Walker2050 风速风向仪
2050型智能空气 TSP综合采样器
-200.0°C~1300.0°C
-200~-100℃:1.0℃
-100~900℃:0.7℃
900~1300℃:0.8℃
B
400°C~1800°C
1°C
400~600℃:2.0℃
600~800℃:1.5℃
800~1800℃:1.1℃
热电阻
RTD
PT100
-200.0°C~850.0°C
0.1°C
-200~0℃:0.3℃
11、采用面板校准技术,无需打开机壳便可进行校准
测量基本技术指标[适用于校准后一年内、23℃±5℃、0~70%RH、精度=±(%读数+LSD)
测量功能
量程
测量范围
分辨力
精度
备注
直流电压DCV
50mV
-5.000mV~55.000mV
1μV
0.02%+10
输入阻抗:约100MΩ
500mV
-10.00mV~550.00mV
100KHz
1KHz
回路电源
LOOP
24V
±10%
最大输出电流约25mA
有短路保护
压力PRESS
2.49KPa
~
70MPa
0.025%量程
参考精度
0.05%量程
整体精度
可配用APM系列32个品种的压力模块,提供了用于差压、表压、真空压力、绝对压力、双压和高压的模块;有关详细技术指标,请参阅相关的压力模块技术资料
3、测量功能:直流电压、直流电流、欧姆、频率、热电偶、热电阻、开关量测量测量值的显示保持及平均值处理、内部提供24V回路电源
4、输出功能:直流电压、直流电流、欧姆、模拟变送器、热电偶、热电阻、频率、脉冲、开关量、压力、内部提供24V回路电源
风速风向仪的测试方法及工作原理
风速风向仪的测试方法及工作原理一、风速风向仪简介:专为各种大型机械设备研制开发的大型智能风速传感报警设备,其内部采用了先进的微处理器作为控制核心,外围采用了先进的数字通讯技术。
系统稳定性高、抗干扰能力强,检测精度高,风杯采用特殊材料制成,机械强度高、抗风能力强,显示器机箱设计新颖独特,坚固耐用,安装使用方便。
所有的电接口均符合国际标准。
风速风向仪由风速风向监控仪表、风速传感器、风向传感器、连接线缆组成,安装便捷且免调试。
风速风向仪具有技术先进,测量精度高,数据容量大,遥测距离远,人机界面友好,可靠性高的优点,广泛用于气象、海洋、环境、机场、港口、工农业及交通等领域。
二、风向仪的测试方法:该方式是测试处于通电状态下传感器因风而冷却时产生的电阻变化,由此测试风速。
不能得出风向的信息。
除携带容易方便外,成本性能比高,作为风速计的标准产品广泛地被采用。
热式风速计的素子有使用白金线、电热偶、半导体的。
三、风向仪的组成:风速风向仪风速测量部分采用了微机技术,可以同时测量瞬时风速、瞬时风级平均风速、平均风级和对应浪高等参数。
它带有数据锁存功能,便于读数。
风向部分采用了自动指北装置,测量时无需人工对北,简化测量操作。
四、风向仪的工作原理:是基于冷冲击气流带走热元件上的热量,借助一个调节开关,保持温度恒定,则调节电流和流速成正比关系。
当在湍流中使用热敏式探头时,来自各个方向的气流同时冲击热元件,从而会影响到测量结果的准确性。
在湍流中测量时,热敏式风速仪流速传感器的示值往往高于转轮式探头。
以上现象可以在管道测量过程中观察到。
根据管理管道紊流的不同设计,甚至在低速时也会出现。
因此,风速仪测量过程应在管道的直线部分进行。
直线部分的起点应至少在测量点前10×D(D=管道直径,单位为CM)外;终点至少在测量点后4×D处。
流体截面不得有任何遮挡。
(棱角,重悬,物等):1、风速仪的转轮式探头:风速仪的转轮式探头的工作原理是基于把转动转换成电信号,先经过一个临近感应开头,对转轮的转动进行“计数”并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。
机械式风速风向仪原理
机械式风速风向仪原理机械式风速风向仪是一种用来测量风速和风向的仪器,通过测量风的压力来确定风速,以及通过转动风向标来确定风向。
它的工作原理基于一些基本的物理原理和机械原理。
我们来看一下测量风速的原理。
机械式风速风向仪通常由一个风叶和一个风速传感器组成。
风叶被放置在一个受风的位置上,当风吹过时,风叶会受到风的作用力,从而产生一个力矩。
这个力矩会通过一个传感器被感知到,并转化为一个电信号。
这个电信号的大小与风速成正比。
风速传感器通常采用的是一个称为热线式传感器的装置。
它由一个细丝电阻和一个恒温器组成。
当电流通过细丝电阻时,细丝电阻会发热,恒温器会自动调节电流的大小,使得细丝电阻的温度保持不变。
当风吹过细丝电阻时,风会带走细丝电阻的热量,导致细丝电阻的温度下降。
根据细丝电阻的温度变化,我们就可以得到风速的大小。
接下来,我们来看一下测量风向的原理。
机械式风速风向仪通常采用的是一个风向标来测量风向。
风向标由一个带有指针的轴和一系列指向不同方向的箭头组成。
当风吹过风向标时,风的方向会使得指针指向相应的箭头,从而确定风的方向。
风向标的转动是通过一个机械装置来实现的,这个装置通常由一个风向传感器和一个转动装置组成。
风向传感器可以感知风的方向,并将其转化为一个电信号。
转动装置根据这个电信号的大小和方向来控制风向标的转动,使其指向相应的箭头。
总结一下,机械式风速风向仪的工作原理可以概括为:通过测量风叶受到的风的作用力来确定风速,并通过转动风向标来确定风向。
这个过程涉及到一些基本的物理原理和机械原理,如力的作用、电信号转化和机械转动等。
机械式风速风向仪在气象观测、航空航天、环境监测等领域有着广泛的应用。
它可以提供准确的风速和风向信息,帮助人们更好地了解天气状况,进行科学研究和生产活动。
同时,由于其结构简单、可靠性高,机械式风速风向仪也被广泛应用于户外环境监测和个人气象观测等场景。
随着科技的不断发展,机械式风速风向仪也在不断创新和改进。
便携式风速风向仪安全操作及保养规程
便携式风速风向仪安全操作及保养规程简介便携式风速风向仪是一种用于测量风速和风向的仪器。
它可以广泛应用于航空、气象、环保、农业、建筑等领域,以及户外运动和探险中。
便携式风速风向仪在使用过程中,需要遵守一定的操作规程和保养要求,以确保其正常工作和延长使用寿命。
安全操作1.使用前准备在使用便携式风速风向仪前,需要进行以下准备工作:•安装电池:打开仪器背面的电池仓盖,将电池按照正负极方向放入电池仓中,并按紧电池仓盖。
•检查仪器:检查仪器是否完好无损,是否有破损、损坏、松动等情况。
•准备测试地点:选择一个具有代表性的测试地点,避免在有遮挡物或风向不明朗的地方进行测试。
•做好安全措施:在进行室外测试时,应注意安全,避免测试地点存在高压线、杆塔等危险物品,不要在大风天气使用。
2.测试操作进行便携式风速风向仪测试前,需要根据不同的使用环境和测试要求,选择相应的测试模式。
例如,如果您在航空领域使用该仪器,那么您需要选择飞机模式;如果您在气象、环保等领域使用,可根据需要选择相应的模式。
在测试时,需要注意以下几点:•外界干扰:测试时需要确保测试仪器没有受到外界干扰,如强烈的电磁干扰、高温等情况。
•测量距离:在使用便携式风速风向仪进行测试时,需要确保离测试的物体距离不要过近,从而保证测试的准确性。
•测试时间:测试时,需要进行长时间的测试。
测试时长根据测试要求和实际使用中需求来决定。
3.注意事项在使用便携式风速风向仪过程中,还需要注意以下事项:•避免与其它电子设备同时使用,以免产生干扰。
•在使用过程中,不要对仪器过度冲击,避免造成损坏。
•不要将仪器放在高温、潮湿、储存密闭等环境下。
•在不使用时,应将其存放在避光、干燥、通风的地方。
保养规程1.清洁保养便携式风速风向仪在使用过程中,需要定期进行清洁保养。
清洁时,需要注意以下事项:•使用软布或尘埃刷对仪器进行清洁,不可使用漂白剂、电解液、盐酸等强酸碱性清洗剂。
•避免使用水清洗,如果必须使用水清洗,则需要确保水不进入内部电路。
BC800_wind system_APPROVAL DRAWING
Since 1976APPROVAL DRAWING Wind System FOR BC800 DWT AT COSCO SHIPYARD IN DALIAN ISSUED ON 20.JAN .2009VER NO. 1.000Hull No:BC800 D WTContract No: Prepared by: liujingpeng Email:jingpeng@Tel: +411 82897179 Fax: +411 82897189Since 1976CONTENTS1.Scope of Supply2.Wind System Single Line Drawing3.Dimension Drawings4.B r ouchursSince 19761.Scope of SupplySince 1976Wind Speed SystemFOR COSCO SHIPYARD 80000 DWT PROJECTLilly&Gillie :Type walker 2050 MK2 Digital, 24 vdc, consisting;1X T-P249 Indicator Wind Data (Dimmable) DigitalIndicate wind speed and direction1X T-P296 Combined Speed & Direction Sensor Unit1X T-P293B Cable Assembly, 40M1X AC Adapter 220AC input1X remote dimmer fitted on the bridge console(flush mounting)NMEA0183 Wind Signal output To VDR/ECDISJASON DALIAN11TH,OCT,2008Since 19762.Wind System Single Line DrawingJASON ELECTRONICS PTE LTD Since 19763.Dimension DrawingsT/R554 ±4316 ±488 TURNING RAD OF CUPSET MASTHEAD MOUNTING BRACKET (A)FIXINGS SCREWS/S PROOFWASHERS (C)MAIN UNIT (B)140 TURNING RAD OF VANE 52.4FIXING CRSANGULAR ADJUSTMENT70ANGULARADJUSTMENTFORWARD15°15°51NOTE:WHEN FITTED THE MASTHEAD UNIT MUSTPOINT DIRECTLY FORWARD. SLOTTED HOLESARE PROVIDED FOR FINAL ADJUSTMENT.(6.7 wide SLOTS)MIN 80mm CLEARANCE FOR CONNECTORP293 CABLEASSY CHECKED BY FINISH DRAWN TOLERANCEMATERIAL USED ON THIS DRAWING IS THE PROPERTY OF JOHN LILLEY & GILLIE LTD AND IS SUBMITTED AS CONFIDENTIAL INFORMATION WHICH MUST NOT BE USED FOR ANY PURPOSE OTHER THAN WHICH IT IS SUPPLIED. IT IS NOT TO BE COPIED OR USED FOR THE PURPOSE OF MANUFACTURE WITHOUT OUR AUTHORITY IN WRITING.JOHN LILLEY & GILLIE LTD CHANGE No.DATE ISSUE 8765CHANGE No.DATE ISSUE PROJECTION 243SHEET DRAWING No.1SCALE DATE DRAWING No.TITLE SHEET 1 OF 2 1 OF 216/12/03AMT P296116/12/0326/03/042325/11/04INSTALLATION DRAWING:P296 COMBINED WIND SENSOR 3343-2-30MASTHEAD MOUNTING BRACKET (A)FIXINGS SCREWS/S PROOFWASHERS (C)FIXINGS SCREWS/S PROOFWASHERS (C)NOTE:M6 FIXINGS FOR MASTHEAD BRACKET (A)TO BE PROVIDED BY CUSTOMER.MAIN UNIT (B)CHECKED BY FINISH DRAWN TOLERANCEMATERIAL USED ON THIS DRAWING IS THE PROPERTY OF JOHN LILLEY & GILLIE LTD AND IS SUBMITTED AS CONFIDENTIAL INFORMATION WHICH MUST NOT BE USED FOR ANY PURPOSE OTHER THAN WHICH IT IS SUPPLIED. IT IS NOT TO BE COPIED OR USED FOR THE PURPOSE OF MANUFACTURE WITHOUT OUR AUTHORITY IN WRITING.JOHN LILLEY & GILLIE LTD CHANGE No.DATE ISSUE 8765CHANGE No.DATE ISSUE PROJECTION 243SHEET DRAWING No.1SCALE DATE DRAWING No.TITLE SHEET 2 OF 2 2 OF 216/12/03AMT P29625/11/0426/03/0416/12/033213343-2-30INSTALLATION DRAWING:P296 COMBINED WIND SENSOR554 ±4316 ±488 TURNING RAD OF CUPSET MASTHEAD MOUNTING BRACKET (A)FIXINGS SCREWS/S PROOFWASHERS (C)MAIN UNIT (B)140 TURNING RAD OF VANE 52.4FIXING CRSANGULAR ADJUSTMENT70ANGULARADJUSTMENTFORWARD15°15°51NOTE:WHEN FITTED THE MASTHEAD UNIT MUSTPOINT DIRECTLY FORWARD. SLOTTED HOLESARE PROVIDED FOR FINAL ADJUSTMENT.(6.7 wide SLOTS)MIN 80mm CLEARANCE FOR CONNECTORP293 CABLEASSY CHECKED BY FINISH DRAWN TOLERANCEMATERIAL USED ON THIS DRAWING IS THE PROPERTY OF JOHN LILLEY & GILLIE LTD AND IS SUBMITTED AS CONFIDENTIAL INFORMATION WHICH MUST NOT BE USED FOR ANY PURPOSE OTHER THAN WHICH IT IS SUPPLIED. IT IS NOT TO BE COPIED OR USED FOR THE PURPOSE OF MANUFACTURE WITHOUT OUR AUTHORITY IN WRITING.JOHN LILLEY & GILLIE LTD CHANGE No.DATE ISSUE 8765CHANGE No.DATE ISSUE PROJECTION 243SHEET DRAWING No.1SCALE DATE DRAWING No.TITLE SHEET 1 OF 2 1 OF 216/12/03AMT P296116/12/0326/03/042325/11/04INSTALLATION DRAWING:P296 COMBINED WIND SENSOR 3343-2-30MASTHEAD MOUNTING BRACKET (A)FIXINGS SCREWS/S PROOFWASHERS (C)FIXINGS SCREWS/S PROOFWASHERS (C)NOTE:M6 FIXINGS FOR MASTHEAD BRACKET (A)TO BE PROVIDED BY CUSTOMER.MAIN UNIT (B)CHECKED BY FINISH DRAWN TOLERANCEMATERIAL USED ON THIS DRAWING IS THE PROPERTY OF JOHN LILLEY & GILLIE LTD AND IS SUBMITTED AS CONFIDENTIAL INFORMATION WHICH MUST NOT BE USED FOR ANY PURPOSE OTHER THAN WHICH IT IS SUPPLIED. IT IS NOT TO BE COPIED OR USED FOR THE PURPOSE OF MANUFACTURE WITHOUT OUR AUTHORITY IN WRITING.JOHN LILLEY & GILLIE LTD CHANGE No.DATE ISSUE 8765CHANGE No.DATE ISSUE PROJECTION 243SHEET DRAWING No.1SCALE DATE DRAWING No.TITLE SHEET 2 OF 2 2 OF 216/12/03AMT P29625/11/0426/03/0416/12/033213343-2-30INSTALLATION DRAWING:P296 COMBINED WIND SENSOR320 m a x140 TURNING RADOF VANE88 TURNING RAD OF CUPSET566 max5170FORWARDMIN 80mm CLEARANCE FOR CONNECTORWEIGHT: 0.92 kg CHECKED BY FINISH DRAWN TOLERANCEMATERIALUSED ON THIS DRAWING IS THE PROPERTY OF JOHN LILLEY & GILLIE LTD AND IS SUBMITTED AS CONFIDENTIAL INFORMATION WHICH MUST NOT BE USED FOR ANY PURPOSE OTHER THAN WHICH IT IS SUPPLIED. IT IS NOT TO BE COPIED OR USED FOR THE PURPOSE OFMANUFACTURE WITHOUT OUR AUTHORITY IN WRITING.JOHN LILLEY & GILLIE LTD CHANGE No.DATE ISSUE 8765CHANGE No.DATE ISSUE PROJECTION 243SHEET DRAWING No.1SCALE DATEDRAWING No.TITLE SHEET 1 OF 1 1 OF 16/2/03AMT P29616/2/0425/11/042SALES DRAWING OF P296 COMBINED MASTHEAD UNIT 3343-2-3324/3/053JASON ELECTRONICS PTE LTD Since 19764.B r ouchursWIND DATA DISPLAYGENERALThe Wind Data Display is housed in a DIN 43700 pattern (Din144 x 144) case and reads appropriate NMEA 0183 serial data (“MWV and / or “MWD”) messages to provide readings of “relative” and / or “true” wind speed and wind direction. The digital displays of wind speed and wind direction are set inside a ring of LED’s, which give an “analogue” display of wind direction. Power supply requirement is 24vDC. The P271 Wind Data Display incorporates a 3 metre, 4 core screened, flying lead for connection to a P274 Remote Wind Indicator Control for remote operation of the illumination [∆] and [∇] and “relative” / “true” [T/R] key functions of the P271.The wind data display has two arrays of 7-segment LED displays, the top array of three digits and the bottom array of four digits. These are inset in a ring of 72 LED’s spaced at 5° intervals, which give a display, analogous to a pointer, in respect of wind direction.The top array is used to indicate wind speed, which can be read in either “Knots” (KTS), “Metres per Second” (MPS) or “Kilometres per Hour” (KPH). There are three separate LED’s immediately to the right of this display. One of these LED’s will be lit to indicate the particular wind speed unit being displayed. Default condition; i.e. after switch on, is for “knots” to be displayed.The lower array is used to display the wind angle in degrees off the bow of the vessel on ship systems.A negative sign indicates wind on the port side of the vessel or from a Westerly direction on a fixed land based system. This relative wind direction will also be shown by the appropriately lit LED, on the outer ring LED display.A NMEA 0183 retransmit facility is in-built into the wind data display for use as required.The display has illumination keypad controls which allows dimming to extinction, and also gives full lamp test facilities. The indicator has a splash-proof overlay but is not waterproof.After connecting the equipment, and upon first switching on, the wind data display will read zero for a few seconds before displaying the actual data transmitted by the talker / sensor. The intensity of the LED’s can be altered, to preserve night vision, by pressing the up [∆] and down [∇] arrow buttons as appropriate. The initial level of illumination can therefore be adjusted as required using the appropriate keypad switches either on the display itself or remotely via a connected P274 remote wind indicator control.Switching between the three different wind speed units is achieved by pressing and releasing both illumination buttons, [∆] and [∇] simultaneously. The indicator LED’s to the right of the wind speed display window will change to indicate the new unit selected.The “Lamp Test” facility is accessed by pressing the [L/T] button.The [T/R] button can be used as follows.• In “relative” mode, with the button pressed to obtain the “R” being lit. The display will operate from reading an input NMEA 0183 serial “MWV” message providing relative wind information.WIND DATA DISPLAYGENERAL: continued• Pressing the T/R button again will cause the “T” above the button to flash continuously. In this case, with the “T” flashing, the display will operate only if a “MWV” message with “true”rather than “relative” fields was being received.• Pressing the T/R button again, the “T” will be permanently lit. The display will operate only if a “MWD” message was input.IMPORTANT:Note that whilst all the above mentioned key functions are directly available at the integral keypad controls on the P271 wind data display itself, normal push button operation of the P271 display will be made from the associated P274 remote wind indicator control. In regards to the availability of keypad functions using the P274 remote wind indicator control, the [L/T] Lamp Test facility is not included. Refer to separate P274 data sheet for full information.INSTALLATIONA mounting plate is provided so that the wind data display can be readily fitted into panels with cut-outs conforming to that shown on drawing 3035-2-11, and secured in position using screws at the four corner fixings. Removal of the indicator from the panel is therefore easy, requiring only external front panel access. Close control of the cut-out’s dimensions is not critical.Alternatively, the wind data display can be mounted directly into a panel without using the mounting plate provided. This, however, necessitates access to the rear of the panel concerned in order to fit and tighten the securing clamps provided. Removal of the display for servicing etc would also require such rear panel access. In order to mount the display in this way, a square cut-out of 138.0mm +/- 0.25mm (5.435” +/- 0.010”) sides is required with 90° corners.In the chosen fitted position, access to the in-built keypad switches along the bottom of the wind data display fascia is only necessary for the control of the “lamp test” facility. The other switch functions are available from the connected P274 remote wind indicator control. Refer to separate P274 data sheet for full information.See drawing 3036-2-11 for Installation drawing of the P271 Wind Data Display.See drawing 3035-2-11 for Panel Cut-Out detail.CABLINGA two core cable (0.5mm CSA) with overall screen is required for connection of the 24vDC power supply.A two core (twisted pair) cable (0.5mm CSA) with overall screen is required for serial data connection. This cable specification applies both to the NMEA 0183 input from the talker concerned and the NMEA 0183 output “re-transmit facility” that is also available for use, if required.Cable entry into the wind data display is via cable glands fitted in the underside of the terminal box on the rear of the display. Three identical glands are fitted and accept cables with an outside diameter between 4.5mm and 7.0mm.A 4 core screened cable, 3 metres long, is permanently attached to the P271 via a gland fitted at the rear of the unit at the lower R.H corner. This cable is for onward connection, normally via a 5 way junction box, supplied by the customer, through to the P274 remote wind indicator control. Direct connection of the attached cable can be made to the P274 remote indicator if the position of both units allow this.Refer to drawing 3352-A4-22: Connection Diagram for the P271 Wind Data Display. MAINTENANCESERVICING:There are no user serviceable parts requiring routine maintenance.FAULT FINDING:Any loss, or interruption, of input serial data will cause the display to blank. The last valid readings will remain for approximately 30 seconds after which time the display will go blank. If the transmitted data is not restored, the display will, after approximately a further 30 seconds, come back on and show “zero” digital wind speed and wind direction values. The wind direction “analogue pointer” LED, on the outer ring LED display, will be lit, however, in accordance with the last valid received serial wind direction message, and will remain stationary.Check all connections at the terminal block within the rear terminal box. If the problem is found to be a loose input NMEA 0183 connection, re-connect the cable core concerned. Incoming data will be restored to the display. Whilst digital readings will be restored immediately, note that the LED on the outer ring LED will take a few seconds to catch up.If connections at the indicator are satisfactory, then continuity of the serial data transmission cable, from the talker itself, and connections at the talker, must be checked.If connections at the indicator, talker, and the input serial cable continuity, are satisfactory, then serial data transmission from the talker concerned must be checked. If the appropriate message/s are being transmitted and received, the fault must lie within the P271 wind data display itself. The unit must be returned for investigation / repair.MAINTENANCE continuedFAULT FINDING: continuedConcerning NMEA 0183 serial data, note that the maximum incoming message rate is 4Hz and that a maximum of one single decimal point is acceptable in relation to wind speed and direction data fields. If the wind direction field is a NULL the message will be ignored; if the wind speed field is a NULL the message will be accepted with only the wind direction value being displayed. REFERENCESDrawing 3036-2-11: Installation drawing of P271 Wind Data DisplayDrawing 3035-2-11: Panel Cut-Out DetailDrawing 3352-A4-22: Connection DiagramSPECIFICATIONDISPLAY Digital: Red LEDUpper “Wind Speed” Display: 3 x 7.6mm (H)7 segment LED.Lower “Wind Direction” Display: 4 x 7.6mm(H) 7 segment LED.Illumination (Red) dimmable by integralkeypad control and / or remotely by P274remote wind indicator control. PARAMETERSWind Speed and Direction Wind SpeedWind DirectionResolutionAccuracy As per NMEA 0183 “MWV” and/or “MWD” message.Knots / m/sec / k.p.h. - as set via integral tactile keypad control or by P274 remote control. “relative” / “true to ship” / “true to North” (with appropriate NMEA 0183 “MWV” / “MWD” message) via integral tactile keypad control or by P274 remote control. Degrees: “relative” (0-180-0; + Stbd / - Port) / “true to ship” (0-180-0; + Stbd / - Port) / “true to North” (0-359) (with appropriate NMEA 0183 “MWV” / “MWD” message) via integral tactile keypad control or by P274 remote Control.Wind Speed: single unitsWind Direction: 1 degreeDependant upon talkerNMEA INPUT / OUTPUT CONNECTIONS Via integral terminal blockINPUT / OUTPUT FORMAT NMEA 0183 version 2.3 COMMUNICATION FORMAT RS422STANDARDS IEC 61162-1: 2000POWER REQUIREMENT 24v DC 200mA (max under normal operation)(400mA max: full brightness and with lamptest – all LEDs lit - activated)OTHER OUTPUTS NMEA 0183 re-transmit facility COMPASS SAFE DISTANCE Standard: 0.9m Steering: 0.5m ENVIRONMENTAL Compliant with EN 60945: 2002 MECHANICALSize / Weight Mounting Material See drawing 3036-2-11Din 43700 Pattern: Din 144 x 144 Weight: 1.5kg (inc clamps + mounting plate) Panel / Console mounting:See cut-out drg 3035-2-11Case: Steel fabrication; zinc plate / passivated Inner / Outer Bezel: Nylon; blackFront Overlay: Polycarbonate with integral 100 opi RFI meshCase Back: Bakelite; black, RFI shieldedGENERALThe unit consists of a combined masthead unit incorporating wind speed and wind direction sensors, which are used to provide serial data of wind speed and wind direction.This unit consists of two distinctly different sections; an upper vane unit and a lower cup unit assembly.A] Cup Unit.The unit carries a cupset fitted to a stainless steel shaft, which runs in shielded bearings. A cap fitted to the shaft provides a labyrinth for protection against water ingress. The slotted end of the shaft, driven by the cupset rotates within an opto-switch carried on the lower pcb of a board assembly mounted within the carrying tube. Twice per revolution of the cupset, a square wave signal is produced which is fed directly to a microcontroller. The processor times the duration between successive pulses and, by using a stored look-up table, appropriate for the cupset concerned, the wind speed value is calculated.The cupset is initially supplied separately and will require fitting to the main unit prior to installation on the vessel. The procedure for fitting the cupset is given below.1] Remove the retaining nut and the “seeloc” washer from the drive shaft at the bottom of the main unit of the P296 sensor. Hold the flanged cap, attached to the drive shaft, steady, in order for facilitate the unscrewing of the retaining nut.2] Fit the cupset over the drive shaft ensuring that the location “pip” in the centre section of the cupset faces upwards and locates correctly in the hole in the flange of the cap.3] Replace “seeloc” washer, re-attach retaining nut and, holding Cupset engaged in cap, securely lock the retaining nut down onto the washer. Rotate the cupset to check that it runs squarewith the drive shaft.B] Vane Unit.This unit carries a vane assembly fitted to a stainless steel shaft, which runs in shielded bearings. The vane cap forms a labyrinth for protection against water ingress. The vane is attached by two set screws diametrically opposite through the cap itself. The lower end of the shaft, driven by the vane, carries a circular magnet, which rotates above hall-effect sensors mounted on the upper pcb of the assembly mounted within the carrying tube. Signals produced as the vane rotates to take up a position determined by the wind are fed directly to a microcontroller for calculation of wind direction.The sensor, attached to a stainless steel arm and block assembly, is provided with a mounting bracket suitable for securing onto the horizontal surface of the mast top. Two fixing slots are provided in the base of the mounting bracket to allow for final alignment.The unit transmits a NMEA 0183 sentence as follows:• $WIMWV,x.x,R,x.x,N,A*hh<CR><LF>• Note that both wind direction and wind speed fields are variable to xxx.x© John Lilley and Gillie Ltd. Ref: P296/ds/ra/022 Issue 5• Note that, at wind speeds above 100 knots, the status field will show V (invalid measurement).Power supply requirement is 24vDC and current consumption is 40mA.INSTALLATIONRefer to drawing 3343-2-30 for outline of the P296 Combined Wind Sensor.The unit should be mounted as high as possible in air which is undisturbed by movement over and around any structures and in a position to ensure a clear azimuth. For shipborne use, fitting high on the main mast is recommended as under adverse sea state conditions there would be less possibility of the sensor being frequently washed with sea water than if mounted forward.The Masthead Mounting Bracket (A) must be securely fastened to the mast top using machine screws, self-tapping screws or pop rivets. Note that hexagon head set screws are recommended as these will more readily allow for tightening after final adjustment is made to ensure correct alignment. Make sure that before drilling the mast top, the Mounting Bracket (A) can lie fore and aft, and that there is room for the Main Unit (B) and for its connecting P293 cable assembly. Ensure that the Mounting Bracket (A) is correctly aligned; so that the Main Unit points directly forward, towards the bow of the vessel, before finally locking the bracket into position by tightening the screws concerned. Slots in the base of the mounting bracket allow for this adjustment. Note that the sloping top edges of the mounting bracket are to the rear.Having visually aligned the Mounting Bracket (A), sufficiently tighten the securing screws used to hold the bracket in position. Re-fit the main unit (B); the combined wind sensor, arm and block assembly, and secure, using the four M5 pozi-pan head screws and lock washers (C) provided; two on each side of the bracket. With the P293 cable assembly connected, hold the vane steady, as if the vessel is “head to wind”, and check with bridge personnel that the reading, on the fitted analogue or digital wind display, is 0º. If necessary, adjust the position of the mounting bracket until the required result is achieved. Lock the mounting bracket in position when correct alignment has been achieved. If the combined sensor is not going to be fitted immediately ensure that the connector of the P293 cable assembly is protected from the elements until such time as the P296 is fitted. The 4 core screened cable of the P293 is fed through the mast using suitable synthetic rubber grommets top and bottom, or appropriate glands. If the cable is brought down the mast externally, it should be secured at regular intervals to prevent chafing. Leave enough slack cable at the mast top to allow the connector to be attached and to be removed from the P296 main unit (B).If the P296 is to replace an earlier Walker combined masthead unit, it is likely that an original Walker mounting plate is fitted directly to the mast top. This flat plate will be found to contain two threaded studs, protruding vertically, which will align with the slots in the P296 mounting bracket (A). The nuts and washers, attached to these studs, must be removed and the mounting bracket (A), with the main unit (B) attached, positioned over the studs, and the washers and nuts re-fitted.. The P296 must then be correctly aligned, fore – aft, as described above, before locking it securely in position on the fitted mounting plate using the nuts and washers concerned.On installation, always ensure that the P293 connector is securely mated.Always check the installation to ensure the sensor is not affected by other equipment operating locally, which may not conform to current standards, e.g. radio/radar transmitters, engines, generators etc.Guidelines:•Avoid mounting in the plane of any radar scanner – a vertical separation of at least 2m should be achieved.•Radio transmitting antennas; the following minimum separations (all around) are suggested:-•VHF IMM – 1m•MF/HF – 5m•Satcom – 5m (avoid likely lines of sight)•Ensure that the system is correctly connected and that if a junction box is used ensure that cable screens are connected through to maintain EMC integrity.If part installation is carried out with either only the sensor assembly or the down cable assembly being fitted then it is important to protect the appropriate connector from the elements until it can be mated with its other half.If the P296 sensor is removed at any time, ensure that the in-line connector attached to the P293 cable is suitably protected from the elements until such time as the sensor is refitted.CABLINGFor connection to other equipment, a P293 cable assembly is required. Refer to P293 Data Sheet.MAINTENANCECleaning:If exposed to extreme low temperatures and precipitation causing a build up of ice, which may prevent the rotation of the vane or cupset, the unit should normally be allowed to defrost naturally. However, tepid water can be sprayed onto the unit to speed up the process if required. Do NOT attempt to remove snow or ice with a tool.Servicing:There are no user-serviceable parts requiring routine maintenance.In the event of failure it is recommended that all cables and connectors be checked for continuity, bad contacts, corrosion etc. Check that both cupset and vane are able to rotate freely.If it is necessary to remove the sensor unit at any time, first unscrew and release the P293 cable connector from the back end of the P296 unit and protect the in line connector of the P293 from the elements. Release and remove the M5 screws and lock washers from the sides of the mounting bracket and remove the P296 main unit; the combined wind sensor, arm and blockassembly. Re-fit the screws and lock washers to the mounting block on the main unit for safe keeping.The cupset can be replaced if damaged. Replacement cupset re-order code is 01-034-296 and whilst replacement fitting instructions are also included, the procedure is given below.Note:For replacement purposes, if accessibility to the fitted sensor is difficult then, rather than attempt replacement of the cupset at the fitted position, it is recommended that the main unit of the sensor be removed, as outlined previously, and replacement of the cupset carried out elsewhere. Remember to protect the disconnected cable connector from the elements whilst the main unit is removed.Procedure:1] Hold Cupset securely by hand and with spanner, slacken, unscrew and remove retaining nut together with “seelok” washer.2] Remove Cupset by lowering vertically off drive shaft.3] Replace new Cupset ensuring that pip in centre section is correctly located in hole in flange of cap.4] Replace “seelok” washer, re-attach retaining nut and, holding Cupset, engaged in flange of cap, securely lock retaining nut down onto washer.If remote changing of the cupset was carried out:5] Re-fit the main unit of the sensor securely back onto its mounting. Ensure that original alignment is maintained.6] Re-connect the P293 cable connector checking that it is correctly and securely mated.Vane replacement:In the event of damage to the fitted vane, the main unit must be removed, as outlined earlier, and returned to John Lilley and Gillie Ltd, for replacement of the vane to be carried out. REFERENCESDrawing 3343-2-30: Installation drawing of P296 Combined Wind SensorP293 Data SheetSPECIFICATIONOUTPUTUnits of MeasurementRelative Wind Speed: KnotsRelative Wind Direction: DegreesPARAMETERS Wind Speed Range Accuracy Resolution 0-100 knots +/-0.5 knots 0.1 knots Wind Direction Range Accuracy Resolution 0º-359º +/-3º 0.1º OUTPUT FORMAT NMEA 0183 version 2.3COMMUNICATION FORMAT RS422MESSAGE $WIMWV,x.x,R,x.x,N,A*hh<CR><LF>Note that the wind speed and wind direction fields are variable to xxx.xNote: at wind speeds above 100 knots the status field will show V (= invalid measurement)Message transmitted 10 times per secondSTANDARDS IEC 61162-1: 2000 ENVIRONMENTAL Moisture Protection Temperature Humidity EMC IP65 (when correctly mounted) Operating -15ºC (dependant upon precipitation) to +55ºC Storage -30ºC to +70ºC Operating <5% to 100% Compliant to EN 60945: 2002 POWER REQUIREMENT 24v DC 40mA CONNECTION Via Walker P293 Cable Assembly MECHANICAL Size / Weight Mounting Material See installation drawing 3343-2-30 Weight: 0.92Kg “U” shaped mounting bracket carrying tube, arm and block assembly with sensors Mounting Bracket / Block / Sensor mountingtube: Aluminium alloy: black anodized Arm: Stainless Steel Cupset: Nylon: blackVane: Aluminium alloy: black anodisedNote:This document shall not form part of any contract.In accordance with our policy of continuous development, changes may be made from time to time without prior notice.© John Lilley and Gillie Ltd.Ref: P293/ds/ra/016 Issue 5GENERALAll Walker Serial Data Sensors connect to other equipment by means of the P293 cable assembly. The assembly utilises an in-line connector which, when correctly mated with the appropriate masthead unit connector, allows a rating of IP68 to be attained.INSTALLATIONThe cable must be secured at regular intervals to eliminate any strain on the attached connector when mated with the sensor and also to prevent any chafing.On installation, always check to ensure that the connector is secure and correctly mated in order to attain the IP68 rating.If part installation is carried out, with the P293 cable assembly itself only being installed, then it is important to protect the connector from the elements until it can be mated with the sensor concerned.CABLINGThe P293 sensor cable supplied is 4 core with an overall screen and has the connector attached. Individual cores are made up of 16/0.2mm strands (0.5mm CSA). Two cores carry power to the sensor with the NMEA 0183 serial data processed by the unit being carried back on the other two cores. Standard cable length is 20 metres, but longer lengths can be supplied to order. Refer to drawing 3340-2-4.Cable information is as follows:P293 CONNECTOR SOCKETP293 CABLE CORE FUNCTION“2” RED +12v /+24v“L” BLUE 0v “4” YELLOW NMEA Data Line “A” “5” GREEN NMEA Data Line “B” Not Connected SCREEN SHIP’S EARTHNote that at the free end of the cable, the exposed screen, around 360º, is normally for clamping between the conductive fabric wrap of a P324 Interface Unit. For connection to other units, involving gland or grommet entry, suitable cable preparation will require to be carried out by the installer to suit the installation concerned.The P293 cable assembly can be considered as a class 2 cable.For further general information and recommendations for cable installation and cable classification in respect of Walker equipment, see “Installation of Ships Instrumentation Cables”。
风向风速仪的应用介绍
风向风速仪的应用介绍什么是风向风速仪风向风速仪,是一种用来测量风向和风速的仪器,它通常由一个风向传感器和一个风速传感器组成。
风向传感器通常是一个带有风向标的伸出传感器,它可以指示风的方向。
风速传感器通常是一个小电机或热线,它可以通过测量电流和电阻的变化来确定风速。
风向风速仪的应用气象学风向风速仪,是气象学中常用的一种测量工具。
气象学家们使用风向风速仪来测量风的速度和方向,以便更好地预测天气。
这些仪器通常被安装在天气站的顶部,以便获取准确的数据。
空调系统在空调系统中,风向风速仪通常用于测量空气流动的速度和方向。
这些数据对于设计和维护空气流动系统非常重要。
这些仪器通常被安装在空气流动系统的入口和出口处。
风能发电风向风速仪也是风能发电中常用的一种测量工具。
风能发电场通常会有数百个风向风速仪,用于测量风的方向和速度。
这些数据可以帮助发电设备优化其位置和风向,以产生更高的电力输出。
航空风向风速仪也被广泛应用于航空领域中。
它们通常被安装在飞机上,以测量风的速度和方向。
飞行员们可以使用这些数据来更好地控制飞机,确保安全起落。
风向风速仪的种类目前市场上有多种类型的风向风速仪,包括机械式、热线式、超声波式和光学式等,以下简单介绍几种主要类型:机械式风向风速仪机械式风向风速仪是最早被广泛使用的风向风速仪之一,它们通常使用风叶和齿轮传动器来测量风向和风速。
这些仪器经久耐用,但需要定期维护,以保持精度。
热线式风向风速仪热线式风向风速仪是一种使用热传感器来测量风速的仪器。
这种仪器通常使用细丝状的电阻丝,当电流通过时,它会发生热量变化。
风速通过电阻丝时,会改变热传感器的电阻,从而测量风速。
超声波式风向风速仪超声波式风向风速仪是一种新型的风向风速仪,它使用超声波来测量风速和风向。
这些仪器通常更准确,更快速地测量风向和风速,但需要更高的成本。
光学式风向风速仪光学式风向风速仪是一种使用光散射原理来测量风速的仪器。
这种仪器通常可以精确测量高速风,但需要更高的成本。
风速风向仪的原理
风速风向仪的原理
风速风向仪是一种用于测量风速和风向的仪器。
它由风速传感器和风向传感器两部分组成。
风速传感器工作原理:风速传感器采用热线或热敏电阻器作为感温元件。
当风通过传感器时,热线或热敏电阻器受到风的冷却作用,导致感温元件的温度下降。
通过测量感温元件的温度变化,可以确定风速的大小。
通常,风速传感器还需要进行温度补偿,以消除温度对测量结果的影响。
风向传感器工作原理:风向传感器通常采用的是旋转翼式结构。
传感器内部有一个具有特定形状的旋转翼,当风吹向传感器时,旋转翼会受到风力的作用而转动。
传感器通过检测旋转翼的转动角度或转速,可以确定风向的方向。
风速风向仪通常还配备有信号处理部分,用于将从传感器端获取的模拟信号转换成数字信号,并进行数据处理和输出。
需要注意的是,风速风向仪在使用过程中可能会受到一些干扰因素的影响,如气温、湿度、位置等。
因此,在实际应用中,需要进行校准和修正,以提高测量精度和可靠性。
手持式风速风向仪操作规程
手持式风速风向仪操作规程使用方法:1、风向测量部分1)在观测前应先检查风向部分是否垂直牢固地连接在风速仪风杯的护架上并反向旋转托盘螺母使支撑桌方向盘度的托盘下降,使轴尖与雏形轴承接触。
2)观测时应在风向指针稳定时读取方位读数。
2、风速测量部分确认仪器内已装上电池,本仪器采用的是3节5#1.5干电池,请注意不要采用可充电电池,它的输出电压只有 1.2V,电压不够,打开仪器的后盖板,将3节5#干电池装入电池架内,(注意电池电极一定要正确)电池装入后,仪器可能处于投电状态,也可能处于断电状态,这是可用面板上的电源开关,来控制电源的开与关。
请参看仪器的面板布置图,仪器投电后首先进行显示器的自检,显示器上所有可能用到的笔画都大约显示2秒钟,然后仪器便进入测量状态。
暗降功能为:A——瞬时风速B——平均风速C——瞬时风级D——平均风级E——对应浪瞬时、平均风速单位:m/s,瞬时、平均风级的单位:级,对应浪高的单位:m仪器运行时,测量瞬时风速,平均风速、瞬时风级、平均风级、对应浪高这5个参数,最能显示其中的一个参数。
显示参数由风速显示键喝风级显示键用来切换,每按一次风级显示键显示参数就在瞬时风级,平均风级对应浪高之间切换与此同时单位的标志记号也作相应的切换。
每按风速键:显示时对应的位置上会出现小数点。
风速、浪高参数小数点后保留一位,风级显示整数,没有小数点显示。
平均风速、平均风级、对应浪高需要有一分钟的采样时间,所以在投电后一分钟内,或锁存折削后一分钟内,不能得到正确的平均值,一直要等到采样时间大于一分钟以后,显示器才显示有效的参数值。
3)观测后为了保护轴尖与雏形轴承,正向旋转托盘螺母,使托盘升起,托起方向度盘,从而使轴尖与雏形宝石轴承高开。
锁存显示按键可以使仪器在测量状态和锁存状态之间切换。
在测量状态时按一下锁存显示器,仪器进入锁存状态,测量值锁存后,显示值被锁定。
在锁存状态时按一下锁存键,锁存功能消失,表示仪器回到测量状态。
基于拉压力检测的新型风速风向仪
仪 表 技 术 与 传 感 器
I sr me t Te h iu a d S n o n tu n cnq e n e sr
2 l 01 No 3 .
第 3期
基 于 拉压 力检 测 的新 型风 速 风 向仪
许云 轻 , 文 新 , 黄 卜飞飞 , 施 凯 , 育文 胡
20 1 ) 1 06 ( 南京航 空航天大学 自动化 学院 , 江苏南京
摘 要 : 出 了一种 新 型 风速 风 向仪 , 提 它采 用 外形 为 圆柱 形 的 特 殊 结 构 的 测 风 感 应 部 件 , 风 矢 量 转 换 为 力 矢量 , 过 将 通
力 矢量 的测量得到风速风 向参数 。这种风速风 向仪 内部放置 3个成 Y型 10 对称 分布 的拉 压 力传感 器, 出传感 器因 2。 测 受力而感应的 3路 电信号 , 至 D P处理 电路 , 送 S 由所测力 矢量的大 小与方向 , 解算 实际对应风速风 向。 实验结果表 明 : 系 统精度较 高, 比有 旋转部件 的机械 式测风仪可靠性好 , 比超 声测风仪 成本低 , 在风 电领域有广 泛的应 用前景 。
关键词 : 风速 风向测量 ; 拉压 力传感 器; 字信 号处理 ;L E T仿真 ; 力发 电 数 FU N 风 中图分类号 :P 1 T 26 文献标识码 : A 文章编号 : 0 1 2—14 (0 10 0 1 0 8 1 2 1 ) 3— 0 5—0 3
No e i d. e s i g I t u e t Ba e n v lW n m a ur n ns r m n s d o Pul. e s e Se s r 1pr s ur n o -
Ab t a t A n v lwid me s r g s s m s p o o e . t w n e sn o o e t h s a s e il s cu e wi yi d r s r c : o e n a u i y t wa r p s d I i d s n ig c mp n n a p ca t t r t c l e n e s u r h n s a e w ih c n e s w n e t ri t r s u e v co . h n a a tr r c iv d b a u i g p e s r e tr I h h p , h c o v a i d v c o no p e s r e tr T e wid p r mee s wee a h e e y me s r r su e v co . n t e n s n ig c mp n n ,h e ulp e s r e s r e e s mmerc l lc d i h p . h e — y sg a swee a h e e i e s r e sn o o e tt r e p l r s u e s n o s w r y — t al p a e n Y s a e T r e wa in l r c i v d va s n o i y s
风速风向记录仪的使用方法
风速风向记录仪的使用方法风速风向记录仪是一种用于测量风向和风速的专业仪器。
它在环境监测、气象学研究和农业生产等领域都有广泛的应用。
本文将介绍风速风向记录仪的使用方法,包括安装、使用、维护和保养等方面。
一、安装步骤1.挑选合适的位置:在使用风速风向记录仪之前,需要选择一个合适的位置。
建议将仪器安装在距离地面1.5倍高度的地方,避免地面的湍流干扰测量结果。
同时,需要确保周围没有任何遮挡物,以保证充足的风力。
2.固定仪器底座:安装固定底座是保证仪器稳定运行的关键。
在安装之前,需要先选择一块干燥的水泥地,并使用膨胀螺钉来固定底座。
3.安装传感器:接下来需要将风速风向记录仪的传感器安装在底座上。
在安装时,需要先插入传感器线,再固定传感器。
4.连接数据采集器:风速风向记录仪需要将数据传输到数据采集器上,而数据采集器需要通过连接USB线来与计算机等设备进行连接。
二、使用方法1.数据采集器的设置:在使用风速风向记录仪进行数据采集之前,需要确定数据采集器的设置。
通常包括采样频率、数据存储方式、存储容量等。
根据实际需求进行设置。
2.数据采集:当数据采集器已经设置好之后,就可以开始进行数据采集了。
确保仪器的传感器正常运行,放置至少10分钟,然后启动数据采集器进行数据采集。
3.数据的分析:采集到的数据可以通过各种软件进行分析。
比如,可以使用DataPro软件来进行实时显示和数据分析,还可以使用Stata或R等统计软件进行数据分析和建模。
三、维护和保养方法1.定期检查:为了保障数据的准确性和传感器的使用寿命,需要定期进行检查。
例如,需要确保仪器底座和传感器之间的连接状态稳定,传感器转子运转正常,数据采集器电源和USB连接正常等。
2.清洁保养:保持风速风向记录仪的内部和外部清洁是保障其性能和使用寿命的重要步骤。
建议每6个月进行一次内部清理,每个月进行一次外部清洁。
注意不要用压缩气喷洒在传感器上,以免受损。
3.安全使用:在使用风速风向记录仪时需要注意安全问题。
手持式三杯风速风向仪的使用方法
手持式三杯风速风向仪的使用方法手持式三杯风速风向仪是一种用于测量风速和风向的便携式设备。
以下是一般手持式三杯风速风向仪的使用方法:1.准备工作:确保风速风向仪的电源充足,通常是电池。
检查设备的各个部分是否完好,确保它可以正常工作。
2.选择合适的位置:找到一个开阔的区域,远离建筑物、树木和其他可能影响风向风速测量的障碍物。
确保站立的位置是安全的,以防风险。
3.校准仪器:根据设备的说明书,进行可能需要的校准操作。
这有助于确保测量的准确性。
4.握持仪器:握住手持式三杯风速风向仪的手柄。
确保不要在测量过程中阻挡风口,以保证风的自由流动。
5.启动测量:启动风速风向仪,观察三个杯子的旋转。
风速的测量通常是通过测量旋转的速度来进行的。
6.记录风速:根据设备上的显示或指示,记录当前的风速。
有些手持式风速仪可能会提供数字显示,而其他可能需要使用一个标度和指针。
7.测量风向:观察风速风向仪的指针或显示,确定当前的风向。
一些设备上可能有一个罗盘刻度,可以帮助你更准确地确定风向。
8.多次测量:对同一位置进行多次测量,以确保获得更为准确的平均值。
风速和风向可能会在短时间内发生变化,因此进行多次测量可以提高测量的可靠性。
9.记录和分析数据:将测量的数据记录下来,以便后续分析。
这对于监测气象变化或者在特定环境中进行风速风向分析是有用的。
10.关闭设备:在使用完毕后,关闭手持式三杯风速风向仪,以节省电池并保护设备。
在使用手持式三杯风速风向仪时,请务必按照设备的具体说明书和操作指南进行操作,以确保正确使用并获得准确的测量数据。
风速风向仪操作说明书
风速风向仪操作说明书风速风向仪是专为各种大型机械设备研制开发的大型智能风速传感报警设备,其内部采用了先进的微处理器作为控制,外围采用了先进的数字通讯技术。
系统稳定性高、抗干扰能力强,检测高,风杯采用特殊材料制成,机械强度高、抗风能力强,显示器机箱设计新颖独特,坚固耐用,安装使用方便。
所有的电接口均符合国际标准。
风速风向仪由风速风向监控仪表、风速传感器、风向传感器、连接线缆组成,安装便捷且免调试。
风速风向仪具有技术先进,测量精度高,数据容量大,遥测距离远,人机界面友好,可靠性高的优点,广泛用于气象、海洋、环境、机场、港口、工农业及交通等领域工作原理:风速传感器的感应元件是三杯风组件,由三个碳纤维风杯和杯架组成。
换器为多齿转杯和狭缝光耦。
当风杯受水平风力作用而旋转时,过轴转杯在狭缝光耦中的转动,输出频率的信号。
风向传感器的变换器为码盘和光电组件。
当风标随风向变化而转动时,通过轴带动码盘在光电组件缝隙中的转动,产生的光电信号对应当时风向的格雷码输出。
传感器的变换器可采用精密导电塑料电位器,从而在电位器活动端产生变化的电压信号输出。
风速风向仪风速风向仪的组成:风速风向仪风速测量部分采用了微机技术,可以同时测量瞬时风速、瞬时风级平均风速、平均风级和对应浪高等参数。
它带有数据锁存功能,便于读数。
风向部分采用了自动指北装置,测量时无需人工对北,简化测量操作。
本仪器为精密仪器,配备铝合金手提仪器箱(外形:300*200*160),为仪器提供良好保护,同时便于携带。
本仪器体积小,重量轻,功能全,可广泛用于农林、环保、海洋、科学考察等领域测量大气的风参数. 1、风向部分:由风向标、风向度盘(磁罗盘)等组成,风向示值由风向指针在风向度盘上的位置来确定。
2、风速部分:采用传统的三环旋转架结构,仪器内的单片机对风速传感器的输出频率进行采样、计算,仪器输出瞬时风速、一分钟平均风速、瞬时风级、一分钟平均风级、平均风速及对应的浪高。
风向仪的原理
风向仪的原理
风向仪是一种用来测量风向的仪器,它在航空、气象、环境监
测等领域有着广泛的应用。
它的原理是利用风的作用力使风向仪指
针指向风的方向,通过测量指针的位置来确定风向。
下面我们来详
细介绍一下风向仪的原理。
首先,风向仪通常由一个风向标和一个指示器组成。
风向标是
一个具有方向性的物体,它可以随着风的方向而转动。
指示器则是
用来指示风向标指向的方向,通常是一个指针或者一个数字显示屏。
风向仪的原理基于风对风向标的作用力。
当风吹过风向标时,
风向标会受到风的作用力而转动,转动的角度与风的方向有关。
这
是因为风向标的形状和材质使得它对风有着特定的反应,类似于风
力计的叶片。
风向标通常设计成有一定的方向性,使得它可以指示
出风的方向。
指示器则是用来测量风向标的转动角度,并将其转化为可读的
形式。
对于使用指针的风向仪,指针会随着风向标的转动而指向相
应的方向。
而对于使用数字显示屏的风向仪,数字显示屏会显示出
风的具体方向。
风向仪的原理还涉及到一些传感器和信号处理的技术。
传感器用来检测风向标的转动角度,将其转化为电信号。
信号处理技术则用来处理传感器输出的信号,将其转化为可供人们理解的形式,比如指针的转动或者数字的显示。
总的来说,风向仪的原理是基于风对风向标的作用力,通过测量风向标的转动来确定风的方向,并将其转化为可读的形式。
风向仪在航空、气象、环境监测等领域有着重要的应用,它的原理也为我们理解风的运动提供了重要的参考。
风向风速记录仪的使用方法及注意事项
风向风速记录仪的使用方法及注意事项风向风速记录仪|风向风速监测仪|风向风速自记仪|风向风速仪简介概述:风速风向记录仪是用于记录风向和风速两个参数的仪器,是记录仪中的其中一种。
风向、风速仪用于测量瞬时风速风向,具有自动显示功能。
主要由支杆,风标,风杯,风速风向感应器组成,风标的指向即为来风方向,根据风杯的转速来计算出风速。
风速风向记录仪可广泛应用于气象、农业、工业自动化工程、智能楼宇系统、车间、仓库、博物馆、实验室、温室等应用场合。
经过托普云农多年精心研制完成的新一代数据记录仪,该记录仪体积小、精度高,可采集记录温湿度、照度、CO2、风向风速、雨量、电压、电流、PH等参数,它集数据采集、记录和传输于一体,具有小体积、低功耗(配锂电池可连续工作1年)、高可靠(适应恶劣环境,失电时不丢失数据)、多功能(同时显示、记录多路数据,自动生成记录曲线图,采集的数据能用专用软件或EXCEL、WORD 处理)。
风向风速记录仪|风向风速监测仪|风向风速自记仪|风向风速仪使用方法:①使用前观察电表的指针是否指于零点,如有偏移,可轻轻调整电表的机械调整螺丝,使指针回到零点;②将校正开关置于断的位置;③将测杆插头插在插座上,测杆垂直向上放置,螺塞压紧使探头密封,“校正开关”置于满度位置,慢慢调整“满度调节”旋纽,使电表指针指在满度位置;④将“校正开关”置于“零位”,慢慢调整“粗调”、“细调”两个旋纽,使电表指针指在零点的位置;⑤经以上步骤后,轻轻拉动螺塞,使测杆探头露出(长短可根据需要选择),并使探头上的红点面对对着风向,根据电表度读数,查阅校正曲线,即可查出被测风速;⑥在测定若干分后(10min左右),必须重复以上③、④步骤一次,使仪表内的电流得到标准化;⑦测毕,应将“校正开关”置于断的位置。
风向风速记录仪|风向风速监测仪|风向风速自记仪|风向风速仪注意事项:①本仪器为一较精密的仪器,严防碰撞振动,不可在含尘量过多或有腐蚀性的场所使用。
大气中的风力测量研究风速计和风向仪的使用方法
大气中的风力测量研究风速计和风向仪的使用方法大气中的风力测量:研究风速计和风向仪的使用方法在大气科学研究中,风是一个重要的指标,因为它不仅影响着天气的变化,还对我们的生活和工作产生着广泛的影响。
因此,准确测量风力成为了气象学和其他相关领域研究的关键之一。
本文将介绍风力测量中两种常用仪器的使用方法,分别是风速计和风向仪。
一、风速计的使用方法风速计是一种用来测量风速的仪器,也被称为瞬时风速测量仪。
下面将介绍几种常见的风速计使用方法。
1. 在地面上测量风速在地面上测量风速时,需要选择一个开阔的空地,并确保周围没有障碍物。
将风速计竖直放置在一定高度的支架上,将仪器的探头指向风的方向。
然后,观察仪器上的仪表盘或数码显示屏,记录下测得的风速数值。
2. 在高空中测量风速在高空中测量风速时,通常会使用气球、无人机或飞艇等载体。
将装有风速计的载体与其它测量仪器绑定在一起,然后释放到空中。
在载体上设置好自动记录仪器,让其自动记录下不同高度上的风速数据。
之后,将载体回收,并提取记录的数据,进行分析。
3. 在海洋中测量风速在海洋中测量风速需要使用海上浮标以及船载测量装置。
浮标上配备有风速计,可以通过卫星通信将实时的风速数据上传并传回到数据观测中心。
而船载测量装置通过在船上固定风速计,直接测量船在大海上的风速。
通过以上的使用方法,我们可以及时准确地测量不同高度和环境中的风速,为气象学研究和天气预报提供重要数据。
二、风向仪的使用方法风向仪是用来测量风的方向的仪器,它对于了解气流的走向以及天气变化预测非常有帮助。
下面是一些常见的风向仪使用方法。
1. 地面上测量风向地面上测量风向时,风向仪一般设置在一个较高的位置,远离建筑物和树木等遮挡物。
将风向仪的传感器指向正北或者使用者需要的参考方向。
观察风向仪上的指针或数字显示屏,读取测得的风向数值。
2. 天气球测量风向天气球测量风向时,需在气球上安装风向仪,并将气球放飞到高空。
通过无线遥控或者自动记录仪器,将测得的数据即时传输或者记录下来。
风向仪的制作方法
风向仪的制作方法:
制作风向仪需要一些基本的材料和工具,包括纸杯、吸管、铅笔、胶带和大头钉等。
以下是制作风向仪的步骤:
1.取两根吸管,将其中一根剪下一段,大约5cm长。
2.用大头钉刺穿两根吸管的交叉点,用胶带固定住。
3.把大头钉插在铅笔上,使吸管能绕大头钉转动。
4.在四个纸杯的相同位置各扎一个孔,将吸管的一端插入纸杯,再次用胶带固定住。
5.在其中一个纸杯上做记号,便于观察纸杯的旋转情况。
6.把风向仪放在开阔地带,观察风力作用下空杯的旋转情况。
风速风向仪的特点及相关方案
风速风向仪的特点及相关方案1. 什么是风速风向仪风速风向仪又称为气象风仪,是用于测量风速和风向的一种气象设备。
它能够精确地测量风的方向和风速,是气象学、农业、航空等领域中重要的测量工具。
2. 风速风向仪的特点2.1 精度高风速风向仪能够精确地测量风速和风向,其精度通常可以达到±2%。
这一点非常重要,因为在一些气象数据分析中,即便是极小的误差也可能会导致计算结果的偏差,从而影响数据的可靠性。
2.2 可靠性高风速风向仪采用电子传感器来进行测量,具有高度的可靠性。
传感器可以在不间断地工作长达几年的情况下,仍然保持正常的运行。
并且,由于风速风向仪的结构比较简单,维护保养成本也较低。
2.3 自适应性强风速风向仪通常采用数字化的处理技术,能够自动调节并适应不同的环境条件。
例如,在复杂的地形或极端天气条件下,风速风向仪仍能正常工作,这也保证了其实用性的高效性。
3. 风速风向仪的应用领域3.1 农业在农业中,风速风向仪可以监测天气变化,帮助农民更好地管理土地,以便种植更适宜的作物和收获更高质量的农产品。
3.2 航空在航空领域,风速风向仪对于航班的安全起着至关重要的作用。
飞行员需要根据风速和风向的信息来做出正确的飞行决策,以确保航班的安全。
3.3 气象学在气象学中,风速风向仪是非常重要的的测量工具。
通过它,气象学家能够收集到更完整、更准确的气象数据,帮助人们更好地了解天气情况。
4. 风速风向仪的相关方案4.1 安装方案在选择安装位置时,需要注意以下三点:•避免安装在场地上有障碍物、电源线缆、高压电线等设施周围;•安装位置应该高于障碍物和建筑物,从而避免受到地面摩擦的影响,影响测量结果的准确性;•安装位置应该向上倾斜,可避免雨水或者冰冻在传感器上。
4.2 维护保养方案•定期清洁踏板和传感器;•每年至少检查一次设备的电路和机械部分;•平时注意设备是否被破坏,是否有异常损坏的情况。
4.3 数据处理方案在使用风速风向仪收集到的数据时,需要注意:•记录测量的时间和地点,并标识清楚数据单位和数据类型;•对数据进行过滤,去除异常数据或数据缺失的情况;•采用适合的软件对数据进行处理和分析,比如MATLAB,SPSS等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EST . 1838
Proven Accuracy and Reliability
Wind Speed and Direction System
The Walker 2050 uses a Combined Anemometer Cup & Vane Direction Sensor, the P296. This gives high accuracy in a robust compact package!
The Sensor connects directly to a standard Walker DIN 144 wind speed & direction indicator, the P249, which gives digital displays of relative wind speed & direction. Wind direction is also displayed on a simulated analogue display by 72 LEDs.
True wind systems are available by using this sensor with the Walker P1066 True Wind Interface Unit.
Walker 2050 Mk2
Wind Speed & Direction System, using P296Combined Sensor Unit System Parameters
Input voltage: 24v DC 40mA Wind Speed Measurement
Range 0–100 knots Accuracy +/- 0.5 knots Resolution 0.1 knots Wind Direction measurement
Range 0°– 359°
Accuracy
+/- 3°Resolution 0.1°Environmental
Operating Temperature
Sensor -35 °C to +70 °C Indicator 0 °C to +55 °C Storage Temperature Sensor -40 °C to +90 °C Humidity <5% to 100%Option:
2050 Mk2 Wind Speed & Direction True System, P1066 True Wind
Specification
System
The sensor converts wind speed and direction into serial digital data. Data is displayed by the P249 Indicator in digital format and also in analogue for wind direction. The instrument interfaces in NMEA 0183/RS422 to other ship systems. Sentence – MWV Sensor
Mounting by base flange.
Sealed to IP65 (when correctly mounted)Weight: 0.92 Kg
plus 3kg for 40 metre cable and connector assembly.
Indicator
Standard DIN 43700 case; 144 x 144 mm – depth 110mm Weight: 1.2 Kg
Mounted by panel clips or drilled frame supplied.
Connection by three cable glands to rear connection box.Cables: 4.5 to 7 mm dia.Controls:Illumination
Lamp Test
Select Units, Knots, Metres/Sec and Kilometres/Hour.
Front panel splash proof when installed correctly.
Indicator Type Approved to
EMC European Directive IEC 60945
L I L L E Y &G I L L I E
Directing International Shipping since 1812
Tel: +44(0)191 257 2217Fax: +44(0)191 257 1521
E-Mail: sales@ Web: 。