氧化铝质多孔陶瓷制备工艺及应用
95%氧化铝陶瓷产品生产基本工艺流程

95%氧化铝陶瓷产品生产基本工艺流程
95%氧化铝陶瓷产品的生产基本工艺流程如下:
1. 原料配制:根据产品要求,按一定比例将氧化铝粉末、助燃剂和其他必需的添加剂混合均匀。
通常在配制过程中还需要使用球磨机对原料进行细磨。
2. 模具制备:将原料配制好的糊状物注入到相应的模具中,利用压力浇注或注射成型等方式将
其固化成坯体。
3. 坯体成型:将固化好的坯体经过挤压、压力成型等工艺进行成型,一般可以采用干压成型或
注浆成型。
4. 干燥:将成型好的坯体进行干燥处理,通常采用自然干燥或烘箱干燥的方法,以去除坯体内
的水分。
5. 烧结:将干燥好的坯体进行烧结处理,通常采用高温烧结的方法。
烧结温度和时间根据产品
要求进行控制,以使得坯体的颗粒结合更加紧密。
6. 修整:对烧结好的陶瓷进行修整处理,去除表面的瑕疵和不平整。
7. 表面处理:根据需要对产品进行必要的表面处理,如抛光、喷涂等。
8. 检验和包装:对成品进行质量检验,合格后进行包装,通常采用泡沫塑料、纸盒等包装材料
进行包装。
以上是95%氧化铝陶瓷产品的生产基本工艺流程,具体的生产工艺还需要根据具体的产品要求和工艺条件进行调整。
【精品文章】高纯氧化铝陶瓷的制备及应用简介

高纯氧化铝陶瓷的制备及应用简介
高纯氧化铝陶瓷是以高纯超细氧化铝粉体(晶相主要为α-Al2O3)为主要原料组成的重要陶瓷材料。
高纯氧化铝陶瓷因具有机械强度高、硬度大、耐高温、耐腐蚀等优良性能而受到人们的广泛关注。
1.高纯氧化铝陶瓷的制备
高纯氧化铝陶瓷的制备对原始粉体的要求较高,一般是以纯度>99.99%晶相为α相的氧化铝粉为主要原料。
高纯超细氧化铝粉体的特征决定了最终制备高纯氧化铝陶瓷的性能。
在高纯氧化铝粉体的制备过程中,要求粉体的纯度高,颗粒尺寸小且分布均匀,粉体活性高,并且团聚程度低。
这样可在相对较低的温度下制得高纯氧化铝陶瓷。
因此,为制备高纯氧化铝陶瓷,首先要制备出高纯氧化铝粉体。
(一)高纯氧化铝粉体的制备
目前,高纯超细氧化铝粉体主要有改良拜耳法、氢氧化铝热分解法、沉淀法、活性高纯铝水解法等制备方法。
a.改良拜耳法
拜耳法是工业上常用的制备氧化铝粉体的方法。
利用该方法制备氧化铝的过程中,由于原料铝酸钠中含有大量的Si、Fe、K、Ti等杂质,使得制备的氧化铝粉体纯度有所降低。
在传统制备工艺的基础上,对铝酸钠及结晶后的氧化铝进行脱杂处理,制备了纯度相对较高的氧化铝粉体,这种方法即为改良拜耳法。
该方法所用的原料主要为铝酸钠,来源广泛,整个过程中不会产生污染。
但是由于其制备工艺相对复杂,导致氧化铝生产效率低,从而限制了。
氧化铝陶瓷粉

氧化铝陶瓷粉氧化铝陶瓷粉是一种常见的陶瓷材料,具有广泛的应用领域。
本文将从氧化铝陶瓷粉的制备、特性以及应用等方面进行介绍。
一、制备氧化铝陶瓷粉的制备方法多种多样,常见的有溶胶-凝胶法、沉淀法、水热法等。
其中,溶胶-凝胶法是较为常用的制备方法之一。
该方法首先将铝盐溶解在适当的溶剂中,然后通过加入适量的酸、碱等调节PH值,使溶液发生凝胶化反应,得到氧化铝凝胶。
接着,将凝胶进行干燥和煅烧处理,最终得到氧化铝陶瓷粉。
二、特性氧化铝陶瓷粉具有许多优良特性,使其在各个领域得到广泛应用。
1.高温稳定性:氧化铝陶瓷粉在高温下具有良好的稳定性,能够承受高温环境下的热震和热应力。
2.优良的绝缘性能:氧化铝陶瓷粉具有良好的绝缘性能,能够有效阻止电流的传导,广泛应用于电子元件、绝缘体等领域。
3.高硬度:氧化铝陶瓷粉具有较高的硬度,能够抵抗外界的磨损和冲击,因此在磨料、切割工具等方面有着广泛应用。
4.良好的耐腐蚀性:氧化铝陶瓷粉能够耐受酸碱等腐蚀介质的侵蚀,使其在化工、石油等领域得到广泛应用。
三、应用氧化铝陶瓷粉在众多领域有着广泛的应用。
1.电子领域:氧化铝陶瓷粉常用于制造电子陶瓷基板、绝缘子、介质等元件,具有良好的绝缘性能和热导率,能够满足电子产品对高温、高频、高压等要求。
2.机械领域:氧化铝陶瓷粉常用于制造高硬度的磨料、切割工具、轴承等零部件,能够提高机械设备的耐磨性和使用寿命。
3.化工领域:氧化铝陶瓷粉在化工领域常用于制造反应器、催化剂等设备,具有优良的耐腐蚀性和耐高温性能。
4.医疗领域:氧化铝陶瓷粉在医疗领域常用于制造人工关节、牙科修复材料等医疗器械,具有良好的生物相容性和耐磨性。
氧化铝陶瓷粉是一种具有广泛应用的陶瓷材料。
通过不同的制备方法可以得到具有不同特性的氧化铝陶瓷粉,满足各个领域对材料性能的需求。
随着科技的不断发展,氧化铝陶瓷粉在更多领域将发挥更重要的作用。
氧化铝陶瓷的制备实验指导书

实验名称:氧化铝陶瓷的制备结构陶瓷的制备通常由所需起始物料的细粉,加入一定的结合剂,根据合适的配比混合后,选择适当的成型方法,制成坯体。
坯体经干燥处理后,进行烧结而得到。
坯体经烧结后,宏观上的反映为坯体有一定程度的收缩,强度增大,体积密度上升,气孔率下降,物理性能得到提高。
实验目的:1.选用氧化铝粉体,通过干法成型,制备氧化铝陶瓷。
2.选用合适的烧结助剂,促进氧化铝陶瓷的烧结,加深对陶瓷烧结的理解。
3.熟悉陶瓷常用物理性能的测试方法实验原理:氧化物粉体经成型后得到的生坯,颗粒间只有点接触,强度很很低,但通过烧结,虽在烧结时既无外力又无化学反应,但能使点接触的颗粒紧密结成坚硬而强度很高的瓷体,其驱动力为粉体具有较高的表面能。
但纯氧化铝陶瓷的烧结需要的温度很高,为在较低的温度下完成烧结,需要向体系中加入一定的助烧剂,使其能在相对较低的温度下出现液相而实现液相烧结。
本实验中,采用向氧化铝粉体中加入适量的二氧化硅粉体以促进烧结,而达到氧化铝陶瓷烧结的目的。
实验仪器:天平、烧杯、压力机、模具、游标卡尺、电炉等实验步骤:1.配料。
将氧化铝、二氧化硅粉体按97:3的比例混合均匀,并外加入5%的水起结合作用。
2.制样。
称取适量混合好的粉体,倒入模具内,压制成型。
并量尺寸,计算生坯的体积密度。
3.干燥。
将成型好的生坯充分干燥。
4.烧结。
将干燥后的生坯置于电炉内,在1500℃的条件下保温3小时。
5.检测。
测量烧后试样的尺寸,计算其体积密度。
计算烧结前后线变化率。
氧化铝陶瓷的制备实验报告1.实验目的2.实验仪器3.实验数据记录及数据处理起始物料的配比;结合剂的加入量;烧结前后试样的体积密度及质量变化;烧结前后的线变化率。
4.思考题:1)助烧剂的作用机理是什么?2)常用体积密度的测试方法有哪几种?。
氧化铝陶瓷干压工艺技术

氧化铝陶瓷干压工艺技术氧化铝陶瓷是一种常见的高温耐磨材料,具有优异的物理性能和化学稳定性,广泛应用于工业生产中的高温环境。
氧化铝陶瓷干压工艺技术是制备氧化铝陶瓷产品的一种常用方法,它具有工艺简单、成本低廉等优点。
氧化铝陶瓷干压工艺技术主要包括原料配制、研磨、干压成型、烧结等步骤。
首先需要按照一定的配方,将氧化铝和一定比例的添加剂混合均匀。
添加剂的作用主要是增强氧化铝陶瓷的硬度和强度,并改善其物理性能。
混合后的粉末需要进行研磨处理,以获得更细小均匀的颗粒,提高陶瓷材料的致密度。
在干压成型过程中,需将研磨后的氧化铝粉末放入成型模具中,并利用压力将其固定在一定形状的陶瓷模具中。
通常情况下,压力可达几十至几百兆帕(MPa),以保证成型制品的强度与致密性。
干压成型的优点是成型速度快、精度高,适用于制作各种规格和形状的氧化铝陶瓷产品。
成型后的氧化铝陶瓷产品需要进行烧结处理,以增强其物理性能和化学稳定性。
烧结温度通常在1500℃-1800℃之间,烧结时间和温度是影响陶瓷产品致密度和晶粒尺寸的重要因素。
在烧结过程中,氧化铝粉末会发生晶界扩散和再结晶现象,晶粒尺寸逐渐增大,形成致密的陶瓷材料。
在氧化铝陶瓷干压工艺技术中,还可采用添加剂掺杂、减压烧结等方法,来改善陶瓷产品的物理性能。
添加剂掺杂可以提高陶瓷的硬度、强度和高温抗氧化性能;减压烧结则可以降低成型温度,并提高陶瓷材料的致密度和强度。
总之,氧化铝陶瓷干压工艺技术是一种制备氧化铝陶瓷产品的常用方法,具有工艺简单、成本低廉等优点。
通过适当的原料配制、研磨、干压成型和烧结处理,可以获得高致密度、高硬度、高强度和优异的物理性能的氧化铝陶瓷产品。
多孔陶瓷的研究及应用现状

该法主要适用于无机超滤复 合膜或非对称膜及改性膜孔
径分布的测定研究
孔径分布利用脱附过程。
3 应用情况[5,6,10,11]
多孔陶瓷材料由于其独特的多孔结构而具有热导率低、体积密度小、比表面积高,独特物化性能的表
面结构等优点,加之陶瓷材料本身特有的耐高温、化学稳定性好、强度高等特点,目前已广泛应用于环保、
力计等)
该法最佳测试范围是 0.1-10nm,对于孔径在 30nm 以下的纳米材料,常用气体
吸附法来测定其孔径分布
当易凝蒸气与多孔介质接触,相对
蒸气 渗透法
蒸气压由 0 增加到 1 的过程中,在 介质的表面和孔中依次出现单层吸 附、多层吸附和毛细管冷凝,测定
蒸气渗透法测试装置(气体 瓶、蒸发器、压力表、膜及渗
目前,应用造孔剂成孔法制备多孔氧化铝陶瓷是比较普遍,且制得的多孔陶瓷孔结构好,力学性能相 对来讲也较理想。
在众多造孔剂中,淀粉由于其廉价、无毒、环境友好、易烧蚀等特性,成为使用较为广泛的造孔剂之 一。Živcová Z 等[12]人,利用土豆、小麦、玉米及大米等不同种类的淀粉做造孔剂,制备了多孔氧化铝陶 瓷,并对其热导率进行测试。研究表明,相对热导率与孔隙率满足一定的关系:kr=exp(−1.5ф/(1−ф)), 其中 kr-相对热导率,ф-气孔率。Prabhakaran K 等[13]人,将面粉颗粒作为胶凝剂和造孔剂置于氧化铝浆 料中,将得到的干凝胶经过 1600℃高温烧结,制备出具有 200-800μm 的大孔和小于 20μm 小孔、孔隙率 达到 67–76.7%,压缩强度为 2.01–5.9 MPa 的多孔氧化铝陶瓷。
化工、石油、冶炼、食品、制药、生物医学等多个科学领域。
3.1 绝热材料
【精品文章】一文了解多孔氧化铝陶瓷制备方法及应用

一文了解多孔氧化铝陶瓷制备方法及应用
多孔氧化铝陶瓷不仅具有氧化铝陶瓷耐高温、耐腐蚀性好,同时具有多孔材料比表面积大、热导率低等优良特点,现已广泛应用于净化分离、固定化酶载体、吸声减震和传感器材料等众多领域,在航天航空、能源、石油等领域中也具有十分广阔的应用前景。
材料的性能与应用取决于其相组成和微观结构,多孔氧化铝陶瓷正是利用了氧化铝陶瓷固有属性和多孔陶瓷的孔隙结构,其中影响孔隙结构的主要因素是制备工艺与技术。
图1 多孔氧化铝陶瓷管
一、多孔氧化铝陶瓷的制备工艺
目前,多孔氧化铝陶瓷的制备工艺主要有添加造孔剂法、有机泡沫浸渍法、发泡法、颗粒堆积工艺、冷冻干燥法和凝胶注模法。
1、添加造孔剂法
添加造孔剂法是制备多孔氧化铝陶瓷较为简单、经济的方法,该工艺是在氧化铝陶瓷生坯制备过程中加入固态造孔剂,然后通过烧结去除造孔剂留下气孔。
添加造孔剂法制备多孔氧化铝陶瓷的关键在于造孔剂的种类和数量,其次是造孔剂粒径大小。
添加造孔剂的目的在于提高材料的气孔率,因此要求其不能与基体反应,同时在加热过程中易于排除且排除后无有害残留物质。
常用的造孔剂分为有机造孔剂和无机造孔剂两大类,有机造孔剂主要有淀粉、松木粉、聚乙烯醇、聚乙二醇等;无机造孔剂主要有碳酸铵、氯化铵等高温可分解盐类和各类碳粉。
图2 具有梯度分布孔的氧化铝陶瓷(左)及SEM 图片(右)。
氧化铝多孔陶瓷的制备及性能研究

氧化铝多孔陶瓷的制备及性能研究氧化铝多孔陶瓷的制备及性能研究摘要:氧化铝多孔陶瓷因其优良的化学稳定性、高温强度和机械性能被广泛应用于电子、石油、化工等领域。
本文基于氧化铝多孔陶瓷的制备方法和性能研究,综述了其制备工艺、表征方法以及性能研究的结果。
1. 引言氧化铝多孔陶瓷是由高纯度氧化铝粉末经过压制、烧结等工艺制备而成的一种陶瓷材料。
其孔隙结构使其具有较大的比表面积和孔隙率,从而使其具备了优异的吸附性能和渗透性能。
氧化铝多孔陶瓷被广泛应用于催化、过滤、电子以及化工等领域。
2. 制备方法氧化铝多孔陶瓷的制备方法包括模板法、发泡法、溶胶-凝胶法等。
模板法主要通过使用模板材料,在烧结过程中得到孔隙结构;发泡法则采用制泡剂,在高温下产生气泡形成多孔结构;溶胶-凝胶法则通过溶胶的凝胶过程形成多孔陶瓷。
其中,模板法制备的氧化铝多孔陶瓷具有较大的孔隙直径和均匀的孔隙分布,具有较好的热稳定性;发泡法制备的氧化铝多孔陶瓷具有较小的孔隙直径和较大的孔隙率,具有较好的过滤性能;溶胶-凝胶法制备的氧化铝多孔陶瓷具有较高的比表面积和孔隙率,具有较好的吸附性能。
3. 表征方法氧化铝多孔陶瓷的性能主要通过其孔隙结构、比表面积等参数进行表征。
通常采用扫描电子显微镜(SEM)、比表面积分析仪、压汞法等方法对其进行表征。
SEM能够直观地观察到其孔隙结构形貌,并且可以进行孔径分布的分析;比表面积分析仪则能够测量其比表面积,通过比表面积与孔隙率的关系推导出其孔隙结构参数;压汞法则能够通过测量其对气体的吸附能力来计算出其孔隙分布和孔径大小。
4. 性能研究氧化铝多孔陶瓷的性能研究主要包括孔隙结构对吸附和过滤性能的影响,以及化学稳定性、机械性能等方面的研究。
孔隙结构对吸附和过滤性能的影响可以通过调节制备方法来实现,如改变模板材料、制泡剂的种类和用量等;化学稳定性的研究可以通过浸泡在不同溶液中来验证其抗化学侵蚀性能,并通过SEM等表征手段来观察其表面形貌的变化;机械性能的研究可以通过测量其抗压强度、硬度等参数来评估。
冷冻干燥法制备多孔陶瓷研究进展

冷冻干燥法制备多孔陶瓷研究进展近年来,随着科技的不断进步,多孔陶瓷的制备技术越来越受到人们的。
多孔陶瓷具有优异的物理化学性能,如高透气性、高渗透性、耐高温、耐腐蚀等,使其在许多领域具有广泛的应用前景。
本文将重点冷冻干燥法制备多孔陶瓷的研究进展。
多孔陶瓷的制备方法有很多,包括物理法、化学法、模板法等。
物理法主要包括球磨法、烧结法等;化学法主要包括溶胶-凝胶法、聚合物泡沫浸渍法等。
这些方法在制备多孔陶瓷时都存在一定的局限性,如制备过程复杂、成本高、孔结构不易控制等。
因此,需要探索一种简单、高效、可控的制备方法。
冷冻干燥法是一种新型的制备多孔陶瓷的方法,该方法主要利用冰在低温下升华的原理,将含有陶瓷前驱体的溶液进行冷冻,然后在真空条件下进行干燥。
冷冻干燥法具有以下优点:1)可以制备具有复杂形状和结构的多孔陶瓷;2)可以控制孔径大小和分布;3)制备过程简单、节能环保。
然而,冷冻干燥法也存在一些不足,如制备周期长、成本较高,需要进一步改进和完善。
本文采用冷冻干燥法制备多孔陶瓷,进行了实验设计、材料制备、性能测试等方面的工作。
我们选取合适的陶瓷前驱体和溶剂,制备出具有一定粘度的溶液。
然后,将溶液进行快速冷冻,并在真空条件下进行干燥。
对制备出的多孔陶瓷进行性能测试,包括孔径大小、孔隙率、抗压强度等方面。
通过与其他制备方法相比,我们发现冷冻干燥法在制备多孔陶瓷方面具有明显的优势。
冷冻干燥法可以制备出具有复杂形状和结构的多孔陶瓷,这是其他方法难以实现的。
冷冻干燥法可以精确控制孔径大小和分布,从而满足不同领域的应用需求。
冷冻干燥法的制备过程简单、节能环保,具有很高的实际应用价值。
近年来,利用冷冻干燥法制备多孔陶瓷的研究取得了重要进展。
在机制分析方面,科研人员深入研究了冷冻干燥的原理和过程,提出了许多有价值的理论。
在工艺优化方面,通过不断改进制备工艺,提高了多孔陶瓷的性能和稳定性。
在产品应用方面,冷冻干燥法制备的多孔陶瓷在许多领域都得到了广泛的应用,如催化剂载体、过滤分离、生物医学等。
氧化物陶瓷

氧化物陶瓷
氧化铝陶瓷的工艺流程: 氧化铝陶瓷(alumina ceramics)是一种以α- Al2O3为 主晶的陶瓷材料。 制作过程:
(1) 预烧 对氧化铝粉末进行预烧 ,目的排除氧化铝原料中 的氧化钠,提高原料的纯度及产品质量
(2)配方 氧化铝陶瓷根据其应用要求不同,配方组成也不 同。通常依照Al2O3含量的不同,分为75瓷、80瓷、 95瓷、 99瓷等
氧化物陶瓷
材工12-2 黄菲 陈兰坤
氧化物陶瓷
氧化铝陶瓷
氧化锆陶瓷
氧化物陶瓷
氧化硅陶瓷
氧化镁陶瓷
氧化物陶瓷
一.氧化物陶瓷的介绍 二.氧化铝陶瓷的工艺流程
三.氧化铝陶瓷的特点及应用
四.氧化铝陶瓷存在的问题及解决方案 五.氧化物陶瓷的展望
氧化物陶瓷
氧化物陶瓷的介绍:
由一种或数种氧化物制成的陶瓷。
氧化物陶瓷
α-氧化铝 以其强度高、硬度大、耐高温、耐磨损 等一 系列优异特性,在各种新型陶瓷材料 的生产中 得到广泛 的应用 。它不但是制做集成 电路 基片、人 造宝石、切 削刀具 、人造骨骼等高级氧化铝陶瓷的粉 体原料,而且 可用作荧光粉载体、高级耐火材料、特 殊研磨材料等。 随着现代科学技术的发展,α一 氧化 铝的应用领域正在 迅速拓宽 ,市场需求量也在 日益 增大 ,其前景非常广 阔。α一氧化铝在功能陶瓷中的应用
氧化物陶瓷
(3) α-氧化铝在 生物陶瓷中的应用 生物陶瓷材料作为无机生物医学材料,与金属材料 、高 分子材料相比没有毒副作用,与生物体组织有良好的生物 相容性 、耐腐蚀性等优点 ,已越来越受到人们的重 视 , 生物陶瓷材料的研究与临床应用 ,已从短期的替 换与填充发展成为永久性牢 固种植 ,从生物惰性材料发 展到生物活性 的材料及多相复合材 料。近年来 ,氧化 铝多孔陶瓷由于具有耐化学侵蚀、 耐磨 ,具有良好的高 温稳定性 以及热 电特性,被用于制作人工髋关节 、人 造膝关 节、 人工股骨 头、其他人工骨、牙根和骨骼固 定螺钉及修补角膜等。
氧化铝陶瓷制作工艺

氧化铝陶瓷制作工艺氧化铝陶瓷是一种具有高强度、高硬度、高稳定性和高化学稳定性的特殊陶瓷材料。
其制作工艺包括原料制备、成型、烧结和后处理。
以下是详细的制作工艺过程。
1. 原料制备氧化铝陶瓷的主要原料是高纯度氧化铝,其纯度要求高达99.99%以上。
其次还需要一些助剂,如结合剂、流变剂和添加剂等。
在原料制备中,首先将高纯度氧化铝粉末加入到一定比例的溶液中,调整其PH值和比例,使之成为可流动的泥浆状物质。
然后将助剂加入其中,进行充分混合和静置。
2. 成型氧化铝陶瓷的成型方式有多种,包括注塑成型、挤出成型和压制成型等。
其中,注塑成型是最为常用的成型方式。
在注塑成型过程中,先将制备好的氧化铝泥浆注入注塑机中,经过一定的压力和形状模具的作用,使之成形。
形成的坯料亦称为瓷坯,是之后烧结的主要原料。
3. 烧结瓷坯在烧结过程中,需将其加热到相应的高温下,使其颗粒间的空隙逐渐消失,颗粒间发生熔合,形成致密的陶瓷结构。
烧结温度一般在1500℃以上,而烧结时间则根据实际需要进行调整。
在烧结过程中,温度升高时,会逐渐发生晶粒长大和结晶化的过程,从而提高氧化铝陶瓷的密度、结晶度和力学性质。
4. 后处理烧结后的氧化铝陶瓷需要进行后处理,以达到期望的性能和外观效果。
后处理包括去毛刺、打磨、抛光、阳极氧化等。
去毛刺是一项必要过程,可去除瓷坯表面的毛刺和毛发,使其表面更加光滑。
打磨和抛光则可将瓷坯表面的粗糙度和凹凸不平处处理,使之表面更加平滑细腻。
而阳极氧化则是为了提高氧化铝陶瓷的耐腐蚀性和色泽度。
总的来说,氧化铝陶瓷的制作工艺不仅要求原料的纯度和质量,还需要严格控制成型、烧结和后处理等各个环节的工艺参数。
只有如此,才能生产出高品质的氧化铝陶瓷产品。
凝胶剂制备氧化铝多孔陶瓷工艺流程

凝胶剂制备氧化铝多孔陶瓷工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!氧化铝多孔陶瓷作为一种重要的功能陶瓷材料,在目前的工业生产和科研领域得到了广泛的应用。
微米级多孔氧化铝

微米级多孔氧化铝1. 引言微米级多孔氧化铝是一种具有广泛应用前景的纳米材料,其独特的物理和化学性质使其在许多领域中具有重要的应用潜力。
本文将对微米级多孔氧化铝的制备方法、性质及其应用进行全面详细、完整且深入的介绍。
2. 制备方法微米级多孔氧化铝的制备方法主要包括溶胶-凝胶法、模板法和阳极氧化法等。
2.1 溶胶-凝胶法溶胶-凝胶法是一种常用的制备微米级多孔氧化铝的方法。
该方法通过将金属盐或金属有机络合物与溶剂混合,形成稳定的溶胶,然后通过加热或蒸发使其凝胶化。
最后,通过煅烧去除有机物质,形成多孔氧化铝。
2.2 模板法模板法是一种利用模板来制备微米级多孔氧化铝的方法。
首先,选择一个具有稳定结构的模板材料,例如聚苯乙烯微球。
然后,将模板浸渍在金属盐或金属有机络合物的溶液中,使其吸附金属物质。
最后,通过煅烧去除模板材料,形成多孔氧化铝。
2.3 阳极氧化法阳极氧化法是一种利用电解沉积来制备微米级多孔氧化铝的方法。
该方法通常使用铝箔作为阳极,在电解液中进行电解沉积。
通过调节电解液的成分和工艺参数,可以控制多孔氧化铝的孔径和孔隙度。
3. 性质微米级多孔氧化铝具有许多优异的性质,使其在各种领域中得到广泛应用。
3.1 多孔结构微米级多孔氧化铝具有高度有序的多孔结构,具有大量的纳米尺寸孔道。
这种多孔结构使其具有较大的比表面积和丰富的表面活性位点,提供了良好的吸附和催化性能。
3.2 耐热性微米级多孔氧化铝具有良好的耐热性,可以在高温环境下稳定运行。
这使其在催化剂、传感器和高温材料等领域中得到广泛应用。
3.3 生物相容性微米级多孔氧化铝具有良好的生物相容性,可以用于生物医学领域中的药物传递、组织工程和生物传感器等应用。
4. 应用微米级多孔氧化铝在许多领域中都有重要的应用潜力。
4.1 催化剂由于其高度有序的多孔结构和丰富的表面活性位点,微米级多孔氧化铝被广泛应用于催化剂领域。
它可以作为载体或催化剂本身,用于催化反应、环境净化和能源转换等方面。
氧化铝陶瓷制备工艺

氧化铝陶瓷制备工艺
氧化铝陶瓷是一种高温、高硬度、高抗腐蚀性的陶瓷材料,被广泛应
用于各种工业领域。
下面将介绍三种常见的氧化铝陶瓷制备工艺。
一、干压成型法
干压成型法是制备氧化铝陶瓷的常见方法。
首先将原材料经过混合、
研磨后,再通过干压成型机将粉末压制成型。
然后经过高温烧结处理,最终得到氧化铝陶瓷。
这种方法制备的氧化铝陶瓷密度高、硬度大,但成本较高,且容易产
生裂纹或变形。
二、注塑成型法
注塑成型法又称压注成型法,是利用注塑机将氧化铝陶瓷粉末加入到
塑料中,经过热加工成型后,再进行高温烧结。
这种方法可以制备较复杂的形状,且制备过程中不易产生裂缝。
但注
塑机的使用成本较高,且在加入塑料的过程中可能会造成杂质的混入。
三、凝胶成型法
凝胶成型法是一种利用化学液相反应制备氧化铝陶瓷的方法。
首先制
备氧化铝溶胶,然后在模具中定型,经过高温烧结后,得到氧化铝陶瓷。
这种方法制备的氧化铝陶瓷密度大、纯度高,且具有优异的机械
性能和抗腐蚀性能。
但制备过程较长,且设备成本较高。
综上所述,氧化铝陶瓷的制备工艺有多种方法,每种方法都有其优缺
点。
选择合适的制备方法,能够提高氧化铝陶瓷的质量和性能,满足不同领域的需求。
氧化铝陶瓷浆料配方

氧化铝陶瓷浆料配方
氧化铝陶瓷是一种常见的陶瓷材料,用于制作瓷砖、陶瓷器皿、陶瓷齿科材料等。
以下是一个基本的氧化铝陶瓷浆料配方,可用于制备氧化铝陶瓷:
主要原料:
-氧化铝粉末(Al?O?)
-粘结剂(例如黏土、纯碱等)
-水
辅助原料:
-陶瓷颜料(根据需要选择)
-增塑剂或增稠剂(根据需要选择)
配方步骤:
1. 准备氧化铝粉末:根据所需陶瓷产品的要求,选择合适颗粒大小的氧化铝粉末。
可以使用混合机或者研磨机将粉末细化、均匀混合。
2. 添加粘结剂:根据所选的粘结剂类型和使用比例,将粘结剂逐渐
加入到氧化铝粉末中,并在混合的过程中充分搅拌,以保证颗粒之间的均匀结合。
3. 加水:逐渐添加适量的水到混合物中,搅拌均匀。
水的含量应根据所需浆料的粘稠度和可塑性加入,以达到合适的浆料流动性。
4. 添加辅助原料:根据需要可以加入适量的陶瓷颜料,以调整浆料的颜色和装饰效果。
此外,根据需要可以添加增塑剂或增稠剂,以调整浆料的黏度和流动性。
5. 混合调理:使用搅拌器或者混合机将浆料充分搅拌、调理,以确保所有成分均匀混合在一起。
完成以上步骤后,你就可以根据具体需求,将制备好的氧化铝陶瓷浆料用于瓷砖、陶瓷器皿或其他陶瓷材料的制备过程中。
请注意,在操作过程中应当遵循安全操作规程,并根据具体情况调整配方和使用比例。
氧化铝陶瓷制备技术研究

氧化铝陶瓷制备技术研究
1引言
氧化铝陶瓷(Al2O3Ceramic)是一种具有良好光学性能、耐高温性、强度高、质轻且极易加工的陶瓷材料,它可以实现质量上厘、周期超短的高效制造,被广泛应用于医疗、航天、电子等领域。
目前,越来越多的企业和研发机构正力求寻求一种能够快速、有效的制备氧化铝陶瓷的方法和技术,以满足不同领域对于陶瓷材料的大量产业需求。
2熔法
熔法是目前比较常用的一种氧化铝陶瓷制备技术,它的基本原理是在溶解期间形成氧化铝溶胶,再经过一系列的烧结工艺,将氧化铝溶胶最终转换为氧化铝陶瓷。
它具有材料成本低、生产效率高、细致精密等优势,被广泛用于制备各种表面光洁度高、口径精密度高的氧化铝陶瓷产品。
3压辊钻孔
压辊钻孔一种特殊的氧化铝陶瓷制备技术,它是通过将陶瓷半成品/原料经由定形、滚压、表面处理等工序,最终形成相关氧化铝陶瓷零件。
这种制备技术的优势在于尺寸精度高,表面光洁度高,装配安全牢靠,能够有效满足客户对于氧化铝陶瓷零件规格尺寸大小精度要求。
4热压法
热压法是指通过把原料进行一系列的混合和加工,用一定的压力将其压型成型而形成氧化铝陶瓷的一种制备技术。
热压法的优势在于它具有快速、有效的生产,以及对于不同表面光洁度要求更加严格的装配要求,能够满足客户对于该类陶瓷材料的多种要求。
5总结
以上就是关于氧化铝陶瓷制备技术的详细介绍,它们各有优势且用途广泛,分别适用于各种表面光洁度高、口径精密度高和复杂制造等质量要求更高的氧化铝陶瓷制备。
氧化铝陶瓷的制备技术正在不断发展,其真正的潜力和作用仍有待发掘,未来仍有很多的可能性及挑战。
al2o3陶瓷制备流程

al2o3陶瓷制备流程Al2O3陶瓷制备流程一、概述Al2O3陶瓷,即氧化铝陶瓷,是一种具有高温稳定性、高硬度和耐腐蚀性的陶瓷材料。
它在工业领域中广泛应用于耐火材料、电子元件、磨料和涂层等领域。
本文将介绍Al2O3陶瓷的制备流程。
二、原料准备制备Al2O3陶瓷的原料主要有氧化铝粉和添加剂。
氧化铝粉通常采用高纯度的氧化铝粉末,添加剂可根据具体需求选择,如镁、钇等元素的氧化物。
原料的选择和质量对最终产品的性能有着重要影响。
三、混合和研磨将氧化铝粉和添加剂按一定比例混合,以确保均匀分布。
然后,将混合后的粉末放入球磨机中进行研磨处理。
研磨的目的是使粉末颗粒更加细小均匀,增加反应活性。
四、成型研磨后的粉末通过成型工艺形成所需的形状。
常用的成型方法有压制成型和注塑成型。
压制成型是将粉末放入模具中,施加压力使其形成固体坯体。
注塑成型则是将粉末与有机溶剂混合,通过注塑机注射到模具中,形成绿胚。
五、烧结绿胚经过成型后,需要进行烧结处理。
烧结是将绿胚置于高温下进行加热,使粉末颗粒之间发生结合,形成致密的陶瓷材料。
烧结温度和时间的选择需根据原料和产品要求进行确定。
六、表面处理烧结后的Al2O3陶瓷可能会存在表面不光滑或有缺陷的情况,因此需要进行表面处理。
常见的表面处理方法有抛光、研磨和镀膜等。
表面处理可以提高陶瓷的光洁度和机械性能,满足特定的应用需求。
七、性能测试制备完成的Al2O3陶瓷需要进行性能测试,以确保其符合要求。
常用的性能测试项目包括硬度测试、抗压强度测试、热稳定性测试和化学稳定性测试等。
通过这些测试,可以评估陶瓷材料的质量和性能。
八、应用领域Al2O3陶瓷的优良性能使其在许多领域有广泛应用。
在耐火材料领域,Al2O3陶瓷可用于制作高温炉具、耐火砖和耐火涂层等。
在电子元件领域,Al2O3陶瓷可用于制作绝缘体、电容器和电子陶瓷等。
此外,Al2O3陶瓷还可用作磨料、切削工具和涂层材料等。
九、总结Al2O3陶瓷的制备流程主要包括原料准备、混合和研磨、成型、烧结、表面处理和性能测试等步骤。
氧化铝陶瓷制作工艺简介

氧化铝陶瓷制作工艺简介氧化铝陶瓷目前分为高纯型与普通型两种。
高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。
普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。
其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。
其制作工艺如下:一粉体制备:将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。
粉体粒度在1μm?微米?以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。
采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,?一般为重量比在10—30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150—200℃温度下均匀混合,以利于成型操作。
采用热压工艺成型的粉体原料则不需加入粘结剂。
若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。
此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。
欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。
近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。
喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。
颗粒级配比理想等条件,以获得较大素坯密度。
二成型方法:氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低以及对孔径和表面积的控制情况等。 氧化铝多孔 陶瓷是符合上述要求的优质材料之一。 氧化铝陶瓷 具有的许多优良性能: 机械强度高、硬度大, 耐磨性、 耐腐蚀和耐冲击性能好。 使得氧化铝多孔陶瓷能在
1. 3 添加造孔剂形成气孔 该工艺是通过在陶瓷坯料中添加造孔剂, 利用
造孔剂在坯体中占据一定的空间, 经过烧结后, 造孔 剂离开基体而形成气孔来获得多孔陶瓷。 添加造孔
这种方法是美国橡树岭国家实验室首次提出 的。这种新的成型技术采用非孔模具, 利用料浆内部 或少量添加剂的化学反应作用使陶瓷料浆原位凝固 形成坯体, 获得具有良好微观均匀性和较高密度的 素 坯, 从 而 显 著 提 高 材 料 的 可 靠 性。 P ila r Sep u lveda[9] 使 用 该 工 艺 制 备 了 抗 弯 强 度 高 达 26 M Pa, 孔隙率达 90% 氧化铝多孔陶瓷。 表 1 对各种 常用的工艺特点进行了比较。
29
© 1994-2011 China Academic Journal Electronic Publishing House. All rights reserved.
国外建材科技 2004 年 第 25 卷 第 5 期
瓷。 1. 4 发泡工艺形成气孔
5. 4%
30 © 1994-2011 China Academic Journal Electronic Publishing House. All rights reserved.
国外建材科技 2004 年 第 25 卷 第 5 期
国外建材科技 2004 年 第 25 卷 第 5 期
氧化铝质多孔陶瓷制备工艺及应用
贾元平1 郭子瑜2
(1. 山东铝业公司科技开发部; 2. 武汉理工大学)
摘 要: 介绍了国内外氧化铝多孔陶瓷的制备方法, 并对其中几种制备方法进行了比较分析。 同时对氧化铝多孔
陶瓷的应用情况进行了较详细的综述。
溶胶凝胶法主要用来制备微孔陶瓷材料, 特别 是微孔陶瓷薄膜。 溶胶凝胶法可以制备孔径在纳米 级、气孔分布均匀的多孔陶瓷薄膜, 正在成为无机分 离膜制备工艺中最为活跃的研究领域[7]。 该方法是 利用凝胶化过程中胶体粒子的堆积以及凝胶处理、 热处理等过程中留下小气孔, 形成可控的多孔结构。 薛明俊[ 8 ] 等研究了溶胶凝胶制备工艺对氧化铝多孔 陶瓷气孔率、气孔分布和显微结构的影响。在溶胶凝 胶中, 可以通过调节溶胶的 pH 值来调节气孔的尺 寸和气孔的比表面积等。 1. 7 凝胶注模工艺
具有这些形状和一定孔大小的多孔金属模具来成 孔。 1. 2 颗粒堆积形成气孔
这种工艺利用骨料颗粒按一定堆积方式形成颗
定了多孔陶瓷材料气孔的大小和形状, 气孔率的高 低取决于造孔剂的用量及烧结温度等。L yckfeld t O 等[4] 用淀粉同时作为粘结剂和造孔剂, 制备了气孔 率在 23%~ 70% , 孔径 10~ 80 Λm 的氧化铝多孔陶
表 2 氧化铝泡沫陶瓷过滤器的应用效果
生产单位 太平洋金属 株 住友金属 株 美国塞利公司
北京科技大学
过滤钢种 过滤效果
SU S321 铝硅镇静钢
铝镇静钢
大于 10 Λm 夹杂减少 T , [O ]降低 40%~ 80% 夹杂物减少 2 3
[O ]去除率 10%~ 36% , 工业纯铁 [ N ] 去 除 率 1. 6%~
氧化铝特别适合制成陶瓷分离膜。 采用不同的 制备工艺, 可以制备孔径尺寸从 4 nm~ 15 Λm 的不 同孔径的分离膜。与高分子膜相比, 陶瓷分离膜耐高 温, 强度高, 可适用高压体系; 耐腐蚀, 对于堆积在膜 表面或微孔内的有机物, 可采用酸洗或高温烧失处 理。 陶瓷分离膜在高温烟气分离、各类油与水的分 离、各类研磨油的再生、污水处理、排放液中有用物 质的回收, 超纯水的制备等方面有着广阔的应用前 景。 例如, 应用孔径为 0. 05 Λm 左右的氧化铝陶瓷 膜, 可彻底清楚糖蜜排放液中的浑浊物质, 其透过速 度是有机膜的 4 倍; 还可以用于从淀粉糖化溶液中 分离葡萄糖。 表 3[13]给出了氧化铝陶瓷分离膜的应 用实例。
发泡工
气 孔 率 大, 强 度 对原料要求高,
艺
0. 01~ 2 40~ 90 高, 适于制备闭气 工艺条件不易控
孔的制品
制
工 艺 简 单, 成 本 不能制备小孔径
有机泡
低, 能制备高气孔 闭气孔制品, 制品
沫浸渍 0. 1~ 5 70~ 90 率的制品且强度高 形状受限制, 成分
工艺
密度不易控制
溶胶凝 胶工艺 2~ 100
凝胶注 孔径 模工艺 可控
≤95 ≤90
适于制备微孔陶瓷 工艺条件不易控 及薄膜材料, 气孔分 制, 生产率低 布均匀
适于制备微孔陶瓷, 工艺条件不易控
气孔分布均匀
制, 生产率低
2 氧化铝多孔陶瓷的应用
2. 1 熔融金属过滤 金属中夹杂物的数量、形态、尺寸、类型以及杂
质和气体等, 对其强度、塑性、韧性等均有重大影响。 目前研究的采用多孔陶瓷过滤器净化金属液, 该方 法可以有效的净化金属液, 提高金属的内在质量和 纯净度, 并且简单实用, 是一种极有前途的方法。 多 孔陶瓷过滤器净化金属液的机理除了机械和反应过 滤外, 更重要的是对金属液起“整流”作用, 这种作用 使得金属液渣包被破坏, 同时延长渣上浮时间, 从而 达到净化金属液的作用[ 10 ]。氧化铝陶瓷过滤器按结 构划分有颗粒状、芯型、网状、蜂窝状和泡沫等。表 2 是国内外厂家的氧化铝泡沫陶瓷过滤器的应用情 况[11 ]。
发泡工艺是向陶瓷组分中添加有机或无机化学 物质 (如碳酸氢铵、碳酸钙、十二烷基磺酸钠等) , 在 处理期间形成挥发性气体, 产生泡沫经干燥和烧成 制得多孔陶瓷。 这种工艺易于控制制品的形状成分 和密度, 且可制备各种孔径大小和形状的多孔陶瓷, 特别适于生产闭气孔的陶瓷制品。B inner J G P [5]采 用发泡法制备了氧化铝泡沫陶瓷, 开发了 3 个系列 的产品, 10%、20% 和 30% 理论密度的泡沫陶瓷, 抗 压强度分别为 3M Pa, 25M Pa 和 81M Pa, 孔隙尺寸 分别为 300~ 400 Λm、50~ 100 Λm 和 20~ 50 Λm。 1. 5 有机泡沫浸渍形成气孔
表 1 几种多孔陶瓷制备工艺的比较
制备 孔径 方法 mm
机械挤 出成型 ≥1
气孔率 %
优点
缺点
蜂窝尺寸、形状, 很难制造小孔径 ≤70 间壁厚、孔隙率均 的制品
匀, 易大量生产
添加造 孔剂工0. 01~ 1 ≤50 艺
工艺简单, 可制得 气孔分布均匀性 形状复杂及各种气 差, 气孔率低 孔结构的制品
有些多孔陶瓷通常有几个毫米大, 而且是直线 连通的蜂窝结构。 对于蜂窝陶瓷最常见的孔形状是 三角形、正方形、六角形等。 该工艺就是用设计好的
似。造孔剂的种类有无机和有机两类, 无机造孔剂有 碳酸铵、碳酸氢铵、氯化铵等高温可分解的盐类, 以 及煤粉、碳粉等, 有机造孔剂主要是天然纤维、高分 子聚合物和有机酸等[2]。 加入有机造孔剂是制备多 孔陶瓷较有效的方法, 因此国内外都十分重视有机 造孔剂方面的研究。 我国多使用漂珠、塑料粉、石油 焦碳作为造孔剂, 美国则采用纤维素聚合体作为造 孔剂, 而日本以普通淀粉加酵素作为造孔剂[3]。但由 于大多数造孔剂的分解温度或燃烧温度较低, 当被 分解或烧除后, 部分气孔会随着温度的升高而封闭 或消失。如果将高温造孔剂和低温造孔剂配合使用, 可以有效提高气孔率。 造孔剂颗粒的大小和形状决
关键词: 氧化铝多孔陶瓷; 制备方法; 应用
多孔陶瓷材料发展于 19 世纪 70 年代, 初期仅 作为细菌过滤材料使用。随着细孔结构水平的提高, 它的优异性也日益增强。多孔陶瓷因为耐化学侵蚀、
粒空隙, 在烧结中通过粘结剂在高温下产生液相, 使 陶瓷颗粒相互接触的部分被烧结在一起, 颗粒间的 空隙形成相互贯通的微孔。 孔径的大小与骨料粒径
表 3 氧化铝陶瓷分离膜的应用实例
功能
举例
废水处理 分离
高温除尘 功能
胎的净化和浓缩
COD 降 低作约用9与0%效, 果悬 浮 物 减 少 95% 效率大于 96% 胎浓缩率约 98% , N aC l 去 除 率
耐磨, 具有良好的高温稳定性以及热电特性, 比表面 积大, 孔道分布较均匀, 气孔尺寸可控等优点, 目前 其应用已遍及环保、节能、化工、石油、冶炼、食品、制
成正比, 骨料粒径越大, 形成的多孔陶瓷平均孔径就 越大, 呈线性关系。 骨料颗粒尺寸越均匀, 产生的气 孔分布也越均匀。 罗儒显[1]利用这种方法制得了氧
该工艺凭借有机泡沫体所具有的开孔三维网状 骨架的特殊结构, 将制备好的料浆均匀地涂覆在有 机泡沫网状体上, 干燥后烧掉有机泡沫体而获得一 种网眼多孔陶瓷。 这种方法的关键问题是有机泡沫 的选择。首先要考虑孔的形状和大小, 通常孔的尺寸 为 100 Λm~ 5 mm。 同时还要求泡沫要有一定的亲 水性和足够的回弹性。泡沫的的气化温度也很重要, 要低于陶瓷的烧结温度。 有机泡沫浸渍法要注意陶 瓷浆料的制备, 浆料的基本组成剂主要是粘结剂、流 变化剂、反泡沫剂、絮凝剂。 李安明[6]指出有机泡沫 浸渍法是目前泡沫陶瓷最理想的制备方法。 1. 6 溶胶凝胶法
药、生物医学等多足上述应用要求的多孔陶瓷, 需考虑它 们的化学稳定性和热稳定性、生产是否方便、成本高
化铝 陶 瓷 膜 管。 其 中 基 质 管 的 孔 隙 率 在 40%~ 50% , 平均孔径 0. 8~ 2. 0 Λm , 微滤层的孔隙率在 30%~ 45% , 平均孔径 0. 1~ 0. 5 Λm , 并具有一定机 械强度。
2. 2 控制大气污染 2. 2. 1 汽车尾气净化处理
随着汽车尾气排放标准越来越高, 对净化器的 要求也日益提高: 抗热震性好、强度高、热膨胀系数 低、压降小、寿命长, 起燃快, 催化转化效率高等。 氧 化铝用于汽车尾气净化催化剂的载体, 从形状上可 分为颗粒状和整体两类。颗粒状载体主要为球形, 其 材料为活性氧化铝 (可添加其它氧化物如 ZrO 2)。整 体式载体主要为蜂窝状, 其材料为氧化铝陶瓷。活性 氧化铝主要指 Χ2A l2O 3, 它具有大的比表面积 (200 ~ 300 m 2 g) , 并且有很好的机械强度, 粒径在 2~ 6 mm 内, 制备简单, 价格低廉, 装填容易, 早期多采用 此类载体。但是由于活性氧化铝载体密度大, 热容量 高, 暖机性能差, 又是堆积式填装, 易导致发动机排 气阻力增大, 背压大, 油耗上升, 功率下降, 且在转化 器中易磨损粉化, 造成二次污染。目前已被整体式蜂 窝状载体所取代。 2. 2. 2 净化工业废气