12.1实数的概念
实数的定义和性质是什么
实数的定义和性质是什么
实数,是有理数和无理数的总称。
数学上,实数定义为与数轴上的实数,点相对应的数。
实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
什么是实数
实数释义:有理数和无理数的统称。
数学上,实数定义为与数轴上的实数,是有理数和无理数的总称。
数学上,实数定义为与数轴上的实数,点相对应的数。
实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
虚数不是实数。
|a|表示的是a的肯定值。
虚数的定义:在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = -1。
实数性质
封闭性
实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍旧是实数。
有序性
实数集是有序的,即任意两个实数a、b必定满意并且只满意下列三个关系之一:a<b,a=b,a>b。
传递性
实数大小具有传递性,即若a>b,且b>c,则有a>c。
阿基米德性质
实数具有阿基米德性质,即(倒A)a,b∈R ,若a>0,则∈正整数n,na>b。
稠密性
R实数集具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数。
完备性
作为度量空间或全都空间,实数集合是个完备空间。
沪教版 七年级下数学12.1节-- 实数的概念【优秀课件】浦东外国语学校 励一敏
解:(1) S正方形ABCD 62 =36
36 S正方形EFGH 2 =18 EF 18
(2)这个值不是有理数。
Hale Waihona Puke AHDEGBF C
[提示]在后续课程中,我们将进一步学习 18 可化简 为3 2 。
[小结] 1、无理数的概念及举例; 2、实数的分类。
【提示】 1、由于后续课程得需要,同学们须熟记500以内 的平方数。例如,192= ,202= ,212=
12.1
实数的概念
从本章起,数的范围将从有理数
扩大到实数。为此,需要先引入 “无理数”的概念。
整数 有理数
??
分数
[问题引入]小正方形的边长是1。
???
大正方形的面积是2,它的边长是多少?
[无理数举例] 1、带“ ”的数; 2、与 π 有关的数; 3、某些带省略号形式的小数。 0.1010010001…(每两个1之间0的个数依次多1个)
……。 2、请同学们课后阅读《课本》-P36上关于无理数 的拓展知识。
作业:《练习册》-习题12.1。 【说明】《一课一练》暂时不做统一要求,如 果已经有这本书,可以按照教学进度完成,并 批、订。
[注意]此类小数不要与无限循环小数混淆!
[练习]请举出3个介于4~5之间的无理数。
实数的分类(P4):
[实数还有其他分类方法]
整数
有理数
?实?数?
分数
无?理?数?
3
2
2
[例1]将下列各数放入图中适当的位置:
9
0,-2 4, 9
练习:P5/2
2, 5 ,
0.3737737773…
[例2]如图,已知正方形ABCD的边长是6,在各边 上依次取中点连成正方形EFGH。借助图形面积的 方法我们能否求出线段EF的长?这个值是不是有 理数?
关于实数知识点总结
关于实数知识点总结一、实数的定义实数是指包括所有正数、负数、零,以及所有有理数和无理数的数集。
在数轴上,实数用来表示长度、面积、体积、温度等物理量。
1. 有理数:在有理数集中,包括整数和分数的集合。
例如,2,-5,3/4等都是有理数。
2. 无理数:无理数是指不能表示为两个整数的比值的实数。
例如,根号2,π,e等都是无理数。
二、实数的表示实数可以用数轴来表示,数轴是一个平直的线段,上面标有零点和正负无穷大。
在数轴上,实数可以用点来表示,点的位置与实数的大小对应。
1. 正数:在数轴上,正数表示为右边的点,如1、2、3等。
2. 负数:在数轴上,负数表示为左边的点,如-1、-2、-3等。
3. 零:零表示为数轴上的原点。
实数还可以用分数、小数等形式表示,例如1/3、0.5、-2.7等都是实数的一种表示方式。
三、实数的运算1. 实数的加法:实数的加法满足交换律和结合律,即对任意实数a、b、c,有a+b=b+a,(a+b)+c=a+(b+c)。
加法的逆元是减法,任意实数a,存在一个实数-b,使得a+(-b)=0。
2. 实数的减法:实数的减法可以看作加法的逆运算,即a-b=a+(-b)。
3. 实数的乘法:实数的乘法也满足交换律和结合律,即对任意实数a、b、c,有a*b=b*a,(a*b)*c=a*(b*c)。
乘法的逆元是除法,任意非零实数a,存在一个实数1/a,使得a*(1/a)=1。
4. 实数的除法:实数的除法可以看作乘法的逆运算,即a/b=a*(1/b)。
四、实数的性质1. 实数的稠密性:在实数轴上,任意两个不相等的实数之间都存在其他实数,即任意实数a、b,若a<b,则存在实数c,使得a<c<b。
2. 实数的有序性:实数可以按大小进行比较,任意两个实数a、b,满足且仅满足下列三种关系之一:a=b,a<b,a>b。
3. 实数的完备性:实数满足柯西收敛准则,任意柯西数列都收敛于某一实数。
实数的概念
实数的概念
实数,是有理数和无理数的总称。
数学上,实数定义为与数轴上的点相对应的数。
实数可以直观地看作有限小数与无限小数,它们能把数轴“填满”。
但仅仅以列举的方式不能描述实数的整体。
实数和虚数共同构成复数。
实数可以用来测量连续的量。
理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。
在实际运用中,实数经常被近似成一个有限小数(保留小数点后n 位,n 为正整数,包括整数)。
在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
[1]相反数(只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数,叫做互为相反数)实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。
[2]绝对值(在数轴上一个数a与原点0的距离)实数a的绝对值是:|a|
①a为正数时,|a|=a(不变),a是它本身;
②a为0时,|a|=0,a也是它本身;
③a为负数时,|a|= -a(为a的绝对值),-a是a的相反数。
(任何数的绝对值都大于或等于0,因为距离没有负数。
)
[3]倒数(两个实数的乘积是1,则这两个数互为倒数)实数a的倒数是:1/a (a≠0)
[4]数轴
定义:规定了原点,正方向和单位长度的直线叫数轴
(1)数轴的三要素:原点、正方向和单位长度。
(2)数轴上的点与实数一一对应。
特别规定0的算术平方根是根号0
实数分类
按性质分类是:正数、0、负数;
按定义分类是:有理数、无理数。
实数的相关概念
实数的相关概念实数,是有理数和无理数的总称。
数学上,实数定义为与数轴上的点相对应的数。
实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
但仅仅以列举的方式不能描述实数的整体。
实数和虚数共同构成复数。
性质封闭性实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。
有序性实数集是有序的,即任意两个实数a、b必定满足下列三个关系之一:ab,a=b,ab。
传递性实数大小具有传递性,即若ab,bc,则有ac。
阿基米德性实数具有阿基米德(Archimedes)性,即对任何a,b∈R,若ba0,则存在正整数n,使得nab。
稠密性实数集R具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数。
实数的相关概念 2实数的相关概念 2:实数是有理数和无理数的总称。
实数包括有理数和无理数,实数集通常用字母R表示。
实数集与数轴上的点有着一一对应的关系,任一实数都对应着数轴上的唯一一个点。
实数是什么1871年,德国数学家康托尔第一次提出了实数的严格定义。
整数和小数的集合也是实数,实数是有理数和无理数的集合。
而整数和分数统称有理数,所以整数和小数的集合也是实数。
小数分为有限小数、无限循环小数、无限不循环小数(即无理数),其中有限小数和无限循环小数均能化为分数,所以小数即为分数和无理数的集合,加上整数,即实数。
实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。
实数加、减、乘、除(除数不为零)、平方后结果还是实数。
什么是实数?实数是有理数和无理数的总称。
数学上,实数定义为与数轴上的点相对应的数。
实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
但仅仅以列举的方式不能描述实数的整体。
实数和虚数共同构成复数。
实数可以分为有理数和无理数两类,或代数数和超越数两类。
实数集通常用黑正体字母R表示。
沪教版(上海)数学七年级下册-12.1《实数的概念》 教案
《实数的概念》教案【教学目标】1、通过动手操作,回顾历史,经历发现无理数的过程,能通过二分法的原理对已知无理数进行估值,了解无理数的客观存在,以及在数轴上和有理数是稠密排列共存的。
2、通过对比分析,理解无理数是无限不循环小数,能够辨析一个数是不是无理数。
3、了解熟悉从整数到有理数,再到实数的一个扩充的过程,理解实数系统的构成结构,感受数学中严谨的分类思想。
【教学重点】对无理数简单的估值方法,理解无理数在数轴上是存在的。
【教学难点】理解无理数是无限不循环小数,以及实数与数轴上的点一一对应的关系【教学过程设计】一、复习引入我们对数的研究经历了一个漫长的过程,小时候自然数帮我们解决了数数的问题,直到学习了数轴我们知道了与正整数相对的还有负整数,它们与0统称为整数,至此我们学习的数的范围扩展了。
随着学习的深入我们发现在实际运算中:例如6÷3=2能整除,5÷3不能整除,因此我们有对数的学习进行了扩展,加入了分数的概念,我们知道分数可写成pq 形式,其中对p 、q 有没有什么要求呢?(p 、q 为整数,p 、q 互素,且P 不为0)。
平时为了感受分数的大小,又能够将分数p q 化为有限小数或者无限循环小数。
特别的当P=1时,p q 可以表示一个整数。
由此,我们将分数和整数统称为有理数,它们均可用pq 来表示。
问题1:数扩充至此,是不是我们生活中的所有数都是有理数,都能够表示成p q (p 、q 为整数,且P 不为0)的形式?即:有没有不是有理数的数?【分析】不是所有的数都能用这个形式表示,例如我们学的圆周率 即是一个无限不循环小数。
二、新课讲授 【活动一】正方形剪拼,引出2。
我们将桌面上的两个边长为1的正方形,分别沿着它的一条对角线剪开,得到四个形状大小相同的直角三角形,他们的面积都是21,再把这四个直角三角形拼成一个正方形。
问题1:新的这个正方形的面积是多少?(21121=+=+=S S S 正)问题2:这个正方形的边长是我们学过的有理数么?(不是,若设边长为x ,则可以得到22=x 。
专题12.1 实数的概念(解析版)
第十二章实数专题12.1 实数的概念基础巩固一、单选题(共6小题)1.下列各数中是无理数的是()A.﹣3B.πC.9D.﹣0.11【答案】B【分析】根据无限不循环小数叫做无理数,进而得出答案.【解答】解:A、﹣3,是有理数,不合题意;B、π,是无理数,符合题意;C、9,是有理数,不合题意;D、﹣0.11,是有理数,不合题意;故选:B.【知识点】无理数2.在实数﹣,﹣3.14,0,π,中,无理数有()A.1个B.2个C.3个D.4个【答案】B【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:﹣3.14是有限小数,属于有理数;0是整数,属于有理数;,是整数,属于有理数;无理数有,π共2个.故选:B.【知识点】算术平方根、立方根、无理数3.在实数,0,,3.1415926,,4.,3π中,有理数的个数为()A.3个B.4个C.5个D.6个【答案】D【分析】根据有理数的定义判断即可得到结果.【解答】解:在实数,0,=﹣1,3.1415926,=4,4.,3π中,有理数有,0,,3.1415926,,4.,有理数的个数为6个.故选:D.【知识点】实数4.下列实数中,无理数是()A.0B.C.D.0.1010010001【答案】C【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可得出答案.【解答】解:A、0是有理数,故本选项不符合题意;B、是有理数,故本选项不符合题意;C、是无理数,故本选项符合题意;D、0.1010010001是有理数,故本选项不符合题意.故选:C.【知识点】算术平方根、无理数5.关于的叙述,错误的是()A.是有理数B.面积为10的正方形边长是C.是无限不循环小数D.在数轴上可以找到表示的点【答案】A【分析】根据无理数的定义、无理数的估算、算术平方根、实数与数轴的知识进行判断.【解答】解:A、是无理数,原说法错误;B、面积为10的正方形边长是,原说法正确;C、是无理数,是无限不循环小数,原说法正确;D、在数轴上可以找到对应的点,原说法正确;故选:A.【知识点】实数、实数与数轴6.下列说法正确的是()A.实数与数轴上的点一一对应B.无理数与数轴上的点一一对应C.整数与数轴上的点一一对应D.有理数与数轴上的点一一对应【答案】A【分析】将无理数在数轴上表示出来,进而说明数轴上的点与实数一一对应.【解答】解:数轴不仅表示有理数,也可以表示无理数,例如:如图,矩形OABC,OA=1,OC=2,则OB=,以O为圆心,OB为半径画弧交数轴于点D,则点D所表示的数为:,同理,可以在数轴上表示其它的无理数,因此数轴上的点与实数一一对应,故选:A.【知识点】实数与数轴、无理数二、填空题(共6小题)7.﹣+2的绝对值是.【分析】直接利用绝对值的定义得出答案.【解答】解:﹣+2的绝对值是:|﹣+2|=﹣2.故答案为:﹣2.【知识点】实数的性质8.﹣绝对值是,2﹣的相反数是.【分析】根据负数的绝对值等于它的相反数解答;根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣绝对值是,2﹣的相反数是﹣2,故答案为:,﹣2.【知识点】实数的性质、算术平方根9.下列各数中0.102 030 405…,,π,,,0.56,,其中无理数有个.【答案】3【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【解答】解:,∴在0.102 030 405…,,π,,,0.56,中,无理数有0.102 030 405…,π,共3个.故答案为:3【知识点】立方根、无理数、算术平方根10.若a是一个含有根号的无理数,且3<a<4.写出任意一个符合条件的值.【分析】根据无理数的定义以及二次根式的性质解答即可.【解答】解:由a是一个含有根号的无理数,且3<a<4,可得符合条件的值可以是、等.故答案为:(答案不唯一).【知识点】无理数11.在,,,3.10100100001个数中,无理数是.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:,故在,,,3.10100100001个数中,,,3.10100100001是有理数,是无理数.故答案为:【知识点】算术平方根、立方根、无理数12.在|﹣3|,﹣2,0,π这4个数中,其中属于无理数的是.【答案】π【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【解答】解:|﹣3|=3,在|﹣3|=3,﹣2,0,π这4个数中,属于无理数的是π.故答案为:π.【知识点】无理数拓展提升三、解答题(共6小题)13.把下列各数填在相应的横线上1.4,2020,,,,0,,﹣π,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:;(2)分数:;(3)无理数:.【分析】根据整数、分数、无理数的定义判断即可.【解答】解:(1)整数:2020,0,;(2)分数:1.4,,;(3)无理数:,﹣π,1.3030030003…(每相邻两个3之间0的个数依次加1).故答案为:2020,0,;1.4,,;,﹣π,1.3030030003…(每相邻两个3之间0的个数依次加1).【知识点】实数14.把下列数按照要求填入相应的集合内:+8.5,﹣3,0.35,0,3.14,12,0.3,π,10%,﹣2.626626662…无理数集合:{…};负数集合:{…}.【分析】根据实数的定义及其分类求解可得.【解答】解:无理数集合:{π,﹣2.626626662……};负数集合:{﹣3,﹣2.626626662……}.故答案为:π,﹣2.626626662…;﹣3,﹣2.626626662….【知识点】实数15.把下列各数填入相应的集合中:3,﹣7,﹣,5.,0,﹣8,15,;正数集合:{};负数集合:{﹣﹣﹣};实数集合:{﹣﹣﹣};分数集合:{﹣﹣}.【分析】根据实数的分类进行归类即可.【解答】解:正数有:3,5.,15,;负数有:﹣7,﹣,﹣8;实数有:3,﹣7,﹣,5.,0,﹣8,15,;分数有:﹣,5.,﹣8,;故答案为3,5.,15,;﹣7,﹣,﹣8;3,﹣7,﹣,5.,0,﹣8,15,;﹣,5.,﹣8,.【知识点】实数16.把下列各数填在相应的大括号内:,﹣0.31,﹣(﹣2),﹣,1.732,,0,,1.1010010001…(每两个1之间依次多一个0)正分数:{…}无理数:{…}【分析】根据无限不循环小数是无理数,大于零的分数是正分数,可得答案.【解答】解:正分数:{,1.732…}无理数:{,1.1010010001…(每两个1之间依次多一个0)…},故答案为:,1.732;,1.1010010001…(每两个1之间依次多一个0)….【知识点】实数17.把下列各数填入相应的集合内7.5,,6,,,,﹣π,﹣0.(1)有理数集合{﹣}(2)无理数集合{﹣}(3)正实数集合{}(4)负实数集合{﹣﹣}【分析】首先实数可以分为有理数和无理数,无限不循环小数称之为无理数,除了无限不循环小数以外的数统称有理数;正整数、0、负整数统称为整数;正实数是大于0的所有实数,由此即可求解.【解答】解:(1)有理数集合{7.5,6,,,﹣0.}(2)无理数集合{,,﹣π}(3)正实数集合{7.5,,6,,,}(4)负实数集合{﹣π,﹣0.}故答案为:7.5,6,,,﹣0.;,,﹣π;7.5,,6,,,;﹣π,﹣0..【知识点】实数18.把下列各数的序号分别填入相应的集合里:①﹣1,②,③0.3,④0,⑤﹣1.7,⑥﹣2,⑦1.0101001…,⑧+6,⑨π负数集合{…}分数集合{…}无理数集合{…}整数集合{…}.【答案】【第1空】①⑤⑥【第2空】①②③⑤【第3空】⑦⑨【第4空】④⑥⑧【分析】直接利用负数、分数、无理数、整数的定义分别分析得出答案.【解答】解:负数集合{①⑤⑥…};分数集合{①②③⑤…}无理数集合{⑦⑨…};整数集合{④⑥⑧…}.故答案为:①⑤⑥;①②③⑤;⑦⑨;④⑥⑧.【知识点】实数。
12.1 实数的概念 课件
问题6 : 2是个什么数?
有理数
有p (q限 小0) 数 q无限循环小数
无限不循环小数
问题7: 像这样的无限不循环小数还有吗?
0.101001000100001… (它的位数无限、相邻的两个1之间0的个数依次加1)
0.123456789101112131415161718192021…
(连续不断地有依次限写小正整数数) 有理数
12.1 实数的概念
以生命为代价de发现
古希腊的毕达哥拉斯学派 (公元前约470年前)
“万物皆为数”(指有理数)
希帕斯(Hippasus)
这意味着什么?
发现了一种实际存在的数, 却不能表示为分数。
问题3 :面积为2的正方形边长是多少?
1
Байду номын сангаас
2
1
?
问题1 :面积为1
的正方形的边长是多 少?
4
2
问题2: 面积为4 的正方形的边长 是多少?
实数
无限循环小数
无理数
无限不循环小数
2
例题1、将下列各数放入图中适当的位置:
22
-00..21.30.、10015000、100001、、00.3、7-323、733237、…4(3、它之3的间.1位74的、数个无7数限依且次相加邻1的) 两个
有理数 -0.101001000100001、
3.14、
22
.. 、0.23
7
整数
0、 -2
无理数
2 5
0.373373337……
正整数
4
例题2 判断下列说法是否正确,并说明理由:
1)无限小数都是无理数;…………………………( ) 2)无理数都是无限小数;…………………………( ) 3)正实数包括正有理数和正无理数;…………( )
沪教版数学七年级下册12.1《实数的概念》教学设计
沪教版数学七年级下册12.1《实数的概念》教学设计一. 教材分析沪教版数学七年级下册12.1《实数的概念》是学生在学习了有理数的基础上,进一步扩大数的概念,认识实数的教材。
这部分内容是整个初中数学的基础,对于学生来说,具有承前启后的作用。
本节内容主要介绍实数的概念,包括实数的定义、性质以及实数与数轴的关系等。
教材通过丰富的实例和生动的语言,引导学生逐步理解实数的概念,体会实数在数学中的重要性。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的相关知识,具备了一定的数学基础。
但实数的概念相对抽象,需要学生具有一定的抽象思维能力。
此外,实数与生活实际联系紧密,学生需要能够将抽象的数学概念与实际问题相结合。
根据学生的实际情况,我在教学过程中要注重启发学生思维,培养学生的抽象思维能力,同时注重联系生活实际,提高学生的学习兴趣。
三. 说教学目标1.知识与技能:理解实数的概念,掌握实数的性质,能够运用实数解决一些简单的问题。
2.过程与方法:通过观察、思考、交流等活动,培养学生的抽象思维能力,提高学生运用数学语言表达和解决问题的能力。
3.情感态度与价值观:体会数学与生活的紧密联系,激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 说教学重难点1.教学重点:实数的概念、性质以及实数与数轴的关系。
2.教学难点:实数的性质的理解和运用,实数与数轴的关系的把握。
五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法、合作学习法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、实物模型、数轴等教学工具,直观展示实数的概念和性质,提高学生的学习兴趣和理解能力。
六. 说教学过程1.导入新课:通过复习有理数的相关知识,引导学生回顾数的概念,为新课的学习做好铺垫。
2.探究实数的定义:引导学生观察实例,思考实数的定义,并通过讨论、交流得出实数的定义。
3.学习实数的性质:学生进行小组合作学习,探讨实数的性质,引导学生发现并证明实数的性质。
12.1实数的概念
思考:有没有学习过不能化为分数的数? 如:π
活动2
新知探索
我们知道,用四个面积为1的正方形可以 拼成一个面积为4的正方形;
如何将面积为1的两个正方形拼成一个面
积为2的正方形?
C
A
D
B
正方形ABCD的边长怎么表示?
活动2
新知探索
解:设正方形ABCD的边长为x,那么x2=2 即:x的平方是2.
2 :读作根号2
提问: 它是有理数吗?
还有没有其它的无理数? 0.1010010001…(它的位数无限,相邻 两个1之间0的个数依次加1) 0.123456789101112…(连续不断的依次 写正整数)
活动2
新知探索
概念:无限不循环小数叫做无理数.
无理数也有正负之分.如:-π, 2
实数
有理数 无理数
整数 分数
3, 0.3,
2,
0,
3.1,
2,
7,
2.2151515
5
3
非负数
负数
3, 0, 3.1,
7 , 2.2151515 3
0.3, 2 , 2 5
活动1
知识回顾
整数 有理数
分数
正有理数 有理数 零
负有理数
由于整数可以化为分母为1的分数, 有理数可以看做能化为分数的数.
七年级下册第十二章 实数
活动1
知识回顾
1. 把下列各数填入适当的位置:
3, 0.3,
2,
0,
3.1,
2,
7,
2.2151515
5
3
整数 3,0,-2
分数
0.3,
初二知识整理 第十二章 实数
12.1 实数的概念1、无理数:无限不循环的小数叫做无理数2、实数:有理数和无理数统称为实数3、实数分类:正有理数有理数零有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数12.2 平方根和开平方1、如果一个数的平方等于a,那么这个数叫做a的平方根2、求一个数a的平方根的运算叫做开平方,a叫做被开方数3、正数a的两个平方根可以用“± a ”表示,其中 a 表示a的正平方根(又叫算术平方根),读作“根号a”;- a 表示a的负平方根,读作“负根号a”4、零的平方根记作 0 ,0 =012.3 立方根和开立方1、如果一个数的立方等于a,那么这个数叫做a的立方根,用 a 表示,读作“三次根号a”,a 中的a叫做被开方数,“3”叫做根指数2、求一个数a的立方根的运算叫做开立方3、任意一个实数都有立方根,而且只有一个立方根4、( a )=a, a=a12.4 n次方根1、如果一个人数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根,当n为奇数时,这个数为a的奇次方根;当n为偶数时,这个数为a的偶次方根2、求一个数a的n次方根的运算叫做开n次方,a叫做被开方数,n叫做根指数3、实数a的奇次方根有且只有一个,整数a的偶次方根有两个,他们互为相反数,负数的偶次方根不存在,零的n次方根等于零12.5 用数轴上的点表示实数1、一个实数在数轴上所对应的点到原点的距离叫做这个数的绝对值,实数a的绝对值记作a2、绝对值相等、符号相反的两个数叫做互为相反数;零的相反数是零,非零实数a的相反数是-a3、在数轴上,如果点A、点B所对应的数分别为a、b,那么A、B两点的距离AB= a-b12.6 实数的运算1、完全符合实际地表示一个量多少的数叫做准确数;与准确数到达一定接近程度的数叫做近似值(或近似值)2、近似数与准确数的接近程度即近似程度,对近似程度的要求叫做精确度3、近似数的精确度通常有两种表达方式:(1)精确到哪一位(2)指定保留几个有效数字 [对于一个近似数,从左边第一个不是零的数字起,往右到末尾数字为止的所有数字,叫做这个近似数的有效数字]12.7 分数指数幂a =a (a≥0)a =a (a>0)典型题:。
人教版实数知识点总结PPT
人教版实数知识点总结PPT一、实数的概念及分类1. 实数的概念实数是包括有理数和无理数在内的数的集合。
有理数是可以表示为两个整数的比值的数,无理数是不能表示为两个整数的比值的数。
2. 实数的分类实数可以分为有理数和无理数两大类。
有理数包括整数、分数和纯循环小数等,而无理数包括无限不循环小数等。
二、实数的运算1. 实数的加法实数的加法遵循结合律、交换律和分配律,无论是相同性质的数相加,还是不同性质的数相加,都能得到正确的结果。
2. 实数的减法实数的减法可以转换为加法运算,例如a-b可以转换为a+(-b)来进行计算。
3. 实数的乘法实数的乘法同样遵循结合律、交换律和分配律,任何两个实数相乘都能得到一个实数。
4. 实数的除法实数的除法也可以转换为乘法运算,例如a÷b可以转换为a×(1/b)进行计算。
5. 实数的乘方实数的乘方包括正整数次方、负整数次方和零次方等,实数的乘方满足一些特殊的性质。
6. 实数的开方实数的开方包括二次根、三次根、四次根等,开方的结果可能是有理数也可能是无理数。
三、实数的大小比较1. 实数的绝对值实数a的绝对值是a的非负数表示形式,规定|a|=a,当a≥0时,|a|=a;当a<0时,|a|=-a。
2. 实数的大小比较实数的大小比较包括同号数的比较和异号数的比较,同号数比较时绝对值大的数更大,异号数比较时正数大于负数。
3. 实数的大小关系在数轴上,实数的大小关系可以通过数轴上的点的位置来表示,可以方便的比较大小关系。
四、实数的运算性质1. 实数加法的性质实数的加法具有封闭性、结合性、交换性和可逆性等性质。
2. 实数乘法的性质实数的乘法具有封闭性、结合性、交换性和可逆性等性质。
3. 实数的分配律实数的加法和乘法具有分配律,即a(b+c)=ab+ac。
4. 实数的对称性实数具有对称性,即对于任意实数a和b,有-a=-b。
五、实数的应用1. 实数的应用范围实数的概念和运算性质在现实生活中有着广泛的应用,包括物体的长度、时间的计算、货币的计算等。
实数知识点总结归纳
实数知识点总结归纳一、实数的定义1. 实数的定义实数是指包括有理数和无理数在内的所有数的集合。
有理数是可以表示为两个整数的比值的数,包括整数、分数和循环小数等;无理数是不能表示为有理数的数,如π和根号2等。
实数的概念是对一切可以在数轴上标出的点的统称。
2. 实数的表示实数可以用十进制数表示,包括整数部分和小数部分。
例如,数3.14是一个实数,3是它的整数部分,0.14是它的小数部分。
3. 实数的性质实数具有有限性、稠密性、连续性和比较性等基本性质。
有理数与无理数的性质有所不同,但它们都是实数的一部分。
二、实数的性质1. 实数的顺序性实数集合中任意两个数都可以比较大小,即对于任意a,b∈R,要么a<b,要么a= b,要么a>b。
2. 实数的稠密性实数集合中任意两个不相等的实数之间都有无穷多个实数。
例如,任意两个有理数之间必存在无理数,任意两个无理数之间必存在有理数。
3. 实数的加法性质实数的加法运算满足交换律、结合律和分配律。
对于任意a,b,c∈R,有a+b=b+a,(a+b)+c=a+(b+c),a(b+c)=ab+ac。
4. 实数的乘法性质实数的乘法运算也满足交换律、结合律和分配律。
对于任意a,b,c∈R,有ab=ba,(ab)c=a(bc),a(b+c)=ab+ac。
另外,实数0的乘法恒等于0,实数1的乘法恒等于自身。
5. 实数的整除性实数可以相互整除,如果a,b∈R,且a≠0,则必存在一个实数c,使得a=bc。
这个性质表明了实数的整除性。
6. 实数的实数运算实数的加法、减法、乘法和除法都是封闭的,即对于任意a,b∈R,a+b,a-b,ab,a/b∈R。
这意味着实数的四则运算可以得到实数。
7. 实数的有理数和无理数性质有理数和无理数的性质有所不同,其中有理数可以表示为有限小数、循环小数或分数,而无理数不能用这些形式表示。
三、实数的应用1. 实数在数轴上的表示实数可以用数轴上的点表示,数轴是一个无限延伸的直线,用来表示实数的大小和相对位置。
沪教版数学七年级下册12.1《实数的概念》教学设计
沪教版数学七年级下册12.1《实数的概念》教学设计一. 教材分析《实数的概念》是沪教版数学七年级下册第12.1节的内容,主要包括实数的定义、性质和运算。
本节内容是学生学习实数系统的开始,对于学生理解数学概念,掌握数学运算具有重要意义。
教材通过实例引入实数的概念,使学生感受实数在实际生活中的应用,培养学生的数学应用意识。
二. 学情分析七年级的学生已具备一定的代数基础,对于数学概念和运算有一定的理解。
但实数概念较为抽象,学生可能难以理解。
因此,在教学过程中,需要注重引导学生从具体实例中发现实数的性质,逐步形成实数的抽象概念。
三. 教学目标1.理解实数的定义,掌握实数的性质。
2.能够进行实数的运算。
3.培养学生的数学思维能力,提高学生的数学应用意识。
四. 教学重难点1.实数的定义和性质。
2.实数的运算方法。
五. 教学方法1.实例导入:通过生活中的实际问题,引导学生思考实数的概念。
2.小组讨论:让学生在小组内讨论实数的性质,培养学生的合作能力。
3.自主学习:引导学生通过自主学习,掌握实数的运算方法。
4.练习巩固:通过大量练习,使学生熟练掌握实数的运算。
六. 教学准备1.教学课件:制作课件,展示实数的定义和性质。
2.练习题:准备适量练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活中的实际问题,如地图上的距离、物体的高度等,引导学生思考实数的概念。
提问:这些实际问题中的数是什么类型的数?它们有什么共同特点?2.呈现(10分钟)介绍实数的定义,通过课件展示实数的性质,如整数、分数、无理数等。
同时,介绍实数在数轴上的表示方法,使学生形成对实数的直观认识。
3.操练(10分钟)让学生进行实数的基本运算,如加、减、乘、除等。
引导学生通过自主学习,掌握实数的运算方法。
在此过程中,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成练习题,检查学生对实数概念和运算的掌握情况。
教师及时批改,给予反馈,指导学生纠正错误。
(完整版)12.1实数的概念
12.1实数的概念教学目标1.通过动手操作经历发现无理数的过程,了解无理数是客观存在的数,了解无理数的发现是人类理性思维的胜利.2. 通过对比分析,理解无理数是无限不循环小数,会辨别一个数是否是无理数.3. 了解数系从整数到有理数、再到实数的扩展过程,理解实数系统的结构,体会分类思想。
教学重点及难点理解无理数是无限不循环小数,会辨别一个数是否是无理数。
一、 概念1.无理数无限不循环小数叫做无理数。
无理数也有正、负之分。
只有符号不同的两个无理数,它们互为相反数。
2.实数有理数和无理数统称为实数。
实数可以这样分类:正有理数 有理数 零 -—有限小数或无限循环小数 实数 负有理数正无理数无理数 —-无限不循环小数负无理数二、 练习1.将下列各数填入适当的括号内:0、—3、2、6、3。
14159、32.0 、722、5、π、0.3737737773….有理数:﹛ ﹜;无理数:﹛ ﹜;{ {{正实数:﹛﹜;负实数:﹛﹜;非负数:﹛﹜;整数:﹛﹜.2.判断下列说法是否正确,并说明理由:(1) 无限小数都是无理数;(2)无理数都是无限小数;(3)正实数包括正有理数和正无理数;(4)实数可以分为正实数和负实数两类.3.请构造几个大小在3和4之间的无理数.4.用“是”、“不是”、“统称”、“包括”、“叫做”填空,并体会这些词的含义:. (2) 0 有理数。
(3) 无限不循环小数无理数。
(4) 实数有理数和无理数.(5)正整数、0和负整数整数.(6)有理数有限小数或无限循环小数。
实数 知识点总结
实数知识点总结一、实数的基本概念实数是指所有有理数和无理数的集合,用符号R表示。
有理数是可以表示为两个整数之比的数,包括整数和分数;无理数是不能表示为有理数的数,如根号2、圆周率等。
实数包括正实数、负实数和零。
正实数是大于零的实数,用正数符号+表示;负实数是小于零的实数,用负号-表示;零是没有方向的实数,用0表示。
二、实数的性质1. 实数集的有序性:实数集是有序的,任意两个实数a和b之间一定有大小关系,即a <b、a = b、a > b。
2. 实数集的稠密性:实数集中任意两个不相等的实数之间永远存在另一个实数。
3. 实数集的等差性:实数集中的任意两个数相减得到的差总是一个实数。
4. 实数集的无限性:实数集是无限的,不仅包括无限的有理数,还包括无限的无理数。
5. 实数集的稳定性:实数集中的任意两个数进行加法、减法、乘法、除法等运算后,得到的结果仍然是一个实数。
三、实数的表示与比较实数可以用小数、分数、根式等形式进行表示。
对于小数,可以用有限小数和无限循环小数两种形式;对于分数,可以用最简分数形式进行表示;对于根式,可以用开平方、开立方等形式进行表示。
对于实数的比较,可以通过大小关系符号进行比较。
当a > b时,表示a比b大;当a < b 时,表示a比b小;当a = b时,表示a等于b。
四、实数的运算规则1. 实数的加法:实数a和b的加法运算按照一般的加法规则进行,即a + b = b + a。
其中,满足交换律、结合律和单位元。
2. 实数的减法:实数a和b的减法运算可以看作加法运算的逆运算,即a - b = a + (-b)。
其中,a减b等于a加上b的相反数。
3. 实数的乘法:实数a和b的乘法运算按照一般的乘法规则进行,即a * b = b * a。
其中,满足交换律、结合律和单位元。
4. 实数的除法:实数a和b的除法运算可以看作乘法运算的逆运算,即a / b = a * (1/b)。
什么是实数?实数包括什么数
什么是实数?实数包括什么数
想要了解什么是实数的小伙伴,赶紧来瞧瞧吧!下面由小编为你精心准备了“什么是实数?实数包括什么数”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!
什么是实数?实数包括什么数
实数是有理数和无理数的总称。
数学上,实数定义为与数轴上的实数点相对应的数。
实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
实数可以分为有理数和无理数两类,或代数数和超越数两类,实数集通常用黑正体字母R表示,实数是不可数的。
实数和虚数共同构成复数,实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性。
拓展阅读:实数和虚数统称为
实数和虚数统称为复数。
形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。
当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
有理数是整数和分数的集合,整数也可看做是分母为一的分数。
有理数的小数部分是有限或为无限循环的数,不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
实数,是有理数和无理数的总称。
数学上,实数定义为与数轴上的点相对应的数。
实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应,但仅仅以列举的方式不能描述实数的整体。
实数和虚数共同构成复数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:设正方形ABCD的边长为x, 那么 x2 = 2
这个数x表示面积为2的正方形的 边长,是现实世界中真实存在的 线段长度。由于2这个数和2有关, 我们现在用 (读作“根号2”)来 表示。
42 1 x
发
0011 0010 1010 1101 0001 0100 1011
分数
12
3 11 0.5
12
4 注意:1、有限小数和无限循环小数也是分数.
回顾有理数的定义和分类
0011
00
•
1定0 1义01:0 1整101数0和001分01数00统10称11为有理数。
1 • 分类:
正整数
有 理 数
整数零
负整数
分数负 正分 分数 数
1 –无理数包括正无理数和负无理数。
2 –只有符号不同的两个无理2数, 2
4 它们互为相反数。
归纳
• 无理数 00 11 0 010 1 01 0 110 1 00 01 01 00 1 011 • 实数
–有理数和无理数统称为实数。 –实数可以这样分类:
有限小数或 无限循环小数
41 2 无限不循环小数
• 3.请构造几个大小在3和4之间的无理数。
–3.101001000100001……(它的位数无限且相邻的两个“1”
1 之间“0”的各数依次加1个)
2 – 10
4 –
• 例题2.是非题
–无限小数都是无理数;
0011 0010 1010 1101 0001 0100 1011
–无理数都是无限小数;
( )× ( )√
–正实数包括正有理数和正无理数; ( )√
–实数可以分为正实数和负实数两类; (
1 –带根号的数都是无理数;
(
–不含根号的数不一定是有理数;
(
2 –实数不是有理数就是无理数;
(
4 –无限小数不能化为分数;
(
)× )×
)√
)√ )×
练习
0011 0010 1010 1101 0001 0100 1011
• 4.用“是”、“不是”、“统称”、“包括”、 “叫做”填空,并体会这些词的含义:
–(1) 2 不是 分数。
–(2) 0 是 有理数。
1 –(3) 无限不循环小数 叫做无理数。
2 –(4) 实数 包括有理数和无理数。
–(5) 正整数、0和负整数 统称 整数。
4 –(6) 有理数 包括有限小数和无限循环小数。
2 • 如果把整数看作分母为1的分数,那么有理数就是用 两个整数之比表p (示p, q的都分是整 数数:,且 q 0) 4 q
发现
0011 0010 1010 1101 0001 0100 1011
• 问题1:面积为2的正方形存在吗?
(小组讨论,通过动手操 作,剪拼正方形)
412
发现
0011 0010 1010 1101 0001 0100 1011
自然数
分数、小数
负数
2 0、1、2、
4/5、0.45、
-2、-3/7、
4 3……
0.3……
-0.53……
1、把下列的数字填入适当的位置
•
3,π,0.3,0,-
1
,
3
11
,
0.101001....,
0.5
2 12 00 11 0 010 1 01 0 110 1 00 01 01 00 1 011
整数
现
• 追问:面积为3的正方形,它的边长又如何表
示?若面积为5呢?
1 3
2 • 类似的,分别用 (读作“根号3”)、 5 4 (读作“根号5”)来表示。
发现
• 问题3: 2是有理数吗?
发现
0011 0010 1010 1101 0001 0100 1011
• 问题4:无限不循环小数还有吗?
(请你再举出几个无限不循环小数的例子)
例题1.将下列各数填入适当的图内:
0 、 3
、
2
、6
、3.14159
、22
、0.
•
2
•
3
、
7
0011 0010 1010 1101 0001 0100 1011
5、、0.3737737773...
实数
有理数 整数 正整数
42 1 无理数
练习
0011 0010 1010 1101 0001 0100 1011
– 圆周率
1 – 我们还可以构造几个无限不循环小数,
2 如:0.202002000200002……、
4 0.1234567891011121314151617……等.
归纳
0011 0010 1010 1101 0001 0100 1011
• 无理数
–无限不循环小数叫做无理数(irrational
number)。
12.1 实数的概念
0011 0010 1010 1101 0001 0100 1011
412
认识过程
0011 0010 1010 1101 0001 0100 1011
• 人类对于宇宙的认识过程
(地心说——日心说——日心地动学说——太阳系——
银河系——仙女星系)
1 • 人类对数的认识也经历了一个逐步扩展的过程: