人教版数学-江苏省数学竞赛第07讲 函数的性质与图象(新)
竞赛讲座函数
第一章 函数一、基础知识定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。
定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。
定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。
定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。
定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。
A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。
集合{f (x )|x ∈A }叫函数的值域。
通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}.定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。
例如:函数y =x -11的反函数是y =1-x1(x ≠0).定理1 互为反函数的两个函数的图象关于直线y =x 对称。
定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。
定义7 函数的性质。
(1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)<f (x 2)(f (x )>f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。
第07讲一次函数-—图象与性质(教案)
-一次函数图象的变换与识别
4.练习与巩固
-判断一次函数的增减性
-根据斜率和截距绘制一次函数图象
-解答与一次函数相关的问题,运用图象分析解决实际问题
二、核心素养目标
1.培养学生的数感与符号意识,通过一次函数的学习,使学生能够理解数学符号表示的实际意义,提高运用符号进行表达和交流的能力。
-图象的变换:难点在于掌握一次函数图象的平移、压缩、拉伸等变换规律,以及这些变换对斜率和截距的影响。
-例如:当一次函数图象进行平移时,斜率k保持不变,截距b发生变化,学生需要理解这种变换背后的数学原理。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数—图象与性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体以固定速度移动的情况?”(如骑自行车匀速前进)。这个问题与我们将要学习的一次函数密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数图象与性质的奥秘。
2.教学难点
-一次函数图象的理解:难点在于理解一次函数图象的几何意义,如何从图象中获取信息,以及如何将实际问题转化为一次函数图象。
-例如:学生可能难以理解图象上某点的坐标如何对应实际问题中的具体情境。
-一次函数性质的深入理解:难点在于理解斜率和截距对一次函数图象的精确影响,以及如何通过性质预测图象的形态。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的斜率和截距这两个重点。对于难点部分,如斜率的意义和截距的物理含义,我会通过举例和图象分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如物体的匀速运动。
高中数学竞赛专题讲座函数2:函数的图像和性质
f(998)-998,f(2000)=f(998)+1002=1002+1002=2004。
当 时,值域为 ;当 时,
值域为
例4.对函数y=f(x)定义域中任一个x的值均有f(x+a)=f(a-x),
(1)求证y=f(x)的图像关于直线x=a对称;
(2)若函数f(x)对一切实数x都有f(x+2)=f(2-x),且方程f(x)=0恰好有四个不同实根,求这些实根之和
命题意图 本题考查函数概念、图像对称问题以及求根问题
(1)求证g(x)是周期函数;
(2)如果f(998)=1002,求f(2000)的值。
解:本例的难度显然又有增加,主要是难以具体化。只能在抽象的层面来解决问题
(1)g(x)=f(x)-x,可得g(x+2)=f(x+2)-x-2,g(x+3)=f(x+3)-x-3,再以f(x+3)≤f(x)+3和f(x+2)≥f(x)+2代换,可得 ,① ,②由①可得g(x+4)≥f(x+2)-x-2≥f(x)+2-x-2=f(x)-x,g(x+6)≥f(x+2)-x-2≥f(x)-x。③由②可得g(x+6)≤f(x+3)-x-3≤f(x)-x,④ 由③、④知g(x+6)=f(x)-x=g(x)。
6、若f(x)满足f(a+x)+f(b-x)=c则f(x)的图象关于点 中心对称。
证明:设P(x,y)是图象上任一点,则y=f(x);由中点公式得P关于点 对称的点为Q(a+b-x,c-y).设t=b-x即x=b-t代入f(a+x)+f(b-x)=c得f(t)=c-f(a+b-t)即f(a+b-x) =c-f(x)=c-y,即Q在图象上。所以f(x)的图象象关于点 中心对称。
【提优教程】江苏省高中数学竞赛 第06讲 函数的概念(新)教案
第6讲函数的概念本节主要内容有映射与函数的概念,函数的定义域和值域的求法,函数的对应法则f ,分段函数和绝对值函数的图象.A 类例题例1 求下列函数的定义域:(1)02)23()12lg(2)(x x x x x f -+--=(2)22()lg()lg()f x x ka x a =-+-(0>a ) 解(1)要使函数有意义,必须220,210,211,320x x x x x ⎧-≥⎪->⎪⎨-≠⎪⎪-≠⎩,即02,1,21,32x x x x ≤≤⎧⎪⎪>⎪⎨≠⎪⎪≠⎪⎩, 故函数定义域为]2,23()23,1()1,21( .(2)由题意知,函数的自变量x 满足22,,x ka x a >⎧⎨>⎩由于又0>a ,所以,x ka x a x a >⎧⎨<->⎩或.当1k ≥时,函数的定义域为),(+∞ka ; 当11k -≤<时,函数的定义域为),(+∞a ; 当1k <-时,函数的定义域为),(),(+∞-a a ka .说明 列出使解析式有意义的条件不等式,问题就可以转化为求不等式(组)的解,若含有参数,需对参数的取值进行讨论.例2 已知函数()y f x =的定义域为[-1,1],求函数()()()x F x f ax f a=+(0a >)的定义域分析 函数()F x 的定义域是()f ax ,()x f a 的定义域的交集,其中ax 和xa有相同的取值范围[-1,1],解题过程中应注意参数a 的取值范围,必要时应对a 分类讨论.解 由题意得11,11,ax x a -≤≤⎧⎪⎨-≤≤⎪⎩因为0a >,所以11,.x aa a x a ⎧-≤≤⎪⎨⎪-≤≤⎩当1a ≥时,11,a a a a ≥-≤-,不等式组的解集为11[,]a a-, 此时函数()F x 的定义域是11[,]a a -;当01a <<时,11,a a a a<->-,不等式组的解集为[,]a a -,此时函数()F x 的定义域是[,]a a -.说明 一般的,若函数()f x 的定义域为[,]a b ,则函数(())f g x 的定义域由不等式()a g x b ≤≤决定.例3 求下列函数的值域:(1)()f x =x (2)()f x =222231x x x x -+--; (3)()f x =22436x x x x +++-;(4)()f x |1||2||3|x x x =+++++;(5)()f x =解 (1t =(0t ≥),则212t x -=,所以2211()1(1)22t f x t t -=+=--. 又0t ≥,故21()1(1)12f x t =--≤, 即函数()f x 的值域为(,1]-∞.说明 函数()f x =x 可以看作由函数21()()1(1)2f xg t t ==--和()t h x ==()(())f x g h x =.为了求函数()f x 的值域,可以先通过函数()h x 求出t 得取值范围,再由t 的取值范围,通过函数()g t 求出()f x 的取值范围.(2)由y =()f x =222231x x x x -+--,得 (y ―2)x 2―(y ―2)x -y -3=0 ①,当y =2时, ①式不成立,无对应的实数x ,当y ≠2时,△=(y ―2)2―4(y ―2)(y +3)≥0,解得2y ≤-或y >2。
第07讲 函数的定义域与值域(解析版)
第7讲:函数的定义域与值域一、课程标准1、会求一些简单函数的定义域2、会求一些简单函数的值域.二、基础知识回顾 1、常见函数的定义域: (1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域为R .(4)y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R . (5)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z . (6)函数f (x )=x α的定义域为{x |x ∈R 且x ≠0}.2、求值域常用的方法:图像法;配方法;换元法;分离变量法;反解法;单调性法;基本不等式法,求导;三、自主热身、归纳总结1、函数f(x)=ln (2x -x 2)x -1的定义域为( ) A . (0,1) B . (1,2)C . (0,1)∪(1,2)D . (-2,0)∪(1,2) 【答案】C .【解析】 为使函数有意义,必须且只须22010.x x x ⎧-⎨-⎩>,≠解得0<x<1或1<x<2,故所求函数的定义域为(0,1)∪(1,2).故选C .2、函数的y =-x 2-6x -5值域为( ) A . [0,+∞) B . [0,2] C . [2,+∞) D . (2,+∞) 【答案】B【解析】 设μ=-x 2-6x -5()μ≥0,则原函数可化为:y =μ. 又∵μ=-x 2-6x -5=-()x +32+4≤4,∴0≤μ≤4,故μ∈[]0,2, ∴函数y =-x 2-6x -5的值域为[]0,2.故选B .3、函数y =f (x )的图象是如图所示的折线段OAB ,其中A (1,2),B (3,0),函数g (x )=x ·f (x ),那么函数g (x )的值域为( )A .[0,2]B.⎣⎡⎦⎤0,94C.⎣⎡⎦⎤0,32D .[0,4]【答案】B【解析】 由题图可知,直线OA 的方程是y =2x ;因为k AB =0-23-1=-1,所以直线AB 的方程为y =-(x -3)=-x +3.所以f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,-x +3,1<x ≤3, 所以g (x )=x ·f (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,-x 2+3x ,1<x ≤3. 当0≤x ≤1时,g (x )=2x 2,此时函数g (x )的值域为[0,2];当1<x ≤3时,g (x )=-x 2+3x =-⎝⎛⎭⎫x -322+94,显然,当x =32时,函数g (x )取得最大值94;当x =3时,函数g (x )取得最小值0.此时函数g (x )的值域为⎣⎡⎦⎤0,94. 综上可知,函数g (x )的值域为⎣⎡⎦⎤0,94.故选B.4、下列函数中定义域是R 的有( ) A .2x y = B .y lgx = C .3y x = D .tan y x =【答案】AC【解析】对于A ,函数2x y =,定义域为R ,满足题意; 对于B ,函数y lgx =,定义域为(0,)+∞,不满足题意;对于C ,函数3y x =,定义域为R ,满足题意; 对于D ,函数tan y x =,定义域为(2k ππ-+,)2k ππ+,k Z ∈,不满足题意.故选:AC .5、(2019泰州期末)函数y =1-x 2的定义域是________. 【答案】. [-1,1]【解析】要使函数式有意义,则有1-x 2≥0,即x 2-1≤0,解得-1≤x≤1,所以函数的定义域为[-1,1]. 6、(2019苏州三市、苏北四市二调)(D28,6. 函数y =4x -16的定义域为________. 【答案】 [2,+∞)【解析】由4x -16≥0,得4x ≥16=42,解得x≥2,所以函数的定义域为[2,+∞). 7.【2020江苏扬州中学月考】函数y =_______.【答案】(,2]-∞【解析】由二次根式有意义,得:420x -≥,即2242x ≤=,因为2xy =在R 上是增函数,所以,x≤2,即定义域为:(,2]-∞.8.【2020江苏南京学期初联考】函数y 的定义域为______. 【答案】1[,)2+∞【解析】由201log 0x x >⎧⎨+≥⎩,得12x ≥,∴函数y =1,2⎡⎫+∞⎪⎢⎣⎭,故答案为1,2⎡⎫+∞⎪⎢⎣⎭.四、例题选讲考点一、求函数的定义域例1、1.【2020江苏“丹靖沭”10月联考】函数2()log (31)f x x =-的定义域为____. 【答案】()13+∞,【解析】由310x ->,解得13x >,所以定义域为1(,)3+∞. 变式1、【2020江苏镇江上学期期中考试】函数()lg(3)2f x x x 的定义域是______________.【答案】[)2,3-【解析】由题意得3020x x ->⎧⎨+≥⎩ 解得:23x -≤<,故答案为:[)2,3-.变式2、【2020江苏高邮开学考试】函数()f x =______ 【答案】(1,3]【解析】要使函数()f x =()41log 10210x x ⎧--≥⎪⎨⎪->⎩,解得13x <≤,即函数()f x =(]1,3,故答案为(]1,3. 变式3、.【2020江苏常州高三上学期期中考试】已知()f x 的定义域为[]1,1-,则()2log f x 的定义域为________________. 【答案】1,22⎡⎤⎢⎥⎣⎦【解析】因为函数()f x 的定义域为[]1,1-,所以-1≤log 2x≤1,所以122x ≤≤. 故f(log 2x)的定义域为1,22⎡⎤⎢⎥⎣⎦.变式4、已知函数f (x )的定义域为(-1,1),则函数g (x )=f ⎝⎛⎭⎫x 2+f (x -1)的定义域为( )A .(-2,0)B .(-2,2)C .(0,2) D.⎝⎛⎭⎫-12,0【答案】C【解析】由题意得⎩⎪⎨⎪⎧-1<x 2<1,-1<x -1<1,∴⎩⎪⎨⎪⎧-2<x <2,0<x <2, ∴0<x <2,∴函数g (x )=f ⎝⎛⎭⎫x 2+f (x -1)的定义域为(0,2).求函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解.(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出;若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 考点二、函数定义域中的参数问题例2、若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A.⎝⎛⎦⎤0,34B.⎝⎛⎭⎫0,34C.⎣⎡⎦⎤0,34D.⎣⎡⎭⎫0,34【答案】 D【解析】∵函数y =mx -1mx 2+4mx +3的定义域为R , ∴mx 2+4mx +3≠0,∴m =0或⎩⎪⎨⎪⎧m ≠0,Δ=16m 2-12m <0, 即m =0或0<m <34,∴实数m 的取值范围是⎣⎡⎭⎫0,34.变式1、函数的定义域为R ,则实数k 的取值范围是 .【解析】函数的定义域为R ,∴关于x 的不等式2kx 2﹣kx0恒成立,k =0时,不等式为0恒成立;k ≠0时,应满足△=k 2﹣4×2k 0,解得0<k <3,综上,实数k 的取值范围是[0,3).故答案为:[0,3). 变式2、设函数f (x ).(1)当a =5时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,试求a 的取值范围. 【解析】(1)当a =5时,f (x ),由|x ﹣1|+|x ﹣2|﹣5≥0, 得或或,解得:x ≥4或x ≤﹣1,即函数f (x )的定义域为{x |x ≤﹣1或x ≥4}. (2)由题可知|x ﹣1|+|x ﹣2|﹣a ≥0恒成立, 即a ≤|x ﹣1|+|x ﹣2|恒成立,而|x ﹣1|+|x ﹣2|≥|(x ﹣1)+(2﹣x )|=1, 所以a ≤1,即a 的取值范围为(﹣∞,1].方法总结:已知函数定义域反求参数范围的问题,是关于函数定义域的逆向问题,求解的基本思路是:逆向问题正向解,即仍然从求函数的定义域入手思考,先将问题转化成含参数的不等式,然后通过对这个含参数的不等式的研究得出参数的取值范围. 考点三、求函数的值域 例3 求下列函数的值域. (1)y =2x -1x +1,x ∈[3,5]; (2)y =x 2-4x +5x -1(x>1).【解析】(1)(方法1)(单调性法)由y =2x -1x +1=2-3x +1,结合函数的图像可知,函数在[3,5]上是单调递增函数,∴y max =32,y min =54,故所求函数的值域是⎣⎡⎦⎤54,32.(方法2)(反表示法)由y =2x -1x +1,得x =1+y 2-y .∵x ∈[3,5],∴3≤1+y 2-y ≤5,解得54≤y ≤32,即所求函数的值域是⎣⎡⎦⎤54,32.(2)(基本不等式法)令t =x -1,则x =t +1(t>0),∴y =(t +1)2-4(t +1)+5t =t 2-2t +2t=t +2t -2(t>0).∵t +2t ≥2t·2t =22,当且仅当t =2,即x =2+1时,等号成立,故所求函数的值域为[22-2,+∞). 变式1、(2019·深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-a x +b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.【答案】(1)[3,+∞) (2)1 52 (3)2 【解析】 (1)图象法 函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2. 作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-a x +b (a >0)在⎣⎡⎦⎤12,2上是增函数,∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52. (3)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 变式2、函数f (x )=x 2+4x 的值域为________________. 【答案】(-∞,-4]∪[4,+∞)【解析】当x >0时,f (x )=x +4x ≥4, 当且仅当x =2时取等号;当x <0时,-x +⎝⎛⎭⎫-4x ≥4,即f (x )=x +4x ≤-4, 当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞).变式3、 (1)函数f (x )=x +21-x 的最大值为________; (2)函数y =x -4-x 2的值域为________. 【答案】(1)2 (2)[-22,2] 【解析】 (1)设1-x =t (t ≥0),所以x =1-t 2.所以y =f (x )=x +21-x =1-t 2+2t =-t 2+2t +1=-(t -1)2+2.所以当t =1即x =0时,y max =f (x )max =2. (2)由4-x 2≥0,得-2≤x ≤2, 所以设x =2cos θ(θ∈[0,π]), 则y =2cos θ-4-4cos 2θ=2cos θ-2sin θ=22cos ⎝⎛⎭⎫θ+π4,因为θ+π4∈⎣⎡⎦⎤π4,5π4,所以cos ⎝⎛⎭⎫θ+π4∈⎣⎡⎦⎤-1,22,所以y ∈[-22,2].变式4、(2018无锡期末)已知函数f(x)=⎩⎨⎧x 2+2x -1x 2,x≤-12,log 12⎝⎛⎭⎫1+x 2,x>-12,g(x)=-x 2-2x -2.若存在a ∈R ,使得f (a )+g (b )=0,则实数b 的取值范围是________. 【答案】 (-2,0)【解析】 思路分析 根据条件可以将问题等价转化为关于函数y =f(a)的值域问题,然后利用分段函数的值域求法和一元二次不等式的解法处理即可.由题意,存在a ∈R ,使得f (a )=-g (b ),令h (b )=-g (b )=b 2+2b +2.当a ≤-12时,f (a )=a 2+2a -1a 2=-1a 2+2a +1=-⎝⎛⎭⎫1a -12+2,因为a ≤-12,所以-2≤1a <0,从而-7≤f (a )<1; 当a >-12时,f (a )=log 12⎝⎛⎭⎫1+a 2,因为a >-12,所以1+a 2>14,从而f (a )<2. 综上,函数f (a )的值域是(-∞,2). 令h (b )<2,即b 2+2b +2<2,解得-2<b <0.方法总结: 1. 求函数的值域方法比较灵活,常用方法有: (1)单调性法:先确定函数的单调性,再由单调性求值域;(2)图像法:先作出函数的图像,再观察其最高点、最低点,得到值域;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值,得出值域;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,再用相应的方法求值域; (5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求 五、优化提升与真题演练1、已知函数f (x )=-x 2+2x +3,则函数f (3x -2)的定义域为( )A.⎣⎡⎦⎤13,53B.⎣⎡⎦⎤-1,53C .[-3,1] D.⎣⎡⎦⎤13,1【答案】A【解析】 由-x 2+2x +3≥0,解得-1≤x ≤3, 即f (x )的定义域为[-1,3]. 由-1≤3x -2≤3,解得13≤x ≤53,则函数f (3x -2)的定义域为⎣⎡⎦⎤13,53,故选A.2、(2017南通、扬州、淮安、宿迁、泰州、徐州六市二调)函数f (x )=lg (5-x 2)的定义域是________. 【答案】 [-2,2]【解析】思路分析 被开方数lg(5-x 2)非负.由lg(5-x 2)≥0,得5-x 2≥1,即x 2-4≤0,解得-2≤x ≤2.3、(2017常州期末) 函数y =1-x +lg(x +2)的定义域为________.【答案】. (-2,1]【解析】由题意可得⎩⎪⎨⎪⎧1-x ≥0,x +2>0,解得-2<x ≤1,故所求函数的定义域为(-2,1].4、(2018苏北四市期末)函数y =log 12x 的定义域为________.【答案】(0,1]【解析】由⎩⎪⎨⎪⎧x>0,log 12x≥0,得⎩⎪⎨⎪⎧x>0,x≤1,所以0<x≤1,即该函数的定义域为(0,1]. 5、(2018南京、盐城一模)设函数y =e x+1e x -a 的值域为A ,若A ⊆[0,+∞),则实数a 的取值范围是________.【答案】 (-∞,2]【解析】因为e x>0 ,所以y =e x+1e x -a≥2e x·1e x -a =2-a ,当且仅当e x=1,即x =0时取等号.故所求函数的值域A =[2-a ,+∞).又A ⊆[0,+∞),所以2-a≥0,即a≤2.6、(2016苏州期末)函数f (x )=⎩⎪⎨⎪⎧2x , x ≤0,-x 2+1, x >0的值域为________. 【答案】 (-∞,1]【解析】思路分析 先画出图像看看.分段画出f (x )的图像即可看出函数的值域为(-∞,1].7、[2018·江苏高考]函数f (x )=log 2x -1的定义域为 . 【答案】[2,+∞)【解析】 (1)为使函数有意义,必须且只须自变量x 满足log 2x -1≥0, 解得x ≥2.故原函数的定义域为[2,+∞).8、 已知函数y =f(x +2)的定义域为[1,2],求函数y =f(2x +1)的定义域.【答案】⎣⎡⎦⎤1,32.【解析】∵函数y =f(x +2)的定义域为[1,2],∴1≤x≤2,得3≤x +2≤4,即函数y =f(x)的定义域为[3,4].为使函数y =f(2x +2)有意义,必须且只须自变量x 满足3≤2x +1≤4,解得1≤x≤32.∴函数y =f(2x +1)的定义域为⎣⎡⎦⎤1,32.9.已知函数f(x)=2-1(12)3,121a x a x x -+⎧⎨⎩<,,≥的值域为R ,则实数a 的取值范围是【答案】0≤a <12.【解析】 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=2-1(12)3,121a x a x x -+⎧⎨⎩<,,≥的值域为R , ∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则120-a 1a -⎧⎨⎩>,12a+3≥解得0≤a <12. 10、(一题两空)设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),则f (x )的值域为________;若函数g (x )是二次函数,且函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是________.【答案】(-1,+∞) [0,+∞)【解析】因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1.画出函数y =f (x )的大致图象如图所示,观察图象可知,当纵坐标在[0,+∞)上时,横坐标在(-∞,-1]∪[0,+∞)上变化.而f (x )的值域为(-1,+∞),f (g (x ))的值域为[0,+∞),因为g (x )是二次函数,所以g (x )的值域是[0,+∞).11、求函数y =x +2x +1的值域.【解析】 (方法1)令2x +1=t ,则t ≥0,且x =t 2-12.∴y =t 2-12+t =12(t 2+2t -1)=12(t +1)2-1,t ∈[0,+∞), 由二次函数的图像知,当t ∈[0,+∞)时,y =12(t +1)2-1是单调递增函数,故当t =0时,y min =-12.∴函数y =x +2x +1的值域为1,2⎡⎫-+⎪⎢⎣⎭∞(方法2)由2x +1≥0得x ≥-12,即函数y =x +2x +1的定义域为易得函数y =x +2x +1在上单调递增,∴y min =y |x =-12=-12,不存在最大值. ∴函数y =x +2x +1的值域为.12、 已知函数f(x)=x 2+4ax +2a +6.(1)若f(x)的值域是[0,+∞),求a 的值;(2)若函数f(x)≥0恒成立,求g(a)=2-a|a -1|的值域.【解析】(1)∵f(x)的值域是[0,+∞),即f min (x)=0, ∴4(2a +6)-(4a )24=0,∴a =-1或32.(2)若函数f(x)≥0恒成立,则Δ=(4a)2-4(2a +6)≤0, 即2a 2-a -3≤0,∴-1≤a≤32,∴g(a)=2-a|a -1|=222,1 1.32,1.2a a a a a a ⎧-+-⎪⎨-++⎪⎩≤≤<≤1,2⎡⎫-+⎪⎢⎣⎭∞1,2⎡⎫-+⎪⎢⎣⎭∞1,2⎡⎫-+⎪⎢⎣⎭∞当-1≤a≤1,g(a)=a 2-a +2=⎝⎛⎭⎫a -122+74, ∴g(a)∈⎣⎡⎦⎤74,4;当1<a≤32,g(a)=-a 2+a +2=-⎝⎛⎭⎫a -122+94,∴g(a)∈⎣⎡⎭⎫54,2.∴函数g(a)=2-a|a -1|的值域是⎣⎡⎦⎤54,4.。
高一数学竞赛培训讲座(函数的性质)
函数的基本性质基础知识:函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的.关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社 刘诗雄《高中数学竞赛辅导》、刘诗雄、罗增儒《高中数学竞赛解题指导》. 例题:1. 已知f(x)=8+2x -x 2,如果g(x)=f(2-x 2),那么g(x)( )A.在区间(-2,0)上单调递增B.在(0,2)上单调递增C.在(-1,0)上单调递增D.在(0,1)上单调递增提示:可用图像,但是用特殊值较好一些.选C 2. 设f(x)是R 上的奇函数,且f(x +3)=-f(x),当0≤x≤23时,f(x)=x ,则f(2003)=( ) A.-1B.0C.1D.2003解:f(x +6)=f(x +3+3)=-f(x +3)=f(x) ∴ f(x)的周期为6f(2003)=f(6×335-1)=f(-1)=-f⑴=-1 选A3. 定义在实数集上的函数f(x),对一切实数x 都有f(x +1)=f(2-x)成立,若f(x)=0仅有101个不同的实数根,那么所有实数根的和为( ) A.150 B.2303C.152D.2305提示:由已知,函数f(x)的图象有对称轴x =23 于是这101个根的分布也关于该对称轴对称.即有一个根就是23,其余100个根可分为50对,每一对的两根关于x =23对称 利用中点坐标公式,这100个根的和等于23×100=150 所有101个根的和为23×101=2303.选B 4. 实数x ,y 满足x 2=2xsin(xy)-1,则x 1998+6sin 5y =______________.解:如果x 、y 不是某些特殊值,则本题无法(快速)求解 注意到其形式类似于一元二次方程,可以采用配方法 (x -sin(xy))2+cos 2(xy)=0 ∴ x=sin(xy) 且 cos(xy)=0 ∴ x=sin(xy)=±1 ∴ siny=1 xsin(xy)=1 原式=75. 已知x =9919+是方程x 4+bx 2+c =0的根,b ,c 为整数,则b +c =__________.解:(逆向思考:什么样的方程有这样的根?) 由已知变形得x -9919= ∴ x 2-219x +19=99 即 x 2-80=219x再平方得x 4-160x 2+6400=76x 2即 x 4-236x 2+6400=0 ∴ b=-236,c =6400 b +c =61646. 已知f(x)=ax 2+bx +c(a >0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根,求证:a >4.f(0)=c >1 ③ 0<-a2b<1 ④ b 2≥4ac b >1-a -c c >1b <0(∵ a>0) 于是-b≥2ac所以a +c -1>-b≥2ac ∴ (c a -)2>1 ∴ c a ->1 于是c a >+1>2 ∴ a>4证法二:设f(x)的两个根为x 1,x 2, 则f(x)=a(x -x 1)(x -x 2) f⑴=a(1-x 1)(1-x 2)>1 f(0)=ax 1x 2>1 由基本不等式 x 1(1-x 1)x 2(1-x 2)≤[41(x 1+(1-x 1)+x 2+(1-x 2))]4=(41)2 ∴ 16a 2≥a 2x 1(1-x 1)x 2(1-x 2)>1∴ a 2>16 ∴ a>47. 已知f(x)=x 2+ax +b(-1≤x≤1),若|f(x)|的最大值为M ,求证:M≥21. 解:M =|f(x)|max =max{|f⑴|,|f(-1)|,|f(-2a)|}⑴若|-2a|≥1 (对称轴不在定义域内部) 则M =max{|f⑴|,|f(-1)|} 而f⑴=1+a +b f(-1)=1-a +b|f⑴|+|f(-1)|≥|f⑴+f(-1)|=2|a|≥4 则|f⑴|和|f(-1)|中至少有一个不小于2 ∴ M≥2>21 ⑵|-2a|<1 M =max{|f⑴|,|f(-1)|,|f(-2a)|} =max{|1+a +b|,|1-a +b|,|-4a 2+b|}=max{|1+a +b|,|1-a +b|,|-4a 2+b|,|-4a 2+b|}≥41(|1+a +b|+|1-a +b|+|-4a 2+b|+|-4a 2+b|)≥41[(1+a +b)+(1-a +b)-(-4a 2+b)-(-4a 2+b)]=)2a 2(412≥21 综上所述,原命题正确. 8. ⑴解方程:(x +8)2001+x2001+2x +8=0⑵解方程:2)1x (222221)1x (1x 1x 4x 2-=++++++⑴解:原方程化为(x +8)2001+(x +8)+x2001+x =0即(x +8)2001+(x +8)=(-x)2001+(-x)构造函数f(x)=x 2001+x原方程等价于f(x +8)=f(-x)而由函数的单调性可知f(x)是R 上的单调递增函数 于是有x +8=-x x =-4为原方程的解 ⑵两边取以2为底的对数得x)1x x (log )x (f )1x ()1)1x (1x (log x 2)1x 4x 2(log 1x 2x )1)1x (1x (log )1x 4x 2(log )1x (1)1x (1x 1x 4x 2log 2222222222222222222222+++=++++++=++++-=++++-++-=++++++构造函数即即 于是f(2x)=f(x 2+1)易证:f(x)世纪函数,且是R 上的增函数, 所以:2x =x 2+1 解得:x =19. 设f(x)=x 4+ax 3+bx 2+cx +d ,f⑴=1,f⑵=2,f⑶=3,求41[f⑷+f(0)]的值. 解:由已知,方程f(x)=x 已知有三个解,设第四个解为m , 记 F(x)=f(x)-x =(x -1)(x -2)(x -3)(x -m) ∴ f(x)=(x -1)(x -2)(x -3)(x -m)+x f⑷=6(4-m)+4 f(0)=6m∴41[f⑷+f(0)]=7 10. 设f(x)=x 4-4x 3+213x 2-5x +2,当x∈R 时,求证:|f(x)|≥21 证明:配方得: f(x)=x 2(x -2)2+25(x -1)2-21 =x 2(x -2)2+25(x -1)2-1+21 =(x 2-2x)2+25(x -1)2-1+21 =[(x -1)2-1]2+25(x -1)2-1+21 =(x -1)4-2(x -1)2+1+25(x -1)2-1+21 =(x -1)4+21(x -1)2+21 ≥21练习:1. 已知f(x)=ax 5+bsin 5x +1,且f⑴=5,则f(-1)=( )A.3B.-3C.5D.-5解:∵ f⑴=a +bsin 51+1=5设f(-1)=-a +bsin 5(-1)+1=k 相加:f⑴+f(-1)=2=5+k ∴ f(-1)=k =2-5=-3 选B 2. 已知(3x +y)2001+x2001+4x +y =0,求4x +y 的值.解:构造函数f(x)=x2001+x ,则f(3x +y)+f(x)=0逐一到f(x)的奇函数且为R 上的增函数, 所以3x +y =-x 4x +y =03. 解方程:ln(1x 2++x)+ln(1x 42++2x)+3x =0解:构造函数f(x)=ln(1x 2++x)+x 则由已知得:f(x)+f(2x)=0不难知,f(x)为奇函数,且在R 上是增函数(证明略) 所以f(x)=-f(2x)=f(-2x) 由函数的单调性,得x =-2x 所以原方程的解为x =04. 若函数y =log 3(x 2+ax -a)的值域为R ,则实数a 的取值范围是______________.解:函数值域为R ,表示函数值能取遍所有实数,则其真数函数g(x)=x 2+ax -a 的函数值应该能够取遍所有正数 所以函数y =g(x)的图象应该与x 轴相交 即△≥0 ∴ a 2+4a≥0 a≤-4或a≥0解法二:将原函数变形为x 2+ax -a -3y=0 △=a 2+4a +4·3y≥0对一切y∈R 恒成立 则必须a 2+4a≥0成立 ∴ a≤-4或a≥05. 函数y =8x 4x 5x 4x 22+-+++的最小值是______________.提示:利用两点间距离公式处理y =2222)20()2x ()10()2x (-+-++++表示动点P(x ,0)到两定点A(-2,-1)和B(2,2)的距离之和 当且仅当P 、A 、B 三点共线时取的最小值,为|AB|=56. 已知f(x)=ax 2+bx +c ,f(x)=x 的两根为x 1,x 2,a >0,x 1-x 2>a1,若0<t <x 1,试比较f(t)与x 1的大小.解法一:设F(x)=f(x)-x =ax 2+(b -1)x +c , =a(x -x 1)(x -x 2) ∴ f(x)=a(x -x 1)(x -x 2)+x作差:f(t)-x 1=a(t -x 1)(t -x 2)+t -x 1 =(t -x 1)[a(t -x 2)+1] =a(t -x 1)(t -x 2+a1) 又t -x 2+a1<t -(x 2-x 1)-x 1=t -x 1<0 ∴ f(t)-x 1>0 ∴ f(t)>x 1解法二:同解法一得f(x)=a(x -x 1)(x -x 2)+x 令g(x)=a(x -x 2)∵ a>0,g(x)是增函数,且t <x 1 ⇒ g(t)<g(x 1)=a(x 1-x 2)<-1 另一方面:f(t)=g(t)(t -x 1)+t ∴1x t t)t (f --=a(t -x 2)=g(t)<-1 ∴ f(t)-t >x 1-t ∴ f(t)>x 17. f(x),g(x)都是定义在R 上的函数,当0≤x≤1,0≤y≤1时.求证:存在实数x ,y ,使得 |xy -f(x)-g(y)|≥41 证明:(正面下手不容易,可用反证法) 若对任意的实数x ,y ,都有|xy -f(x)-g(y)|<41记|S(x ,y)|=|xy -f(x)-g(y)| 则|S(0,0)|<41,|S(0,1)|<41,|S(1,0)|<41,|S(1,1)|<41 而S(0,0)=-f(0)-g(0) S(0,1)=-f(0)-g(1) S(1,0)=-f(1)-g(0) S(1,1)=1-f(1)-g(1)∴ |S(0,0)|+|S(0,1)|+|S(1,0)|+|S(1,1)| ≥|S(0,0)-S(0,1)-S(1,0)+S(1,1)| =1 矛盾! 故原命题得证!8. 设a ,b ,c∈R,|x|≤1,f(x)=ax 2+bx +c ,如果|f(x)|≤1,求证:|2ax +b|≤4.解:(本题为1914年匈牙利竞赛试题) f⑴=a +b +c f(-1)=a -b +c f(0)=c ∴ a=21[f⑴+f(-1)-2f(0)] b =21[f⑴-f(-1)] c =f(0)|2ax +b|=|[f⑴+f(-1)-2f(0)]x +21[f⑴-f(-1)]| =|(x +21)f⑴+(x -21)f(-1)-2xf(0)| ≤|x+21||f⑴|+|x -21||f(-1)|+2|x||f(0)|≤|x+21|+|x -21|+2|x| 接下来按x 分别在区间[-1,-21],(-21,0),[0,21),[21,1]讨论即可 9. 已知函数f(x)=x 3-x +c 定义在[0,1]上,x 1,x 2∈[0,1]且x 1≠x 2.⑴求证:|f(x 1)-f(x 2)|<2|x 1-x 2|; ⑵求证:|f(x 1)-f(x 2)|<1.证明:⑴|f(x 1)-f(x 2)|=|x 13-x 1+x 23-x 2| =|x 1-x 2||x 12+x 1x 2+x 22-1|需证明|x 12+x 1x 2+x 22-1|<2 ………………① x 12+x 1x 2+x 22=(x 1+4x 32x 22222 )≥0∴ -1<x 12+x 1x 2+x 22-1<1+1+1-1=2 ∴ ①式成立 于是原不等式成立 ⑵不妨设x 2>x 1由⑴ |f(x 1)-f(x 2)|<2|x 1-x 2| ①若 x 2-x 1∈(0,21] 则立即有|f(x 1)-f(x 2)|<1成立. ②若1>x 2-x 1>21,则-1<-(x 2-x 1)<-21 ∴ 0<1-(x 2-x 1)<21(右边变为正数) 下面我们证明|f(x 1)-f(x 2)|<2(1-x 2+x 1) 注意到:f(0)=f⑴=f(-1)=c|f(x 1)-f(x 2)|=|f(x 1)-f⑴+f(0)-f(x 2)| ≤|f(x 1)-f⑴|+|f(0)-f(x 2)|<2(1-x 2)+2(x 2-0) (由⑴) =2(1-x 2+x 1)<1综合⑴⑵,原命题得证.10. 已知f(x)=ax 2+x -a(-1≤x≤1) ⑴若|a|≤1,求证:|f(x)|≤45 ⑵若f(x)max =817,求a 的值. 解:分析:首先设法去掉字母a ,于是将a 集中 ⑴若a =0,则f(x)=x ,当x∈[-1,1]时,|f(x)|≤1<45成立 若a≠0,f(x)=a(x 2-1)+x∴ |f(x)|=|a(x 2-1)+x|≤|a||x 2-1|+|x|≤|x 2-1|+|x| (∵ |a|≤1) ≤1-|x 2|+|x|=45-(|x|-21)2 ≤45 ⑵a=0时,f(x)=x≤1≠817 ∴ a≠0∵ f(x)max =max{f⑴,f(-1),f(-a 21)}又f(±1)=±1≠817 ∴ f(x)max =f(-a 21)=817 a(-a 21)2+(-a 21)-a =817 a =-2或a =-81 但此时要求顶点在区间[-1,1]内,应舍去-81 答案为-2。
江苏省数学竞赛提优教案:第07讲 函数的性质与图象(新)
(1984年美国数学邀请赛)
解由题意知,函数f(x)的图象关于直线 和 对称,
所以 , ,
于是f(x)=0在(0,10]上至少有两个根。
则f(x)=f(x+4)=x+4。
当x∈[0,1]时,x+2∈[2,3],于是f(x+2)=x+2,
则f(x)=f(x+2)=x+2。
又由于f(x)为偶函数,故f(-x)=f(x)。
当x∈[-1,0)时,-x∈(0,1],则f(x)=f(-x)=-x+2。
所以f(x)==3-|x+1|(x∈[-2,0])。
情景再现
1.函数f(x)=-()
A.是偶函数但不是奇函数B.是奇函数但不是偶函数
C.既是奇函数也是偶函数D.既不是奇函数也不是偶函数
ቤተ መጻሕፍቲ ባይዱ(2002年全国联赛一试)
2.已知f(x)是定义在(0,+∞)上的减函数,若f(2a2+a+1)<f(3a2-4a+1)成立,则a的取值范围是。
(2005年全国联赛一试)
说明本题是根据周期函数和偶函数得性质来求解的。本题还可以画出函数的图象来解。
例3设函数f0(x)=|x|,f1(x)=|f0(x)-1|,f2(x)=|f1(x)-2|,求函数y=f2(x)的图象与x轴所围成图形中的封闭部分的面积.
(1989年全国联赛一试)
解图1是函数f0(x)=|x|的图形,把此图形向下平行移动1个单位就得到函数f0(x)=|x|-1的图形,作该图形的在x轴下方的部分关于x轴的对称图形得出图2,其中在x轴上方的部分即是f1(x)=|f0(x)–1|的图象,再把该图象向下平行移动2个单位得到f0(x)=|x|-2的图象,作该图象在x轴下方的部分关于x轴的对称图形得到图3,其中x轴上方的部分即是f2(x)=|f1(x)–2|的图象。易得所求面积为7。
函数的基本性质ppt课件
1
即函数f(x)=x+ 为奇函数.
函数的基本性质
例1 判断下列函数的奇偶性:
(3)f(x)=0;
(2)f(x)= ;
解:(1)函数f(x)的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=0=-f(x)=f(x),
函数f(x)既是奇函数,又是偶函数.
1
(2)函数f(x)=x+ 的定义域I为[0,+∞).
(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间
[a,b]上的最小(大)值是f(a),最大(小)值是f(b).
(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]
上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),
最小(大)值是f(a)与f(c)中较小(大)的一个.
当 > 0时,(1 ) − (2 )<0,即(1 ) < (2 )
所以函数() = + 在R上单调递增,即函数() = + 是增函数。
当 < 0时,(1 ) − (2 )>0,即(1 ) > (2 )
所以函数() = + 在R上单调递减,即函数() = + 是减函数。
1
(2)f(x)=x+
;
解:(1)函数f(x)=x4的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=(-x)4=x4=f(x),
函数f(x)=x4为偶函数.
1
(2)函数f(x)=x+ 的定义域I为(-∞,0)∪(0,+∞).
1
1
∀x∈I,都有-x∈I,且f(-x)=-x+ =-(x+ )=-f(x),
竞赛培优讲义 函数的概念和性质(学生版含答案)
1第二讲 函数的概念和性质知识、方法、技能I .函数的定义设A ,B 都是非空的数集,f 是从A 到B 的一个对应法则.那么,从A 到B 的映射f :A →B 就叫做从A 到B 的函数.记做y=f(x),其中x ∈A ,y ∈B ,原象集合,A 叫做函数f(x)的定义域,象的集合C 叫做函数的值域,显然C ⊆B.II .函数的性质 (1)奇偶性 设函数f(x)的定义域为D ,且D 是关于原点对称的数集.若对任意的x ∈D ,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x ∈D ,都有f(-x)=f(x),则称f(x)是偶函数. (2)函数的增减性 设函数f(x)在区间D ′上满足:对任意x 1, x 2∈D ′,并且x 1<x 2时,总有f(x 1)<f(x 2) (f(x 1)>f(x 2)),则称f(x)在区间D ′上的增函数(减函数),区间D ′称为f(x)的一个单调增(减)区间. III .函数的周期性对于函数 f(x),如果存在一个不为零的正数T ,使得当x 取定义域中的每个数时,f(x+T)=f(x)总成立,那么称f(x)是周期函数,T 称做这个周期函数的周期.如果函数f(x)的所有周期中存在最小值T 0,称T 0为周期函数f(x)的最小值正周期. IV .高斯函数对任意实数x,我们记不超过x 的最大整数为[x],通常称函数y=[x]为取整函数,又称高斯函数. 进一步,记{x}=x -[x],则函数y={x}称为小数部分函数,它表示的是x 的小数部分. 根据高斯函数的定义,可得到其如下性质. 性质1 对任意x ∈R ,均有 x -1<[x]≤x<[x]+1.性质2 对任意x ∈R ,函数y={x}的值域为)1,0[.性质3 高斯函数是一个不减函数,即对任意x 1, x 2∈R ,若x 1≤x 2, 则[x 1] ≤[x 2]. 性质3 若n ∈Z , x ∈R ,则有 [x+n]=n+[x], {n+x}={x} 后一个式子表明y={x}是一个以1为周期的函数.性质4 若x , y ∈R , 则 [x]+ [y]≤[x+y] ≤[x]+ [y]+1. 性质5 若n ∈N*, x ∈R , 则[nx]≥n[x] 性质6 若n ∈N*, x ∈R , 则]][[][nx n x =. 性质7 若n ∈N*, x ∈R +, 则在区间[1,x]内,恰有][nx 个整数是n 的倍数.性质8 设p 为质数,n ∈N*,在p 在n!的质因数分解式中的幂次为++=][][)!(2pnp n n p赛题精讲函数是高中数学,也是高等数学的基础.因此,也是高考和高中数学竞赛的重要内容.下面分类介绍此类题目.I 函数的定义域和值域例1 当x 为何值时,x lg lg lg lg lg lg 才有意义.例2 (1)(2011一试2)函数11)(2-+=x x x f 的值域为 .(2)(2010一试1)函数x x x f 3245)(---=的值域是 .变式:函数x x x f 3245)(-+-=的值域.(3)求函数y =x +的值域。
新教材苏教版高中数学必修第一册7.3.2 三角函数的图像与性质 精品教学课件
22
上的图象.
(2)写出适合不等式在给定区间上的解集.
【题组训练】 1.方程x2-cos x=0的实数解的个数为 ( ) A.1 B.2 C.3 D.4
【解析】选B.作函数y=cos x与y=x2的图象,如图所示, 由图象可知,原方程有两个实数解.
3.(教材二次开发:例题改编)函数y=-xcos x的部分图象是
()
【解析】选D.因为y=-xcos x是奇函数,它的图象关于原点对称,所以排除A, C项;当x∈ (0,) 时,y=-xcos x<0,所以排除B项.
2
类型一 正弦函数、余弦函数图象的初步认识(数学抽象)
【题组训练】
1.用“五点法”作y=sin 2x的图象时,首先描出的五个点的横坐标是( )
由图象可知方程sin x=lg x的解有3个.
【变式探究】
根据函数图象求方程根的个数问题,是常见的考查模式;将典例中问题改为:
方程sin x= x 的根的个数是 ( )
10
A.7 B.8 C.9 D.10
【解析】选A.在同一坐标系内画出y= x 和y=sin x的图象如图所示.
10
根据图象可知方程有7个根.
2
②用“五点法”画余弦曲线y=cos x在[0,2π]上的图象时,所取的五个关键点
分别为(0,1), (,0)
2
, _(_π__,_-_1_)_, (3,0) , _(_2_π__,_1_)_,再用光滑的曲线连接.
2
【思考】
y=cos x(x∈R)的图象可由y=sin x(x∈R)的图象平移得到的原因是什么?
第07讲函数与方程(课件)-2024年高考数学一轮复习(新教材新高考)
【答案】 −∞, −1
2
当 < 0时,令′ = 0,解得 = 0或 = − ,
【解析】因为 = 3 + 3 2 − 4,所以′ = 3 2 + 6 = 3 + 2
当 = 0时,有 = 3 2 − 4 = 0,解得 = ± 2 3,
公共点.
N
Q
Z
R
N
(3)函数零点存在定理
如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有
f(a)f(b)<0
(a,b) 内至少有一个零点,即存
__________,那么,函数y=f(x)在区间
在c∈(a,b),使得 f(c)=0 ,这个c也就是方程f(x)=0的解.
2.二分法
2
−∞, −
=
2
2
2
−∞, −
2
当 ∈ 0, − ,′ > 0, 在区间 0, − 上单调递增;
当 > 0时,由′ = 0,解得 = 0或 = − ,
2
且有 0 = −4, −
> 0,
, 存在一个正数零点,所以不符合题意;
2 3
,0
3
2
2 3
3
2024
高考一轮复习
第07讲 函数与方程
导师:稻壳儿
目录
C
O
N
T
E
01
考情分析
N
T
S
02
03
04
网络构建
知识梳理
题型归纳
真题感悟
01
考情分析
考点要求
考题统计
考情分析
【江苏省数学竞赛《提优教程》】第9讲 函数性质的应用
【江苏省数学竞赛《提优教程》】第9讲函数性质的应用本节主要内容是综合运用函数的性质及其图象解决与函数有关的(如方程、不等式等)问题。
A类例题例1 已知f(x)=asinx+b3x+4(a,b为实数),且f(lglog310)=5,则f(lglg3)的值是()A.?5 B.?3 C.3 D.随a,b取不同值而取不同值(1993年全国高中数学联合竞赛)解设lglog310=m,则lglg3=-lglog310=-m,则f(m)=asinm+b3m+4=5,即asinm+b3m=1.所以f(-m)=-(asinm+b3m)+4=-1+4=3.选C.例2 设对任意整数x,f(x)=f(x-1)+f(x+1),且f(0)=19,f(4)=93,则f(59)= 。
(1993年江苏省高中数学竞赛)分析通过对f(x)=f(x-1)+f(x+1)的变换,寻求函数f(x)的变化规律。
解由f(x+1)= f(x)-f(x-1),得f(x+3)= f(x+2)-f(x+1)= f(x+1)-f(x)-f(x+1)=-f(x),于是f(x+6)=-f(x+3)= f(x)。
所以f(59)= f(9×6+5)= f(5)=-f(2)。
由于f(1)=-f(4)=-93,故f(2)= f(1)-f(0)=-112,所以f(59)=112。
例3 求函数的最大值和最小值。
(1996年美国中学数学竞赛题)分析考察函数的定义域和单调性。
解先求函数定义域。
由得。
因为。
当,且x增加时,增大,而减小,于是f(x)是随着x得增加而减小,即f(x)在区间[6,8]上是减函数,所以f(x)的最小值为f(8)=0,f(x)的最大值为f(6)= 。
说明利用函数得单调性求函数的最值(或值域)是一种常用的方法。
一般地,若函数在闭区间[a,b]上为单调函数,则在端点处取得最值。
情景再现1.已知f(x)=ax5+bsin5x+1,且f⑴=5,则f(-1)=( )A.3 B.-3 C.5 D.-52.设有三个函数,第一个是y=φ(x),它的反函数就是第二个函数,而第三个函数的图象与第二个函数的图象关于直线x+y=0对称,那么,第三个函数是A.y= -φ(x) B.y= -φ(-x)C.y= -φ-1(x) D.y= -φ-1(-x)(1988年全国高中数学联赛)3.函数对所有整数和,都有和,则等于()A.26 B.27 C.52 D.534.如图,已知函数y=2x2在[a,b] (a<b)上的值域为[0,2],则点(a,b)的轨迹为图中的()A.线段AB、BC B.线段AB、OCC.线段OA、BC D.线段OA、OC答(2003年江苏省数学夏令营试题)B类例题例4 设f(x)是定义在区间(-∞,+∞)上以2为周期的函数,对k∈Z,用I 表示区间(2k-1,2k+1],已知当x∈I 时,f(x)=x .(1)求f(x)在I 上的解析表达式;(2)对自然数k,求集合M ={a│使方程f(x)=ax在I 在上有两个不相等的实根}.(1989年全国高考题)分析方程f(x)=ax在I 在上有两个不相等的实根等价于函数g(x)=ax 、f(x)=(x -2k)的图象在区间(2k-1,2k+1](k∈N)上有两个不同的公共点。
(江苏专用)高考数学总复习 第二篇 函数与基本初等函数《第7讲 函数的图象》课件 理 苏教
考向三 函数图象的应用 【例3】►直线y=1与曲线y=x2-|x|+a有四个交点,则a的取值 范围是________. [审题视点] 分别画出y=1与y=x2-|x|+a的图象,观察有四个 交点的条件.
解析 如图,在同一直角坐标系内画出直线y=1与曲线y=x2-
a>1, |x|+a,观察图象可知,a的取值必须满足 4a-4 1<1,
解 法一 (1)将函数y=2x的图象向右平移3个单位,得到函数 y=2x-3的图象; (2)作出函数y=2x-3的图象关于y轴对称的图象,得到函数y=2 -x-3的图象; (3)把函数y=2-x-3的图象向上平移1个单位,得到函数y=2-x-3 +1的图象. 法二 (1)作出函数y=2x的图象关于y轴的对称图象,得到y=2 -x的图象; (2)把函数y=2-x的图象向左平移3个单位,得到y=2-x-3的图 象; (3)把函数y=2-x-3的图象向上平移1个单位,得到函数y=2-x-3 +1的图象.
11、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。 12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2021/12/162021/12/16December 16, 2021 14、孩子在快乐的时候,他学习任何东西都比较容易。 15、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 16、一个人所受的教育超过了自己的智力,这样的人才有学问。 17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2021年12月2021/12/162021/12/162021/12/1612/16/2021 18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2021/12/162021/12/16
第07讲抛物线及其性质(六大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考)
C.若 = ,则 = 2
D.对于任意直线m,都有 + > 2
【答案】BCD
故 ≠ ,故A错误;
【解析】由已知条件可得 1,0 , −1,0 .
对于B选项,易得 −1, 1 ,所以 = 2 − 1, 2 , = −2, 1 .
所以
四边形
min
=
2
−1
min
= 7,
故选:C
【解题方法总结】
=
02 − 20 + 9 =
(0 − 1)2 + 8,
= 2Rt△ = ⋅ = =
则
四边形
解决此类问题经常利用抛物线的定义,将抛物线上的点焦
点的距离转化为到准线的距离,并构成直角三角形或直角梯
⊥ 于H,若 = ,O为坐标原点,则△ 与△ 的面积之比为(
A.6
B.8
C.12
D.16
【答案】C
2
令(1 , 1 ), (2 , 2 ),解得1 = 6, 2 = 3,
【解析】依题意,由 ⊥ 于H,得 || = = ,
即△ 是正三角形,∠ = ∠ =
当且仅当点, , , 在同一条直线上取等号,且点位于
点, 之间,
由
= 3 −2
12 2
2
= 2
− 20 +
所以1 + 2 =
32
,消去,整理得
如图所示:
= 0,
又 =
5
,
3
所以 = 1 + 2 + =
3
3 2
+2
2
+ 12 = 10,
高考数学文优化方案一轮复习第第七函数的图象及函数与方程苏教江苏专用-资料.ppt
思考感悟
1.函数y=f(x)的图象关于原点对称与函数y =f(x)和y=-f(-x)的图象关于原点对称一致 吗?
提示:函数y=f(x)的图象关于原点对称是指 函数y=f(x)自身的图象关于原点对称,而函 数y=f(x)和y=-f(-x)的图象关于原点对称 是指这两种函数各有自己的图象,但是这两 种函数的图象关于原点对称.
课前热身 1.为了得到函数y=2x-3的图象,只需把函数y =2x的图象上所有的点向________平移 ________个单位长度. 答案:右 3 2.函数 y=1-x-1 1的图象是________.
答案:②
3.
设奇函数f(x)的定义域为[-5,5],若当x∈[0,5] 时, f(x)的图象如图,则不等式f(x)<0的解集 是________. 答案:{x|-2<x<0或2<x≤5}
【思路分析】 由对数函数、二次函数 的有关性质判断.
【解析】 对于①、②由对数函数图象得|ba|>1, 而抛物线对称轴|-2ba|<12,∴|ba|<1,∴①②不 正确;对于③中对称轴-2ba<-12,则|ba|>1, 而对数底数|ba|<1,∴③不成立.而④中,-2ba >-12,∴|ba|<1,又对数函数的底数|ba|<1.
相同.又 y=sin|x|为偶函数,其图象关于 y 轴
对称,如图③.
(4)首先作出y=log2x的图象C1,然后将C1向 左平移1个单位长度,得到y=log2(x+1)的图 象C2,再把C2在x轴下方的图象作关于x轴对 称的图象,即为所求图象C3:y=|log2(x+1)|, 如图④(实线部分).
例1 作出下列函数的图象. (1)y=2x+1-1;(2)y=xx+ +23; (3)y=sin|x|;(4)y=|log2(x+1)|.
初中数学竞赛函数知识点讲解
初中数学竞赛函数知识点讲解函数是数学中一个非常重要的概念,它在初中数学竞赛中也是一个经常出现的知识点。
下面,我将为您讲解一下初中数学竞赛中关于函数的知识点。
1.函数的定义:函数是一个有特定关系的数集,也可以理解为一个数集和另一个数集之间的对应关系。
通常我们用字母表示函数,如f、g、h等。
在函数中,通常有自变量和因变量两个变量,自变量的取值决定了因变量的值,可以用对应关系式表示:y=f(x)。
其中,x是自变量,y是因变量,y=f(x)表示y是x的函数。
2.函数的性质:(1) 定义域:函数中自变量的取值范围称为定义域,常用符号表示为D(f)。
例如,在一元一次函数y = ax + b中,定义域为全体实数(即D(f) = R)。
(2) 值域:函数中因变量的取值范围称为值域,常用符号表示为R(f)。
例如,在一元一次函数y = ax + b中,值域是全体实数(即R(f) = R)。
(3)奇偶性:若对于函数中的每一个x值,都有f(-x)=f(x),则函数为偶函数;若对于函数中的每一个x值,都有f(-x)=-f(x),则函数为奇函数;若奇函数和偶函数的性质都不具备,则函数为非奇非偶函数。
(4)单调性:函数的单调性表示函数在定义域内的递增或递减趋势。
若对于函数中的每一对不等的x1和x2,有x1<x2时,f(x1)<f(x2),则函数为严格递增函数;若对于函数中的每一对不等的x1和x2,有x1<x2时,f(x1)>f(x2),则函数为严格递减函数。
3.常见函数类型:(1) 一元一次函数:一元一次函数的一般表达式为y = ax + b,其中a和b是常数,a≠0。
一元一次函数的图象是一条直线,斜率为a,截距为b。
(2) 二次函数:二次函数的一般表达式为y = ax^2 + bx + c,其中a、b和c是常数,a≠0。
二次函数的图象是一条开口向上或向下的抛物线。
(3)绝对值函数:绝对值函数的一般表达式为y=,x,即y等于x的绝对值。
第三讲函数的图象与性质-高中数学竞赛讲座
第三讲 函数的图象与性质[知识要点]:1. 函数的图象:坐标为))(,(x f x 的点的集合}),(|),{(D x x f y y x ∈=称为函数)(x f y =的图象,其中D是函数的定义域。
2. 图象变换:平移变换、对称变换3. 函数性质:奇偶性、单调性、周期性周期性:对于函数)(x f ,如果存在一个不为零的正数T ,使得当x 取定义域中的每一个数时,)()(x f T x f =+总成立,那么称函数)(x f 为周期函数,正数T 称为这个周期函数的周期,如果所有周期中存在最小值0T ,称0T 为该函数的最小正周期。
[能力训练]1.作出下列函数的图象:(1)=y 6||||)2( |;6|22-+=-+x x y x x解:(1)先作出62-+=x x y 的图象,然后将此图象在x 轴下方的部分对称地翻折到x 轴的上方即可。
(2)因=y 6||||2-+x x 是偶函数,其图象关于y 轴对称,于是我们先作出62-+=x x y 在x ≥0时的图象,然后作出它关于y 轴对称图形即可。
2.k 为何实数时,方程k x x =+-3||22有四个互不相等的实数根。
解:将原方程变形为21||22-=+-k x x ,设1||2)(2+-==x x x f y ,作出其图象,而2-=k y 是一条平行于x 轴的直线,原方程有四个互不相等的实根,即直线与曲线有四个不同的交点,由图象可知,120<-<k ,即32<<k3.已知4sin )(3++=x b x a x f (a 、b ;实数)且5)10log (lg 3=f ,则)3lg (lg f 的值是 ( ) (1993年全国高中数学联赛试题)(A ) 5- (B ) 3- (C ) 3 (D ) 随a 、b 取不同值而取不同值 解:3sin 4)(x b x a x f +=-是奇函数的和,为奇函数,从而]4)([)(--=-x f x f 即8)()(+-=-x f x f ,38)10log lg ()3lg (lg 3=+-=∴f f ,选(C )。
考点07 三角函数的图像与性质(核心考点讲与练)-2023年(新高考专用)(解析版)
考点07 三角函数的图像与性质(核心考点讲与练)一、同角三角函数基本关系式与诱导公式 1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan__α.2.三角函数的诱导公式公式 一 二 三 四 五 六 角 2k π+α(k ∈Z )π+α -α π-α π2-α π2+α 正弦 sin α -sin__α -sin__αsin__αcos__αcos__α 余弦 cos α -cos__α cos__α -cos__α sin__α -sin__α正切 tan αtan__α-tan__α -tan__α口诀函数名不变,符号看象限函数名改变,符号看象限二、 三角函数的图象与性质1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin x y =cos x y =tan x图象定义域 R R {x |x ∈R ,且 x ≠k π+π2}值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数偶函数奇函数递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝ ⎛⎭⎪⎫k π-π2,k π+π2递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 无对称中心 (k π,0)⎝ ⎛⎭⎪⎫k π+π2,0⎝ ⎛⎭⎪⎫k π2,0对称轴方程x =k π+π2x =k π无三、 函数y =A sin(ωx +φ)的图象与性质1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示.x -φω-φω+π2ωπ-φω3π2ω-φω 2π-φωωx +φ 0 π2π 3π2 2π y =A sin(ωx +φ)A-A2.函数y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)表示一个振动量时振幅 周期 频率 相位 初相A T =2πω f =1T =ω2πωx +φ φ3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的两种途径4.三角函数应用(1)用正弦函数可以刻画三种周期变化的现象:简谐振动(单摆、弹簧等),声波(音叉发出的纯音),交变电流.(2)三角函数模型应用题的关键是求出函数解析式,可以根据给出的已知条件确定模型f(x)=A sin(ωx+φ)+k中的待定系数.(3)把实际问题翻译为函数f(x)的性质,得出函数性质后,再把函数性质翻译为实际问题的答案.1.求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u(或t),利用复合函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.2.确定y=A sin(ωx+φ)+B(A>0,ω>0)的解析式的步骤(1)求A,B,确定函数的最大值M和最小值m,则A=,B=.(2)求ω,确定函数的周期T,则ω=.(3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入;②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x轴的交点)为ωx+φ=0;“第二点”(即图象的“峰点”)为ωx+φ=;“第三点”(即图象下降时与x轴的交点)为ωx+φ=π;“第四点”(即图象的“谷点”)为ωx+φ=;“第五点”(即图象上升时与x轴的交点)为ωx+φ=2π. 3.识别函数图象的方法技巧函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的周期性,判断图象的循环往复.(5)从函数的特殊点,排除不合要求的图象.4.(1)由y=sin ωx到y=sin(ωx+φ)的变换:向左平移(ω>0,φ>0)个单位长度而非φ个单位长度.(2)平移前后两个三角函数的名称如果不一致,应先利用诱导公式化为同名函数,ω为负时应先变成正值.三角函数图象性质1.(多选题)(2021湖北省新高考高三下2月质检)已知函数()cos sin f x x x =-在[]0,a 上是减函数,则下列表述正确的是( )A.()2min f x =﹣B.()f x 的单调递减区间为32,2()44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,C.a 的最大值是34π, D.()f x 的最小正周期为2π 【答案】BCD【分析】由于函数()cos sin 2os 4)(f x x x x π=-=+在[]0,a 上是减函数,从而可得4a ππ+≤,进而可求出a 取值范围,函数的周期和最值,从而可判断ACD ,再利用余弦函数的性质求出单调区间,可判断B【详解】解:∵函数()cos sin 2os 4)(f x x x x π=-=+在[]0,a 上是减函数,,444[]x a πππ+∈+, ∴4a ππ+≤,∴304a π<≤, 故()f x 的最小值为2-,a 的最大值是34π,()f x 的最小正周期为2π,故A 错,C 、D 正确; 在32,2()44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,[]2,2()4x x k k k Z ππππ++∈+∈,函数()f x 单调递减,所以B 正确故选:BCD.2. 已知函数()π3sin 23f x x ⎛⎫=-⎪⎝⎭,则下列结论正确的是( )A. 导函数为()π3cos 23f x x ⎛⎫=- ⎪⎝⎭' B. 函数()f x 的图象关于直线π2x =对称 C. 函数()f x 在区间π5π,1212⎛⎫-⎪⎝⎭上是增函数 D. 函数()f x 的图象可由函数3sin 2y x =的图象向右平移π3个单位长度得到 【答案】C【分析】利用复合函数的求导法则判定选项A 错误,利用π()2f 不是函数的最值判定选项B 错误,利用π5π1212x -<<得到πππ2232x -<-<,进而判定选项C 正确,利用图象平移判定选项D 错误. 【详解】对于A :因为π()3sin 23f x x ⎛⎫=-⎪⎝⎭, 所以()ππ3cos 226cos 233f x x x ⎛⎫⎛⎫=⨯-⨯=- ⎪' ⎪⎝⎭⎝⎭,即选项A 错误;对于B :因为πππ2π3sin 23sin 32233f ⎛⎫⎛⎫=⨯-==≠±⎪ ⎪⎝⎭⎝⎭, 所以函数()f x 的图象不关于直线π2x =对称, 即选项B 错误;对于C :当π5π1212x -<<时,πππ2232x -<-<, 故()f x 在π5π(,)1212-上是增函数,即选项C 正确;对于D :因为ππ()3sin 23sin[2()]36f x x x ⎛⎫=-=- ⎪⎝⎭, 所以()f x 的图象可由3sin 2y x =的图象向右平移π6个单位长度得到, 即选项D 错误. 故选:C .根据三角函数图象求解析式1.(2022年安徽省亳州市第一中学高三上学期9月检测)已知函数()()sin 0,010,2f x K x K πωϕωϕ⎛⎫=+><<< ⎪⎝⎭的部分图象如图所示,点370,,,1224A B π⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭,则将函数()f x 图象向左平移12π个单位长度,然后横坐标变为原来的2倍、纵坐标不变,得到的图象对应的函数解析式是( )A.5sin 212y x π⎛⎫=+ ⎪⎝⎭ B.5sin 812y x π⎛⎫=+ ⎪⎝⎭ C.2sin 23y x π⎛⎫=+ ⎪⎝⎭ D.2sin 83y x π⎛⎫=+⎪⎝⎭【答案】C【分析】首先根据三角函数的图象求得各个参数,由振幅求得1K =,由定点坐标代入函数解析式求得43ωπϕ=⎧⎪⎨=⎪⎩,所以()sin 43f x x π⎛⎫=+ ⎪⎝⎭,再通过平移伸缩变化,即可得解. 【详解】因为函数()f x 的部分图象经过点3A ⎛ ⎝⎭,7,124K π⎛⎫- ⎪⎝⎭, 所以()()130sin 077sin 1,2424010,,2K f f ωϕππωϕωπϕ=⎧⎪⎪=⨯+=⎪⎪⎪⎛⎫⎛⎫=⨯+=-⎨ ⎪ ⎪⎝⎭⎝⎭⎪⎪<<⎪⎪<⎪⎩解得43ωπϕ=⎧⎪⎨=⎪⎩,所以()sin 43f x x π⎛⎫=+ ⎪⎝⎭. 将函数()sin 43f x x π⎛⎫=+ ⎪⎝⎭的图象,然后横坐标变为原来的2倍、纵坐标不变, 得到2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象. 故选:C.2 (2020广东省潮州市高三第二次模拟)函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A. ,63k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈B. ,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C. ,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D. ,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈ 【答案】C【分析】利用图象先求出周期,用周期公式求出ω,利用特殊点求出ϕ,然后根据正弦函数的单调性列不等式求解即可.【详解】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=,由于点,26π⎛⎫ ⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭, 可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .三角函数图象判断1.(2020江西省靖安中学高三上学期第二次月考)已知函数()2cos f x x x =,则函数()f x 的部分图象可以为( )A. B. C. D.【答案】A【分析】由奇偶性可排除BD ,再取特殊值4f π⎛⎫ ⎪⎝⎭可判断AC ,从而得解 【详解】因为()f x 的定义域为R ,且()()()()2cos 2cos f x x x x x f x -=--=-=-,所以()f x 为奇函数, 故BD 错误;当0x >时,令()2cos 0f x x x ==,易得cos 0x =, 解得()2x k k Z ππ=+∈,故易知()f x 的图象在y 轴右侧的第一个交点为,02π⎛⎫ ⎪⎝⎭, 又22cos 04444f ππππ⎛⎫=⨯⨯=>⎪⎝⎭,故C 错误,A 正确; 故选:A2. . (2022广东省深圳市普通中学高三上学期质量评估)函数()4cos x xxf x e e-=+在[],ππ-上的图象大致为( )A. B.C. D.【答案】A【分析】由奇偶性可排除BC ,由x →+∞时,()0f x →可排除D ,由此得到结果.【详解】()()()()4cos 4cos x xx x x xf x f x e ee e------===++,()f x ∴为偶函数,图象关于y 轴对称,可排除BC ; 当x →+∞时,()0f x →,可排除D ,知A 正确. 故选:A.三角函数图象变换1.(2021浙江省金华十校高三模拟)已知奇函数()y g x =的图象由函数()sin(21)f x x =+的图象向左平移(0)m m >个单位后得到,则m 可以是( )A.12π- B.1π- C.12π+ D.1π+ 【答案】A【分析】逐项验证()g x 是否等于()g x --可得答案. 【详解】当12m π-=时,函数()sin(21)f x x =+的图象向左平移12π-个单位后得到()()g()sin 21sin 2sin 212x x x x g x ππ⎡⎤-=⎢⎥⎣⎛⎫=+++=-=-- ⎝⎦⎪⎭,故A 正确;当1m π=-时,函数()sin(21)f x x =+的图象向左平移1π-个单位后得到()()()()sin 21sin 121g x x x g x π⎡⎤-=++-≠⎦-=-⎣,故B 错误;当12m π+=时,函数()sin(21)f x x =+的图象向左平移12π+个单位后得到()()()122()sin 21sin 2sin 22g x x x x g x ππ⎡⎤⎛⎫=+++=-+≠-- ⎪⎝⎭+=+⎢⎥⎣⎦,故C 错误;当1m π=+时,函数()sin(21)f x x =+的图象向左平移1π+个单位后得到()()()()sin 21sin 123g x x x g x π⎡⎤+=+++≠⎦-=-⎣,故D 错误;故选:A.2. (2020安徽省合肥市高三第三次教学质量检测)为了得到函数sin y x =的图像,只需将函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图像A. 横坐标伸长为原来的两倍,纵坐标不变,再向右平移6π个单位 B. 横坐标伸长为原来的两倍,纵坐标不变,再向左平移6π个单位 C. 横坐标缩短为原来的12,纵坐标不变,再向右平移6π个单位D. 横坐标缩短为原来的12,纵坐标不变,再向左平移6π个单位【答案】A【分析】由条件利用()sin y A x ωϕ=+ 的图像变换规律,得到结论. 【详解】把函数sin 26y x π⎛⎫=+⎪⎝⎭的图像上所有点的横坐标伸长为原来的两倍,纵坐标不变得到函数sin 6y x π⎛⎫=+ ⎪⎝⎭,再将函数sin 6y x π⎛⎫=+ ⎪⎝⎭的图像上所有点向右平移6π个单位得到函数sin y x =.故选A1. (2021年全国高考乙卷)函数()sin cos 33x xf x =+的最小正周期和最大值分别是( ) A. 3π2 B. 3π和2C. 6π2D. 6π和2【答案】C【分析】利用辅助角公式化简()f x,结合三角函数周期性和值域求得函数的最小正周期和最大值.【详解】由题,()sin cos3s3323234x x x xf xxπ=+=+⎛+⎫⎪⎝⎭,所以()f x的最小正周期为2613T.故选:C.2. (2021年全国高考乙卷)把函数()y f x=图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin4y xπ⎛⎫=-⎪⎝⎭的图像,则()f x=()A.7sin212xπ⎛⎫-⎪⎝⎭B. sin212xπ⎛⎫+⎪⎝⎭C.7sin212xπ⎛⎫-⎪⎝⎭D. sin212xπ⎛⎫+⎪⎝⎭【答案】B【分析】解法一:从函数()y f x=的图象出发,按照已知的变换顺序,逐次变换,得到23y f xπ⎡⎤⎛⎫=-⎪⎢⎥⎝⎭⎣⎦,即得2sin34f x xππ⎡⎤⎛⎫⎛⎫-=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再利用换元思想求得()y f x=的解析表达式;解法二:从函数sin4y xπ⎛⎫=-⎪⎝⎭出发,逆向实施各步变换,利用平移伸缩变换法则得到()y f x=的解析表达式.【详解】解法一:函数()y f x=图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到(2)y f x=的图象,再把所得曲线向右平移3π个单位长度,应当得到23y f xπ⎡⎤⎛⎫=-⎪⎢⎥⎝⎭⎣⎦的图象,根据已知得到了函数sin4y xπ⎛⎫=-⎪⎝⎭的图象,所以2sin34f x xππ⎡⎤⎛⎫⎛⎫-=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令23t xπ⎛⎫=-⎪⎝⎭,则,234212t tx xπππ=+-=+,所以()sin 212t f t π⎛⎫=+⎪⎝⎭,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭; 解法二:由已知的函数sin 4y x π⎛⎫=-⎪⎝⎭逆向变换, 第一步:向左平移3π个单位长度,得到sin sin 3412y x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin 212x y π⎛⎫=+⎪⎝⎭的图象, 即为()y f x =的图象,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭.故选:B.3. (2021年全国新高考Ⅰ卷)下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是( ) A. 0,2π⎛⎫⎪⎝⎭B. ,2ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫ ⎪⎝⎭D. 3,22ππ⎛⎫ ⎪⎝⎭【答案】A【分析】解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 对于函数()7sin 6f x x π⎛⎫=-⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈, 取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭, 则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件; 取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,CD 选项均不满足条件. 故选:A.4. (2021年全国高考甲卷)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.【答案】2【分析】先根据图象求出函数()f x 的解析式,再求出7(),()43f f π4π-的值,然后求解三角不等式可得最小正整数或验证数值可得. 【详解】由图可知313341234T πππ=-=,即2T ππω==,所以2ω=; 由五点法可得232ππϕ⨯+=,即6πϕ=-;所以()2cos 26f x x π⎛⎫=- ⎪⎝⎭.因为7()2cos 143f π11π⎛⎫-=-= ⎪⎝⎭,()2cos 032f 4π5π⎛⎫== ⎪⎝⎭; 所以由74(()())(()())043f x f f x f ππ--->可得()1f x >或()0f x <; 因为()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,所以,方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x π⎛⎫-< ⎪⎝⎭, 解得,36k x k k π5ππ+<<π+∈Z ,令0k =,可得536x <<ππ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f π⎛⎫=-< ⎪⎝⎭,符合题意,可得x 的最小正整数为2. 故答案为:2.一、单选题1.(2022·福建·模拟预测)已知α为锐角,且sin sin 36ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则tan α=( )A 3B .23C 6D 63【答案】B【分析】运用两角和与差的正弦公式和同角的商数关系,计算即可得到所求值【详解】因为sin sin 36ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以1331sin cos 22αααα=-,所以)()31cos 31sin αα=,所以3tan 2331α==-故选:B2.(2022·辽宁锦州·一模)若()sin π1cos 3αα-=,则sin 2cos2αα+的值为( )A .15B .75C .120D .3120【答案】B【分析】先利用诱导公式得到tan α,再将弦化切,代入求解. 【详解】()sin πsin 1tan cos cos 3ααααα-===,从而2222222sin cos cos sin sin 2cos 22sin cos cos sin cos sin αααααααααααα+-+=+-=+222112tan 1tan 73911tan 519ααα+-+-===++ 故选:B3.(2022·江西九江·二模)已知函数()y f x =的部分图像如图所示,则()y f x =的解析式可能是( )A .()sin e e x xxf x -=+B .()sin e e x xxf x -=-C .()cos e e x xxf x -=-D .()cos e e x xxf x -=-【答案】D【分析】根据函数的定义域、奇偶性与函数值的正负即可得到结果 【详解】函数()f x 在0x =处无定义,排除选项A函数()f x 的图像关于原点对称,故()f x 为奇函数,排除选项B 当01x <<时,cos 0x >,e e x x ->,故cos 0e ex xx->-,排除选项C 故选:D.4.(2022·天津市宁河区芦台第一中学模拟预测)已知函数 ()()4cos 03f x x πωω⎛⎫=+> ⎪⎝⎭ 的最小正周期为π,将其图象沿 x 轴向右平移 ()0m m >个单位, 所得函数为奇函数, 则实数m 的最小值为( ) A .12πB .6πC .512π D .4π 【答案】C【分析】根据余弦型函数的最小正周期公式,结合余弦型函数图象的变换性质进行求解即可. 【详解】因为该函数的最小正周期为π,0>ω, 所以22ππωω=⇒=,即()4cos(2)3f x x π=+,将该函数图象沿x 轴向右平移 ()0m m >个单位得到函数的解析式为()()4cos(22)3g x f x m x m π=-=-+,因为函数()g x 为奇函数,所以有12()()32212m k k Z m k k Z πππππ-+=+∈⇒=--∈, 因为0m >,所以当1k =-时,实数m 有最小值512π, 故选:C5.(2022·浙江·模拟预测)已知E ,F 分别是矩形ABCD 边AD ,BC 的中点,沿EF 将矩形ABCD 翻折成大小为α的二面角.在动点P 从点E 沿线段EF 运动到点F 的过程中,记二面角B AP C --的大小为θ,则( ) A .当90α<︒时,sin θ先增大后减小 B .当90α<︒时,sin θ先减小后增大 C .当90α>时,sin θ先增大后减小 D .当90α>时,sin θ先减小后增大 【答案】C【分析】根据二面角的定义通过作辅助线, 找到二面角的平面角,在Rt △1C HC 中表示出tan θ的值,利用tan θ的值的变化来判断sin θ的变化即可.【详解】当90α<︒时,由已知条件得EF ⊥平面FBC ,过点C 作1CC FB ⊥,垂足为1C ,过点1C 作1C H AP ⊥,垂足为H , ∵ 1CC ⊂平面FBC ,∴1EF CC ⊥, ∴1CC ⊥平面ABFE ,又∵AP ⊂平面ABFE ,∴1CC AP ⊥, ∴AP ⊥平面1CC H , ∴AP CH ⊥, 则1C HC ∠为二面角B AP C --的平面角, 在Rt △1C HC 中,11tan CC C Hθ=, 动点P 从点E 沿线段EF 运动到点F 的过程中,1C H 不断减小,则tan θ不断增大,即sin θ不断增大,则A 、B 错误;当90α>时,由已知条件得EF ⊥平面FBC ,过点C 作1CC BF ⊥,垂足1C 在BF 的延长线上,过点1C 作CH AP ⊥,垂足在AP 延长线上, ∵ 1CC ⊂平面FBC ,∴1EF CC ⊥, ∴1CC ⊥平面ABFE ,又∵AP ⊂平面ABFE ,∴1CC AP ⊥, ∴AP ⊥平面1CC H , ∴AP CH ⊥, 则1C HC ∠为二面角B AP C --的平面角的补角β,即πθβ=-,在Rt △1C HC 中,11tan CC C Hβ=, 如下图所示,动点P 从点E 沿线段EF 运动到点F 的过程中,1C H 先变小后增大,则tan β先变大后变小,sin β先变大后变小,()sin sin πsin θββ=-=,则sin θ也是先变大,后变小, 则C 正确,D 错误; 故选:C .6.(2022·四川达州·二模(理))设()3sin 2cos 22cos 4x x f x x+=,则下列说法正确的是( )A .()f x 值域为33,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭B .()f x 在0,16π⎛⎫⎪⎝⎭上单调递增C .()f x 在,08π⎛⎫- ⎪⎝⎭上单调递减D .()4f x f x π⎛⎫=+ ⎪⎝⎭【答案】B【分析】由题可得2cos 4sin 43y x x -=,()()22213y +-≥,可判断A ,利用三角函数的性质可判断B ,利用导函数可判断C ,由题可得sin 4342cos 4x f x x π-⎛⎫+= ⎪⎝⎭,可判断D.【详解】∵()3sin 2cos 2sin 432cos 42cos 4x x x f x xx++==,由sin 432cos 4x y x+=,可得2cos 4sin 43y x x -=,3,即y ≤y ≥∴函数的值域为(),∞∞-⋃+,故A 错误; ∵()sin 4313tan 42cos 422cos 4x f x x x x+==+,当0,,40,164x x ππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭时,1tan 42y x =单调递增,2cos 4y x =单调递减,32cos 4y x =单调递增,故()f x 在0,16π⎛⎫⎪⎝⎭上单调递增,故B 正确;∵,0,4,082x x ππ⎛⎫⎛⎫∈-∈- ⎪ ⎪⎝⎭⎝⎭,()sin 432cos 4x f x x+=,令sin 3,,02cos 2t y t t π+⎛⎫=∈- ⎪⎝⎭,则()2222cos 2sin sin 313sin 4cos 2cos t t t ty t t+++'==, 由0y '=,可得1sin 3t =-,,02t π⎛⎫∈- ⎪⎝⎭,根据正弦函数在,02π⎛⎫- ⎪⎝⎭上单调递增,可知在,02π⎛⎫- ⎪⎝⎭上存在唯一的实数001,0,sin 23t t π⎛⎫∈-=- ⎪⎝⎭,当0,2t t π⎛⎫∈- ⎪⎝⎭时,0y '<,sin 32cos t y t +=单调递减,当()0,0t t ∈时,0y '>,sin 32cos t y t +=单调递增,所以()f x 在,08π⎛⎫- ⎪⎝⎭上有增有减,故C 错误;由()sin 432cos 4x f x x+=,可得()()()sin 43sin 43sin 4342cos 42cos 42cos 4x x x f x f x x x x πππ++-+-⎛⎫+===≠ ⎪+-⎝⎭,故D 错误.故选:B.7.(2022·宁夏·银川一中二模(理))下列四个函数中,在其定义域上既是奇函数又是增函数的是 ( ) A .x y e = B .tan y x = C .sin y x = D .y x x =【答案】D【分析】A.利用指数函数的性质判断;B.利用正切函数的性质判断;C.利用正弦函数的性质判断;D.利用函数的图象判断.【详解】A. ()()()(),,x xf x e f x e f x f x -=-=-≠-,不是奇函数,故错误;B. tan y x =在,,22k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭上递增,但在定义域|,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭上不单调,故错误;C. sin y x =在2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦上递增,但在定义域R 上不单调,故错误;D. 2,0,0x x y x x x x ⎧≥==⎨-<⎩,其图象如图所示:由图象知:定义域上既是奇函数又是增函数,故正确, 故选:D8.(2022·山西长治·模拟预测(理))若函数()f x 满足(2)()f x f x +=,则()f x 可以是( ) A .2()(1)f x x =- B .()|2|f x x =-C .()sin 2f x x π⎫⎛=⎪⎝⎭D .()tan 2f x x π⎛⎫=⎪⎝⎭【答案】D【分析】根据周期函数的定义,结合特例法进行判断求解即可. 【详解】因为(2)()f x f x +=, 所以函数的周期为2. A :因为(1)0,(3)4f f ==,所以(1)(3)f f ≠,因此函数的周期不可能2,本选项不符合题意; B :因为(2)0,(4)2f f ==,所以(2)(4)f f ≠,因此函数的周期不可能2,本选项不符合题意;C :该函数的最小正周期为:242ππ=,因此函数的周期不可能2,本选项不符合题意;D :该函数的最小正周期为:22ππ=,因此本选项符合题意, 故选:D9.(2022·天津·一模)已知函数()2sin y x ωϕ=+(0>ω,0πϕ<<)的部分图象如图所示,则( )A .2ω=,5π6ϕ= B .12ω=,5π6ϕ=C .2ω=,6π=ϕ D .12ω=,6π=ϕ 【答案】A【分析】根据图象与y 轴的交点纵坐标与振幅的关系,结合所处的区间的单调性,以及后续的单调递增区间上的零点,列出方程组求解即得.【详解】由函数图象与y 轴的交点纵坐标为1,等于振幅2的一半,且此交点处于函数的单调减区间上,同时在同一周期内的后续单调区间上的零点的横坐标为7π12,并结合0>ω,0πϕ<<, 可知()2sin 01π3π0227π212ωϕωϕωϕπ⎧⎪⨯+=⎪⎪<⨯+<⎨⎪⎪⨯+=⎪⎩,解得2ω=,5π6ϕ=,故选:A10.(2022·新疆·模拟预测(理))我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来研究函数图象的特征.我们从这个商标中抽象出一个函数的图象如图,其对应的函数解析式可能是( )A .()11f x x =- B .()211f x x =- C .()11tan2f x xπ=-D .()11f x x =- 【答案】D【分析】由定义域判断A ;利用特殊函数值:(0)f 、2()3f 的符号判断B 、C ;利用奇偶性定义及区间单调性判断D.【详解】A :函数的定义域为{|1}x x ≠,不符合;B :由1(0)101f ==--,不符合; C :由2()0313f =<-,不符合; D :11()()|||1||||1|f x f x x x -===---且定义域为{|1}x x ≠±,()f x 为偶函数, 在(0,1)上1()1f x x=-单调递增,(1,)+∞上1()1f x x =-单调递减,结合偶函数的对称性知:(1,0)-上递减,(,1)-∞-上递增,符合. 故选:D11.(2022·江西·临川一中模拟预测(理))己知函数()sin()(0,)R f x x ωϕωϕ=+>∈在区间52,123ππ⎛⎫⎪⎝⎭上单调,且满足571212ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭f f .有下列结论:①02f ⎛⎫= ⎪⎝⎭π;②若4()3π⎛⎫-=⎪⎝⎭f x f x ,则函数()f x 的最小正周期为3π; ③关于x 的方程()1f x =在区间[0,2)π上最多有5个不相等的实数根; ④若函数()f x 在区间13,26ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为12,35⎛⎤ ⎥⎝⎦.其中正确的结论的个数为( ) A .1B .2C .3D .4【答案】B【分析】对于①:利用对称性直接求得; 对于②:直接求出函数的最小正周期,即可判断;对于③:先判断出周期234232T πππ⎛⎫= ⎪⎝≥-⎭,直接解出()1f x =在区间[0,2)π上最多有3个不相等的实数根,即可判断.对于④:由题意分析1352622T T ππ<-≤,建立关于ω的不等式组,求出ω的取值范围. 【详解】函数()()sin f x x ωϕ=+满足571212ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭f f .对于①:因为57121222πππ+=,所以02f ⎛⎫= ⎪⎝⎭π.故①正确;对于②:由于4()3π⎛⎫-= ⎪⎝⎭f x f x ,所以函数()f x 的一条对称轴方程为42323x ππ==.又,02π⎛⎫ ⎪⎝⎭为一个对称中心,由正弦图像和性质可知,所以函数的最小正周期为224323T πππ⎛⎫=-= ⎪⎝⎭.故②错误; 对于③:函数()()sin f x x ωϕ=+在区间52,123ππ⎛⎫ ⎪⎝⎭上单调,且满足571212ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭f f ,可得:02f ⎛⎫= ⎪⎝⎭π,所以周期234232T πππ⎛⎫=⎪⎝≥-⎭.周期越大,()1f x =的根的个数越少. 当23T π=时,()cos3f x x =,所以()1f x =在区间[0,2)π上有3个不相等的实数根:0x =,23x π=或43x π=.故③错误.对于④:函数()f x 在区间13,26ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,所以1352622T T ππ<-≤, 所以213522622ππππωω⋅<-≤⋅,解得:1235ω<≤.且满足234232T πππ⎛⎫= ⎪⎝≥-⎭,即2224323ππππω⎛⎫≥-= ⎪⎝⎭,即3ω≤,故12,35ω⎛⎤∈ ⎥⎝⎦.故④正确.故选:B12.(2022·山西吕梁·模拟预测(文))将函数()cos 26f x x π⎛⎫=- ⎪⎝⎭图象上的所有点向左平移56π个单位长度,得到函数()g x 的图象,则( ) A .2()cos 23g x x π⎛⎫=+ ⎪⎝⎭B .()g x 在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增C .()g x 在(0,)3π上的最小值为1-D .直线4x π=平是()g x 的一条对称轴【答案】D【分析】根据三角函数的图象变换,可判定A 错误;利用函数的图象与性质,可判定B ,C 错误;根据14g π⎛⎫= ⎪⎝⎭,可判定D 正确.【详解】由题意,函数()cos 26f x x π⎛⎫=- ⎪⎝⎭图象上的所有点向左平移56π个单位长度,可得53()cos 2cos 2sin 2662g x x x x πππ⎡⎤⎛⎫⎛⎫=+-=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故A 错误; 令222()22k x k k Z ππππ-+≤≤+∈,所以()44k x k k Z ππππ-+≤≤+∈,所以()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上单调递增,所以B ,C 错误;因为14g π⎛⎫= ⎪⎝⎭,故直线4x π=为()g x 的一条对称轴,故D 正确.故选:D.13.(2022·内蒙古呼和浩特·一模(理))如图是一大观览车的示意图,已知观览车轮半径为80米,观览车中心O 到地面的距离为82米,观览车每30分钟沿逆时针方向转动1圈.若0P 是从距地面42米时开始计算时间时的初始位置,以观览车的圆心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy .设从点0P 运动到点P 时所经过的时间为t (单位:分钟),且此时点P 距离地面的高度为h (单位:米),则h 是关于t 的函数.当t R ∈时关于()h t 的图象,下列说法正确的是( )A .对称中心为515,0,2k k Z ⎛⎫+∈ ⎪⎝⎭B .对称中心为515,82,2k k Z ⎛⎫+∈ ⎪⎝⎭C .对称轴为155,t k k Z =+∈D .对称轴为515,2t k k Z =+∈【答案】B【分析】先由题意得到06xoP π∠=,进而得到min t 后,以ox 为始边,oP 为终边的角156t ππ-,从而得到点P 的纵坐标为80sin 156t ππ⎛⎫- ⎪⎝⎭,即P 距地面的高度函数求解.【详解】解:由题意得06xoP π∠=,而6π-是以ox 为始边, 0oP 为终边的角, 由OP 在min t 内转过的角为23015t t ππ=, 可知以ox 为始边,oP 为终边的角为156t ππ-,则点P 的纵坐标为80sin 156t ππ⎛⎫- ⎪⎝⎭,所以P 距地面的高度为80sin 82156h t ππ⎛⎫=-+ ⎪⎝⎭,令,156t k k Z πππ-=∈,得515,2t k k Z =+∈, 所以对称中心为515,82,2k k Z ⎛⎫+∈ ⎪⎝⎭,令,1562t k k Z ππππ-=+∈,得1015,t k k Z =+∈,所以对称轴为1015,t k k Z =+∈, 故选:B14.(2022·河南·模拟预测(理))密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“0-07”,478密位写成“4-78”.如果一个半径为4的扇形,其圆心角用密位制表示为12-50,则该扇形的面积为( ) A .10π3B .2πC .5π3D .5π6【答案】A【分析】根据题意中给的定义可知该扇形的圆心角为75︒,结合扇形的面积公式计算即可. 【详解】依题意,该扇形的圆心角为1250360756000⨯︒=︒.又5π7512︒=,故所求扇形的面积为 22115π10π422123S r α==⨯⨯=.故选:A. 二、多选题15.(2022·河北·模拟预测)已知角α的终边经过点()8,3cos P α.则( ) A .1sin 3α=B .7cos 29α= C .2tan 4α=±D .22cos 3α=【答案】ABD【分析】根据同终边角的正弦和余弦可知223cos 8sin ,cos 649cos 649cos ααααα==++,然后解出方程并判断sin 0,cos 0αα>>,逐项代入即可.【详解】解:由题意得: 如图所示:()22283cos 649cos OP αα=+=+22sin 649cos 649cos PQ OQ OP OP αααα∴==++ 2sin 649cos 3cos αα∴+=,即()222sin 649cos 9cos ααα+= ()222sin 649(1sin )91sin ααα⎡⎤∴+-=-⎣⎦,即429sin 82sin 90αα-+= 解得:2sin 9α=(舍去)或21sin 9α=cos 0α>sin 0α∴>1sin 3α=,故A 正确; 22cos α∴D 正确;222217cos2cos sin39ααα⎛⎫∴=-=-=⎪⎝⎭⎝⎭,故B正确;1sintancosααα==C错误;故选:ABD16.(2022·重庆八中模拟预测)下列函数的图像中,与曲线sin23y xπ⎛⎫=-⎪⎝⎭有完全相同的对称中心的是()A.sin26y xπ⎛⎫=+⎪⎝⎭B.cos26y xπ⎛⎫=+⎪⎝⎭C.cos23y xπ⎛⎫=-⎪⎝⎭D.tan6y xπ⎛⎫=-⎪⎝⎭【答案】BD【分析】根据正弦、余弦、正切函数的图像,求出各个函数的对称中心,比较即可得出答案.【详解】设k∈Z,对于sin23y xπ⎛⎫=-⎪⎝⎭,由2362kx k xππππ-=⇒=+;对于A:由26122kx k xππππ+=⇒=-+;对于B:由26262kx k xπππππ+=+⇒=+;对于C:由5232122kx k xπππππ-=+⇒=+;对于D:由6262k kx xππππ-=⇒=+;则B和D的函数与题设函数有完全相同的对称中心.故选:BD.17.(2022·江苏·海安高级中学二模)已知0e sin e siny xx y x yπ<<<,=,则()A.sin sinx y<B.cos cosx y>-C.sin cosx y>D.cos sinx y>【答案】ABC【分析】将e sin e siny xx y=变为e sine sinyxyx=结合指数函数的性质,判断A;构造函数e(),(0,)sinxf x xxπ=∈,求导,利用其单调性结合图象判断x,y的范围,利用余弦函数单调性,判断B;利用正弦函数的单调性判断C,结合余弦函数的单调性,判断D.【详解】由题意,0e sin e siny xx y x yπ<<<,=,得0y x->,e sin e sin y x y x=,e 1y x->,∴sin 1sin y x >,∴sin sin y x >,A 对; e e sin sin y x y x =,令e (),(0,)sin xf x x xπ=∈,即有()()f x f y =, 令2e (sin cos )()0,sin 4x x x f x x x π=='-=, ()f x 在0,4π⎛⎫⎪⎝⎭上递减,在,4ππ⎛⎫ ⎪⎝⎭上递增, 因为()()f x f y = ,∴04x y ππ<<<<,作出函数e (),(0,)sin xf x x xπ=∈以及sin ,[0,]y x x π=∈ 大致图象如图:则30sin sin 4y y x ππ<-<>,,∴sin()sin y x π->,结合图象则y x π->, ∴cos()cos y x π-<,∴cos cos x y >-,B 对; 结合以上分析以及图象可得2x y π+>,∴2x y π>-,且,4224y y πππππ<<-<-<,∴sin sin cos 2x y y π⎛⎫>-= ⎪⎝⎭,C 对;由C 的分析可知,224y x πππ-<-<<,在区间[,]24ππ-上,函数cos y x = 不是单调函数,即cos()cos 2y x π-<不成立,即sin cos y x <不成立,故D 错误; 故选:ABC .【点睛】本题综合考查了有条件等式下三角函数值比较大小问题,设计指数函数性质,导数的应用以及三角函数的性质等,难度较大,解答时要注意构造函数,数形结合,综合分析,进行解答. 18.(2022·湖北·一模)已知函数()sincos 22x xf x ( )A .()f x 的图象关于2x π=对称B .()f x 的最小正周期为2π C .()f x 的最小值为1 D .()f x 的最大值为342【答案】ACD【分析】A :验证()f x π-与()f x 是否相等即可;B :验证()f x π+与()f x 相等,从而可知π为f (x )的一个周期,再验证f (x )在(0,π)的单调性即可判断π为最小正周期;C 、D :由B 选项即求f (x )最大值和最小值.【详解】()()f x f x π-==,故选项A 正确;∵()()f x f x π+, 故π为()f x 的一个周期. 当(0,)x π∈时,()f x =此时3322cossin()cos sin 22x x x x f x '⎡⎤⎛⎫⎛⎫⎥==- ⎪⎪⎥⎝⎭⎝⎭⎦,令()0f x '=,得cossin 22x x=,故,242x x ππ==.∵当0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x '>;当,2x ππ⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫⎪⎝⎭上单调递减,故()f x 的最小正周期为π,选项B 错误;由上可知()f x 在[0,]x π∈上的最小值为()(0)1f f π==,最大值为3422f π⎛⎫= ⎪⎝⎭,由()f x 的周期性可知,选项CD 均正确. 故选:ACD. 三、解答题19.(2022·浙江宁波·二模)已知()πsin2cos 26f x x x ⎛=++⎫ ⎪⎝⎭()R x ∈.(1)求函数()y f x =的最小正周期及单调递增区间; (2)求函数()π4y f x f x ⎛⎫=⋅+ ⎪⎝⎭在π0,4x ⎡⎤∈⎢⎥⎣⎦的取值范围.【答案】(1)最小正周期π,单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,Z k ∈(2)12⎡-⎢⎣⎦【分析】(1)将()πsin2cos 26f x x x ⎛=++⎫ ⎪⎝⎭化为只含一个三角函数形式,根据正弦函数的性质即可求得答案;(2)将()π4y f x f x ⎛⎫=⋅+ ⎪⎝⎭展开化简为12πsin 423y x ⎛⎫=+ ⎪⎝⎭,结合π0,4x ⎡⎤∈⎢⎥⎣⎦,求出2π43x +的范围,即可求得答案.(1)()π1sin 2cos 2sin 22sin 262f x x x x x x ⎛⎫=++=- ⎪⎝⎭1sin 222πsin 23x x x ⎛⎫=+ ⎪⎝⎭=,所以2ππ2T ==; 因为πππ2π22π232k x k -+≤+≤+,Z k ∈,所以5ππππ1212k x k -+≤≤+,Z k ∈, 函数()y f x =的单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,Z k ∈; (2)()ππππsin 2sin 24323y f x f x x x ⎛⎫⎛⎫⎛⎫=⋅+=+⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ππ12πsin 2cos 2sin 43323x x x ⎛⎫⎛⎫⎛⎫=+⋅+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为π04x ≤≤,所以2π2π5π4333x ≤+≤,12π1sin 4232y x ⎡⎛⎫=+∈-⎢ ⎪⎝⎭⎣⎦,因此函数()π4y f x f x ⎛⎫=⋅+ ⎪⎝⎭在π0,4x ⎡⎤∈⎢⎥⎣⎦的取值范围为12⎡-⎢⎣⎦.20.(2022·天津三中一模)已知()22sin cos 222f x x x x θθθ⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1)若0θπ≤≤,求θ使函数()f x 为偶函数;(2)在(1)成立的条件下,求满足()1f x =,[],x ππ∈-的x 的集合. 【答案】(1)6πθ=(2)55,,,6666ππππ⎧⎫--⎨⎬⎩⎭ 【分析】(1)由恒等变换得()2sin 23f x x πθ⎛⎫=++ ⎪⎝⎭,进而根据奇偶性求解即可;(2)由题知1cos 22x =,再根据[],x ππ∈-得23x π=-或523x π=-或23x π=或523x π=,进而解得答案.(1)解:()22sin cos 222f x x x x θθθ⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()1cos 2sin 22x x θθ++=++()()sin 222sin 23x x x πθθθ⎛⎫=++=++ ⎪⎝⎭,因为函数()f x 为偶函数, 所以,32k k Z ππθπ+=+∈,即,6k k Z πθπ=+∈,因为0θπ≤≤,所以6πθ=(2)解:在(1)成立的条件下,()2sin 22cos 236f x x x ππ⎛⎫=++= ⎪⎝⎭,所以由()1f x =得1cos 22x =,因为[],x ππ∈-,所以[]22,2x ππ∈-, 所以23x π=-或523x π=-或23x π=或523x π=, 所以6x π=-或65x π=-或6x π=或56x π=, 所以,满足题意的x 的集合为55,,,6666ππππ⎧⎫--⎨⎬⎩⎭ 21.(2022·河北秦皇岛·二模)在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且()(sin sin )()sin a b A B c b C +-=-.(1)求A ;(2)求cos cos B C -的取值范围.【答案】(1)3π(2)⎛ ⎝⎭【分析】(1)利用正弦定理角化边,再根据余弦定理可求出1cos 2A =,进而求出A 的大小;(2)依题意可化简cos cos 6B C B π⎛⎫-=+ ⎪⎝⎭,根据B 的范围求出cos cos B C -的取值范围即可.(1)因为()()()sin sin sin a b A B c b C +-=-,所以()()()a b a b c b c +-=-,即222a b c bc =+-.因为2222cos a b c b A =+-,所以1cos 2A =.因为0,2A π⎛⎫∈ ⎪⎝⎭,所以3A π=.(2)由(1)知2cos cos cos cos 3B C B B π⎛⎫-=-- ⎪⎝⎭13cos cos cos 226B B B B B B π⎛⎫=+==+ ⎪⎝⎭. 因为203202B B πππ⎧<-<⎪⎪⎨⎪<<⎪⎩,所以62B ππ<<, 因为2363B πππ<+<,所以11cos ,622B π⎛⎫⎛⎫+∈- ⎪ ⎪⎝⎭⎝⎭,所以cos cos B C ⎛-∈ ⎝⎭,即cos cos B C -的取值范围是⎛ ⎝⎭. 22.(2022·浙江嘉兴·二模)设函数()sin cos f x x x =-(R)x ∈ .(1)求函数()()y f x f x =⋅-的最小正周期及其对称中心;(2)求函数22[()]4y f x f x π⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦在,44ππ⎡⎤-⎢⎥⎣⎦上的值域. 【答案】(1)周期π,对称中心为,0(Z)42k k ππ⎛⎫+∈ ⎪⎝⎭(2)[2 【分析】(1)利用二倍角公式将()()y f x f x =⋅-的表达式化简,即可求得函数的最小正周期,结合余弦函数的对称中心可求得函数()()y f x f x =⋅-的对称中心;(2)将函数22[()]4y f x f x π⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦的表达式展开,并化简,根据,44x ππ⎡⎤∈-⎢⎥⎣⎦的范围,结合正弦函数的性质可确定答案.(1)函数22()()cos sin cos 2y f x f x x x x =⋅-=-=,所以最小正周期22T ππ==; 令2(Z)2x k k ππ=+∈,解得(Z)42k x k ππ=+∈, 所以对称中心为,0(Z)42k k ππ⎛⎫+∈ ⎪⎝⎭; (2)函数2222[()]sin cos )[sin()cos()]44(4y f x f x x x x x πππ⎡⎤⎛⎫=++-++-+ ⎪⎢⎭⎣=⎥⎝⎦ 1sin 21sin(2)2x x π=-+-+ 2sin 2cos2x x =--224x π⎛⎫=+ ⎪⎝⎭, 因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,故sin 2[4x π⎛⎫+∈ ⎪⎝⎭,故[2y ∈.23.(2022·山东枣庄·一模)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且sinsin 2B C b a B +=.求: (1)A ; (2)a c b-的取值范围. 【答案】(1)3π(2)1(,1)2- 【分析】(1)由正弦定理及正弦的2倍角公式可求解;(21cos 1sin 2B B --的范围,再利用2倍角公式化为122B -即可求解. (1)因为sin sin 2BC b a B +=, 所以sin cos sin sin 2A B A B =, 因为()0,,sin 0B B π∈∴≠,()1cos 2sin cos 0,cos 0,sin =222222A A A A A A π∴=∈∴≠∴,,, 因为0,,22263A A A πππ<<∴=∴=. (2)由正弦定理,2sin sin()sin sin 33sin sin B a c A C b B B ππ----==1sin 222sin B B B-=1cos 1sin 2B B -=-21(12sin )1122222sin cos 22B B B B ---=-, 因为203B π<<,所以023B π<<,所以0tan 2B <<。
初中数学竞赛练习第07讲 二次函数(含解析)
第7讲二次函数。
022·广东,九年级统考觉赛〉如图,在四边形ABCD中,ADI/BC, LA=45°, LC=90。
,AD=4cm, 一、单选题CD=3cm.动点M,N同时从点A出发,点M以.ficm怜的速度?的AB向终点B运动,点N以2cm/s的速度沿拆线AD-即向终点C运动.设点N的运动时间为ts,AMN的面积为Scm2,则下列图象自巨大致反映S与t之间函数关系的是(BS/cm2 S/cm2A. B。
S/cm2 S/cm2c. D.。
7s2.(2021·全国九年级党赛)一条抛物线y= ax2 +hx+c的顶点为(4,-11),且与x轴的两个交点的横坐标为一正一负,则。
,b, c中为正数的(A. 只有aB.只有b c.只有c D.只有。
和b3.(2021·全国九年级党赛)己知二次i1E1数y=ax2+bx+己的图象如图所示,则下列代数式:ab,ac, a+b+c, a-b+c, 2a吨,2a-b中,其值为正的代数式的个数为(}\1A.2个B.3个 c.4个 D.4个以上4.(2021·全国九年级党赛〉在平面直角坐标系z句中,作抛物线A关于x轴对称的抛物线B,再将抛物线B向在平移2个单位,向上半移1个单位,得到的抛物线C的两数负析式是y=2(λ+1)2-1,贝!|抛物线A所对应的的函数解析式是(A. y=-2(x+3)2-2B.y=-2(x+3)2 +2C. y=-2(x-1)1-2D.y=-2(x-1)1+25.(2021 ·全国丸年级竞赛〉己知α-b=4,ab+c2÷4=0,则α+b=( ) .A.4B.0C.2D.-26.(2021·全国九年级党赛)在平丽直角坐标系中,如果横坐标与纵坐标都是整数的点称为整点,将二次27函数y=-x1+6x-4的图象与X车rb所围成的封闭图形染成红色,则在此红色区域内部及其边界上的孩点的个数是(〉A.5B.6 c.7 D.87.(2023春·浙江宁波九年级校联考竞赛〉二次函数y=x2+2x+c的图象与x轴的两个交点为A(码,0). B(句,o),且λ}〈毛,点P(m,n)是囱象上一点,那么下列判断正确的是〈〉A.当n>O时,川〈λlB.当n>O时,m>λ;2c.当n.<0时,m<O D.当n<O时,x1<m<x18.(2017秋·江苏镇江·九年级党赛)函数y=ax1+bx+c图像的大致位置如|到所示,则忡,bc,2α忡,(a+c)2-b2,“+ b)2 -c1, l l-a2等代数式的值中,正数有(〉xA. 2个B.3个 c.4个 D. 5个9.(2022·福建·九年级统考竞赛)已知二次函数y=ax气的+c的图象交x轴于A(刀,0),β(λz,0)两点,交y轴于点C(O,匀,若X1+ X2 = 4,且b.ABC的丽积为3,则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7讲函数的性质与图象本节主要内容有函数的单调性、奇偶性(包括对称性)和周期性,函数图象的画法和变换等内容.A类例题例1 求函数f(x)=log1(x2-2x-3)的单调递增区间。
2(2002年全国联赛一试)解:由x2-2x-3>0,得x<-1或x>3.u,u= x2-2x-3。
由于f(u)在(0,+∞)上令y=f(u)= log12是单调减函数,u= x2-2x-3在区间(-∞,-1)上是单调减函数,那么由复合函数的单调性可知,函数f(x)在区间(-∞,-1)上单调递增。
同样可以得到函数f(x)在区间(3,+∞)上单调递减。
所以函数f(x)=log1(x2-2x-3)的单调递增区间是(-∞,-1)。
2说明分析函数的单调区间一般可以根据原函数的定义域以及复合函数的单调性的判断方法进行判断,也可以利用函数的图象进行判断。
论证函数的单调性常常利用定义或导数。
例2 设f(x)是定义在实数集上的周期为2的函数,且是偶函数,已知当x∈[2,3]时,f(x)=x,求x∈[-2,0]时f(x)的解析式。
(1990年全国联赛一试)分析由T=2,可以得出x∈[-2,-1]和x∈[0,1]时f(x)的解析式;再由奇偶性,即可得到x∈[-2,0]时f(x)的解析式。
解因为函数f(x)是以T=2为周期的周期函数,所以f(x+2)=f(x)。
当x∈[-2,-1]时,x+4∈[2,3],于是f(x+4)=x+4,则f(x)= f(x+4)=x+4。
打印版打印版当x ∈[0,1]时,x +2∈[2,3],于是f (x +2)=x +2,则f (x )= f (x +2)=x +2。
又由于f (x )为偶函数,故f (-x )=f (x )。
当x ∈[-1,0)时,-x ∈(0,1],则f (x )= f (-x )=-x +2。
所以f (x )=⎩⎨⎧3-(-x -1)=x+4 (x ∈[-2,-1]),3-(x+1)=-x+2 (x ∈(-1,0)). =3-|x +1|(x ∈[-2,0])。
说明 本题是根据周期函数和偶函数得性质来求解的。
本题还可以画出函数的图象来解。
例3 设函数f 0(x )=|x |,f 1(x )=|f 0(x )-1|,f 2(x )= |f 1(x )-2|,求函数y=f 2(x )的图象与x 轴所围成图形中的封闭部分的面积.(1989年全国联赛一试)解 图1是函数f 0(x )=|x |的图形,把此图形向下平行移动1个单位就得到函数f 0(x )=|x |-1的图形,作该图形的在x 轴下方的部分关于x 轴的对称图形得出图2,其中在x 轴上方的部分即是f 1(x )=|f 0(x )–1|的图象,再把该图象向下平行移动2个单位得到f 0(x )=|x |-2的图象,作该图象在x 轴下方的部分关于x 轴的对称图形得到图3,其中x 轴上方的部分即是f 2(x )= |f 1(x )–2|的图象。
易得所求面积为7。
情景再现1.函数f (x )=x 1-2x-x 2( ) A .是偶函数但不是奇函数 B .是奇函数但不是偶函数打印版C .既是奇函数也是偶函数D .既不是奇函数也不是偶函数 (2002年全国联赛一试)2.已知f (x )是定义在(0,+∞)上的减函数,若f (2a 2+a +1)<f (3a 2-4a +1)成立,则a 的取值范围是 。
(2005年全国联赛一试)3.若f (x ) (x ∈R )是以2为周期的偶函数,当x ∈[ 0,1 ]时,f (x )=x 11000,则f (9819),f (10117),f (10415)由小到大排列是 .(1998年全国联赛一试) B 类例题例4 设x ,y 为实数,且满足⎩⎨⎧(x -1)3+1997(x -1)=-1,(y -1)3+1997(y -1)=1.求x +y 的值。
(1997年全国联赛一试)分析 由方程组可以观察到x -1、1-y 是方程t 3+1997t +1=0的根。
解:原方程组即⎩⎨⎧(x -1)3+1997(x -1)+1=0,(1-y )3+1997(1-y )+1=0.取 f (t )=t 3+1997t +1,则f '(t )=3t 2+1997>0,故f (t )是单调增函数, 所以方程t 3+1997t +1=0至多只有一个实数解,所以x -1=1-y ,即x +y=2.例5 设曲线C 的方程是,3x x y -=将C 沿x 轴、y 轴正向分别平行移动t 、s 单位长度后得曲线C 1。
(1)写出曲线C 1的方程;(2)证明曲线C 与C 1关于点)2,2(st A 对称; (3)如果C 与C 1有且仅有一个公共点,证明304t s t t =-≠且。
打印版(1998年全国高考题)分析 第(1)小题直接由函数图象平移性质可得;第(2)小题“证明曲线C 与C 1关于点)2,2(s t A 对称”应转化为证明“设B 1(x 1,y 1) 为C 上任意一点,证明点(t -x 1,s -y 1)必在曲线C 1上”,反之亦然;第(3)小题即为两曲线方程构成的方程组有且仅有一组解。
(1)解 曲线C 1的方程为3()()y x t x t s =---+。
(2)证明 在曲线C 上任取一点B 1(x 1,y 1)。
设B 2(x 2,y 2)是B 1关于点A 的对称点,则有 .,.22,2221212121y s y x t x s y y t x x -=-=∴=+=+ 代入曲线C 的方程,得3222()()s y t x t x -=---,3222()()y x t x t s =---+即,故点B 2的坐标满足C 1的方程, 可知点B 2(x 2,y 2)在曲线C 1上。
反过来,也可以证明,在曲线C 1上的点关于点A 对称点在曲线C 上。
因此,曲线C 与C 1关于点A 对称。
(3)证明 因为曲线C 与C 1有且仅有一个公共点,所以方程组⎩⎨⎧+---=-=.)()(,33s t x t x y x x y 有且仅有一组解。
消去y ,整理得,0)(33322=--+-s t t x t tx这个关于x 的一元二次方程有且仅有一个根。
所以0≠t 并且其根的判别式⎩⎨⎧=--≠=---=∆.0)44(,0,0)(129334s t t t t s t t t t 即打印版 所以304t s t t =-≠且。
说明 在证明不同的两条曲线C 1和C 2关于点(或线)对称时,必须证明C 1上任意一点的对称点在C 2上,且C 2上任意一点的对称点在C 1上,即正反两个方面都要证明。
而在证明一条曲线关于点(或线)对称时,只要在该曲线上任取一点,证明此点的对称点仍在曲线上即可。
例6 函数f 定义在实数集上,且对一切实数x 满足等式(2)(2)f x f x -=+和(7)(7)f x f x -=+。
设x =0是f (x )=0的一个根,记f (x )=0在区间[-1000,1000]中的根的个数为N 。
求N 的最小值。
(1984年美国数学邀请赛)解 由题意知,函数f (x )的图象关于直线2x =和7x =对称, 所以(4)(22)(22)(0)0f f f f =+=-==,(10)(73)(73)(4)0f f f f =+=-==,于是f (x )=0在(0,10]上至少有两个根。
另一方面,由(2)(2),(7)(7)f x f x f x f x -=+⎧⎨-=+⎩可得()(4),()(14)f x f x f x f x =-⎧⎨=-⎩,所以(4)(14)f x f x -=-,即()(10)f x f x =+,从而知函数()y f x =是以10T =为周期的周期函数,因此f (x )=0在区间[-1000,1000]中的根的个数至少有200×2+1=401个根。
如图可以构造出一个“锯齿形”的函数()y f x =,满足上述所打印版打印版例7 已知函数f (x )定义在R 上且对一切实数x ,y ∈R ,有f (x +y )+f (x -y )=2f (x )f (y ),且f (0) ≠0。
(1)求证f (0)=1,且f (x )是偶函数;(2)若存在常数c ,使f c ()20=, ①求证对于任意x ∈R ,有f (x +c )=-f (x )成立;②试问函数f (x )是否是周期函数,若是,求出它的一个周期。
解(1)令x =y =0,则f (0)+f (0)=2f (0)f (0),因为f (0) ≠0,所以f (0)=1;任取y ∈R ,令x =0,则f (y )+f (-y )=2f (0)f (y ),所以f (-y )=f (y ),即函数f (x )是偶函数。
(2)①令x =a +2c ,y =2c ,则f (a +c )+f (a )=0, 即f (x +c )=-f (x )成立。
②因为f (x +2c )=-f (x +c )=f (x )所以函数f (x )是周期函数,它的一个周期T =2c 。
例8 设函数f (x )在[0,1]上有定义,f (0)=f (1).如果对于任意不同的x 1,x 2∈[0,1],都有|f (x 1)-f (x 2)|<|x 1-x 2|.求证:|f (x 1)-f (x 2)|<12. (1983年全国高中数学联赛二试)分析 把条件|f (x 1)-f (x 2)|<|x 1-x 2|与结论|f (x 1)-f (x 2)|<12对照,把|x 1-x 2|与12联系比较。
证明 不妨取0≤x 1<x 2≤1。
若|x 1-x 2|≤12,则必有|f (x 1)-f (x 2)|<|x 1-x 2|<12. 若|x 1-x 2|>12,则x 2-x 1>12,于是1-(x 2-x 1)<12,打印版即1-x 2+x 1-0<12. |f (x 1)-f (x 2)|= |(f (x 1)- f (0))-(f (x 2)-f (1))|≤|f (x 1)-f (0)|+ |f (1)-f (x 2)|<| x 1-0|+|1-x 2|=1-x 2+x 1-0<12. 综上可知,|f (x 1)-f (x 2)|<12成立。
情景再现4.已知函数f (x )是R 上的奇函数,g (x )是R 上的偶函数,若129)()(2++=-x x x g x f ,则=+)()(x g x f ( ) A .1292-+-x xB .1292-+x xC .1292+--x xD .1292+-x x (2004年湖南数学竞赛)5.函数)(x f y =的图象为C ,而C 关于直线1=x 对称的图象为1C ,将1C 向左平移1个单后得到的图象为2C ,则2C 所对应的函数为( )A .)(x f y -=B .)1(x f y -=C .)2(x f y -=D .)3(x f y -=(2005年湖南数学竞赛)6.设f (x )是定义在实数集R 上的函数,且满足下列关系f (10+x )=f (10-x ), f (20-x )=-f (20+x ),则f (x )是( )A .偶函数,又是周期函数B .偶函数,但不是周期函数打印版C .奇函数,又是周期函数D .奇函数,但不是周期函数 (1992年全国联赛一试)7.已知f (x )是定义在R 上的增函数.设F (x )=f (x )–f (a –x )(1)用函数单调性定义证明F (x )是R 上的增函数;(2)证明函数y =F (x )的图象关于点)0,2(a为中心对称. C 类例题例9 设k ∈N ,若存在函数f :N →N 是严格递增的,且对于每个n ∈N ,都有f [f (n )]=kn , 求证:对每个n ∈N ,都有2)1()(12n k n f k kn +≤≤+. (1990第五届冬令营选拔赛)证明 先证后一半,即证明2f (n )≤kn +n =f [f (n )]+n ,把这个式子改写为f (n )-n ≤f [f (n )]-f (n ). ⑴1︒ f (n )≥n ,这是因为f (n )是自然数,且函数f :N →N 是严格递增的,即f (1)<f (2)<f (3)<…<f (n ).2︒ 若m >n ,则f (m )-f (n )≥m -n ,这是因为若m >n ,设m =n +p ,(p ∈N ),则f (m )=f (n +p )≥f (n +p -1)+1≥f (n +p -2)+2≥…≥f (n )+p ,即f (m )-f (n )≥p =m -n . ⑵在⑵式中取m =f (n )即得⑴式.于是2)1()(nk n f +≤成立.再证前一半,即证明)(12n f k kn ≤+,即证2f [f (n )]≤(k +1)f (n ), 即证f [f (n )]≤21+k f (n ).这只要在⑴式中以f (n )代n 即可得证. 所以对每个n ∈N ,都有2)1()(12n k n f k kn +≤≤+。