}n a 的前n 项和,令1(1)nn n na b S +=-,求数列{}n b 的前2022项和. 方法提供与解析:(上海奉贤沈健)解析:(Ⅰ)由题意可得:()()121114,3.a d a d a a d +=⎧⎪⎨+=+⎪⎩所以2n a n =. (Ⅱ)因为(1)n S n n =+,所以2111(1)(1)(1)1nn n n b n n n n +⎛⎫=-=-+ ⎪++⎝⎭,202211111111202211223342022202320232023T =--++--+++=-+=-. 18:(2023届湖北省九校教研协作体高三起点考试解析第17题) 18:已知数列{}n a 满足111,n a a +=其中*n N ∈)(1)判断并证明数列{}n a 的单调性; (2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.方法提供与解析:(浙江金华郭扬文)(1)解析:(作差)11n n nn n na a aa a a---=-==.∵10,0,n n na a a+>∴-<∴数列{}n a单调递减(2)解析:(类等差放缩)∵1231231431,,332a a a a a a==∴++=>,又0na>,则2021332S S>>.∵221111311,0242nn naa a+⎛⎫⎛⎫=+=++≥>⎪⎪⎪⎪⎭⎭,12≥12当2n≥,2112na---≥,1(1)12n≥-+,11(1)12n≤-+,则222144411411313(1)1(1)(1)1422222nan n n nn nn⎛⎫⎪≤=<==⨯-⎪+⎛⎫⎛⎫⎡⎤ ⎪+-++++-+ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以20211232021111111141313133344202122222 S a a a a⎛=++++<++⨯-+-++-+++++⎝1320212⎫⎪⎪⎪+⎭111421485144133337372320212021222⎛⎫⎛⎫⎪ ⎪=++⨯-=+⨯-<+<⎪ ⎪⎪ ⎪+++⎝⎭⎝⎭则20213522S<<成立.19:(2023届长沙市一中入学摸底考解析第20题)19:已知数列{}n a的前n项和为n S,且满足(1)1(0)n nq S qa q-=->,*n∈N (1)求数列{}n a的通项公式;(2)当2q=时,数列{}n b满足2(1)nnnbn n a+=+,求证:12322nb b b≤+++<;(3)若对任意正整数n 都有1n a n +≥成立,求正实数q 的取值范围. 方法提供与解析:(杭州沙志广)解析:(1)由(1)1(0)n n q S qa q -=->得11(1)1q S qa -=-,即11(1)1q a qa -=-, 所以11a =若1q =,则1n a =;若1q ≠,则由(1)1n n q S qa -=-得11(1)1(2)n n q S qa n ---=-≥, 两式相减得()()11(1)11(2)n n n n n q a qa qa qa qa n ---=---=-≥, 化简得1(2)n n a qa n -=≥,所以数列{}n a 是以1为首项,以q 为公比的等比数列,因此n i n a q -=, 当1q =时,也满足该式,故1(0)n n a q q -=>.(2)因为2q =,所以12n n a -=, 则112112(1)22(1)2n n n n n b n n n n --⎡⎤+==-⎢⎥+⋅⋅+⋅⎣⎦因此12211111121222222322(1)2n n n b b b n n -⎡⎤⎡⎤⎡⎤+++=-+-++-⎢⎥⎢⎥⎢⎥⋅⋅⋅⋅+⋅⎣⎦⎣⎦⎣⎦1212(1)2n n ⎡⎤=-<⎢⎥+⋅⎣⎦, 又因为132b =,且0n b >,故1232n b b b +++≥, 因此12322n b b b ≤+++<得证.(3)由(1)得n n q ≤,则ln ln n n q ≤,即()*ln ln nq n n≥∈N , 令()*ln ()0,xf x x x x=>∈N , 为使对任意正整数n 都有1n a n +≥成立,即max ()ln f x q ≤, 因为21ln ()xf x x -'=,所以当0x e <<时,()0f x '>,即()f x 在(0,)e 上单调递增; 当x e >时,()0f x '<,即()f x 在(,)e +∞上单调递减,又*x ∈N ,且ln 2(2)2f =,ln3(3)3f =,ln 2ln3ln8ln9(2)(3)0236f f --=-=<所以max ln3()(3)3f x f ==,因此ln3ln 3q ≥,即q20:(2023届金太阳联考数学试题解析第20题)20:已知数列{}n a 的首项为1,满足3434a a a a -=,且2n n a a +,21n n a a ++,1成等差数列. (1)求{}n a 的通项公式;(2)证明:1232343451214n n n a a a a a a a a a a a a +++++⋅⋅⋅+<. 方法提供与解析:(浙江绍兴+谢柏军)(1)解析:2n n a a +,21n n a a ++,1成等差数列 22121n n n na a a a +++∴=+ 12211n n n a a a ++∴=+,即1211111n n n n a a a a +++-=- 1n a ⎧⎫∴⎨⎬⎩⎭是等差数列 3434a a a a -= 43111a a ∴-= ()11111n n n a a ∴=+-⋅= 1n a n∴=(2)解析:()()()()()()()()121211112121221212n n n n n a a a n n n n n n n n n n +++-⎡⎤⎣⎦===-+++++++ 12323434512n n n a a a a a a a a a a a a ++∴+++⋅⋅⋅+ ()()()()()1111111112122232232342121242124n n n n n n =-+-+⋅⋅⋅+-=-<⋅⋅⋅⋅⋅⋅⋅⋅+++++21:(2022年8月Z20联盟数学解析第18题)21:已知数列{}n a 的各项的为正数,记n S 为{}n a 的前n 项和,11a ==*n ∈N 且2n ≥).(Ⅰ)求证:数列是等差数列,并求{}na 的通项公式;(Ⅱ)当*n ∈N ,2n ≥时,求证:2222311111114n a a a +++<---. 方法提供与解析:(上海奉贤沈健)解析:=+(n *∈N 且2n ≥),所以n a =2n ≥时,1n n S S --=,所以,又因为0n a >0,1(2)n ≥,所以数列1=为首项,公差为1的等差数列,1(1)1n n =+-⨯=,所以2n S n =.所以当2n ≥时,121n a n n n =+-=-, 又因为11a =满足上式,所以数列{}n a 的通项公式为21n a n =-. 另解:当2n ≥时,221(1)21n n n a S S n n n -=-=--=-, 当1n =时,11a =,满足上式,所以{}n a 的通项公式为21n a n =-.(Ⅱ)当2n ≥时,221111114441na n n n n ⎛⎫==- ⎪---⎝⎭, 故22211111111111111141223144na a n n n ⎛⎫⎛⎫++=⨯-+-++-=⨯-< ⎪ ⎪---⎝⎭⎝⎭, 所以对n *∈N ,2n ≥,都有222111114n a a ++<--. 22:(2022年8月南京市六校联合体高三联合调研解析第18题)22:已知数列{}n a 满足121,3a a ==,数列{}n b 为等比数列,且满足()1+1n n n n b a a b +-=. (1)求数列{}n a 的通项公式;(2)数列{}n b 的前n 项和为n S ,若 ,记数列{}n c 满足,,n n na n cb n ⎧=⎨⎩为奇数,为偶数,求数列{}n c 的前2n项和2n T .在①2322S S =-,②234,2,b a b 成等差数列,③6126S =这三个条件中任选一个补充在第(2)问中,并对其求解.注:若选择多个条件分别解答,按第一个解答计分.方法提供与解析:(浙江金华郭扬文) (1)解析:(数列定义)因为()+1+112,13n n n n b a a b a a -===,.令1n =得122b b =, 又数列{}n b 为等比数列,所以+12n n b b =,则+12n n a a -=,所以数列{}n a 是以1为首项2为公差的等差数列,所以21n a n =-(2)解析:(分组求和)由(1)知数列{}n b 是公比为2的等比数列若选①,由2322S S =-得()1111122242b b b b b +=++-,所以12b =,则2n n b =若选②,由234,2,b a b 成等差数列得3244a b b =+,即112820b b +=,所以12b =,则2n n b = 若选③,由6126S =得()611212612b -=-,所以12b =,则2nn b =所以21, 2,n n n n c n -⎧=⎨⎩为奇数为偶数 所以数列{}n c 的奇数项是以1为首项4为公差的等差数列,偶数项是以4为首项4为公比的等比数列, 所以()()21321242n n n T a a a b b b -=+++++++()()2414441(1)422143nn n n n nn ---=+⨯+=-+-23:(2023届南海区摸底考试解析第17题)23:已知数列{}n a 的首项135a =,()1341n n n a n a a *+=∈+Ν. (1)求证数列12n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2)记12111n nT a a a =+++,若20n T <,求n 的最大值. 方法提供与解析:(湖州赵健鑫)(1)解析:因为()1341n nn a n a a *+=∈+Ν,所以141416121223331112121232n n n n n n n n n n n n n n na a a a a a a a a a a a a a a +++----====----,所以12n a ⎧⎫-⎨⎬⎩⎭是以13为公比的等比数列.(2)解析:由(1)得,1111112233n n n a a -⎛⎫⎛⎫⎛⎫-=-⋅=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,所以1123nn a ⎛⎫=- ⎪⎝⎭,则1211111322nn n T n a a a ⎛⎫- ⎪⎝⎭=+++=-,当10n =时,101011320202T ⎛⎫- ⎪⎝⎭=-<,当11n =时,11111110111113333222022020222T ⎛⎫⎛⎫⎛⎫--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-<+-=+>,所以,当20n T <,n 的最大值为10.。

2020新人教A版高中数学必修5同步课件:第二章 习题课(一) 求数列的通项公式

2020新人教A版高中数学必修5同步课件:第二章 习题课(一) 求数列的通项公式

∴an=
2.
2������ -1
(2)∵an+1=3an+2,∴an+1+1=3(an+1).
又a1+1=2≠0,
∴数列{an+1}是首项为2,公比为3的等比数列.
∴an+1=2·3n-1.
∴an=2·3n-1-1.
=
������ (������ -1)
22 .
反思已知数列的递推公式求通项,通常有以下几种情
形:(1)an+1-an=f(n),常用累加法求通项;(2)
������������ +1 ������������
=
������(n),常用累乘法求
通项;(3)an+1=pan+q,通常构造等比数列求通项.
习题课(一) 求数列的通项公式
1.巩固等差数列与等比数列的通项公式. 2.掌握求数列通项公式的常见方法,并能用这些方法解决一些简 单的求数列通项公式的问题.
1.等差数列的通项公式
若数列{an}为等差数列,其首项为a1,公差为d,则an=a1+(n1)d=am+(n-m)d (n,m∈N*).
【做一做1】 已知数列{an}是等差数列,且a2=6,a11=24,则
给项是分数,那么先把它们统一为相同的形式,再分子、分母分别
寻找规律.
题型一 题型二 题型三
【变式训练1】 根据下面数列的前几项,写出数列的一个通项公
式.
பைடு நூலகம்
(1)1,1,
5 7
,
7 15
,
9 31
,

;
(2)2,22,222,2 222,…;
(3)3,0,-3,0,3,….
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1求数列的通项公式专题训练1.归纳法(数学归纳法)例1:根据数列的前4项,写出它的一个通项公式:(1)9,99,999,9999,…(2) 17164,1093,542,211(3) ,52,21,32,1 (4) ,54,43,32,21--(5)21,43,87,1615… 解:(1)变形为:101-1,1021,103―1,104―1,…… ∴通项公式为:110-=n n a(2);122++=n n n a n (3);12+=n a n(4)1)1(1+⋅-=+n n a n n . (5)nn n a 212-= 点评:关键是找出各项与项数n 的关系。

例2. 已知数列{}n a 满足112n na a +=-,10a =. (1).计算 2a ,3a ,4a ,5a 的值;(2).根据以上计算结果猜想{}n a 的通项公式,并用数学归纳法证明你的猜想. 答案:(1)由 112n na a +=-和10a =,得234511121314,,,123202345222234a a a a ========----. (2)由以上结果猜测: 1n n a n-=用数学归纳法证明如下:①当1n =时,左边10a ==,右边1101-==,等式成立. ②假设当()1n k k =≥时,命题成立,即1k k a k-=成立. 那么,当1n k =+时, 111(1)112112k k k k a k a k k k++-====--++-2这就是说,当1n k =+时等式成立. 由①和②,可知猜测1n n a n-=对于任意正整数n 都成立. 针对性训练:① 3 33 333 333 3333 … ()110(31-=n n a )②321-710917-1126… (121)1(21++-=+n n a n n )2. 公式法直接利用等差或等比数列的通项公式写出,这种方法适用于已知数列类型的题目,也是最基本的方法之一。

例1. 已知数列{}n a 中,1235a a =,=,且{1}n a -是等比数列.求数列{}n a 的通项公式;解:∵{1}n a -是等比数列且112a -=,214a -=,,211=21a a -- ∴11222n n n a ⋅--==,∴2 1.n n a =+ 例2 :等差数列是递增数列,前n 项和为,且成等比数列,.求数列的通项公式.解:设数列公差为d(d>0)∵成等比数列,{}n a n s 1,3,9a a a 255s a ={}n a {}n a 1,3,9a a a 2319a a a ∴=33. S n 与a n 的关系1112n n n S n a S S n -=⎧=⎨-≥⎩ ,即已知数列前n 项和,求通项。

例3:已知下列两数列}{n a 的前n 项和n S 的公式,求}{n a 的通项公式。

(1)13-+=n n S n 。

(2)12-=n s n 解: (1)11111-+==S a =1n a =1--n n S S =[]1)1()1()1(33--+---+n n n n =3232+-n n 此时,112S a ==。

∴n a =3232+-n n 为所求数列的通项公式。

(2)011==s a ,当2≥n 时 12]1)1[()1(221-=----=-=-n n n s s a n n n由于1a 不适合于此等式 。

∴⎩⎨⎧≥-==)2(12)1(0n n n a n点评:要先分n=1和2≥n 两种情况分别进行运算,然后验证能否统一。

针对训练:1. 已知数列{}n a 的前n 项和为n S ,且满足()2log 11n S n +=+,求数列{}n a 的通项公式. 解析:由已知条件可得112n n S ++=, 则121n n S +=-, 所以当1n =时,113a S ==,4当2n ≥时,()()1121212n n n n n n a S S +-=-=---=,故3,12,2n n n a n =⎧=⎨≥⎩.2.设数列{}n a 的前n 项和为n S ,若13a =且当2n ≥时,12n n n a S S -=⋅,则{}n a 的通项公式为n a =_______________.解析:当2n ≥时,由12n n n a S S -=⋅可得112()n n n n S S S S ---=⋅, ∴11112n n S S -=-,即11112n n S S -=--, ∴数列1{}n S 是首项为13,公差为12-的等差数列, ∴11153()(1)326n nn S -=+-⋅-=. 当2n ≥时,11166225353(1)n n n a S S n n -==⨯⨯---18(53)(83)n n =--, 又13a =,∴3,118,2(53)(83)n n a n n n =⎧⎪=⎨≥⎪--⎩. 4.叠加法递推公式为a n+1=a n +f(n)或a n =a n−1+f(n),通常把原递推公式转化为a n+1-a n =f(n) 或a n -a n−1=f(n),利用逐差相加法求解。

例4. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。

解析:由n a a n n +=+1得n a a n n =-+1,所以11-=--n a a n n ,221-=---n a a n n , …,5112=-a a ,将以上各式相加得:1)2()1(1+⋅⋅⋅+-+-=-n n a a n , 又31=a 所以 n a =32)1(+-n n 针对性训练:已知数列中,求的通向公式解: 由已知得,, 令,代入个等式累加,即5.叠乘法递推公式为a n+1=a n ×f(n)或a n =a n−1×f(n),通常把原递推公式转化为a n+1a n=f(n) 或a n a n−1=f(n),利用逐商相乘法求解。

例5 .已知数列满足,求的通向公式。

解:由条件知,分别令n=1,2,3……,(n-1),代入上式得(n-1)个等{}n a 11211,241n n a a a n +==+-{}n a 1211114122121n n a a n n n +⎛⎫-==- ⎪--+⎝⎭()1,2,...,1n n =-()1n -()()()21321111111...1...23352321n n a a a a a a n n -⎡⎤⎛⎫⎛⎫⎛⎫-+-++-=-+-++- ⎪ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎝⎭⎣⎦1111221n a a n ⎛⎫∴-=- ⎪-⎝⎭4342n n a n -∴=-{}n a 112,31n n na a a n +==+n a 11n n a n a n +=+6式累乘之,即针对性训练:设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =________.]3[ 解:已知等式可化为:[]0)1()(11=-++++n n n n na a n a a0>n a (*N n ∈)∴(n+1)01=-+n n na a , 即11+=+n na a n n ∴2≥n 时,nn a a n n 11-=- ∴112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- =121121⋅⋅--⋅- n n n n =n16.构造法1)构造等比数列若有递推关系q pa a n n +=+1(其中p ,q 均为常数,0)1(≠-p pq ),一般采用待定系数法将原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,构造等比数列求解。

例.已知数列{}n a 满足11a =,且*121,n n a a n N +=+∈.求数列{}n a 的通项公式. 解析:∵121n n a a +=+, ∴112(1)n n a a ++=+.由11a =,知1120a +=≠,可得10n a +≠.7∴*112()1n n a n N a ++=∈+. ∴数列{}1n a +是以112a +=为首项,2为公比的等比数列. ∴11222n n n a -+=⋅= 即21n n a =-.针对训练:已知数列{}n a 中,11a =,*1(N )3nn n a a n a +=∈+.求{}n a 的通项公式; 解:由*1,N 3nn n a a n a +=∈+, 得13131n n n na a a a ++==+, 111113()22n n a a +∴+=+, 数列11{}2n a +是以3为公比,以11322n a +=为首项的等比数列, 从而111333222nn n a -+=⨯=,231n na ∴=-2)构造等差数列 作除法:例1.在数列{}n a 中,11a =, 122n n n a a +=+.求:数列{a n }的通项公式;解:(1)将122n n n a a +=+,两边同除以2n ,得11122n nn n a a +-=+. ∴11122n nn n a a +--=,即数列{a n 2n−1}是等差数列 则101(1)122n n a n n -=+-⨯=. ∴12n n a n -=⋅.8取倒法:例2. 已知数列{}n a 满足112a =,且122nn na a a +=+,求数列{}n a 的通项公式 解:∵122nn na a a +=+, ∴1212n n n a a a ++=, 即11112n n a a +-= ∴数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 则()11113122n n n a a +=+-⨯=,所以23n a n =+ 针对训练. 已知数列{}n a 满足当2n ≥时,1114n n n a a a --=+,且115a =.求数列{}n a 的通项公式;解析:(1)证明 由1141n n n a a a -=+-得:1140n n n n a a a a ----=,由1105a =≠及逆推式,0n a ≠, 两边同除以1n n a a -,得1114(2)n n nd a a --=≥, 所以,数列1{}na 是等差数列则1114(1)41n n n a a =+-=+, 所以a n =14n+17. 作差法例1.已知数列{}n a 满足:n a a a a n n =+⋅⋅⋅+++-12321222.求出数列{}n a 的通项公式;9解:(1)因为 n a a a a n n =+⋅⋅⋅+++-12321222. 所以 1222212321-=+⋅⋅⋅+++--n a a a a n n , 两式相减得:12n n a -=当1=n ,1a 时也符合上式,所以通项公式为:12n n a -=针对训练.设数列{}n a 满足123(21)2n a a n a n +++-=.求{}n a 的通项公式;解:数列{}n a 满足123(21)2n a a n a n +++-=.2n ≥时,123(23)2(1)n a a n a n +++-=-.两式相减得,2(21)2,21n n n a a n ∴-==-. 当1n =时,12a =,上式也成立.221n a n ∴=-.8. 待定系数法例. 在数列{}n a 中,362,2311-=-=-n a a a n n ,求通项n a . 解:原递推式可化为y n x a y xn a n n ++-+=++-)1()(21 比较系数可得:x=-6,y=9,上式即为12-=n n b b所以{}n b 是一个等比数列,首项299611=+-=n a b ,公比为21.1)21(29-=∴n n b 即:n n n a )21(996⋅=+- 故96)21(9-+⋅=n a n n .10。

相关文档
最新文档