基于阈值的灰度图像分割

合集下载

基于灰度迭代阈值的高分辨率影像分割研究

基于灰度迭代阈值的高分辨率影像分割研究

Ab s t r a c t As 3 k i n d o f i mp o r t a n t me t h o d i n r e mo t e s e n s i n g i ma g e i n t e r p r e t a t i o n a n d c l a s s i f i c a t i o n,
J u I L,2 0 1 3
文章编号 : 1 0 0 0 —2 3 7 5 ( 2 0 1 3 ) 0 2 —0 2 5 2— 0 6
基 于 灰 度迭 代 阈值 的高 分 辨 率影 像 分 割研 究
谢 凯 , 王新 生
( 1 . 湖北大学资源环境学院 , 湖北 武汉 4 3 0 0 6 2 ; 2 . 0 0 6 2 ) 摘要 图像分割技术 为遥感 图像解译 和分类 的一种重要方法 , 目前 主要 应用在中分 辨率影像 中, 由于高分辨 率影 像
XI E Ka i , W ANG Xi ns he n g
( 1 . S c h o o l o f Re s o u r c e s a n d E n v i r o n me n t a l S c i e n c e , Hu b e i Un i v e r s i t y , Wu h a n 4 3 0 0 6 2, Ch i n a ;
p a p e r ,we a p p l i e d t h e n o i s e s u p p r e s s i o n a n d i mp r o v e d t h r e s h o l d s t r a t e g y t o i mp r o v e i a g m e s e m e g n t a t i o n e f f e c t

医学图像分割方法综述

医学图像分割方法综述
缺点: 需要人工交互以获得种子点;对噪声敏感,导致抽取出的 区域有空洞。
原理: 分裂合并的思想将图像先看成一个区域,然后区域不断被 分裂为四个矩形区域,直到每个区域内部都是相似的。研究重 点是分裂和合并规划的设计。
缺点: 分裂技术破坏区域边界。
example
• 在想要分割的部分选择一个或者多个种子 • 相邻像素就会以某种算法进行检测 • 将符合检测条件的像素加入到区域中 • 逐渐生长为满足约束条件的目标区域
途径: 先用基于区域的分裂合并方法分割图像,然后用边界信息对区 域间的轮廓进行优化;先在梯度幅值图像中检测屋脊点和波谷点, 通 过最大梯度路径连接奇异点获得初始图像分割,然后采用区域合并技 术获得最终结果等
其它分割方法
基于模糊理论:图像分割问题是典型的结构不良问题,而模糊集理论具 有描述不良问题的能力。基于模糊理论的图像分割方法包括模糊阈值 分割方法、模糊聚类分割方法和模糊连接度分割方法等。
优点:实现简单,对不同类灰度值或其他特征相差很大 时,能有效分 割。常做医学图像的预处理。
缺点: 不适应多通道和特征值相差不大的图像;对噪声和灰度不均匀 很敏感;阈值选取困难。
直方图
• 图像区域由灰度值区分开
基于阈值的图像分割
阈值:
选择灰度值作为阈值
g m in和g m a x
遍历整幅图像检测像素是否在此区域内
分类: 形变模型包括形变轮廓(deformable contour) 模型(又称 snake或active contour ),三维形变表面(deformable surface )模型。
形变轮廓模型: 使轮廓曲线在外能和内能的作用下向物体边 缘靠近,外力推动轮廓运动,而内力保持轮廓的光滑性。
基于阈值的图像分割

图像处理中的图像分割算法比较分析

图像处理中的图像分割算法比较分析

图像处理中的图像分割算法比较分析图像分割是图像处理中的一项重要任务,它旨在将图像划分为具有一定语义的区域。

图像分割在图像分析、计算机视觉和模式识别等领域有着广泛的应用。

随着技术的发展,越来越多的图像分割算法被提出,为了选择合适的算法进行应用,本文将对目前常用的图像分割算法进行比较分析,包括基于阈值、基于区域生长、基于边缘检测和基于深度学习的算法。

1. 基于阈值的图像分割算法基于阈值的图像分割算法是最简单和最常用的方法之一。

该方法根据像素点的灰度值与设定的阈值进行比较,将图像分割成两个或多个区域。

对于灰度较为均匀的图像,基于阈值的方法能够得到较好的分割效果。

然而,对于灰度不均匀或存在噪声的图像,这种方法的效果较差。

2. 基于区域生长的图像分割算法基于区域生长的图像分割算法是一种基于连通性的方法。

该方法从一组种子像素出发,根据一定的生长准则逐步增长区域,直到达到停止条件为止。

区域生长方法能够处理一些复杂的图像,但对于具有相似颜色或纹理特征的区域容易产生错误的连续性。

3. 基于边缘检测的图像分割算法基于边缘检测的图像分割算法把图像中的边缘看作是区域之间的分界线。

常用的边缘检测算法包括Sobel、Canny和Laplacian等。

这些算法通过检测图像中的灰度值变化或梯度变化,找到边缘的位置,并将图像分割成相应的区域。

基于边缘的方法对于边缘清晰的图像分割效果较好,但对于复杂的图像容易产生断裂或错误的边缘。

4. 基于深度学习的图像分割算法近年来,随着深度学习的兴起,基于深度学习的图像分割算法成为研究热点之一。

深度学习方法利用卷积神经网络(CNN)或全卷积网络(FCN)等模型进行端到端的图像分割。

这些方法能够学习图像中的语义信息,并输出像素级别的分割结果。

深度学习方法在许多图像分割任务上取得了显著的效果,但需要大量的标注数据和计算资源。

综上所述,不同的图像分割算法适用于不同的场景和任务需求。

基于阈值的图像分割算法简单易用,适用于灰度较均匀的图像;基于区域生长的算法能够处理复杂的图像,但容易产生错误的连续性;基于边缘检测的算法对于边缘清晰的图像效果较好;基于深度学习的算法具有较强的泛化能力,可应用于多种场景。

基于阈值的分割算法

基于阈值的分割算法

基于阈值的分割算法
阈值分割算法是一种将图像分割成两个或多个区域的方法,其中区域的选择基于像素的灰度值与预先定义的阈值之间的关系。

基本的阈值分割算法包括简单阈值分割、自适应阈值分割和多阈值分割等。

- 简单阈值分割是指通过比较每个像素的灰度值与一个预先定
义的固定阈值来进行划分。

如果像素的灰度值大于阈值,则被分配到一个区域;如果小于阈值,则分配到另一个区域。

- 自适应阈值分割是指根据图像的局部特征来确定每个像素的
阈值。

这种方法通常用于处理具有不均匀光照条件下的图像。

常见的自适应阈值分割方法包括基于局部平均值、基于局部中值和基于统计分布的方法。

- 多阈值分割是指将图像划分为多个区域,每个区域都有一个
不同的阈值。

这种方法常用于处理具有多个目标或具有复杂纹理的图像。

阈值分割算法在图像处理中广泛应用,可以用于边缘检测、目标提取、图像分割等任务。

但是,阈值的选择对算法的性能至关重要,不同的图像和任务可能需要不同的阈值选择方法。

因此,在应用阈值分割算法时需要进行参数调整和优化才能得到最佳的分割结果。

基于阈值的分割原理

基于阈值的分割原理

基于阈值的分割原理基于阈值的分割原理是数字图像处理中常用的一种分割方法,其基本思想是将图像中的像素根据其灰度值与预设的阈值进行比较,将灰度值高于阈值的像素归为一类,低于阈值的像素归为另一类。

该方法简单易懂,计算量小,因此被广泛应用于图像处理领域。

一、阈值分割基本原理1.1 阈值阈值是指在进行二值化处理时所设定的一个灰度级别,用来区分图像中不同灰度级别的像素点。

通常情况下,我们将图像中所有灰度大于该阈值的点视为目标物体区域内部点,将灰度小于该阈值的点视为背景区域内部点。

1.2 阈值分割过程在进行阈值分割时,我们需要先确定一个合适的初始阈值。

通常情况下,我们可以选择图像中所有像素点灰度平均数作为初始阈值。

然后将所有灰度大于该初始阈值的点视为目标物体区域内部点,将小于该初始阈值的点视为背景区域内部点,并计算出两个区域内像素灰度值的平均数。

将两个平均数再求平均,得到新的阈值,重复上述过程直到新的阈值与上一次计算的阈值相等或者差异小于一个预设的容差范围。

1.3 阈值分割应用阈值分割可以应用于很多领域中,如图像增强、目标检测、字符识别等。

在图像增强中,我们可以通过调整阈值来实现图像亮度和对比度的调整;在目标检测中,我们可以通过设置不同的阈值来实现对不同大小、形状、颜色等特征的物体进行区分;在字符识别中,我们可以通过设置合适的阈值来实现对字符轮廓进行提取和识别。

二、基于全局阈值分割原理2.1 基本思想基于全局阈值分割原理是指在整幅图像中确定一个全局唯一的阈值进行分割。

该方法简单易行且计算量小,适用于灰度变化明显且背景比较简单的图像。

2.2 全局阈值分割方法(1)最大类间方差法:该方法是求使两类间方差最大化时所对应的灰度值作为阈值。

具体而言,我们可以先将图像中所有像素点按照灰度值从小到大排序,然后分别计算每个灰度值下的前景和背景像素点数量、均值和方差。

最后计算出每个灰度下两类之间的类间方差,并选取使类间方差最大的灰度值作为阈值。

图像分割技术研究综述

图像分割技术研究综述

图像分割技术研究综述随着科技的快速发展,图像分割技术作为计算机视觉领域的重要分支,已经在众多应用领域中发挥着越来越重要的作用。

本文将对图像分割技术的研究进行综述,包括其发展历程、应用领域、研究成果以及未来研究方向。

图像分割技术是指将图像按照像素或区域进行划分,从而提取出感兴趣的目标或背景的过程。

图像分割技术在信号处理、计算机视觉、机器学习等领域具有重要的应用价值。

例如,在智能交通中,图像分割技术可以用于车辆检测和跟踪;在医学图像分析中,图像分割技术可以用于病灶区域提取和诊断。

根据图像分割技术所采用的方法,可以将其大致分为以下几类:基于阈值的分割、基于区域的分割、基于边缘的分割、基于模型的分割以及基于深度学习的分割。

1、基于阈值的分割是一种简单而又常用的图像分割方法,其基本原理是通过设定一个阈值,将图像的像素值进行分类,从而将图像分割为不同的区域。

基于阈值的分割方法实现简单、运算效率高,但在处理复杂图像时,往往难以选择合适的阈值,导致分割效果不理想。

2、基于区域的分割方法是根据图像像素的灰度或颜色特征,将图像分割为不同的区域。

这类方法通常适用于均匀背景和简单目标的图像,但对于复杂背景和遮挡情况的处理效果较差。

3、基于边缘的分割方法是通过检测图像中的边缘信息,将不同区域之间的边界提取出来,从而实现图像分割。

这类方法对噪声和光照变化较为敏感,需要结合其他方法进行优化。

4、基于模型的分割方法通常是利用数学模型对图像进行拟合,从而将图像中的目标或背景分离出来。

常用的模型包括参数化模型和非参数化模型两类。

这类方法能够处理复杂的图像特征,但对模型的选择和参数调整要求较高。

5、基于深度学习的分割方法是通过训练深度神经网络,实现对图像的自动分割。

这类方法具有强大的特征学习和自适应能力,能够处理各种复杂的图像特征,但在计算复杂度和训练成本方面较高。

近年来,随着人工智能和机器学习技术的快速发展,基于深度学习的图像分割技术在学术研究和实际应用中取得了显著的成果。

otsu 双阈值算法

otsu 双阈值算法

otsu 双阈值算法Otsu双阈值算法是一种常用的图像分割算法,通过自适应选取合适的阈值,将图像分割为前景和背景。

本文将介绍Otsu双阈值算法的原理和应用。

一、算法原理Otsu双阈值算法是由日本学者大津秀一于1979年提出的。

该算法基于图像的灰度直方图,通过最大类间方差的准则确定两个阈值,将图像分为三个部分:背景、前景和中间部分。

具体步骤如下:1. 计算图像的灰度直方图,统计每个灰度级别的像素数量。

2. 计算总体均值μ和总体方差σ^2。

3. 遍历所有可能的阈值t,计算背景和前景的像素数量和均值。

4. 根据公式计算类间方差σ_b^2 = w_0 * w_1 * (μ_0 - μ_1)^2,其中w_0和w_1分别为背景和前景的像素比例,μ_0和μ_1分别为背景和前景的均值。

5. 找到类间方差最大的阈值作为分割阈值。

6. 根据分割阈值将图像分为背景、前景和中间部分。

二、算法应用Otsu双阈值算法在图像处理领域有广泛的应用,主要用于图像分割和目标提取。

以下是算法在实际应用中的几个示例:1. 血管分割:在医学图像处理中,通过Otsu双阈值算法可以实现血管分割,将血管和其他组织分割出来,提取出感兴趣的血管区域。

2. 文字识别:在文字识别中,Otsu双阈值算法可以将文字和背景分割开,提高文字识别的准确性和效果。

3. 目标检测:在目标检测中,Otsu双阈值算法可以将目标物体和背景分割开,提取出目标物体的特征,用于后续的目标识别和分类。

4. 图像增强:在图像增强中,Otsu双阈值算法可以将图像分割为背景、前景和中间部分,对不同部分的像素进行不同的增强处理,提高图像的质量和清晰度。

总结:Otsu双阈值算法是一种简单而有效的图像分割算法,通过自适应选取阈值,将图像分割为背景、前景和中间部分。

该算法在图像处理和计算机视觉领域有广泛的应用,可以用于血管分割、文字识别、目标检测和图像增强等方面。

通过深入理解和应用Otsu双阈值算法,可以提高图像处理的效果和准确性,为后续的图像分析和处理提供有力支持。

阈值分割原理

阈值分割原理

阈值分割原理阈值分割是一种数字图像处理中常用的像素分割方法,其原理主要是基于图像灰度值的统计特性。

其思路是分别统计图像中不同灰度级别的像素个数,通过确定一个灰度值作为阈值,将图像中的像素分成两类,进而实现对图像的分割。

阈值分割的基本原理是通过将图像灰度值分为两个区间,从而将灰度低于或高于阈值的像素分为两类,从而实现图像的二值化处理。

本文将对阈值分割的基本原理、常用的实现方法以及应用进行全面的介绍。

阈值分割的基本原理阈值分割的基本原理是将图像中的像素分为两个部分,一部分为灰度值大于等于阈值的像素,另一部分为灰度值小于阈值的像素。

此时,我们可以将分割出来的灰度值较低的像素赋值为0,灰度值较高的像素赋值为1,从而将其转化为二进制图像。

这种方法通常用于物体检测、图像分割、OCR等领域,其中图像分割是其中应用最为广泛的领域之一。

在将图像进行阈值分割时,需要找到一个合适的阈值。

阈值可以是任何一个位于图像灰度值范围之内的值。

阈值分割方法需要根据具体的场景进行灰度值的筛选,通常可以选择采用迭代法、聚类法、最大间隔法和形态学方法等实现。

1. 迭代法迭代法通常是一种较为常见的方法。

这种方法的基本思路是:先在图像的灰度值范围内随机选取一个阈值,然后对目标二值化图像进行处理,将灰度大于或等于该阈值的像素设为前景像素(白色),将小于该阈值的像素设为背景像素(黑色)。

接着,可以计算出前景和背景的平均灰度值,将其作为新的阈值。

将新阈值作为该算法的输入,重复执行该算法,直到图像中的前景像素和背景像素稳定不变为止。

2. 聚类法聚类法是一种常用的阈值寻找方法。

该方法基于聚类分析的思想,将图像中的像素分为多个簇。

这些簇是按照图像灰度值进行排序的,每个簇的中心都对应一种不同的灰度值。

在这种情况下,我们可以寻找显著区分不同灰度值区间的簇,以确定阈值。

3. 最大间隔法最大间隔法是一种基于统计学原理的方法,它可以有效地找到分离前景像素和背景像素的最佳阈值。

基于阈值的图像分割算法研究综述

基于阈值的图像分割算法研究综述

第41卷第6期2023年12月沈阳师范大学学报(自然科学版)J o u r n a l o f S h e n y a n g N o r m a lU n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n)V o l.41N o.6D e c.2023文章编号:16735862(2023)06052604基于阈值的图像分割算法研究综述:原理㊁分类及典型算法杨林蛟(沈阳师范大学化学化工学院,沈阳110034)摘要:随着计算机技术的飞速发展,图像处理技术在各个领域都得到了广泛应用,如产品质量检测㊁医学图像处理㊁军事目标的定位与跟踪等㊂作为图像处理技术和计算机视觉技术的研究基础,图像分割技术目前已出现了大量不同类型的算法,并在各个领域的应用中发挥着重要的作用㊂其中,基于阈值的图像分割算法因具有简单有效㊁计算量小㊁性能稳定等优点而受到了人们的普遍青睐㊂首先,对图像分割技术按照不同的划分方式进行了简单的分类;其次,对阈值分割算法的基本原理㊁分类及最典型的O t s u算法的基本思想进行了详尽的介绍;最后,对阈值分割算法目前存在的问题进行了阐述,并对算法未来的发展趋势进行了展望㊂研究工作可为图像处理技术的进一步发展提供理论借鉴㊂关键词:图像处理;阈值分割;阈值选取;算法中图分类号:T P391文献标志码:Ad o i:10.3969/j.i s s n.16735862.2023.06.007A r e v i e w o ft h r e s h o l d-b a s e di m a g es e g m e n t a t i o n a l g o r i t h m s:P r i n c i p l e s,c l a s s i f i c a t i o na n d t y p i c a l a l g o r i t h m sY A N GL i n j i a o(C o l l e g e o fC h e m i s t r y a n dC h e m i c a l E n g i n e e r i n g,S h e n y a n g N o r m a lU n i v e r s i t y,S h e n y a n g110034,C h i n a)A b s t r a c t:W i t h t h e r a p i dd e v e l o p m e n t o f c o m p u t e r t e c h n o l o g y,i m a g e p r o c e s s i n g t e c h n o l o g y h a sb e e n w i d e l y u s e di nv a r i o u s f i e l d s,s uc ha s p r od u c t q u a l i t y de t e c t i o n,m e d i c a l i m a g e p r o c e s s i n g,m i l i t a r y t a r g e t p o s i t i o n i n g a n d t r a c k i n g.A s t h e b a s i s o f i m a g e p r o c e s s i n g t e c h n o l o g y a n d c o m p u t e rv i s i o nt e c h n o l o g y,al a r g e n u m b e r o f d i f f e r e n tt y p e s o fa l g o r i t h m s h a s e m e r g e d,a n d t h e s ea l g o r i t h m s p l a y a ni m p o r t a n t r o l e i nv a r i o u s f i e l d so fa p p l i c a t i o n.A m o n g t h e m,t h r e s h o l db a s e di m a g e s e g m e n t a t i o na l g o r i t h m h a sb e e n w e l c o m e db e c a u s eo f i t sa d v a n t a g e so fs i m p l e,e f f e c t i v e,l i t t l e c o m p u t a t i o na n ds t a b l e p e r f o r m a n c e.F i r s t l y,t h e i m a g es e g m e n t a t i o nt e c h n o l o g y i ss i m p l yc l a s s i f i e da c c o rd i n g t o t he d if f e r e n t p a r t i t i o n i ng w a y s.S e c o n d l y,th eb a si c p r i n c i p l e,c l a s s i f i c a t i o n,a n d t h eb a s i ci d e ao ft h e m o s tt y p ic a lO t s ua l g o r i t h m o ft h r e s h o l ds e g m e n t a t i o na l g o r i t h m a r ei n t r o d u c e di n d e t a i l.A tl a s t,t h ee x i s t i n g p r o b l e m s o ft h r e s h o l d s e g m e n t a t i o n a l g o r i t h m a r ed e s c r i b e d,a n dt h ef u t u r ed e v e l o p m e n tt r e n d o ft h i sa l g o r i t h m a r ef o r e c a s t e d.T h i s w o r kc a np r o v i d e t h e o r e t i c a l r e f e r e n c e f o r t h e f u r t h e r d e v e l o p m e n t o f i m a g e p r o c e s s i n g t e c h n o l o g y.K e y w o r d s:i m a g e p r o c e s s i n g;t h r e s h o l d s e g m e n t a t i o n;t h r e s h o l d s e l e c t i o n;a l g o r i t h m 图像处理技术一般是指利用计算机对图像进行分析,以达到所需结果的技术,又可称为影像处理㊂收稿日期:20230929基金项目:辽宁省教育厅科学研究经费项目(L J C202004,L J C202005)㊂作者简介:杨林蛟(1976 ),男,青海西宁人,沈阳师范大学高级实验师,硕士㊂图像处理技术主要包括图像的数字化㊁图像的增强和复原㊁图像的分割和识别㊁图像的数据编码等㊂其中,图像分割在计算机视觉中起着至关重要的作用,是图像处理技术的基础㊂图像分割的目的是使图像得到简化或改变图像的表示形式,图像经过分割后会形成一些特定的㊁具有独特性质的区域,这里的独特性质一般指像素的灰度㊁颜色和纹理等㊂其过程就好比把图像中的每一个像素打上一个特定的标签,使得具有相同标签的像素具有相同的视觉特性,从而用来定位图像的物体和边界㊂图像分割技术一直是计算机视觉研究的热点之一,历经数十年的发展,大量的分割算法被人们相继提出并得到广泛应用[1]㊂其中,基于阈值的图像分割算法因具有实时㊁有效㊁自动㊁应用广泛等优点而受到人们的广泛关注㊂本文首先对现有的图像分割技术进行了简单的划分,接着对基于阈值的分割算法的原理㊁分类及最典型的O t s u 算法进行了系统的介绍,以期为图像处理技术的进一步发展提供理论借鉴㊂1 图像分割技术的分类目前,人们对图像分割技术进行了大量的研究,并取得了卓有成效的研究成果,开发出了很多算法㊂如图1所示,如果按照图像类型划分,图像分割技术可分为灰度图像分割和彩色图像分割,灰度图像分图1 图像分割技术的7种不同划分方式F i g .1 S e v e nd i f f e r e n tw a y s o f i m a g es e g m e n t a t i o n t e c h n o l o g y割主要用于处理非自然图像,彩色图像分割则主要用于处理自然图像;按照是否存在用户交互,可将图像分割技术分为监督式分割和非监督式分割,监督式分割主要用于对图像和视频进行编辑,非监督式分割则主要用于处理图像背景较为单一的文本图像㊁工业图像等;按照表示方式的不同,图像分割技术又可分为基于像素级的分割和超像素级的分割,目前大多数的分割算法属于基于像素级的分割技术,其通常具有较高的处理精度;按照图像的另一种表示方式,图像分割技术则分为单一尺度的分割和多尺度分割,单一尺度的分割是在原始尺度空间上构建相关的分割模型,而多尺度分割则可充分挖掘图像的基本信息;从属性来划分,图像分割技术可分为单一属性的分割和多属性分割,前者只对灰度㊁颜色㊁纹理等特征中的一种属性进行分割,后者则能综合运用图像的多种属性;从操作空间来划分,图像分割技术可分为利用图像特征信息的分割和利用空间位置信息的分割,其中前者主要包括阈值分割算法和聚类算法等,后者主要包括水平集分割算法㊁活动轮廓算法等;从驱动方式划分,图像分割技术可分为基于边缘的分割和基于区域的分割㊂2 阈值分割算法阈值分割算法主要利用图像的特征信息对图像进行分割,目前已有上百种算法被陆续提出㊂其主要思想是不同的目标具有不同的诸如颜色㊁灰度㊁轮廓等特征,根据特征间的细小差别,通过选取特定的阈值将目标物与背景划分开来,进而实现快速的图像分割㊂2.1 阈值分割算法的基本原理阈值法的基本原理是先确定一个阈值[2],然后将所有像素按照其特征值与阈值的大小关系划分为2个类别㊂当特征值大于阈值时,该像素被归为目标类;反之,被归为背景类㊂通过选择合适的阈值,可以实现对图像目标与背景的有效分离㊂设原始图像为f (x ,y ),在f (x ,y )中找出特征值T ,将原始图像分割为2个部分,得到分割后的图像为g (x ,y )=b 0,f (x ,y )<t b 1,f (x ,y )ȡ{t725 第6期 杨林蛟:基于阈值的图像分割算法研究综述:原理㊁分类及典型算法若取b 0=0(黑),b 1=1(白),即为图像的二值化㊂2.2 阈值分割算法的分类根据利用信息种类的不同,可将阈值分割算法分为以下几类:1)基于直方图形状的方法㊂该类方法主要根据直方图的形状属性来划分像素,其又可分为 凸壳 法㊁ 峰谷 法和形状建模法3类㊂1997年,C a r l o t t o [3]对图像的概率密度进行了多尺度分析,并以此估计最佳阈值;1998年,C a i 和L i u [4]利用P r o n y 谱分析法得到了图像多重指数信号能量谱的近似值;之后,G u o 和P a n d i t [5]提出了一个全极模型㊂2)基于熵的方法㊂该类方法利用灰度分布的熵信息来划分像素㊂J o h a n n s e n 和B i l l e [6]最早对熵算法进行了研究㊂之后,很多学者对这一算法进行了改进,如P a l [7]在交叉熵的基础上建立了一种对前景和背景后验概率密度的模型;S u n [8]依靠 模糊事件熵 的最大化,采用了Z a d e h 的S 隶属度函数㊂3)基于聚类的阈值分割方法㊂该类方法又可分为迭代法㊁聚类法㊁最小误差法和模糊聚类4类,其主要通过对灰度数据进行聚类分析来获取阈值㊂其中,聚类法是通过将前景和背景的加权方差最小化来获得最佳阈值,是阈值分割算法中较为经典的算法之一㊂L i u 和L i [9]将聚类法扩展到了二维,景晓军等[10]将聚类法扩展到了三维㊂4)基于对象属性的方法㊂该类方法通过度量原始图像与二值图像间的诸如灰度片段㊁形状紧密性㊁纹理等的属性特性来选取阈值㊂基于对象属性的方法可分为片段保存法㊁边缘匹配法㊁模糊相似法㊁拓扑固定态法㊁最大信息法和模糊紧密性增强法6类㊂5)基于空间的方法㊂该类方法又可分为同现方法㊁高次熵法㊁基于随机集合的方法和二维模糊划分法4类,其选取阈值的方式是度量灰度分布和邻域内像素的相关性㊂C h a n g 等[11]在确保源图像与二值图像的同现概率以最低程度发散的条件下建立了阈值;B r i n k [12]认为空间熵可由二元熵在所有可能间隔的总和来计算㊂6)局部自适应方法㊂局部自适应方法可以克服其他阈值算法的许多缺陷,受到了人们的普遍关注,其主要的2种形式分别为邻域法和分块法㊂邻域法一般会受到邻域范围的制约,因而对文字等狭长目标比较敏感,但对平坦的大块前景或背景容易造成误分;分块法的适用范围会更广,但分块之间结果的不连续是该方法的缺陷之一㊂2.3 典型阈值分割算法介绍O t s u 阈值分割算法,也可称为最大类间方差算法,是最常用的一类阈值分割算法,也是阈值分割领域各类文献中被引用数量最多的算法之一㊂该算法选取使得类间方差最大的灰度值作为划分背景和前景的最佳阈值,其基本思想如下:在一幅灰度图像中,假设其灰度级为L ,用n i 表示灰度级为i 的像素个数,N 表示总像素的个数,则N =n 0+n 1+ +n L -1㊂用p i 表示灰度图像中灰度值i 的像素点出现的概率,则有p i =n i N ㊂设有阈值t 将图像分为前景和背景2个部分,分别用C 0={0,1, ,t }和C 1={t +1,t +2, ,L -1}表示㊂设ω0为C 0出现的概率,ω1为C 1出现的概率,则有ω0=ðt i =0p i ,ω1=ðL -1i =t +1p i ,且ω0+ω1=1㊂则C 0和C 1的平均灰度μ0和μ1为μ0=ðt i =0i ㊃p i ω0=μ(t )ω0,μ1=ðL -1i =t +1i ㊃p i ω1=μ-μ(t )1-ω0用σ2B 表示类间方差,其表达式为σ2B =ω0(μ0-μ)2+ω1(μ1-m )2=ω0㊃ω1(μ0-μ1)2最佳分割阈值t *即为使得类间方差σ2B 最大的阈值t :t *=a r g m a x t ɪ{0,1, L -1}σ2B 上述O t s u 算法又称一维O t s u 算法,它在不对概率密度函数做出假设的情况下,以均值和方差的概率密度为基础对图像的分割状态进行描述,可以在很大程度上提高算法的运算速度㊂后来,人们又发展了二维O t s u 阈值分割方法,它是在原来一维算法灰度值的基础上加入了像素邻域平均灰度作为第825沈阳师范大学学报(自然科学版) 第41卷二维,因而提高了一维算法的抗噪声能力㊂O t s u 阈值分割算法的分割效果如图2所示㊂(a )原始图像(b )O t u s 法阈值选择图2 O t s u 阈值分割算法的分割效果F i g .2 S e g m e n t a t i o ne f f e c t o f O t s u t h r e s h o l d s e g m e n t a t i o na l g o r i t h m 2.4 阈值分割算法目前存在的问题虽然阈值分割算法在国内外研究者们数十年的努力下已经取得了长足的进步,但目前仍然存在着如不均匀光照㊁噪声干扰㊁文本图像 劣化 等问题亟待解决㊂其中,不均匀光照会使直方图中的目标波峰与背景波峰混杂在一起,从而降低直方图阈值法的效果;噪声对图像处理的整个过程都有影响,去噪已成为图像分割领域的一个研究重点;长时间保存的纸质文档会出现背面字迹浸透㊁字迹污染等现象,从而造成分割时产生大量的误分㊂3 结论与展望图像分割是计算机视觉的基础技术,分割效果将直接影响如目标定位㊁目标识别㊁目标跟踪㊁场景分析等的后续处理㊂在众多的图像分割算法中,阈值分割算法一直以其实时㊁高效等特点受到人们的普遍关注㊂但从目前来看,阈值分割算法仍面临着许多难以解决的困难,可行的解决方法是从更高的图像语义出发,对图像内容进行抽象分析,然后指导低层次的图像分割,重复这样的操作若干次,可以逐步提高分割的精度㊂目前,对该种分割方式的研究仍处于探索阶段㊂参考文献:[1]S E Z G I N M ,S A N K U RB .S u r v e y o v e r i m a g e t h r e s h o l d i n g t e c h n i qu e s a n d q u a n t i t a t i v e p e r f o r m a n c e e v a l u a t i o n [J ].J E l e c t r o n I m a g i n g ,2004,13(1):146168.[2]阴国富.基于阈值法的图像分割技术[J ].现代电子技术,2007(23):107108.[3]C A R L O T T O M J .H i s t o g r a m a n a l y s i su s i n g as c a l e -s p a c ea p p r o a c h [J ].I E E E T r a n sP a t t e r n A n a l M a c hI n t e l l ,1997,9(1):121129.[4]C A I J ,L I UZQ.An e wt h r e s h o l d i n g a l g o r i t h m b a s e do na l l -p o l em o d e l [C ]ʊP r o c e e d i n g so f t h e14t hI n t e r n a t i o n a l C o n f e r e n c e o nP a t t e r nR e c o g n i t i o n .B r i b a n e :I E E E ,1998:3436.[5]G U O R ,P A N D I TS M.A u t o m a t i c t h r e s h o l ds e l e c t i o nb a s e do nh i s t o gr a m m o d e sa n dad i s c r i m i n a n t c r i t e r i o n [J ].M a c hV i s i o nA p p l ,1998,10:331338.[6]J OHA N N S E N G ,B I L L EJ .At h r e s h o l ds e l e c t i o n m e t h o du s i n g i n f o r m a t i o n m e a s u r e s [C ]ʊP r o c e e d i n gso f t h e6t h I n t e r n a t i o n a l C o n f e r e n c e o nP a t t e r nR e c o g n .M u n i c h :G e r m a n y ,1982:140143.[7]P A L N R.O nm i n i m u mc r o s s -e n t r o p y t h r e s h o l d i n g [J ].P a t t e r nR e c o g n ,1996,29(4):575580.[8]S U NCY.An o v e lf u z z y e n t r o p y a p p r o a c h t o i m ag e e nh a n c e m e n t a n d t h r e s h o l di n g [J ].S i gn a l P r o c e s s ,1999,75:277301.[9]L I UJZ ,L I W Q.T h ea u t o m a t i ct h r e s h o l d i n g o f g r a y -l e v e l p i c t u r e sv i at w o -d i m a n s i o n a lO t s u me t h o d [J ].A c t a A u t o m a t i c aS i n ,1993,19:101105.[10]景晓军,李剑峰,刘郁林.一种基于三维最大类间方差的图像分割算法[J ].电子学报,2003,31(9):12811285.[11]C HA N GC ,C H E N K ,WA N GJ ,e t a l .Ar e l a t i v e e n t r o p y b a s e d a p p r o a c h i n i m a g e t h r e s h o l d i n g [J ].P a t t e r nR e c o gn ,1994,27(9):12751289.[12]B R I N K A D.M i n i m u ms p a t i a l e n t r o p y t h r e s h o l d s e l e c t i o n [J ].I E E EP r o c e e d i n g s ,1995,142(3):128132.925 第6期 杨林蛟:基于阈值的图像分割算法研究综述:原理㊁分类及典型算法。

图像处理中的图像分割算法的准确性与效率比较

图像处理中的图像分割算法的准确性与效率比较

图像处理中的图像分割算法的准确性与效率比较图像分割是图像处理领域中的重要任务之一,它的目标是将图像中的不同区域划分开来,以便进一步进行图像分析、目标识别、图像重建等操作。

图像分割算法的准确性和效率是评估一个算法性能的重要指标。

本文将对几种常见的图像分割算法进行准确性和效率的比较。

一、基于阈值的图像分割算法基于阈值的图像分割算法是最简单和常用的一种方法。

它根据像素灰度值与设定的阈值进行比较,将图像分成两个或多个区域。

这种方法的准确性和效率都相对较低。

当图像具有类似灰度的不同物体时,阈值选择变得困难,并且难以处理复杂的图像背景。

二、基于区域的图像分割算法基于区域的图像分割算法是将具有相似特征的像素划分到同一个区域的方法。

常用的算法有区域生长、分水岭算法等。

这种方法通常从种子点开始,根据像素之间的相似性逐步扩展区域。

区域生长算法在处理较小的目标时准确性较高,但在处理大型目标时可能会出现过分合并的情况。

分水岭算法通过模拟水流从最低处开始填充,直到达到分水岭为止。

该算法能够处理复杂的图像背景,但在处理具有重叠目标时准确性较低。

三、基于边缘的图像分割算法基于边缘的图像分割算法通过检测物体边缘将图像分割成不同的区域。

常见的算法有Canny边缘检测、Sobel算子等。

边缘检测算法能够准确地检测物体边界,但在处理噪声较多的图像时效果较差。

四、基于聚类的图像分割算法基于聚类的图像分割算法是将图像像素划分为多个类别的方法。

常见的算法有K-means聚类算法、Mean-Shift算法等。

这种方法可以根据像素之间的相似性将图像分割成不同的区域,准确性较高。

然而,聚类算法的计算复杂度较高,处理大尺寸图像时可能效率较低。

五、基于深度学习的图像分割算法近年来,基于深度学习的图像分割算法取得了显著的进展。

使用卷积神经网络(CNN)等技术,可以对图像进行端到端的像素级别分割。

这种方法的准确性相对较高,并且能够处理复杂的图像场景。

然而,这种方法在计算复杂度和计算资源消耗方面较高,需要较大的训练集和计算设备支持。

阈值分割的原理

阈值分割的原理

阈值分割的原理一、引言阈值分割是图像处理中常用的一种方法,它的基本思想是将图像中的像素根据其灰度值分成两个或多个类别。

阈值分割在数字图像处理、计算机视觉、模式识别等领域都有广泛应用。

本文将详细介绍阈值分割的原理。

二、阈值分割的基本概念1. 图像灰度值在数字图像处理中,图像是由一个个离散的点组成,每个点称为像素。

每个像素都有一个灰度值,表示该点的亮度程度。

灰度值通常用整数表示,范围为0~255。

2. 阈值阈值是指将灰度图像划分成多个类别时所使用的一个参数。

将图像中所有灰度值小于等于阈值的像素划为一类,大于阈值的划为另一类。

3. 二值化二值化是指将灰度图像转换成只包含两种颜色(黑色和白色)的二元图像。

通常情况下,黑色表示前景对象,白色表示背景。

三、全局阈值分割全局阈值分割是最简单也最常用的一种方法。

它假设整幅图像只有两个类别(前景和背景),并且这两个类别的像素灰度值分布是双峰的。

因此,全局阈值分割的目标就是找到这两个峰之间的谷底,作为阈值。

1. Otsu算法Otsu算法是一种自适应的全局阈值分割方法。

它基于灰度直方图,通过最大化类间方差来确定阈值。

具体步骤如下:(1)计算图像灰度直方图。

(2)计算每个灰度级所占比例。

(3)从0~255遍历所有可能的阈值T,计算该阈值下前景和背景的均值μ0、μ1和类间方差σb^2。

(4)选择使得类间方差σb^2最大的阈值作为最终阈值。

2. 基于形态学梯度的全局阈值分割基于形态学梯度的全局阈值分割方法利用了形态学梯度对边缘进行增强,并将其作为二元图像进行处理。

具体步骤如下:(1)对原始图像进行膨胀和腐蚀操作,得到形态学梯度图像。

(2)对形态学梯度图像进行全局阈值分割,得到二元图像。

(3)对二元图像进行形态学操作,去除噪声和孤立点。

四、局部阈值分割局部阈值分割是一种自适应的方法,它将整幅图像分成若干个小区域,每个区域内的阈值可以根据该区域内像素的灰度值分布自动确定。

常用的方法有基于均值、基于中值和基于方差的局部阈值分割。

图像分割的阈值法综述

图像分割的阈值法综述

图像分割的阈值法综述一、本文概述图像分割是计算机视觉和图像处理领域中的一项基础而重要的任务,其目标是将图像划分为多个具有相似特性的区域,以便于后续的图像分析和理解。

在众多图像分割方法中,阈值法因其简单、高效和易于实现的特点,受到了广泛关注和应用。

本文旨在对图像分割的阈值法进行综述,探讨其基本原理、发展历程、主要方法、优缺点以及未来发展趋势。

本文将简要介绍阈值法的基本原理,包括灰度阈值法、颜色阈值法和基于直方图的阈值法等。

通过对这些方法的描述,使读者对阈值法有一个初步的认识和了解。

本文将回顾阈值法的发展历程,从最早的固定阈值法到后来的自适应阈值法,再到基于机器学习和深度学习的阈值法。

通过对这些发展历程的梳理,可以清晰地看到阈值法在不断进步和完善。

接着,本文将重点介绍几种主流的阈值法方法,包括Otsu法、最大熵法、最小误差法等。

这些方法各有优缺点,适用于不同的图像分割场景。

通过对这些方法的详细介绍和比较,可以帮助读者更好地选择和应用适合自己的阈值法方法。

本文还将分析阈值法的优缺点,并探讨其在不同应用场景下的适用性和局限性。

还将展望阈值法的未来发展趋势,包括如何结合其他图像分割方法、如何引入更多的先验知识以及如何借助深度学习等技术来进一步提升阈值法的性能等。

本文将对全文进行总结,并给出一些建议和展望。

希望通过本文的综述,能够为读者提供一个全面而深入的视角,以更好地理解和应用图像分割的阈值法。

二、阈值法基本原理阈值法是一种简单而有效的图像分割方法,其基本原理是基于图像的灰度特性,设定一个或多个阈值,将图像中的像素划分为不同的类别,从而实现图像分割。

阈值分割的基本思想是,假设图像由具有不同灰度级的两类区域组成,这两类区域的灰度值具有明显差异,那么可以选择一个适当的阈值,将图像的每个像素的灰度值与这个阈值进行比较,根据比较结果将像素分配到不同的区域中。

如果像素的灰度值大于阈值,则将其归为一类,否则归为另一类。

数字图像灰度阈值的图像分割技术matlab要点

数字图像灰度阈值的图像分割技术matlab要点

1.课程设计的目的(1)使学生通过实验体会一些主要的分割算子对图像处理的效果,以及各种因素对分割效果的影响(2)使用Matlab软件进行图像的分割(3)能够进行自行评价各主要算子在无噪声条件下和噪声条件下的分割性能(4)能够掌握分割条件(阈值等)的选择(5)完成规定图像的处理并要求正确评价处理结果,能够从理论上做出合理的解释2.课程设计的要求(1)能对图像文件(bmp,jpg,tiff,gif)进行打开,保存,退出等功能操作(2)包含功能模块:图像的边缘检测(使用不同梯度算子和拉普拉斯算子) (3)封闭轮廓边界(4)区域分割算法:阈值分割,区域生长等3.前言3.1图像阈值分割技术基本原理所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同。

简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理。

图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提。

同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准]5[。

在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。

为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。

图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。

这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。

现有的图像分割算法有:阈值分割、边缘检测和区域提取法。

本文着重研究基于阈值法的图像分割技术。

若图像中目标和背景具有不同的灰度集合:目标灰度集合与背景灰度集合,且两个灰度集合可用一个灰度级阈值T进行分割。

图像处理中的分割技术与图像重建方法

图像处理中的分割技术与图像重建方法

图像处理中的分割技术与图像重建方法摘要:图像处理中的分割技术与图像重建方法是计算机视觉领域中的重要研究课题。

图像分割旨在将一个图像划分为不同的区域,而图像重建则通过分析和处理来恢复损坏或缺失的图像信息。

本文将介绍几种常见的图像分割技术以及图像重建方法,并对它们的原理、优缺点及应用进行详细讨论。

关键词:图像处理、分割技术、图像重建方法、计算机视觉一、图像分割技术图像分割是将图像划分为若干个不同区域或者物体的过程。

它在许多领域中都有着广泛的应用,如医学图像分析、目标检测和识别等。

下面介绍几种常见的图像分割技术:1. 基于边缘的分割方法基于边缘的分割方法是通过检测图像中的边缘或者边缘连续性来实现图像的分割。

常见的边缘检测算法包括Canny算法和Sobel算法。

这些算法通过计算图像中像素灰度值的变化来确定边缘位置,并通过连接边缘点来最终划分图像区域。

2. 基于阈值的分割方法基于阈值的分割方法是将图像中的像素根据其灰度值与设定的阈值进行比较,从而实现分割。

简单的阈值分割方法包括全局阈值分割和自适应阈值分割。

全局阈值分割是将整个图像使用一个固定的阈值进行分割,而自适应阈值分割则根据图像局部区域的特点而动态调整阈值。

3. 基于区域的分割方法基于区域的分割方法是通过将图像分为具有一定连续性和相似性的区域来实现分割。

常见的基于区域的分割算法有区域生长算法和分水岭算法。

区域生长算法是从种子点开始将与之相邻的像素区域逐渐加入,而分水岭算法则是通过将图像看作一个地形图来实现分割。

二、图像重建方法图像重建是通过分析和处理来恢复损坏或缺失的图像信息。

在实际应用中,经常会遇到图像损失或者噪声干扰的情况,因此图像重建技术具有重要的意义。

下面介绍几种常见的图像重建方法:1. 插值方法插值方法是通过对已有图像像素间的空间关系进行分析,从而推理出缺失像素的值。

常见的插值方法包括最近邻插值、双线性插值和三次样条插值。

这些方法可以根据不同的具体情况选择合适的插值方式来重建图像。

三角法阈值分割

三角法阈值分割

三角法阈值分割在数字图像处理中,阈值分割是一种基本的图像分割方法,其基本思想是将图像中的像素分为两个部分,即黑色和白色像素。

在阈值分割中,阈值是一个关键点,用来决定像素是属于哪个部分。

而三角法阈值分割则是一种常用的阈值分割方法,本文将对其进行详细介绍。

什么是三角法阈值分割?三角法阈值分割是一种基于灰度直方图的图像分割方法。

其基本思想是将灰度直方图中的像素点分为两个部分,使得两个部分的差异最大化。

这个过程可以被看做在灰度直方图中画一条直线,将直方图分为两个部分,使得直线两侧的直方图均值之差最大。

三角法阈值分割的步骤1. 计算灰度直方图需要对图像进行灰度处理,将其转化为灰度图像。

然后,计算灰度直方图。

灰度直方图是一个二维数组,其中每个元素表示该灰度级别在图像中的像素数目。

2. 选择初始阈值在三角法阈值分割中,需要选择一个初始阈值。

初始阈值可以选择灰度值的平均值或中值。

3. 计算直方图均值根据初始阈值,可以将灰度直方图分为两个部分。

然后,需要计算直方图均值。

直方图均值是指在两个部分中像素灰度值的平均值。

4. 计算两个部分的方差根据直方图均值,可以计算出两个部分的方差。

方差越小,说明两个部分的差异越小,需要重新选择阈值。

反之,如果方差越大,说明两个部分的差异越大,可以选择该阈值作为最终阈值。

5. 重复以上步骤如果选择的阈值不是最终阈值,则需要重新选择阈值,然后重复以上步骤。

三角法阈值分割的优缺点三角法阈值分割是一种简单、快速的图像分割方法。

它不需要太多的计算资源,可以处理大量的图像数据。

此外,三角法阈值分割可以自适应地选择阈值,因此可以适用于不同的图像。

然而,三角法阈值分割也存在一些局限性。

它只能分割出两个部分,不能分割出多个部分。

此外,在处理复杂图像时,可能需要多次迭代才能得到最终的阈值,导致计算时间增加。

结论三角法阈值分割是一种基于灰度直方图的图像分割方法,它可以自适应地选择阈值,并且简单、快速。

但它只能分割出两个部分,不能分割出多个部分,并且在处理复杂图像时,需要多次迭代才能得到最终的阈值。

医学图像分割与分类算法综述

医学图像分割与分类算法综述

医学图像分割与分类算法综述医学图像在现代医疗影像诊断中起着重要的作用。

为了提高医疗诊断的准确性和效率,医学图像分割与分类算法成为研究的热点之一。

本文将综述医学图像分割与分类算法的研究进展,并介绍一些经典的算法方法。

1. 医学图像分割算法医学图像分割是根据医学图像中的不同区域或结构的特征进行像素级的分类。

常用的医学图像分割算法包括阈值法、区域生长法、边缘检测法、基于模型的方法和深度学习方法。

阈值法是最简单和直观的图像分割方法之一。

它基于像素灰度值的阈值将图像分成不同的区域。

但是,阈值选择的准确性对分割结果影响较大,容易受到噪声、光照变化等因素的影响。

区域生长法是基于图像的局部相似性进行分割的方法。

它从一个种子点开始,根据像素的相似性将相邻的像素聚类成一个区域。

区域生长法可以在一定程度上克服阈值法的缺点,但是对于具有复杂结构的图像分割仍然存在一定的挑战。

边缘检测法通过检测图像中各个区域间的边缘信息进行分割。

常用的边缘检测算法包括Canny算法、Sobel算法等。

边缘检测法在图像分割中得到了广泛的应用,但是对于边缘不明显或存在噪声的图像,其准确性和稳定性有待进一步提高。

基于模型的方法是利用已知的医学图像模型进行分割。

这些模型可以是基于统计学的模型,如高斯模型、概率密度模型等,也可以是基于形状的模型,如活动轮廓模型、水平集模型等。

基于模型的方法可以较好地处理具有特定结构或形状的医学图像,但是对于复杂的医学图像分割仍然存在一定的局限性。

深度学习方法是近年来医学图像分割的研究热点。

深度学习算法可以自动学习医学图像的特征表示,从而实现更准确的分割。

常用的深度学习网络包括卷积神经网络(CNN)、循环神经网络(RNN)等。

深度学习方法在医学图像分割领域取得了很大的突破,但是其训练过程复杂,需要大量的训练数据和计算资源。

2. 医学图像分类算法医学图像分类是根据医学图像中的特征将其归类为不同的疾病或病态。

常用的医学图像分类算法包括基于特征的方法和基于深度学习的方法。

基于阈值分割法

基于阈值分割法

基于阈值分割法的原理和应用1. 概述阈值分割法是数字图像处理中常用的一种分割技术。

它基于像素灰度值与预设的阈值之间进行比较,将像素分为两个或多个不同的区域,从而实现图像的分割。

阈值分割法广泛应用于图像处理、计算机视觉、模式识别等领域。

2. 阈值分割的原理阈值分割的基本思想是根据像素灰度值的特征,将图像分为背景和前景两个不同的区域。

其具体原理如下:1.预处理:首先将彩色图像转换为灰度图像,简化后续处理步骤。

2.确定阈值:选择一个合适的阈值用于将图像分割成两个区域。

常见的阈值选择方法有固定阈值法、自适应阈值法等。

3.分割图像:根据所选阈值将图像中的像素分为两个区域,通常是背景和前景。

4.后处理:可能需要进行降噪、边缘检测等后续处理步骤,以得到更好的分割效果。

3. 常见的阈值分割方法3.1 固定阈值法固定阈值法是最简单直观的阈值分割方法。

其原理是通过预设一个固定的阈值,将图像中的像素根据灰度值与阈值的大小关系分为两个区域。

具体步骤如下:1.将彩色图像转换为灰度图像。

2.选取一个合适的阈值,通常是根据经验或直方图分析确定。

3.遍历图像中的每个像素,将像素灰度值与阈值进行比较。

4.根据比较结果将像素分为背景和前景两个区域。

5.根据应用需求进行后续处理。

3.2 自适应阈值法固定阈值法存在一个问题,无法适应图像中灰度值不均匀的情况。

自适应阈值法通过根据局部像素灰度值的分布自动调整阈值,解决了这个问题。

具体步骤如下:1.将彩色图像转换为灰度图像。

2.根据图像特点选择合适的自适应阈值计算方法,常见的方法有局部平均法、局部中值法等。

3.定义一个合适的窗口大小,在图像上滑动窗口,计算每个窗口内的局部阈值。

4.遍历图像中的每个像素,将像素灰度值与对应的局部阈值进行比较。

5.根据比较结果将像素分为背景和前景两个区域。

6.根据应用需求进行后续处理。

4. 阈值分割的应用场景4.1 图像二值化图像二值化是阈值分割的一种常见应用,它将图像分割为两个阶段,即黑白两色,用于提取图像中的目标信息。

灰度阈值法分割

灰度阈值法分割

灰度阈值法分割
灰度阈值法分割是一种常见的图像分割方法,主要用于将图像转换为二值图像。

这种方法通过选择一个或多个灰度阈值,根据像素的灰度值与阈值的比较结果,将像素分为不同的类别。

具体来说,如果像素的灰度值大于或等于阈值,则该像素被分类为特定类别(如目标或背景),否则被分类为另一类别。

然后,根据像素的分类,用不同的数值标记不同类别的像素,从而生成二值图像。

在选择阈值时,通常会考虑图像的灰度直方图。

由于物体与背景以及不同物体之间的灰度通常存在明显差异,在灰度直方图中会呈现明显的峰值。

因此,选择图像灰度直方图中灰度分布的谷底作为阈值,可以有效地对图像进行分割。

例如,Otsu法(最大类间方差法)是一种动态阈值分割算法,其主要思想是根据灰度特性将图像划分为背景和目标两部分,划分依据为选取门限值,使得背景和目标之间的方差最大。

这是该方法的主要思路。

总的来说,灰度阈值法分割是一种简单而有效的图像分割方法,适用于目标与背景有较强对比度的图像。

图像分割算法

图像分割算法

(3) Prewitt算子 Prewitt算子在点(i,j)的梯度幅值表示为:
2 G(i, j ) G x2 G y
简化的卷积模板表示形式为 : G (i, j ) G x G y 其中,sx和sy分别x方向和y方向梯度的模版形式 :
1 1 sx 0 0 1 1 1 0 1 1 sy 1 1 0 0 0 1 1 1
Pa Pi 前景点所占比例
i 1 L
Pb
i T 1 T
P 背景点所占比例
i i 1 L
wa i wb
Pi 前景点平均灰度 Pa Pi
b
i T iPi 全局平均灰度
阈值分割就是简单地用一个或几个阈值将图像的灰度直方图 分成几个类,认为图像中灰度值在同一个灰度类内的像素属于同 一个物体。阈值分割法主要有两个步骤: 第一, 确定进行正确分割的阈值; 第二, 将图像的所有像素的灰度级与阈值进行比较, 以进行区域 划分, 达到目标与背景分离的目的。 其基本原理的数学模型描述为:
1 Sx 0 0 1
0 Sy 1
1 0
(2) Sobel算子 Sobel算子在点(i,j)的梯度幅值表示为:
2 G(i, j ) G x2 G y
简化的卷积模板表示形式为 :
G (i, j ) G x G y
其中,sx和sy分别x方向和y方向梯度的模版形式 :
1 g (i, j) 0
f (i, j) T f (i, j) T
常见的阈值分割算法有: 双峰法、最大类间方差法(OTSU) 、迭代法、最大熵等。
1.双峰法 双峰法的基本思想:它认为图像由前景和背景组成,在灰度直方图上, 前后二景都形成高峰,在双峰之间的最低谷处就是图像的阈值所在。 适用范围:当前后景的对比较为强烈时,分割效果较好;否则基本无效 。 2.最大类间方差法(OTSU) 最大类间方差法的基本思想:将待分割图像看作是由两类组成,一类是 背景,一类是目标,用方差来衡量目标和背景之间的差别,使得目标和 背景两类的类间方差最大的灰度级即认为是最佳阈值。 T 最佳阈值分割公式:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对以CPT算法为主的灰度阈值化方法的研究目录:第一章:绪论第二章:图像的预处理第三章:图像分割概述第四章:灰度阈值化图像分割方法第五章:CPT算法及其对它的改进第六章:编程环境及用PhotoStar对改进的CPT算法和其他算法的实现第七章:实验结果与分析第一章:绪论1.1数字图像处理技术的发展人类传递信息的主要媒介是语音和图像。

据统计,在人类接受的信息中,听觉信息占20%,视觉占60%,其他如味觉、触觉、嗅觉总的加起来不过占20%。

所以,作为传递信息的重要媒体和手段——图像信息是十分重要的。

【5】对于图像信息的处理,即图像处理当然对信息的传递产生很大影响。

数字图像处理技术起源于20世纪20年代,当时通过海底电缆从伦敦到纽约传输了一幅图片,它采用了数字压缩技术。

1964年美国的喷气处理实验室处理了太空船“徘徊者七号”发回的月球照片,这标志着第三代计算机问世后数字图像处理概念得到应用。

其后,数字图像处理技术发展迅速,目前已成为工程学、计算机科学、生物学、医学等领域各学科之间学习和研究的对象。

经过人们几十年的努力,数字图像处理这一学科已逐渐成熟起来。

人们总是试图把各个学科应用到数字图像处理中去,并且每产生一种新方法,人们也会尝试它在数字图像处理中的应用。

同时,数字图像处理也在很多学科中发挥着它越来越大的作用。

1.2图像分割概述和本论文的主要工作图像分割的目的是把图像空间分成一些有意义的区域,是数字图像处理中的重要问题,是计算机视觉领域低层次视觉问题中的重要问题,同时它也是一个经典的难题。

几十年来,很多图像分割的方法被人们提出来,但至今它尚无一个统一的理论。

图像分割的方法很多,有早先的阈值化方法、最新的基于形态学方法和基于神经网络的方法。

阈值化方法是一种古老的方法,但确是一种十分简单而有效的方法,近几十年人们对阈值化方法不断完善和探索,取得了显著的成就,使得阈值化方法在实际应用中占有很重要的地位。

本文将主要对图像分割的阈值化方法进行探讨。

在对阈值化方法的研究过程中,本人首先将集中精力对效果比较好的阈值化方法进行探讨,并对其存在的不足加以改进,从而作出性能优良的计算机算法;由于目前很多方法各有其特点,所以将对具有不同特点的图像用不同的方法处理进行研究。

在论文正文部分还将其应用到实践中去,并对其加以评价。

第二章:图像的预处理2.1图像预处理的概述由于切片染色和输入光照条件及采集过程电信号的影响,所采集的医学图像会存在些噪声和畸变。

去掉这样的噪声和畸变,把图像具有的信息变得医生容易观看,或把图像变换成某种标准的形式,使特征提取和识别易于进行,这样的处理在图像分析和识别中使非常必要的,对于医学图像的分割来说,它直接影响分割的质量,甚至直接决定了是否能正确得到分割结果,这些前期处理通常叫做预处理,包括噪声的去处、对比度的增强、几何畸形的校正等。

2.2图像预处理的方法本论文研究的预处理主要是针对噪声而言,所以主要介绍两种去噪的预处理方法。

2.2.1多图像平均法多图像平均法即把一系列图像相加取平均的方法。

是医学图像处理中常用的方法,像由于瑞利散射引起的噪声用这种方法会得到很好的效果。

如果一幅图像含有噪声,可以假设这些噪声相对于每一坐标点(x,y)是不相关的,且数学期望为零。

设g(x,y) 是有噪声的图像,它是有噪声图像e(x,y)和原始图像f(x,y)叠加而成的。

即),(),(),(y x e y x f y x g +=对M 次采集的噪声图像{g i (x,y)}(i=1,2…,M)取平均。

即:),(1),(1y x g M y x g Mi i∑== 可以证明它们的期望值为:),()},({y x f y x g E =如果考虑新图像和噪声图像各自均方差的关系,则有:),(),(1y x e y x g Mσσ⨯= 可见随着取平均的图像的数目M 增加,噪声在每个像素位置(x,y)的影响逐步减小。

2.2.2中值滤波中值滤波是一种非线性、非参数的图像预处理技术,中值滤波器是一个含有奇数个像素的滑动窗口,窗口正中的像素的灰度由窗口各像素的灰度值中值代替。

中值滤波很好的解决了消除脉冲干扰和保持图像边缘的问题。

如果最大值是单调增加数列中的一个噪声尖峰,则中值滤波带来有效的改善;但是,如果最大值是一个信号脉冲,则结果会使图像中的一些细线、尖锐边角缺失。

本文将通过在计算机上实现其算法对其效果进行观察、分析。

第三章:图像分割概述3.1什么是图像分割图像分割就是将图像中具有特殊含义的不同区域区分开来,这些区域互不相交,每一个区域满足一致性。

用数学形式可以表达为:设图像为g(x,y),其中0≤x ≤Max(x),0≤y ≤Max(y)。

将图像进行分割就是将图像分割为满足以下条件的子区域g 1,g 2,g 3……。

1)),(),(1y x g y x g Nk k == ,即所有子区域组成了整幅图像;2)g k 是连通的区域;3)g k (x,y)∩g i (x,y)=Φ(k,j=1,2,3…N;k ≠j ),即任意两个子区域不存在公共元素;4)区域g k 满足一定的均匀一致性条件。

均匀一致性(或相似性)一般指同一区域的像素点之间灰度值差异较小或灰度的变化缓慢。

3.2图像分割的方法随着图像分割在数字图像处理中的应用越来越多,不可或缺的作用越来越明显,图像分割的方法以飞快的速度发展。

经典的方法不断被改进,新方法不断出现。

下面介绍目前常用的图像分割方法。

3.2.1基于区域的分割方法:图像分割通常会用到不同对象间特性的不连续性和同一对象部的特性相似性。

基于区域的算法侧重于利用区域的特性相似性。

主要的基于区域的方法有:A ):灰度阈值化方法这也本文研究的重点。

将在下一章详细叙述。

B ):区域生长和分裂合并它们是两种典型的串行区域分割方法,其特点是将分割过程分解为顺序的多个步骤,其中后续的步骤要根据前面的步骤的结果进行判断而确定。

区域生长的基本思想是将具有相似性质的像素集合起来构成区域,该方法需要先选取一个种子点,然后依次将种子像素周围的相似像素合并到种子像素所在的区域中。

区域生长也很少单独使用,往往是与其它分割方法一起使用,特别适用于分割小的结构如肿瘤和伤疤。

在区域合并方法中,输入图像往往先被分为多个相似的区域,然后类似的相邻区域根据某种判断准则迭代地进行合并。

在区域分裂技术中,整个图像先被堪称一个区域,然后区域不断被分裂为四个矩形区域直到每个区域部都是相似的。

其它常用于医学图像的基于区域的分割方法还有:分类器和聚类、基于随机场的方法、标记法等等。

3.2.2边缘检测法:基于边缘的分割方法可以说是人们最早研究的方法,基于在区域边缘上的像素灰度值的变化往往比较剧烈,它试图通过检测不同区域间的边缘来解决图像分割问题。

A)并行微分算子并行微分算子法对图像中灰度的变化进行检测,通过一阶导数极值点或二阶导数过零点来检测边缘,通常用的一阶导数算子有梯度算子、Prewitt 算子和Sobel 算子;二阶导数算子有Laplacian 算子,还有Kirsch 算子和Walls 算子等非线性算子。

梯度算子不仅对边缘信息敏感,而且对图像噪声也很敏感。

为了 减少噪声对图像的影像,通常在求导之前先对图像进行滤波。

B)基于曲面拟合和边界曲线拟合的方法曲面拟合方法的基本思想是将灰度看成高度,用一个曲面来拟合一个小窗口的数据,然后根据该曲面来决定边缘点。

基于边界曲线拟合的方法用平面曲线来表示不同区域之间的图像边界线,试图根据图像梯度等信息找出能正确表示边界的曲线从而得到图像分割的目的。

C)基于形变模型的方法基于形变模型的方法综合利用了区域与边界信息,结合了几何学、物理学和近似理论。

它们通过使用从图像数据获得的约束信息和目标的位置、大小和形状等先验知识,可有效地对目标进行分割、匹配和跟踪分析。

从物理学角度,可将形变模型看成是一个在施加外力和部约束条件下自然反应的弹性物体。

3.2.3基于模糊集理论的方法图像分割问题是典型的结构不良问题,而模糊集理论具有描述不良问题的能力,所以模糊理论被引入到图像处理和分析领域,其中包括用模糊集理论来解决分割问题。

基于模糊理论的图像分割方法包括模糊阈值分割方法、模糊聚类分割方法和模糊连接度分割方法等。

模糊阈值技术利用不同的s型隶属函数来定义模糊目标,通过优化过程最后选择一个具有最小不确定性的s函数,用该函数表示目标以及属于该目标像素之间的关系,这样得到的s型函数的交叉点为阈值分割需要的阈值,这种方法的困难在于隶属度函数的选择。

模糊C均值聚类(FCM, Fuzzy C-Means)方法通过优化表示图像像素点和C个类中心之间的相似性的目标函数来获得局部极大值,从而得到最优聚类。

这种方法的缺点是计算量大。

FCM方法常被用于医学图像的分割。

3.2.4图像分割中的其它方法除了上述几大类分割方法,图像分割领域中的方法和文献还有很多,如图谱引导法、基于数学形态学方法、基于神经网络的图象分割方法、以及将尺度空间理论运用于该领域的方法等。

特别是基于形态学的图象分割和基于神经网络的图象分割分别由于其符合人体视觉和具有“智能分析”的特点,近几年发展特别迅速。

第四章:灰度阈值化图像分割方法4.1 什么是灰度阈值化图像分割灰度阈值化方法是确定一个或几个灰度门限来区分物体和背景,用像素的灰度值同门限值进行比较来划分像素到背景区或物体区。

这种分割方法对于物体与背景之间存在明显差异的景物十分有效,但近些年随着对阈值化方法的不断探索,很多新方法对物体与背景之间差异不很明显的景物的分割效果也是相当不错的。

实际上,在任何实际应用的图像处理系统中,最终都要用到阈值化技术。

设给定的灰度图像为f(x,y)∈[t1,t2],用一定的方法得到一个或多个阈值或子集t⊂[t1,t2]。

现以子集t为例说明图像阈值化分割,因为利用一个或多个阈值的原理跟它是一样的。

根据个像素是否属于t将其进行分类,即:=),(yxg{),(,),(,t y x f a t y x f b xyxy ∈∉(1)其中,axy ,bxy分别为指定的灰度值或原灰度值。

如果取axy=1,bxy=0,则分割后的图像为二值图像。

目标与背景具有最大的对比度。

如果取axy=f(x,y),bxy=0,则分割后的图像背景为0,目标保留原灰度,属于背景干净的目标图像。

4.2 阈值化方法的分类阈值化方法的难点是对阈值的选取,所以对阈值化方法的研究主要集中在对选取阈值的方法的探索。

但在此之前我们有必要了解一下几种原则不同的阈值化方法。

4.2.1直接阈值法对于区域部灰度基本一致,而区域间的灰度存在较大差异的图像,如染色体图像、手写图像等,可以直接给定阈值进行分割。

4.2.2间接阈值法多数情况下,只有首先对图像作出一些必要的预处理,在运用阈值法才能有效地实现分割。

相关文档
最新文档