人教版高一必修2数学期末测试题

合集下载

高一数学必修2期末试题及答案解析(K12教育文档)

高一数学必修2期末试题及答案解析(K12教育文档)

高一数学必修2期末试题及答案解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修2期末试题及答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修2期末试题及答案解析(word版可编辑修改)的全部内容。

高一数学必修2期末试题及答案解析参考公式:圆台的表面积公式:()22''S r r r l rl π=+++('r r 、分别为圆台的上、下底面半径,l 为母线长)柱体、椎体、台体的体积公式: =(V Sh S 柱体为底面积,h 为柱体高)1=(3V Sh S 椎体为底面积,h 为椎体高)()1=''3V S S S S h ++台体(',S S 分别为上、下底面面积,h 为台体高)一、选择题1。

下列几何体中是棱柱的有A 、1个B 、2个C 、3个D 、4个2. 如图所示,正方体的棱长为1,点A 是其一棱的中点,则点A 在空间直角坐标系中的坐标是A 、11,,122⎛⎫⎪⎝⎭B 、11,1,2⎛⎫⎪⎝⎭C 、11,1,22⎛⎫⎪⎝⎭D 、11,,12⎛⎫ ⎪⎝⎭3. 如图所示,长方体1111ABCD A B C D -中,130BAB ∠=°,则1C D 与1B B 所成的角是A、60°B、90°C、30°D、45°4。

下列直线中,与直线10x y+-=的相交的是A、226x y+=B、0x y+=C、3y x=-- D、1y x=-5。

在空间四边形ABCD的各边AB BC CD DA、、、上的依次取点E F G H、、、,若EH FG、所在直线相交于点P,则A、点P必在直线AC上B、点P必在直线BD上C、点P必在平面DBC外D、点P必在平面ABC内6. 已知直线aα⊂,给出以下四个命题:①若平面//α平面β,则直线//a平面β;②若直线//a平面β,则平面//α平面β;③若直线a不平行于平面β,则平面α不平行于平面β。

人教版高中数学必修二期末测试卷及答案详解

人教版高中数学必修二期末测试卷及答案详解

人教版高中数学必修二期末检测卷一、单项选择题(本大题共8小题,共40.0分)1.如图,在正方体EFGH−E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A. 平面E1FG1与平面EGH1B. 平面FHG1与平面F1H1GC. 平面F1H1H与平面FHE1D. 平面E1HG1与平面EH1G2.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出如下命题:①若α⊥β,α∩β=m,n⊂a,n⊥m,则n⊥β;②若α⊥γ,β⊥γ,则α//β;③若α⊥β,m⊥β,m⊄α.则m//α;④若α⊥β,m//α,则m⊥β.其中正确命题的个数为()A. 1B. 2C. 3D. 43.如果直线l,m与平面α,β,γ之间满足:l=β∩γ,l//α,m⊂α和m⊥γ,那么()A. α⊥γ且l⊥mB. α⊥γ,且m//βC. m//β且l⊥mD. α//β且α⊥γ4.著名数学家华罗庚曾说过,“数无形时少直觉,形少数时难入微”,事实上,很多代数问题都可以转化为几何问题加以解决,如:√(x−a)2+(y −b)2可以转化为平面上点M(x,y)与点N(a,b)的距离.结合上述观点,可得f(x)=√x2+4x+20+√x2+2x+10的最小值为()A. 2√5B. 5√2C. 4D. 85.已知直线l1:ax+(a+2)y+2=0与l2:x+ay+1=0平行,则实数a的值为()A. −1或2B. 0或2C. 2D. −16.已知两直线的方程分别为l1:x+ay+b=0,l2:x+cy+d=0,它们在坐标系中的位置如图所示,则()A. b>0,d<0,a<cB. b>0,d<0,a>c1C. b <0,d >0,a >cD. b <0,d >0,a <c7. 对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0,圆C:x 2+y 2+2x =b 2−1(b >0)的位置关系是“平行相交”,则b 的取值范围为 ( )A. (√2,3√22)B. (0,√2)C. (0,3√22)D. (√2,3√22)∪(3√22,+∞) 8. 直线y =kx +3与圆(x −3)2+(y −2)2=4相交于M ,N 两点,若|MN|=2√3,则k 的值是( )A. −34B. 0C. 0或−34D. 34 二、填空题(本大题共5小题,共25.0分)9. 如图所示,在长方体ABCD −A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 .10. 过两圆x 2+y 2−2y −4=0与x 2+y 2−4x +2y =0的交点,且圆心在直线l :2x +4y −1=0上的圆的方程是_________________.11. 与直线x +y −2=0和曲线x 2+y 2−12x −12y +54=0都相切的半径最小的圆的标准方程是_____________.12. 如图所示,在棱长为2的正方体ABCD −A 1B 1C 1D 1中,A 1B 1的中点是P ,过点A 1作与截面PBC 1平行的截面,则截面的面积为 .13. 已知点M 是点P(4,5)关于直线y =3x −3的对称点,则过点M 且平行于直线y =3x −3的直线的方程是________.三、解答题(本大题共7小题,共84.0分)14. 如图,在三棱柱ABC −A 1B 1C 1中,O 为AB 的中点,CA =CB ,AB =AA 1,∠BAA 1=60∘.(1)证明:AB⊥平面A1OC;(2)若AB=CB=2,OA1⊥OC,求三棱锥A1−ABC的体积.15.已知直线m:(a−1)x+(2a+3)y−a+6=0,n:x−2y+3=0.(1)当a=0时,直线l过m与n的交点,且它在两坐标轴上的截距相反,求直线l的方程;(2)若坐标原点O到直线m的距离为√5,判断m与n的位置关系.16.求过点P(4,−1)且与直线3x−4y+6=0垂直的直线方程.317.在平面直角坐标系xOy中,O为坐标原点,点A(0,3),设圆C的半径为1,圆心C(a,b)在直线l:y=2x−4上.(1)若圆心C也在直线y=−x+5上,求圆C的方程;(2)在上述的条件下,过点A作圆C的切线,求切线的方程;(3)若圆C上存在点M,使|MA|=|MO|,求圆心C的横坐标a的取值范围.18.如图,在直三棱柱ABC−A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1//平面DEC1;(2)BE⊥C1E.19.已知ΔABC的顶点B(3,4),AB边上的高所在的直线方程为x+y−3=0,E为BC的中点,且AE所在的直线方程为x+3y−7=0.(Ⅰ)求顶点A的坐标;(Ⅱ)求过E点且在x轴、y轴上的截距相等的直线l的方程.20.已知直线l:x−ay+1=0与圆C:x2+y2−4x−2y+1=0交于A,B两点,|AB|=2√3.(1)求a的值;(2)求与直线l平行的圆C的切线方程.答案和解析1.【答案】A【解析】【分析】本题考查了线面平行的判定,面面平行的判定,属于中档题.根据几何体中的线段特征确定平行关系,再确定线面的平行关系,E1G1//面EGH1,E1F//面EGH1,即可得出确定的平行平面.【解答】解:如图:在正方体EFGH−E1F1G1H1中,连接EG,E1F,E1G1,H1E,H1G,∵EG//E1G1,EG⊂面EGH1,E1G1⊄面EGH1,∴E1G1//面EGH1,∵E1F//H1G,H1G⊂面EGH1,E1F⊄面EGH1,∴E1F//面EGH1,∵E1G1∩E1F=E1,E1G1,E1F⊂面E1FG1,∴面EGH1//面E1FG1,故选A.2.【答案】B【解析】【分析】本题以命题的真假判断为载体,考查了空间直线与平面的位置关系及平面与平面的位置关系,熟练掌握空间线面关系的几何特征及判定方法是解答的关键.根据空间线面平行和垂直的几何特征及判定方法,逐一分析四个命题的真假,最后综合讨论5结果,可得答案.【解答】解:根据面面垂直的性质,故①正确;由α⊥γ,β⊥γ,得到α//β或相交,故②错误;由α⊥β,且m⊥β,得到m与α可能平行,也可能m在平面面α内,又m⊄α,则m//α,故③正确;若α⊥β,m//α,则m与β可能平行,可能相交,也可能线在面内,故④错误;其中正确命题的个数为2.故选B.3.【答案】A【解析】【分析】本题考查空间直线与平面之间的位置关系,画出图形,帮助分析,考查逻辑思维能力和分析判断能力,属于基础题.m⊂α和m⊥γ⇒α⊥γ,l=β∩γ,l⊂γ.然后推出l⊥m,得到结果.【解答】解:∵m⊂α且m⊥γ,∴α⊥γ,∵l=β∩γ,∴l⊂γ.又∵m⊥γ,∴l⊥m,即α⊥γ且l⊥m,故选A.4.【答案】B【解析】【分析】本题考查利用函数的几何意义求函数的最值,考查两点之间的距离公式的运用,属于中档题.由题意得到f(x)的几何意义为点M(x,0)到两定点A(−2,4)与B(−1,3)的距离,即要求f(x)的最小值,可转化为求|MA|+|MB|的最小值,利用对称思想可知|MA|+|MB|=|MA′|+|MB|≥|A′B|即可求解.【解答】解:∵f(x)=√x2+4x+20+√x2+2x+10=√(x+2)2+(0−4)2+√(x+1)2+(0−3)2,∴f(x)的几何意义为点M(x,0)到两定点A(−2,4)与B(−1,3)的距离之和.设点A(−2,4)关于x轴的对称点为A′,则A′的坐标为(−2,−4).要求f(x)的最小值,可转化为求|MA|+|MB|的最小值,利用对称思想可知|MA|+|MB|=|MA′|+|MB|≥|A′B|=√(−1+2)2+(3+4)2=5√2,即f(x)=√x2+4x+20+√x2+2x+10的最小值为5√2.故选B.5.【答案】D【解析】【分析】本题考查了两条直线平行的充要条件,考查了推理能力与计算能力,属于基础题.由a·a−(a+2)=0,即a2−a−2=0,解得a.经过验证即可得出.【解答】解:由题意知a⋅a−(a+2)=0,即a2−a−2=0,解得a=2或−1.经过验证可得:a=2时两条直线重合,舍去.∴a=−1.故选D.6.【答案】C【解析】【分析】本题考查直线的一般式向斜截式转化,属于基础题.将直线转化成斜截式,根据图象得两直线斜率、截距的不等关系,解不等式即可得解.【解答】解:l1 :y=−1a x−ba,l2 : y=−1cx−dc,由图象知:①−1a >−1c>0,②−ba<0,③−dc>0,,故选C.77.【答案】D【解析】【分析】本题主要考查直线与圆的位置关系及应用,属于中档题.结合新定义,求出圆心到直线的距离,根据相离相切的条件求出b 的范围,进而求出平行相交时b 的范围.【解答】解:圆C 的标准方程为(x +1)2+y 2=b 2,由两直线平行得a(a +1)−6=0,解得a =2或a =−3.又当a =2时,直线l 1,l 2重合,应舍去,∴两平行线的方程分别为x −y −2=0和x −y +3=0.由直线x −y −2=0与圆(x +1)2+y 2=b 2相切,得b =√2=3√22; 由直线x −y +3=0与圆相切,得b =√2=√2.当两直线与圆都相离时,b <√2.∴“平行相交”时,b 满足{b >√2,b ≠3√22, ∴b 的取值范围是(√2,3√22)∪(3√22,+∞). 故选D . 8.【答案】C【解析】【分析】本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于中档题. 由点到直线距离公式可得弦心距d =√k 2+1,再由弦长,半径,弦心距之间关系列出关于k 的等式,由此解得k 的值.【解答】解:圆心(3,2)到直线y =kx +3的距离d =√k 2+1,则|MN|=2 √4−(3k+1)2k 2+1=2√3,解得k =0或k =−34. 故选C .9.【答案】√105.【解析】【分析】本题主要考查直线与平面所成的角、线面垂直的判定,属于中档题.根据正方形条件得到线线垂直,再由线面垂直得到线线垂直,进而证明线面垂直找到点C1在面BB1D1D上的射影O,即线面角∠OBC1,进一步利用锐角三角形求解.【解答】解:如图所示,在长方体ABCD−A1B1C1D1中,连接A1C1、B1D1,交于O点,连接OB,由已知四边形A1B1C1D1是正方形,∴A1C1⊥B1D1,又∵BB1⊥平面A1B1C1D1,OC1⊂平面A1B1C1D1,∴OC1⊥BB1,而BB1∩B1D1=B1,∴OC1⊥平面BB1D1D.∴OB是BC1在平面BB1D1D内的射影.∴∠C1BO是BC1与平面BB1D1D所成的角.在正方形A1B1C1D1中,OC1=12A1C1=12√22+22=√2.在矩形BB1C1C中,BC1=√BC2+CC12=√4+1=√5.9∴sin∠C1BO=OC1BC1=√2√5=√105.故答案为√105.10.【答案】x2+y2−3x+y−1=0【解析】【分析】本题考查求圆的一般方程,圆系方程及其应用,属于中档题.可设新圆方程为x2+y2−4x+2y+λ(x2+y2−2y−4)=0(λ≠−1),通过整理,不难表示出新圆的圆心坐标,接下来根据新圆的圆心在直线l上,将所得圆心坐标代入,解方程即可得解.【解答】解:设所求圆的方程为x2+y2−4x+2y+λ(x2+y2−2y−4)=0(λ≠−1).整理得x2+y2+−41+λx+2−2λ1+λy−4λ1+λ=0,所以圆心坐标为(21+λ,λ−11+λ),因为圆心在直线2x+4y=1上,故41+λ+4(λ−1)1+λ=1,解得λ=13.所以所求圆的方程为x2+y2−3x+y−1=0.故答案为x2+y2−3x+y−1=0.11.【答案】(x−2)2+(y−2)2=2【解析】【试题解析】【分析】本题考查直线与圆相切的性质的应用,求圆的标准方程,难度一般.先求出圆心C1(6,6)到直线x+y−2=0的距离为d=√2=5√2.再求过点C1且垂直于x+ y−2=0的直线y=x,所求的最小圆的圆心C2在直线y=x上,圆心C2到直线x+y−2=0的距离为5√2−3√22=√2,则圆C2的半径长为√2.设C2的坐标为(x0,x0),则00√2=√2,解得x0=2(x0=0舍去),所以圆心坐标为(2,2),即可求出所求.【解答】解:曲线化为(x−6)2+(y−6)2=18,=5√2.其圆心C1(6,6)到直线x+y−2=0的距离为d=|6+6−2|√2过点C1且垂直于x+y−2=0的直线为y−6=x−6,即y=x,所以所求的最小圆的圆心C2在直线y=x上,如图所示,=√2,圆心C2到直线x+y−2=0的距离为5√2−3√22则圆C2的半径长为√2.设C2的坐标为(x0,x0),=√2,解得x0=2(x0=0舍去),则00√2所以圆心坐标为(2,2),所以所求圆的标准方程为(x−2)2+(y−2)2=2.故答案为(x−2)2+(y−2)2=2.12.【答案】2√6【解析】【分析】本题考查截面面积的求法,解题时要认真审题,注意空间思维能力的培养,属于中档题.取AB、C1D1的中点M、N,连结A1M、MC、CN、NA1.由已知得四边形A1MCN是平行四边形,连接MN,作A1H⊥MN于H,由题意能求出截面的面积.【解答】解:分别取AB,C1D1的中点M,N,连接A1M,MC,CN,NA1,11∵A1N//PC1//MC,且A1N=PC1=MC,∴四边形A1MCN是平行四边形.又∵A1N//PC1,A1N⊄平面PBC1,PC1⊂平面PBC1,∴A1N//平面PBC1,同理可证A1M//平面PBC1,∵A1N∩A1M=A1,且A1N,A1M⊂平面A1MCN,∴平面A1MCN//平面PBC1,因此,过点A1与截面PBC1平行的截面是平行四边形A1MCN,连接MN,作A1H⊥MN于点H,∵A1M=A1N=√5,MN=2√2,∴△A1MN为等腰三角形.∴A1H=√3,∴S△A1MN =12×2√2×√3=√6.故S▱A1MCN =2S△A1MN=2√6.故答案为2√6.13.【答案】3x−y+1=0【解析】【分析】本题考查了点关于直线的对称点的求法,考查了直线方程的点斜式,是基础题.设出M的坐标,利用点到直线的距离以及两平行线间的距离公式求解.【解答】解:因为点M是点P(4,5)关于直线y=3x−3的对称点,所以两点到直线y=3x−3的距离相等,所以过点M且平行于直线y=3x−3的直线与y=3x−3之间的距离等于点P到直线y=3x−3的距离.点P(4,5)到直线3x−y−3=0距离为√12+32=√10.设过点M且与直线y=3x−3平行的直线的方程为3x−y+c=0,13所以由两平行线间的距离公式有√12+32=√10,即|c +3|=4,解得c =1或c =−7, 即所求直线的方程为3x −y −7=0或3x −y +1=0.由于点P(4,5)在直线3x −y −7=0上,故过M 点且平行于直线y =3x −3的直线方程是3x −y +1=0.14.【答案】(1)证明:∵CA =CB ,O 为AB 的中点,∴OC ⊥AB .∵AB =AA 1,∠BAA 1=60∘,∴△AA 1B 为等边三角形,∴OA 1⊥AB ,又OC ∩OA 1=O ,∴AB ⊥平面A 1OC .(2)解:∵AB =CB =2,∴△ABC 为边长是2的等边三角形,则S △ABC =12×2×√3=√3.∵OA 1⊥AB ,OA 1⊥OC ,AB ∩OC =O ,∴OA 1⊥平面ABC ,即OA 1是三棱锥A 1−ABC 的高,又OA 1=√3,∴三棱锥A 1−ABC 的体积V =13×√3×√3=1.【解析】本题考查线面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)推导出CO ⊥AB ,A 1O ⊥AB ,由此能证明AB ⊥平面A 1OC .(2)推导出A 1O ⊥平面ABC ,由此能求出三棱锥A 1−ABC 的体积.15.【答案】解:(1)当a =0时,直线m:x −3y −6=0,由{x −3y −6=0x −2y +3=0,解得{x =−21y =−9, 即m 与n 的交点为(−21,−9).当直线l 过原点时,直线l 的方程为3x −7y =0; 当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入得b =−12,所以直线l 的方程为x −y +12=0.故满足条件的直线l 的方程为3x −7y =0或x −y +12=0.(2)设原点O 到直线m 的距离为d ,则d =√(a−1)2+(2a+3)2=√5,解得a =−14或a =−73,当a =−14时,直线m 的方程为x −2y −5=0,此时m//n;当a =−73时,直线m 的方程为2x +y −5=0,此时m ⊥n.【解析】本题主要考查了直线的截距式方程,两条直线平行与垂直的判定,点到直线的距离公式,属于中档题.(1)当a =0时,由题意可求出x 与y ,可求出m 与n 的交点,当直线l 过原点时,直线l 的方程为3x −7y =0,当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入即可求解.(2)求出原点O 到直线m 的距离d ,求出a ,当a =−14时,证明m//n ,当a =−73时,证明m ⊥n. 16.【答案】解:∵所求直线与直线3x −4y +6=0垂直,∴设其为4x +3y +m =0.∵该直线过点P(4,−1),∴4×4+3×(−1)+m =0,解得m =−13.故所求直线方程为4x +3y −13=0.【解析】考查对于直线方程的求解问题,利用垂直性质求解,属于基础.17.【答案】解:(1)由{y =2x −4y =−x +5 得圆心C 为(3,2),∵圆C 的半径为1,∴圆C 的方程为:(x −3)2+(y −2)2=1;(2)由题意知切线的斜率一定存在,设所求圆C 的切线方程为y =kx +3,即kx −y +3=0,∴√k 2+1=1,∴|3k +1|=√k 2+1,∴2k(4k +3)=0,∴k =0或者k =−34,∴所求圆C 的切线方程为:y =3或者y =−34x +3,即y =3或者3x +4y −12=0;(3)设M 为(x,y),由√x 2+(y −3)2=√x 2+y 215整理得直线m :y =32, ∴点M 应该既在圆C 上又在直线m 上,即:圆C 和直线m 有公共点,∴|2a −4−32|≤1,∴94≤a ≤134,终上所述,a 的取值范围为:[94,134].【解析】此题考查了圆的切线方程,点到直线的距离公式,涉及的知识有:两直线的交点坐标,直线的点斜式方程,圆的标准方程,是一道综合性较强的试题.(1)联立直线l 与直线y =−x +5,求出方程组的解得到圆心C 坐标,可得圆C 的方程;(2)根据A 坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k 的方程,求出方程的解得到k 的值,确定出切线方程即可;(3)设M(x,y),由|MA|=|MO|,利用两点间的距离公式列出关系式,整理后得到点M 的轨迹为直线y =32,由M 在圆C 上,得到圆C 与直线相交,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a 的范围.18.【答案】证明:(1)∵在直三棱柱ABC −A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,∴DE//AB ,AB//A 1B 1,∴DE//A 1B 1,∵DE ⊂平面DEC 1,A 1B 1⊄平面DEC 1,∴A 1B 1//平面DEC 1.解:(2)∵在直三棱柱ABC −A 1B 1C 1中,E 是AC 的中点,AB =BC .∴BE ⊥AA 1,BE ⊥AC ,又AA 1∩AC =A ,∴BE ⊥平面ACC 1A 1,∵C 1E ⊂平面ACC 1A 1,∴BE ⊥C 1E .【解析】(1)推导出DE//AB ,AB//A 1B 1,从而DE//A 1B 1,由此能证明A 1B 1//平面DEC 1.(2)推导出BE ⊥AA 1,BE ⊥AC ,从而BE ⊥平面ACC 1A 1,由此能证明BE ⊥C 1E .本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.【答案】解:(1)AB 边上的高所在的直线方程为x +y −3=0,∴k AB =−1−1=1. ∴直线AB 方程为:y −4=x −3,化为:x −y +1=0,联立{x −y +1=0x +3y −7=0,解得x =1,y =2.∴A(1,2).(2)设E(a,b),则C(2a −3,2b −4).联立{(2a −3)+(2b −4)−3=0a +3b −7=0,解得a =4,b =1.∴E(4,1). 由直线l 与x 轴、y 轴截距相等,①当直线l 经过原点时,设直线l 的方程为:y =kx .把E 的坐标代入可得:1=4k ,解得k =14.∴直线l 的方程为:y =14x.②当直线l 不经过原点时,设直线l 的方程为:x +y =m .把E 的坐标代入可得:m =5.∴直线l 的方程为:x +y =5.综上直线l 的方程为:x −4y =0或x +y −5=0.【解析】本题考查了直线的方程、直线的交点、相互垂直的直线斜率之间的关系、中点坐标公式、分类讨论方法,考查了推理能力与计算能力,属于基础题.(1)AB 边上的高所在的直线方程为x +y −3=0,可得k AB =1.把直线AB 方程与AE 的方程联立解得A 的坐标.(2)设E(a,b),则C(2a −3,2b −4).联立{(2a −3)+(2b −4)−3=0a +3b −7=0,解得E 坐标.由直线l 与x 轴、y 轴截距相等,对截距分类讨论即可得出.20.【答案】解:(1)∵圆C :(x −2)2+(y −1)2=4,∴圆心为(2,1),半径r =2,∴圆心到直线x −ay +1=0的距离为:d =√12+a 2=√r 2−(√3)2=√4−3=1, 解得a =43,(2)由(1)知直线l :3x −4y +3=0,因为切线与直线l 平行,所以设所求的切线方程为3x −4y +D =0.因为直线与圆相切,所以圆心到切线的距离d =√32+(−4)2=|2+D |5=2.所以D =8或D =−12.所以所求切线方程为3x −4y +8=0或3x −4y −12=0.【解析】本题主要考查了点到直线的距离公式,考查直线与圆的位置关系,属于基础题.(1)首先确定圆心和半径,然后利用点到直线的距离公式可以列出等式,由此求出a的值.(2)由(1)知直线l:3x−4y+3=0,依题意,设所求切线方程为3x−4y+D=0,则圆心到=2.求解即可得结果切线的距离d=|2+D|517。

高一数学必修第二册期末测评(一)

高一数学必修第二册期末测评(一)

数 学 BS
第3 页
2.已知复数z满足(i-1)z=1+i,其中i是虚数单位,则 z 的虚部为( B )
A.-1
B.1
C.0
D.2
解析 由(i-1)z=1+i,得z=1i-+1i=1i-+1i- -11- -ii=--11+2-ii22=-22i=-i,∴ z
=i,则 z 的虚部为1.故选B.
数 学 BS
10.下列式子中正确的是( BD )
A.sin
15°+cos
15°=
2 2
B.cos 75°=
6- 4
2
C.2 3tan 15°+tan2105°=1
D.tan 12°+tan 33°+tan 12°tan 33°=1
第 16 页
数 学 BS
第 17 页
解析 对于A,∵(sin 15°+cos 15°)2=1+2sin 15°cos 15°=1+sin 30°=32,∴sin
数 学 BS
19.(12分)已知函数f(x)=4tan xsinπ2-xcosx-π3- 3. (1)求f(x)的定义域与最小正周期; (2)讨论f(x)在区间-4π,π4上的单调性.
数 学 BS
第8 页
7.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测
量海岛的高.一个数学学习兴趣小组研究发现,书中提供的测量方法甚是巧妙,可
以回避现代测量器械的应用.现该兴趣小组沿用古法测量一山体高度,如图点E,
H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,记为
Hale Waihona Puke 数 学 BS第 22 页
三、填空题(本题共4小题,每小题5分,共20分) 13.设P(-3,-2),Q(x,2),则O→P与O→Q的夹角为钝角时,x的取值范围为 -43,3∪(3,+∞) .

人教版高中数学必修二期末测试题(附参考答案)

人教版高中数学必修二期末测试题(附参考答案)

高一数学必修二期末测试题考试时间:90分钟试卷满分:100分一、选择题1.点(1,-1)到直线x -y +1=0的距离是().A .21B .23C .22D .2232.过点(1,0)且与直线x -2y -2=0平行的直线方程是().A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=03.下列直线中与直线2x +y +1=0垂直的一条是().A .2x ―y ―1=0B .x -2y +1=0C .x +2y +1=0D .x +21y -1=04.已知圆的方程为x 2+y 2-2x +6y +8=0,那么通过圆心的一条直线方程是().A .2x -y -1=0B .2x +y +1=0C .2x -y +1=0D .2x +y -1=05.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为().A .三棱台、三棱柱、圆锥、圆台B .三棱台、三棱锥、圆锥、圆台C .三棱柱、四棱锥、圆锥、圆台D .三棱柱、三棱台、圆锥、圆台6.直线3x +4y -5=0与圆2x 2+2y 2―4x ―2y +1=0的位置关系是().A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心7.过点P (a ,5)作圆(x +2)2+(y -1)2=4的切线,切线长为32,则a 等于().A .-1B .-2C .-3D .0(4)(3)(1)(2)8.圆A :x 2+y 2+4x +2y +1=0与圆B :x 2+y 2―2x ―6y +1=0的位置关系是().A .相交B .相离C .相切D .内含9.已知点A (2,3,5),B (-2,1,3),则|AB |=().A .6B .26C .2D .2210.如果一个正四面体的体积为9dm 3,则其表面积S 的值为().A .183dm 2B .18dm 2C .123dm 2D .12dm 211.如图,长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2,AD =1,E ,F ,G 分别是DD 1,AB ,CC 1的中点,则异面直线A 1E 与GF 所成角余弦值是().A .515B .22C .510D .012.正六棱锥底面边长为a ,体积为23a 3,则侧棱与底面所成的角为().A .30°B .45°C .60°D .75°13.直角梯形的一个内角为45°,下底长为上底长的23,此梯形绕下底所在直线旋转一周所成的旋转体表面积为(5+2)π,则旋转体的体积为().A .2πB .32+ 4πC .32+ 5πD .37π14.在棱长均为2的正四棱锥P -ABCD 中,点E 为PC 的中点,则下列命题正确的是().A .BE ∥平面PAD ,且BE 到平面PAD 的距离为3B .BE ∥平面PAD ,且BE 到平面PAD 的距离为362C .BE 与平面PAD 不平行,且BE 与平面PAD 所成的角大于30°D .BE 与平面PAD 不平行,且BE 与平面PAD 所成的角小于30°PABCDE (第14题)(第11题)二、填空题15.在y 轴上的截距为-6,且与y 轴相交成30°角的直线方程是______________.16.若圆B :x 2+y 2+b =0与圆C :x 2+y 2-6x +8y +16=0没有公共点,则b 的取值范围是________________.17.已知△P 1P 2P 3的三顶点坐标分别为P 1(1,2),P 2(4,3)和P 3(3,-1),则这个三角形的最大边边长是__________,最小边边长是_________.18.已知三条直线ax +2y +8=0,4x +3y =10和2x -y =10中没有任何两条平行,但它们不能构成三角形的三边,则实数a 的值为____________.19.若圆C :x 2+y 2-4x +2y +m =0与y 轴交于A ,B 两点,且∠ACB =90º,则实数m 的值为__________.三、解答题20.求斜率为43,且与坐标轴所围成的三角形的面积是6的直线方程.21.如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为26.(1)求侧面PAD 与底面ABCD 所成的二面角的大小;(2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值;(3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由.22.求半径为4,与圆x 2+y 2―4x ―2y ―4=0相切,且和直线y =0相切的圆的方程.(第21题)DBACOEP参考答案一、选择题1.D 2.A 3.B 4.B 5.C 6.D7.B8.C9.B10.A11.D12.B13.D14.D二、填空题15.y =3x -6或y =―3x ―6.16.-4<b <0或b <-64.17.17,10.18.-1.19.-3.三、解答题20.解:设所求直线的方程为y =43x +b ,令x =0,得y =b ;令y =0,得x =-34b ,由已知,得21 34 - ⎪⎭⎫⎝⎛b b ·=6,即32b 2=6,解得b =±3.故所求的直线方程是y =43x ±3,即3x -4y ±12=0.21.解:(1)取AD 中点M ,连接MO ,PM ,依条件可知AD ⊥MO ,AD ⊥PO ,则∠PMO 为所求二面角P -AD -O 的平面角.∵PO ⊥面ABCD ,∴∠PAO 为侧棱PA 与底面ABCD 所成的角.∴tan ∠PAO =26.设AB =a ,AO =22a ,∴PO =AO ·tan ∠POA =23a ,tan ∠PMO =MOPO=3.∴∠PMO =60°.MDBACO EP(第21题(1))(2)连接AE ,OE ,∵OE ∥PD ,∴∠OEA 为异面直线PD 与AE 所成的角.∵AO ⊥BD ,AO ⊥PO ,∴AO ⊥平面PBD .又OE 平面PBD ,∴AO ⊥OE .∵OE =21PD =2122 + DO PO =45a ,∴tan ∠AEO =EOAO=5102.(3)延长MO 交BC 于N ,取PN 中点G ,连BG ,EG ,MG .∵BC ⊥MN ,BC ⊥PN ,∴BC ⊥平面PMN .∴平面PMN ⊥平面PBC .又PM =PN ,∠PMN =60°,∴△PMN 为正三角形.∴MG ⊥PN .又平面PMN ∩平面PBC =PN ,∴MG ⊥平面PBC .取AM 中点F ,∵EG ∥MF ,∴MF =21MA =EG ,∴EF ∥MG .∴EF ⊥平面PBC .点F 为AD 的四等分点.22.解:由题意,所求圆与直线y =0相切,且半径为4,则圆心坐标为O 1(a ,4),O 1(a ,-4).又已知圆x 2+y 2―4x ―2y ―4=0的圆心为O 2(2,1),半径为3,①若两圆内切,则|O 1O 2|=4-3=1.即(a -2)2+(4-1)2=12,或(a -2)2+(-4-1)2=12.显然两方程都无解.②若两圆外切,则|O 1O 2|=4+3=7.即(a -2)2+(4-1)2=72,或(a -2)2+(-4-1)2=72.解得a =2±210,或a =2±26.∴所求圆的方程为(x ―2―210)2+(y -4)2=16或(x -2+210)2+(y -4)2=16;或(x ―2―26)2+(y +4)2=16或(x ―2+26)2+(y +4)2=16.MDBAC OEP(第21题(2))MDBACO EPN G F(第21题(3))。

人教B版高中数学必修二-第二学期期末考试高一年级试卷

人教B版高中数学必修二-第二学期期末考试高一年级试卷

A.第一象限B.第二象限C.第三象限D.第四象限2015-2016学年第二学期期末考试高一年级数学试卷考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷分第I 卷、第n 卷(共 2页)和答题卡,满分 150分,考试用时110分钟。

考试结束后,请将答 题卡交回,试题卷自己保存。

2.答题前,请您务必将自己的班级、姓名、学号、用 0.5毫米黑色签字笔填写在答题卡上。

3. 作答非选择题必须用 0.5毫米的黑色签字笔写在答题卡上的指定位置,在其它位置作答一律无效。

4.保持答题卷清洁、完整,严禁使用涂改液和修正带。

第I 卷(选择题,共 60分) 、选择题(本大题共 12小题,每小题 5分,在每小题给的四个选项中,只有一项是符合题目要求的)1、 已知全集 U {0, 1, 2, 3, {0, 1, 2} , N {2, 3},则(?U M) N ()2、 3、A. 2sin135 A. 12B.C. 2, 3, 4D. 0, 1, 2, 3, 4的值为()B .C' 2 C ・2D .已知点P (tan ,sin)在第三象限,则角的终边在() 4、 若 cos( ),则 sin(2 )5、 A. 1 2 已知弧度数为 A. 2 B.C3 C. 2D .2的圆心角所对的弦长是 4,则这个圆心角所对的弧长是()2 B. 一 C. 2sin1sin 1sin16、已知函数f (x )是定义在R 上的奇函数,且当x 0 时,f (x) x 2 2x,则 y f (x)在 x (0)上的解析式为() A. f(x)x(x 2) B. f(x) x(x 2) C. f(x) x (x 2) D. f (x)x(|x| 2)7、 如果 sin x cosx 8、 9、 A. 1 —,且0 5B. 45 ,那么sinx cosx 的值是()函数 A. C. y 3sin(2x 向左平移一 3 已知函数 f(x) A.( C-( ,2) ,1] 210、已知 cos2 A.g18C.452 ______ 一..———)的图象,可看作是把函数3,,一 2B.向右平移一3D.向右平移一33sin2x 的图象作以下哪个平移得到()ax (2, [2, B.11、若实数x 满足log 2x A. 2x 8 B. 2(a . 4sin11 18 1)在区间4 cos2 cos8 2x(1, 2)内存在零点,则实数 a 的取值范围为()B-4,2 r 1 D. [~, 2的值为() C.则|x1| |xC. 102)2]D.19 |的值等于()D. 1012、已知a 是实数,则函数 f(x) 1 1 .一 sin ax 的图象不可能是a共20分)二、填空题(本题共 4道小题,每小题 5分,1、x . 13、函数y(一)x1在区间[2, 1]上的值域为 2奋斗没有终点任何时候都是一个起点14、计算 2log 310 log 3 0.27 5 4 -)一 ,sin一求 sin 13516、方程2sin(2x —) 1在区间(0,)内的解为 6tan 的值.19、(本题满分12分)已知函数f(x) 2x b 经过定点(2, 8) (1)求实数b 的值;(2)求不等式f(x) 3/32的解集.20、(本题满分12分)设函数f(x) sin2x J 3cos2x(1)求函数f (x)的最小正周期;(2)当x [0,—]时,求函数f(x)的最大值和最小值.621、(本题满分12分)如图所示,函数 f (x) Asin( x ) (A 0,0, 一)的一段图象过2点(0, 1)(1)求函数f (x)的解析式;1(2)将函数f(x)的图象上各点的纵坐标变为原来的一(横坐标不变),得到函数y g(x)的图像,求 2 y g(x)的解析式及单调增区间.15、若三、解答题(共 70分,要求要有必要的文字说明和解题过程) 17、(本题满分 10分)设90180 ,角 的终边上一点为 P(x,可’5),且cos、2x,求sin 与418、(本题满分 12分)求值:(1) 若tansin2 ,求—— 3sin2.cos sincos2(2)1 sin13 cos1022、(本题满分12分)已知二次函数 f(x) x 2 16x q(1)若当x [ 1, 1]时,方程f (x)3有解,求实数q 的取值范围;;⑵ 问:是否存在常数q (0 q 10),使得当x [q, 10]时,f (x)的最小值为 54?若存在,求出q 的值,若不存在,说明理由.12*y11122015-2016学年第二学期期末考试高一年级数学试卷答案、选择题BCDBDAADBCCB二、填空题133 八13、[ -, 3] 14、3 15、—16、一或一265 6 2三、解答题17、x 310 , 15sin ------- tan --------------4 318、10(1)319、(1) b 1⑵ x (2,)320、(1) f (x) 2sin(2x —) , T(2)当 x [0,—]时,f(x)[隹 2] 621、(1) f (x) 2sin(2x —)6(2)g(x) sin(2x —),单调增区间为[k —, k -] ( k Z )6 3 622、1)q [ 20, 12]2)q 9。

高一数学必修二期末测试题及答案解析

高一数学必修二期末测试题及答案解析

(A)(B ) (C) (D)图1 高一数学必修二期末测试题(总分100分 时间100分钟)班级:______________:______________一、选择题(8小题,每小题4分,共32分)1.如图1所示,空心圆柱体的主视图是( )2.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( ) (A)1条 (B )2条 (C)3条 (D)4条3.如图2,已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,设α为二面角D AE D --1的平面角,则αsin =( )(A)32(B )35(C) 32 (D)322 4.点(,)P x y 是直线l :30x y ++=上的动点,点(2,1)A ,则AP 的长的最小值是( )(A)2 (B ) 22 (C)32 (D)425.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短 路径长度是( )(A )4(B )5 (C )321- (D )26图26.下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,l =βα ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β7.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为( ) (A )4± (B )2± (C ) 22± (D )2±8.将一张画有直角坐标系的图纸折叠一次,使得点)2,0(A 与点B(4,0)重合.若此时点)3,7(C 与点),(n m D 重合,则n m +的值为( ) (A)531(B)532 (C) 533 (D)534二、填空题(6小题,每小题4分,共24分)9.在空间直角坐标系中,已知)5,2,2(P 、),4,5(z Q 两点之间的距离为7,则z =_______. 10.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值. 其中正确说法是 .11.四面体的一条棱长为x ,其它各棱长均为1,若把四面体的体积V 表示成关于x 的函数)(x V ,则函数)(x V 的单调递减区间为 .12.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则公共弦AB 所在直线的直线方程是 .13.在平面直角坐标系中,直线033=-+y x 的倾斜角是 .14.正六棱锥ABCDEF P -中,G 为侧棱PB 的中点,则三棱锥D ­GAC 与三棱锥P ­GAC 的体积之比GAC P GAC D V V --:= .三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程.16.(本题10分)如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.17.(本题12分)已知圆04222=+--+m y x y x . (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.数学必修二期末测试题及答案CA一、选择题(8小题,每小题4分,共32分)1C , 2C, 3B , 4C , 5A , 6D , 7B , 8D.二、填空题(6小题,每小题4分,共24分)9. 111或-=z ; 10. ①③④; 11. ⎪⎪⎭⎫⎢⎣⎡3,26 ; 12. 30x y +=; 13. 150°; 14. 2:1.三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程. 解析:(Ⅰ)由直线方程的点斜式,得),2(435+-=-x y 整理,得所求直线方程为.01443=-+y x……………4分 (Ⅱ)过点(2,2)与l 垂直的直线方程为4320x y --=, ……………5分由110,4320.x y x y +-=⎧⎨--=⎩得圆心为(5,6),……………7分∴半径22(52)(62)5R -+-=, ……………9分故所求圆的方程为22(5)(6)25x y -+-=. ………10分 16.(本题10分) 如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.解析:(Ⅰ)在直三棱柱111C B A ABC -中,侧面C C BB 11⊥底面ABC ,且侧面C C BB 11∩底面ABC =BC , ∵∠ABC =90°,即BC AB ⊥,∴⊥AB 平面C C BB 11 ∵⊂1CB 平面C C BB 11,∴AB CB ⊥1. ……2分 ∵1BC CC =,1CC BC ⊥,∴11BCC B 是正方形, ∴11CB BC ⊥,∴11ABC CB 平面⊥. …………… 4分 (Ⅱ)取1AC 的中点F ,连BF 、NF . ………………5分 在△11C AA 中,N 、F 是中点,∴1//AA NF ,121AA NF =,又∵1//AA BM ,121AA BM =,∴BM NF //,BM NF =,………6分故四边形BMNF 是平行四边形,∴BF MN //,…………8分而BF ⊂面1ABC ,MN ⊄平面1ABC ,∴//MN 面1ABC ……10分 17.(本题12分)已知圆04222=+--+m y x y x .(1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解析:(1)方程04222=+--+m y x y x ,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎪⎨⎪⎧x 2+y 2-2x -4y +m =0,x +2y -4=0,消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0, 化简得5y 2-16y +m +8=0.设M (x 1,y 1),N (x 2,y 2),则⎩⎨⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0, 即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得NM BD CA16-8×165+5×m +85=0,解之得m =85. (3)由m =85,代入5y 2-16y +m +8=0,化简整理得25y 2-80y +48=0,解得y 1=125,y 2=45.∴x 1=4-2y 1=-45,x 2=4-2y 2=125. ∴M ⎝⎛⎭⎫-45,125,N ⎝⎛⎭⎫125,45, ∴MN 的中点C 的坐标为⎝⎛⎭⎫45,85.又|MN |= ⎝⎛⎭⎫125+452+⎝⎛⎭⎫45-1252=855, ∴所求圆的半径为455.∴所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165. 18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.解析:(1)证明:取PB 中点Q ,连结MQ 、NQ ,因为M 、N 分别是棱AD 、PC 中点,所以QN//BC//MD ,且QN=MD ,于是DN//MQ .PMB DN PMB DN PMB MQ MQDN 平面平面平面////⇒⎪⎭⎪⎬⎫⊄⊆. …………………4分(2)MB PD ABCD MB ABCD PD ⊥⇒⎭⎬⎫⊆⊥平面平面又因为底面ABCD 是60=∠A ,边长为a 的菱形,且M 为AD 中点, 所以AD MB ⊥.又所以PAD MB 平面⊥..PAD PMB PMB MB PAD MB 平面平面平面平面⊥⇒⎭⎬⎫⊆⊥………………8分(3)因为M 是AD 中点,所以点A 与D 到平面PMB 等距离.过点D 作PM DH ⊥于H ,由(2)平面PMB ⊥平面P AD ,所以PMB DH 平面⊥.故DH 是点D 到平面PMB 的距离..55252a a aaDH =⨯=所以点A 到平面PMB 的距离为a 55.………12分。

高一数学必修2期末试题及答案解析

高一数学必修2期末试题及答案解析

高一数学必修2期末试题及答案解析参考公式:圆台的表面积公式:(分别为圆台的上、下底面半径,为母线长)柱体、椎体、台体的体积公式: 为底面积,为柱体高)为底面积,为椎体高)分别为上、下底面面积,为台体高)一、选择题1. 下列几何体中是棱柱的有A 、1个B 、2个C 、3个D 、4个2. 如图所示,正方体的棱长为1,点A 是其一棱的中点,则点A 在空间直角坐标系中的坐标是A 、B 、C 、D 、3. 如图所示,长方体中,°,则与所成的角是A 、60°B 、90°()22''S r r r l rl π=+++'r r 、l =(V Sh S 柱体h 1=(3V Sh S 椎体h ()1=''3V S S S S h +台体(',S Sh 11,,122⎛⎫⎪⎝⎭11,1,2⎛⎫ ⎪⎝⎭11,1,22⎛⎫⎪⎝⎭1111ABCD A B C D -130BAB ∠=1C D 1B BC 、30°D 、45°4. 下列直线中,与直线的相交的是 A 、B 、C 、D 、5. 在空间四边形的各边上的依次取点,若所在直线相交于点,则 A 、点必在直线上 B 、点必在直线上C 、点必在平面外D 、点必在平面内6. 已知直线,给出以下四个命题: ①若平面平面,则直线平面; ②若直线平面,则平面平面;③若直线不平行于平面,则平面不平行于平面。

其中正确的命题是A 、②B 、③C 、①②D 、①③7. 已知直线与直线垂直,则实数的值等于A 、B 、C 、D 、8. 如图所示,已知平面,则图中互相垂直的 平面有A 、3对B 、2对C 、1对D 、0对9. 已知是圆的弦的中点,则弦 所在的直线的方程是 A 、 B 、C 、 3D 、10x y +-=226x y +=0x y +=3y x =--1y x =-ABCD AB BC CD DA 、、、E F G H 、、、EH FG 、P P AC P BD P DBC P ABC a α⊂//αβ//a β//a β//αβa βαβ()110a a x y -+-=210x ay ++=a 123210,230,2AB ⊥,BCD BC CD ⊥()2,1P -()22125x y -+=AB AB 30x y --=10x y +-=230x y +-=250x y --=10. 已知直线都是正数)与圆相切,则以为三边长的三角形 A 、是锐角三角形 B 、是直角三角形C 、是钝角三角形D 、不存在二、填空题11. 直线与直线的交点坐标是 。

期末考试综合检测试卷-2020-2021学年高一数学同步练习和分类专题(人教A版2019必修第二册)

期末考试综合检测试卷-2020-2021学年高一数学同步练习和分类专题(人教A版2019必修第二册)

高中数学必修二期末考试综合检测试卷第二学期高一期末测试一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z=(1-i)+m(1+i)是纯虚数,则实数m=( )A.-2B.-1C.0D.12.幸福感指数是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[0,10]内的一个数来表示,该数越接近10表示满意程度越高.现随机抽取6位小区居民,他们的幸福感指数分别为5,6,7,8,9,5,则这组数据的第80百分位数是( )A.7B.7.5C.8D.93.已知α为平面,a,b为两条不同的直线,则下列结论正确的是( )A.若a∥α,b∥α,则a∥bB.若a⊥α,a∥b,则b⊥αC.若a⊥α,a⊥b,则b∥αD.若a∥α,a⊥b,则b⊥α4.已知在平行四边形ABCD中,M,N分别是BC,CD的中点,如果=a,=b,那么=( )A.a-bB.-a+bC.a+bD.-a-b5.已知圆锥的表面积为3π,且它的侧面展开图是一个半圆,则该圆锥的体积为( )A.πB.πC.πD.2π6.庆祝中华人民共和国成立70周年的阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就,装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有6位外国人,其中关注此次大阅兵的有5位,若从这6位外国人中任意选取2位进行一次采访,则被采访者都关注了此次大阅兵的概率为( )A. B. C. D.7.如图,有四座城市A、B、C、D,其中B在A的正东方向,且与A相距120 km,D在A的北偏东30°方向,且与A相距60 km,C在B的北偏东30°方向,且与B相距60 km.一架飞机从城市D出发,以360 km/h 的速度向城市C飞行,飞行了15 min后,接到命令改变航向,飞向城市B,此时飞机距离城市B的距离为( )A.120 kmB.60 kmC.60 kmD.60 km8.如图,在平面直角坐标系xOy中,原点O为正八边形P1P2P3P4P5P6P7P8的中心,P1P8⊥x轴,若坐标轴上的点M(异于原点)满足2++=0(其中1≤i≤8,1≤j≤8,且i,j∈N*),则满足以上条件的点M的个数为( )A.2B.4C.6D.8二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分)9.已知复数z满足(1-i)z=2i,则下列关于复数z的结论正确的是( )A.|z|=B.复数z的共轭复数=-1-iC.复平面内表示复数z的点位于第二象限D.复数z是方程x2+2x+2=0的一个根10.某市教体局对全市高一年级学生的身高进行抽样调查,随机抽取了100名学生,他们的身高都处在A,B,C,D,E五个层次内,根据抽样结果得到如下统计图,则下列结论正确的是( )A.样本中女生人数多于男生人数B.样本中B层次人数最多C.样本中E层次的男生人数为6D.样本中D层次的男生人数多于女生人数11.已知事件A,B,且P(A)=0.5,P(B)=0.2,则下列结论正确的是( )A.如果B⊆A,那么P(A∪B)=0.2,P(AB)=0.5B.如果A与B互斥,那么P(A∪B)=0.7,P(AB)=0C.如果A与B相互独立,那么P(A∪B)=0.7,P(AB)=0D.如果A与B相互独立,那么P()=0.4,P(A)=0.412.如图,正方体ABCD-A'B'C'D'的棱长为1,则下列命题中正确的是( )A.若点M,N分别是线段A'A,A'D'的中点,则MN∥BC'B.点C到平面ABC'D'的距离为C.直线BC与平面ABC'D'所成的角等于D.三棱柱AA'D'-BB'C'的外接球的表面积为3π三、填空题(本题共4小题,每小题5分,共20分)13.已知a,b,c分别为△ABC的三个内角A,B,C的对边,且bcos C+ccos B=asin A,则A= .14.已知数据x1,x2,x3,…,x m的平均数为10,方差为2,则数据2x1-1,2x2-1,2x3-1,…,2x m-1的平均数为,方差为.15.已知|a|=3,|b|=2,(a+2b)·(a-3b)=-18,则a与b的夹角为.16.如图,在三棱锥V-ABC中,AB=2,VA=VB,AC=BC,VC=1,且AV⊥BV,AC⊥BC,则二面角V-AB-C的余弦值是.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知向量a=(1,2),b=(4,-3).(1)若向量c∥a,且|c|=2,求c的坐标;(2)若向量b+ka与b-ka互相垂直,求实数k的值.18.(12分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,且a=,c=1,A=.(1)求b及△ABC的面积S;(2)若D为BC边上一点,且,求∠ADB的正弦值.从①AD=1,②∠CAD=这两个条件中任选一个,补充在上面的问题中,并解答.注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)在四面体A-BCD中,E,F,M分别是AB,BC,CD的中点,且BD=AC=2,EM=1.(1)求证:EF∥平面ACD;(2)求异面直线AC与BD所成的角.20.(12分)溺水、校园欺凌等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两个中学代表队狭路相逢,假设甲队每人回答问题正确的概率均为,乙队每人回答问题正确的概率分别为,,,且每人回答问题正确与否相互之间没有影响.(1)分别求甲队总得分为3分与1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.21.(12分)如图,在三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,PA=AB=BC=2,点D为线段AC的中点,点E 为线段PC上一点.(1)求证:平面BDE⊥平面PAC;(2)当PA∥平面BDE时,求三棱锥P-BDE的体积.22.(12分)2020年开始,山东推行全新的高考制度.新高考不再分文理科,采用“3+3”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科满分100分.2020年初受疫情影响,全国各地推迟开学,开展线上教学.为了了解高一学生的选科意向,某学校对学生所选科目进行检测,下面是100名学生的物理、化学、生物三科总分成绩,以20为组距分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如图所示.(1)求频率分布直方图中a的值;(2)(i)求物理、化学、生物三科总分成绩的中位数;(ii)估计这100名学生的物理、化学、生物三科总分成绩的平均数(同一组中的数据用该组区间的中点值作代表);(3)为了进一步了解选科情况,在物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中用比例分配的分层随机抽样方法抽取7名学生,再从这7名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.答案全解全析1.B 复数z=(1-i)+m(1+i)=(m+1)+(m-1)i,因为z是纯虚数,所以解得m=-1.2.C 将6个数据按照从小到大的顺序排列为5,5,6,7,8,9,因为6×80%=4.8,所以第5个数据即为这组数据的第80百分位数,故选C.3.B 如果两条平行直线中的一条垂直于一个平面,那么另一条直线也垂直于这个平面,因此B选项正确,易知A、C、D错误.4.B =-=+-(+)=+--=-+=-a+b.5.A 设圆锥的底面半径为r,母线长为l,依题意有2πr=·2πl,所以l=2r,又圆锥的表面积为3π,所以πr2+πrl=3π,解得r=1,因此圆锥的高h==,于是体积V=πr2h=π×12×=π.6.C 这6位外国人分别记为a,A,B,C,D,E,其中a未关注此次大阅兵,A,B,CD,E关注了此次大阅兵, 则样本点有(a,A),(a,B),(a,C),(a,D),(a,E),(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D ,E),共15个,其中被采访者都关注了此次大阅兵的样本点有10个,故所求概率为=.故选C.7.D 取AB的中点E,连接DE,BD.设飞机飞行了15 min后到达F点,连接BF,如图所示,则BF即为所求.因为E为AB的中点,且AB=120 km,所以AE=EB=60 km,又∠DAE=60°,AD=60 km,所以三角形DAE为等边三角形,所以DE=60 km,∠ADE=60°,在等腰三角形EDB中,∠DEB=120°,所以∠EDB=∠EBD=30°,所以∠ADB=90°,所以BD2=AB2-AD2=1202-602=10 800,所以BD=60 km,因为∠CBE=90°+30°=120°,∠EBD=30°,所以∠CBD=90°,所以CD===240 km,所以cos∠BDC===,因为DF=360×=90 km,所以在三角形BDF中,BF2=BD2+DF2-2×BD×DF×cos∠BDF=(60)2+902-2×60×90×=10 800,所以BF=60 km,即此时飞机距离城市B的距离为60 km.8.D 取线段P i P j的中点Q k,因为2++=0,所以+=-2,即2=-2,所以=-,于是Q k,O,M共线,因为点M在坐标轴上,所以Q k也在坐标轴上,于是满足条件的(i,j)的情况有(1,8),(2,7),(3,6),(4,5),(2,3),(1,4),(5,8),(6,7),即满足条件的点M有8个.9.ABCD 由(1-i)z=2i得z==-1+i,于是|z|=,其共轭复数=-1-i,复数z在复平面内对应的点是(-1,1),位于第二象限.因为(-1+i)2+2(-1+i)+2=0,所以复数z是方程x2+2x+2=0的一个根,故选项A、B、C、D均正确.10.ABC 样本中女生人数为9+24+15+9+3=60,则男生人数为40,故A选项正确;样本中B层次人数为24+40×30%=36,并且B层次占女生和男生的比例均最大,故B层次人数最多,B选项正确;E层次中的男生人数为40×(1-10%-30%-25%-20%)=6,故C选项正确;D层次中,男生人数为40×20%=8,女生人数为9,故D选项错误.11.BD 由于B⊆A,所以A∪B=A,AB=B,于是P(A∪B)=P(A)=0.5,P(AB)=P(A∩B)=P(B)=0.2,故A选项错误;由于A与B互斥,所以P(A∪B)=P(A)+P(B)=0.5+0.2=0.7,AB为不可能事件,因此P(AB)=0,故B 选项正确;如果A与B相互独立,那么P(AB)=P(A)P(B)=0.1,故C选项错误;P()=P()P()=0.5×0.8=0.4,P(A)=P(A)P()=0.5×0.8=0.4,故D选项正确.12.ACD 因为M,N分别是线段A'A,A'D'的中点,所以MN∥AD',又因为AD'∥BC',所以MN∥BC',故A 选项正确;连接B'C,易证B'C⊥平面ABC'D',因此点C到平面ABC'D'的距离为B'C=,故B选项错误;直线BC与平面ABC'D'所成的角为∠CBC'=,故C选项正确;三棱柱AA'D'-BB'C'的外接球即正方体的外接球,其半径R=,因此其表面积为4π×=3π,故D选项正确.13.答案90°解析由正弦定理可得sin Bcos C+sin Ccos B=sin2A,即sin(B+C)=sin 2A,所以sin A=sin2A,易知sin A≠0,所以sin A=1,故A=90°.14.答案19;8解析依题意可得2x1-1,2x2-1,…,2x m-1的平均数为2×10-1=19,方差为22×2=8.15.答案解析设a,b的夹角为θ,依题意有|a|2-a·b-6|b|2=-18,所以32-3×2×cos θ-6×22=-18,解得cos θ=,由于θ∈[0,π],故θ=.16.答案解析取AB的中点D,连接VD,CD,由于VA=VB,AC=BC,所以VD⊥AB,CD⊥AB,于是∠VDC就是二面角V-AB-C的平面角.因为AV⊥BV,AC⊥BC,AB=2,所以VD=,DC=,又VC=1,所以cos∠VDC==.17.解析(1)解法一:因为向量c∥a,所以设c=λa,(1分)则c2=(λa)2,即(2)2=λ2a2,(2分)所以20=5λ2,解得λ=±2.(4分)所以c=2a=(2,4)或c=-2a=(-2,-4).(5分)解法二:设向量c=(x,y).(1分)因为c∥a,且a=(1,2),所以2x=y,(2分)因为|c|=2,所以=2,(3分)由解得或(4分)所以c=(2,4)或c=(-2,-4).(5分)(2)因为向量b+ka与b-ka互相垂直,所以(b+ka)·(b-ka)=0,(6分)即b2-k2a2=0.(7分)因为a=(1,2),b=(4,-3),所以a2=5,b2=25,(8分)所以25-5k2=0,解得k=±.(10分)18.解析(1)由余弦定理得,()2=b2+12-2bcos ,(2分)整理得b2+b-6=0,解得b=2或b=-3(舍去).(5分)所以△ABC的面积S=bcsin A=×2×1×=.(6分)(2)选择条件①.在△ABC中,由正弦定理=,得=,(8分)所以sin B=.(9分)因为AD=AB=1,所以∠ADB=∠B.(10分)所以sin∠ADB=sin B,所以sin∠ADB=.(12分)选择条件②.在△ABC中,由余弦定理的推论,得cos B==.(8分)因为A=,所以∠BAD=-=,(9分)所以sin∠ADB=cos B,即sin∠ADB=.(12分)19.解析(1)证明:因为E,F分别为AB,BC的中点,所以EF∥AC.(2分)因为EF⊄平面ACD,AC⊂平面ACD,所以EF∥平面ACD.(4分)(2)易得EF∥AC,FM∥BD,(5分)所以∠EFM为异面直线AC与BD所成的角(或其补角).(7分)在△EFM中,EF=FM=EM=1,所以△EFM为等边三角形,(10分)所以∠EFM=60°,即异面直线AC与BD所成的角为60°.(12分)20.解析(1)记“甲队总得分为3分”为事件A,“甲队总得分为1分”为事件B.甲队得3分,即三人都答对,其概率P(A)=××=.(2分)甲队得1分,即三人中只有一人答对,其余两人都答错,其概率P(B)=××+××+××=.(5分)所以甲队总得分为3分的概率为,甲队总得分为1分的概率为.(6分)(2)记“甲队总得分为2分”为事件C,“乙队总得分为1分”为事件D.甲队得2分,即三人中有两人答对,剩余一人答错,则P(C)=××+××+××=.(8分)乙队得1分,即三人中只有一人答对,其余两人都答错,则P(D)=××+××+××=.(11分)由题意得,事件C与事件D相互独立.所以甲队总得分为2分且乙队总得分为1分的概率为P(C)P(D)=×=.(12分)21.解析(1)证明:因为PA⊥底面ABC,且BD⊂底面ABC,所以PA⊥BD.(1分)因为AB=BC,且点D为线段AC的中点,所以BD⊥AC.(2分)又PA∩AC=A,所以BD⊥平面PAC.(3分)又BD⊂平面BDE,所以平面BDE⊥平面PAC.(4分)(2)因为PA∥平面BDE,PA⊂平面PAC,平面PAC∩平面BDE=ED,所以ED∥PA.(5分)因为点D为AC的中点,所以点E为PC的中点.(6分)解法一:由题意知P到平面BDE的距离与A到平面BDE的距离相等.(7分)所以V P-BDE=V A-BDE=V E-ABD=V E-ABC=V P-ABC=×××2×2×2=.所以三棱锥P-BDE的体积为.(12分)解法二:由题意知点P到平面BDE的距离与点A到平面BDE的距离相等.(7分)所以V P-BDE=V A-BDE.(8分)由题意得AC=2,AD=,BD=,DE=1,(9分)由(1)知,AD⊥BD,AD⊥DE,且BD∩DE=D,所以AD⊥平面BDE,(10分)所以V A-BDE=AD·S△BDE=×××1×=.所以三棱锥P-BDE的体积为.(12分)解法三:由题意得AC=2,AD=,BD=,DE=1,(8分)由(1)知,BD⊥平面PDE,且S△PDE=DE·AD=×1×=.(10分)所以V P-BDE=V B-PDE=BD·S△PDE=××=.所以三棱锥P-BDE的体积为.(12分)22.解析(1)由题图得,(0.002+0.009 5+0.011+0.012 5+0.007 5+a+0.002 5)×20=1,(1分)解得a=0.005.(2分)(2)(i)因为(0.002+0.009 5+0.011)×20=0.45<0.5,(0.002+0.009 5+0.011+0.012 5)×20=0.7>0.5,所以三科总分成绩的中位数在[220,240)内,(3分)设中位数为x,则(0.002+0.009 5+0.011)×20+0.012 5×(x-220)=0.5,解得x=224,即中位数为224.(5分)(ii)三科总分成绩的平均数为170×0.04+190×0.19+210×0.22+230×0.25+250×0.15+270×0.1+290×0.05=225.6.(7分)(3)三科总分成绩在[220,240),[260,280)两组内的学生分别有25人,10人,故抽样比为=.(8分)所以从三科总分成绩为[220,240)和[260,280)的两组中抽取的学生人数分别为25×=5,10×=2.(9分)记事件A=“抽取的这2名学生来自不同组”.三科总分成绩在[220,240)内的5人分别记为a1,a2,a3,a4,a5,在[260,280)内的2人分别记为b1,b2.现在这7人中抽取2人,则试验的样本空间Ω={(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4) ,(a3,a5),(a3,b1),(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2)},共21个样本点.(10分) 其中A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(a5,b1),(a5,b2)},共10个样本点.(11分)所以P(A)=,即抽取的这2名学生来自不同组的概率为.(12分)。

人教版高一第二学期期末考试数学试题2-含答案

人教版高一第二学期期末考试数学试题2-含答案

XX 学校2012~2013学年度第二学期末考试试卷高一 数学 座位号一、选择题(请将答案填在答题纸的表格中,每小题5 分,共60分) 1.下列说法中正确的是( )A .第一象限角一定不是负角B .-831°是第四象限角C .钝角一定是第二象限角D .终边与始边均相同的角一定相等2.=613sin π ( )A .21B .21- C .23 D .23-3.已知0cos sin 0sin tan ><αααα且 ,则α所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 4.函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数5.πsin 36y x ⎛⎫=- ⎪⎝⎭的单调递减区间是( )A .2π4π2π5π()3939k k k ⎡⎤++∈⎢⎥⎣⎦Z , B .2π2π2π5π()3933k k k ⎡⎤++∈⎢⎥⎣⎦Z , C .2π2π2π5π()3333k k k ⎡⎤++∈⎢⎥⎣⎦Z , D .2π2π2π5π()3939k k k ⎡⎤++∈⎢⎥⎣⎦Z , 6.已知),0(,53cos παα∈-=,则=αtan ( )A .34 B .34- C .34± D .43± 7.将函数sin()3y x =-π的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变), 再将所得图像向左平移3π个单位,则所得函数图像对应的解析式为( ).A .1sin()26y x =-πB .1sin()23y x =-πC .1sin 2y x = D .sin(2)6y x =-π8. ︒︒75tan 75tan -12的值是( ).A .332 B .-332 C .23 D .-239.sin110sin 40cos 40cos70+等于( )A .12- B .32 C .12 D .32-10.函数y =sin )32(π-x 在区间],2[ππ-的简图是( )11.sin31212ππ-的值是( ) A 2 B .2- C .22 D .-1212.如果20132012)sin()sin(=+-βαβα,则=βαtan tan ( ) A .40251 B .40251- C .4025 D .4025-高一数学期中试卷答题纸 座位号一、选择题(本大题共12小题,每小题5分,共60分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知2tan =θ,则14.已知函数)0(sin 21>=A A y 的最小正周期为3π,则A = .15.已知βα,3(,)4π∈π,53)sin(-=+βα,12sin()413βπ-=,则cos()4απ+=.16.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 .三、解答题(本大题共6小题,满分70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(12分)已知α为第三象限角,()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=----. (1)化简()f α; (2)若31cos()25πα-=,求()f α的值.18.(12分)已知44απ3π<<,0<β<4π,cos(4π+α)=-53,sin(43π+β)=135, 求sin(αβ+)的值.19.(10分)已知]4,3[ππ-∈x ,2tan 2tan )(2++=x x x f ,求)(x f 的最大值和最小值,并求出相应的x 值.20.(12分)已知函数x x y 21cos 321sin+=,求: (1)函数y 的最大值,最小值及最小正周期; (2)函数y 的单调递增区间.21.(12分)函数f (x )=A sin(ωx +φ)的图象如图所示. 试依图推出:(1)f (x )的最小正周期; (2)f (x )的单调递增区间;(3)使f (x )取最小值的x 的取值集合.22.(12分)已知函数x x x f 2cos 3)4(sin 2)(2-+=π.(1)求f (x )的周期和单调递增区间;(2)若关于x 的方程f (x )-m =2在]4,2[ππ∈x 上有解,求实数m 的取值范围.高一数学期中考试试题参考答案及评分标准一.选择题:CACBD BADBA BC二.填空题:13.4 14.2315.6556- 16.43三.解答题17.解:(1)()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=---- (cos )(sin )(tan )(tan )sin cos αααααα--=-=- …………6分 (2)∵31cos()25πα-= ∴ 1sin 5α-= 从而1sin 5α=-又α为第三象限角∴cos α==即()f α=562 …………12分18.解:∵4π<α<4π3, ∴2π<4π+α<π.又cos(4π+α)=-53, ∴sin(4π+α)=54. …3分又∵0<β<4π, ∴4π3<4π3+β<π.又sin(4π3+β)=135, ∴cos(4π3+β)=-1312, …6分∴sin(α+β)=-sin [π+(α+β)]=-sin [(4π+α)+(4π3+β)]=-[sin(4π+α)cos(4π3+β)+cos(4π+α)sin(4π3+β)]=-[54×(-1312)-53×135]=6563. ………12分 19.解:f (x )=tan 2x +2tan x +2=(tan x +1)2+1. ∵x ∈[-3π,4π],∴tan x ∈[-3,1]. …………5分 ∴当tan x =-1,即x =-4π时,y 有最小值,y min =1; 当tan x =1,即x =4π时,y 有最大值,y max =5. …………10分20.解∵ )321sin(2π+=x y …… 4分(1)∴ 函数y 的最大值为2,最小值为-2,最小正周期πωπ42==T ……6分(2)由Z k k x k ∈+≤+≤-,2232122πππππ,得 ……10分 函数y 的单调递增区间为:Z k k k ∈⎥⎦⎤⎢⎣⎡+-,34,354ππππ ……12分21.解 (1)由图象可知,T 2=74π-π4=32π, ∴T =3π. …… 4分(2)由(1)可知当x =74π-3π=-54π时,函数f (x )取最小值,∴f (x )的单调递增区间是⎣⎡⎦⎤-54π+3k π,π4+3k π(k ∈Z ). ……8分 (3)由图知x =74π时,f (x )取最小值,又∵T =3π,∴当x =74π+3k π时,f (x )取最小值,所以f (x )取最小值时x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =74π+3k π,k ∈Z .……12分 22.解(1)f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos 2x=1-cos ⎝⎛⎭⎫π2+2x -3cos 2x=1+sin 2x -3cos 2x=2sin ⎝⎛⎭⎫2x -π3+1, …… …… 5分 周期T =π;2k π-π2≤2x -π3≤2k π+π2,解得单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). …… 7分 (2)x ∈⎣⎡⎦⎤π4,π2,所以2x -π3∈⎣⎡⎦⎤π6,2π3, sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤12,1, 所以f (x )的值域为[2,3].而f (x )=m +2,所以m +2∈[2,3],即m ∈[0,1]. …… 12分。

高一数学《必修二》期末综合复习题(三)(答案)

高一数学《必修二》期末综合复习题(三)(答案)

高一数学《必修二》期末综合复习题(三)1.若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( )A .-4B .-45C .4D .45答案 D2.在一组样本数据的频率分布直方图中,共有5个小长方形,若中间一个小长方形的面积等于其他4个小长方形的面积和的25,且样本容量为280,则中间一组的频数为( ) A .56 B .80 C .112 D .120 答案 B3.(多选)直线m ,n 均不在平面α,β内,下列命题正确的有( )A .若m ∥n ,n ∥α,则m ∥α;B .若m ∥β,α∥β,则m ∥α;C .若m ⊥n ,n ⊥α,则m ∥α;D .若m ⊥β,α⊥β,则m ∥α. 答案 ABCD4.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心 答案 C5.已知三棱锥D -ABC 中,AB =BC =1,AD =2,BD =5,AC =2,BC ⊥AD ,则该三棱锥的外接球的表面积为( )A .6πB .6πC .5πD .8π 答案 B6.△ABC 中,a =4,b =5,c =6,则sin 2Asin C=____.答案 17.如图,三棱锥ABCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.答案 788.已知:向量OA →=(3,-4),OB →=(6,-3),OC →= (5-m ,-3-m ),若∠ABC 为锐角,则实数m 的取值范围是________.答案 (-34,12)∪(12,+∞)9.设锐角△ABC 的三内角A ,B ,C 所对边分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为______. 答案 (2,3)10.如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°,M 是线段PC 上动点,若AC ⊥BM ,则PMMC=______.答案 1311.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(2sin B ,-3),n =(cos2B ,2cos 2B2-1),且m ∥n .(1)求锐角B 的大小;(2)如果b =2,求S △ABC 的最大值.解: (1)∵m ∥n ,∴2sin B (2cos 2B2-1)=-3cos2B ,∴sin2B =-3cos2B ,即tan2B =- 3.又∵B 为锐角,∴2B ∈(0,π),∴2B =2π3,∴B =π3.(2)∵B =π3,b =2,由余弦定理cos B =a 2+c 2-b 22ac ,得a 2+c 2-ac -4=0.又a 2+c 2≥2ac ,代入上式,得ac ≤4, 当且仅当a =c =2时等号成立. 故S △ABC =12ac sin B =34ac ≤3,当且仅当a =c =2时等号成立,即S △ABC 的最大值为 3.12.如图,AB 为圆O 的直径,点E ,F 在圆O 上,且AB ∥EF ,矩形ABCD 所在的平面和圆O 所在的平面互相垂直,且AD =EF =AF =1,AB =2. (1)求证:平面AFC ⊥平面CBF ;(2)在线段CF 上是否存在一点M ,使得OM ∥平面DAF ?并说明理由.解:(1)证明:∵平面ABCD ⊥平面ABEF , CB ⊥AB ,平面ABCD ∩平面ABEF =AB , ∴CB ⊥平面ABEF , ∵AF ⊂平面ABEF , ∴AF ⊥CB ,又∵AB 为圆O 的直径,∴AF ⊥BF , ∵CB ∩BF =B ,∴AF ⊥平面CBF .∵AF ⊂平面AFC ,∴平面AFC ⊥平面CBF .(2)取CF 中点记作M ,设DF 的中点为N ,连接AN ,MN ,则MN 綊12CD ,又AO 綊12CD ,则MN 綊AO ,∴MNAO 为平行四边形,∴OM ∥AN ,又AN ⊂平面DAF ,OM ⊄平面DAF , ∴OM ∥平面DAF .即存在一点M 为CF 的中点,使得OM ∥平面DAF .13.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值.解 (1)由b 2-a 2=12c 2及正弦定理得sin 2B -12=12sin 2C .所以-cos 2B =sin 2C .①又由A =π4,即B +C =34π,得-cos 2B =-cos2⎝⎛⎭⎫34π-C =-cos ⎝⎛⎭⎫32π-2C =sin 2C =2sin C cos C ,② 由①②解得tan C =2.(2)由tan C =2,C ∈(0,π)得sin C =255,cos C =55,因为sin B =sin(A +C )=sin ⎝⎛⎭⎫π4+C ,所以sin B =31010, 由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3.14.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =30°,AF ⊥PC ,FE ∥CD ,交PD 于点E . (1)证明:CF ⊥平面ADF ;(2)求二面角D -AF -E 的余弦值.(1)证明 ∵PD ⊥平面ABCD , AD ⊂平面ABCD ,∴PD ⊥AD . 又CD ⊥AD ,PD ∩CD =D , ∴AD ⊥平面PCD .∴AD ⊥PC . 又AF ⊥PC ,AD ∩AF =A ,∴PC ⊥平面ADF ,即CF ⊥平面ADF . (2)设AB =1,∵CF ⊥平面ADF ,∴CF ⊥DF . ∴在△CFD 中,DF =32, ∵CD ⊥AD ,CD ⊥PD ,AD ∩PD =D , ∴CD ⊥平面ADE .又∵EF ∥CD , ∴EF ⊥平面ADE .∴EF ⊥AE ,∴在△DEF 中,DE =34,EF =34, 在△ADE 中,AE =194,在△ADF 中,AF =72.由V A -DEF =13·S △ADE ·EF =13·S △ADF ·h E -ADF ,解得h E -ADF =38,设△AEF 的边AF 上的高为h ,由S △AEF =12·EF ·AE =12·AF ·h ,解得h =34×13314,设二面角D -AF -E 的平面角为θ.则sin θ=h E -ADF h =38×43×14133=13319,∴cos θ=25719.。

高一数学必修2期末试题及答案

高一数学必修2期末试题及答案

高中第一学期期末教学模块测试高一数学(必修2)试题参考公式:1)2S c c h ''+正棱台或圆台侧=(; S ch 正棱柱或圆柱侧=;12S ch '正棱锥或圆锥侧=;24S R π球面=; 13V S S S S h 下下台体上上=(++);V sh 柱体=; V sh 锥体1=3; 343V R π球=第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前;考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后;用铅笔把答题卡上对应题目的答案标号涂黑;如需改动;用橡皮擦干净后;再选涂其它答案;不能答在试题卷上。

一、选择题:本大题共12小题;每小题5分;共60分。

在每小题给出的四个选项中;只有一项是符合题目要求的。

1.图为某物体的实物图;则其俯视图为( )2.若直线l 只经过第一、二、四象限;则直线l 的斜率k ( )A. 大于零B.小于零 D. 大于零或小于零 D. 以上结论都有可能 3.在空间直角坐标系中Q(1;4;2)到坐标原点的距离为A.21B. 21C.3D. 74、 图(1)是由哪个平面图形旋转得到的( )A B C D5.四面体A BCD,,两两互相垂直;则顶点A在底面BCD上的-中;棱AB AC AD投影H为BCD△的()A.垂心B.重心C.外心D.内心6.一个正方体的顶点都在球面上;它的棱长为2cm;则球的表面积是()A.220πcm8πcmB.212πcmC.22πcmD.27.一束光线从点A(-1;1)出发经x轴反射;到达圆C: (x-2)2+(y-2)2=1上一点的最短路程是A. 4B. 5C. 32-8.如下图;都不是正四面体的表面展开图的是()A.①⑥B.④⑤C.③④D.④⑥9.已知点(,2)(0)-+=的距离为1;则a等于()a a>到直线:30l x yA.2B.22-C.21+-D.1210.在平面直角坐标系中;直线(32)3x y+-=的位置关-+=和直线(23)2x y系是()A.相交但不垂直B.垂直C.平行D.重合11.圆:22460+-=交于A Bx y x yx y x+-+=和圆:2260,两点;则AB的垂直平分线的方程是()A.30--=x y++=B.250x yC.390x y --= D.4370x y -+=12.过点(01)-,)的直线l 与半圆22:430(0)C x y x y +-+=≥有且只有一个交点;则直线l 的斜率k 的取值范围为( ) A.0k =或43k = B.113k <≤ C.43k =或113k <≤D.43k =或113k ≤≤二、填空题:本大题共6小题;每小题5分;共30分。

人教A版高中必修二试题期末数学试卷

人教A版高中必修二试题期末数学试卷

高一(下)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)线段AB在平面α内,则直线AB与平面α的位置关系是()A.A B⊂αB.A B⊄αC.由线段AB的长短而定D.以上都不对考点:平面的基本性质及推论.专题:证明题.分析:线段AB在平面α内,则直线AB上所有的点都在平面α内,从而即可判断直线AB与平面α的位置关系.解答:解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.点评:本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.2.(5分)若直线l∥平面α,直线a⊂α,则l与a的位置关系是()A.l∥a B.l与a异面C.l与a相交D.l与a平行或异面考点:空间中直线与直线之间的位置关系.专题:阅读型.分析:可从公共点的个数进行判断.直线l∥平面α,所以直线l∥平面α无公共点,故可得到l与a的位置关系解答:解:直线l∥平面α,所以直线l∥平面α无公共点,所以l与a平行或异面.故选D点评:本题考查空间直线和平面位置关系的判断,考查逻辑推理能力.3.(5分)下列说法正确的是()A.圆上的三点可确定一个平面B.四条线段首尾顺次相接构成平面图形C.两组对边分别相等的四边形是平行四边形D.空间四点中,若任意三点不共线,则四点不共面考点:平面的基本性质及推论.分析:由不共线的三点确定一个平面,知A正确;由空间四边形的定义,知B正确;当两组对边分别相等的四边形的四边不在同一个平面内时,C不正确;由平行四边形中任意三点不共线,但四点共面,知D不正确.解答:解:∵不共线的三点确定一个平面,圆上的三点不共线,∴圆上的三点可确定一个平面,故A正确;∵空间四边形四条线段首尾顺次相接构成图形,但四点不在同一平面内,∴四条线段首尾顺次相接构成平面图形,故B不正确;当当两组对边分别相等的四边形的四边不在同一个平面内时,所得的四边形不是平行四边形,故C不正确;平行四边形中任意三点不共线,但四点共面,故D不正确.故选A.点评:本题考查平面的基本定理及其推论,是基础题.解题时要认真审题,仔细解答.4.(5分)正方体ABCD﹣A1B1C1D1中,若E为棱AB的中点,则直线C1E与平面BCC1B1所成角的正切值为()A.B.C.D.考点:直线与平面所成的角.专题:空间角.分析:连接BC1,则由AB⊥平面BCC1B1,可得∠EC1B是直线C1E与平面BCC1B1所成角,利用正切函数可得结论.解答:解:连接BC1,则∵AB⊥平面BCC1B1,∴∠EC1B是直线C1E与平面BCC1B1所成角,设AB=2,则EB=1,BC1=2,∴tan∠EC1B===故选B.点评:本题考查线面角,考查学生的计算能力,属于基础题.5.(5分)如图,水平放置的三棱柱的侧棱长和底面边长均为2,且侧棱AA1⊥平面ABC,正视图如图所示,俯视图为一个等边三角形,则该三棱柱的侧视图面积为()A.4B.C.D.考点:由三视图求面积、体积;简单空间图形的三视图.专题:空间位置关系与距离.分析:根据三视图的规则“长对正,宽相等,高平齐”可以求出侧视图的宽与高,进而求出侧视图的面积.解答:解:由侧视图与正视图的高度一样,∴侧视图的高h=2;由侧视图与俯视图的宽度一样,而俯视图的宽度即为等边三角形的高=,∴侧视图的宽度为,于是侧视图的面积=2×=2.故选D.点评:本题考查了三视图,熟练掌握三视图的规则是正确计算的前提.6.(5分)(2013•江门二模)设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:①若α∥β,α∥γ,则β∥γ②若α⊥β,m∥α,则m⊥β③若m⊥α,m∥β,则α⊥β④若m∥n,n⊂α,则m∥α其中真命题的序号是()A.①④B.②③C.②④D.①③考点:平面与平面之间的位置关系;空间中直线与平面之间的位置关系.分析:对每一选支进行逐一判定,不正确的只需取出反例,正确的证明一下即可.解答:解:对于①利用平面与平面平行的性质定理可证α∥β,α∥γ,则β∥γ,正确对于②面BD⊥面D1C,A1B1∥面BD,此时A1B1∥面D1C,不正确对应③∵m∥β∴β内有一直线与m平行,而m⊥α,根据面面垂直的判定定理可知α⊥β,故正确对应④m有可能在平面α内,故不正确,故选D点评:本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.7.(5分)在三棱锥P﹣ABC中,PA,PB,PC两两垂直,PA=PB=PC=1,则P到平面ABC的距离为()A.B.C.1D.考点:点、线、面间的距离计算.专题:空间位置关系与距离.分析:先确定△ABC是等边三角形,再利用V A=V P﹣ABC,即可求P到平面ABC的距离.﹣PBC解答:解:设P到平面ABC的距离为h,则∵三棱锥P﹣ABC中,PA,PB,PC两两垂直,PA=PB=PC=1,∴AB=BC=AC=∵V A﹣PBC=V P﹣ABC∴∴h=故选A.点评:本题考查点到面的距离的计算,考查三棱锥体积的计算,正确运用等体积转化是关键.8.(5分)已知某个几何体的三视图如右图(正视图中的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()cm3.A.8+πB.C.12+πD.考点:由三视图求面积、体积.专题:计算题.分析:由已知中几何体的三视图,我们易判断出几何体的形状及正视图中半圆的半径和矩形的边长和柱体的高,代入几何体的体积公式,即可得到答案.解答:解:由图可知该几何体是一个底面为一个正方形和半圆形合在一起高为2的柱体,则底面积S=2×2+=4+则体积V=Sh=(4+)•2=8+π故选:A点评:本题考查的知识点是由三视图求体积,根据三视图判断出几何体的形状,是解答本题的关键.9.(5分)在长方体ABCD﹣A1B1C1D1中,M、N分别是棱BB1、B1C1的中点,若∠CMN=90°,则异面直线AD1与DM所成的角为()A.30°B.45°C.45°D.90°考点:异面直线及其所成的角.专题:计算题.分析:由已知中长方体ABCD﹣A1B1C1D1中,M、N分别是棱BB1、B1C1的中点,若∠CMN=90°,我们易证得CM⊥AD1,CD⊥AD1,由线面垂直的判定定理可得:AD1⊥平面CDM,进而由线面垂直的性质得得AD1⊥DM,即可得到异面直线AD1与DM所成的角.解答:解:如下图所示:∵M、N分别是棱BB1、B1C1的中点,∴MN∥AD1,∵∠CMN=90°,∴CM⊥MN,∴CM⊥AD1,由长方体的几何特征,我们可得CD⊥AD1,∴AD1⊥平面CDM故AD1⊥DM即异面直线AD1与DM所成的角为90°故选D点评:本题考查的知识点是异面直线及其所成的角,其中根据线面垂直的判定定理及性质定理,将问题转化为线线垂直的判定是解答本题的关键.10.(5分)(2010•辽宁)已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,,则球O的表面积等于()A.4πB.3πC.2πD.π考点:直线与平面垂直的性质;球的体积和表面积.专题:压轴题.分析:先寻找球心,根据S,A,B,C是球O表面上的点,则OA=OB=OC=OS,根据直角三角形的性质可知O为SC的中点,则SC即为直径,根据球的面积公式求解即可.解答:解:∵已知S,A,B,C是球O表面上的点∴OA=OB=OC=OS=1又SA⊥平面ABC,AB⊥BC,SA=AB=1,,∴球O的直径为2R=SC=2,R=1,∴表面积为4πR2=4π.故选A.点评:本题主要考查了直线与平面垂直的性质,以及球的表面积等有关知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.11.(5分)(2010•石家庄二模)在正四棱柱ABCD﹣A1B1C1D1中,,E为AB上一个动点,则D1E+CE的最小值为()A.B.C.D.x≤y考点:多面体和旋转体表面上的最短距离问题.专题:计算题.分析:画出几何体的图形,连接D1A延长至G使得AG=AD,连接C1B延长至F使得BF=BC,连接EF,D1F,则D1F为所求.解答:解:画出几何体的图形,连接D1A延长至G使得AG=AD,连接C1B延长至F使得BF=BC,连接EF,则ABFG为正方形,连接D1F,则D1F为D1E+CE的最小值:D1F==故选B.点评:本题是中档题,考查正四棱柱表面距离的最小值问题,考查折叠与展开的关系,能够转化为平面上两点的距离是解题的关键,考查空间想象能力,计算能力.12.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于()A.B.C.D.考点:异面直线及其所成的角.专题:计算题.分析:先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可.解答:解:设AB=2,作CO⊥面ABDE,再过O作OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D 的平面角,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则,=故EM,AN所成角的余弦值故选D点评:本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题二、填空题(本大题共4个小题,每小题5分,共20分,将答案填在题后的横线上)13.(5分)三棱台ABC﹣A1B1C1中,AB:A1B1=1:2,则三棱锥A1﹣ABC,C﹣A1B1C1的体积比为1:4.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:利用棱锥的体积公式,通过三角形的面积的比,棱锥高的比,求出结果即可.解答:解:由题意可知,三棱锥A1﹣ABC,C﹣A1B1C1的体积中,高相等,底面积的比为1:4,所以二者体积比为1:4;故答案为:1:4点评:本题是基础题,考查棱锥体积的比的计算,注意同底等高体积相同,考查计算能力,转化思想.14.(5分)已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是.考点:由三视图求面积、体积.专题:综合题.分析:先有三视图得到几何体的形状及度量关系,利用棱锥的体积公式求出体积.解答:解:由三视图可得几何体是四棱锥V﹣ABCD,其中面VCD⊥面ABCD;底面ABCD是边长为20cm的正方形;棱锥的高是20cm由棱锥的体积公式得V===cm3点评:三视图是新增考点,根据三张图的关系,可知几何体是正方体的一部分,是一个四棱锥.本题也可改编为求该几何体的外接球的表面积,则必须补全为正方体,增加了难度.15.(5分)已知AB=2,BC=1的矩形ABCD,沿对角线BD将△BDC折起得到三棱锥E﹣ABD,且三棱锥的体积为,则二面角E﹣BD﹣A的正弦值为.考点:二面角的平面角及求法.专题:空间角.分析:利用三棱锥的体积求出E到平面ABD的距离,过E作EF⊥BD,连接OF,则∠EFO为二面角E﹣BD﹣A的平面角,从而可求二面角E﹣BD﹣A的正弦值.解答:解:设E到平面ABD的距离为EO=h,则由题意,∵三棱锥的体积为,∴∴h=,过E作EF⊥BD,连接OF,则OF⊥BD,∴∠EFO为二面角E﹣BD﹣A的平面角在Rt△EBD中,EF==∴sin∠EFO===故答案为:点评:本题考查面面角,考查三棱锥体积的计算,考查学生的计算能力,属于中档题.16.(5分)已知α,β,γ是三个不同的平面,m,n是两条不同的直线,有下列三个条件①m∥γ,n⊂β;②m∥γ,n∥β;③m⊂γ,n∥β,要使命题“若α∩β=m,n⊂γ,且③或①,则m∥n”为真命题,则可以在横线处填入的条件是③或①(把你认为正确条件的序号填上)考点:空间中直线与平面之间的位置关系;命题的真假判断与应用.专题:空间位置关系与距离.分析: A.可以在横线处填入的条件是③.如图1所示,即“若α∩β=m,n⊂γ,且m⊂γ,n∥β,则m∥n”为真命题.利用同一平面内两条直线的位置关系可得m∥n或m∩n=P,由反证法排除m∩n=P即可;B.可以在横线处填入的条件是①,即“若α∩β=m,n⊂γ,且m∥γ,n⊂β,则m∥n”为真命题.如图2所示,由α∩β=m,可得m⊂β,可得β∩γ=n,已知m∥γ,利用线面平行的性质定理可得m∥n.C.在横线处填入的条件不能是②.如图3所示,即“若α∩β=m,n⊂γ,且m∥γ,n∥β;则m∥n”为假命题.举反例:假设α∩γ=l,由m∥γ,可得m∥l.若n∩l=P,则m与n必不平行,否则与n∩lP 相矛盾.解答:解:A.可以在横线处填入的条件是③.如图1所示,即若α∩β=m,n⊂γ,且m⊂γ,n∥β,则m∥n”为真命题.证明如下:∵α∩β=m,n⊂γ,m⊂γ,∴m∥n或m∩n=P,假设m∩n=P,则P∈n,P∈m,又α∩β=m,∴P∈β,这与n∥β相矛盾,因此m∩n=P不成立,故m∥n.B.可以在横线处填入的条件是①,即若α∩β=m,n⊂γ,且m∥γ,n⊂β,则m∥n”为真命题.证明如下:如图2所示,∵α∩β=m,∴m⊂β,∵n⊂γ,n⊂β,∴β∩γ=n,又m∥γ,∴m∥n.C.在横线处填入的条件不能是②.如图3所示,即“若α∩β=m,n⊂γ,且m∥γ,n∥β;则m∥n”为假命题.证明:假设α∩γ=l,∵m∥γ,∴m∥l.若n∩l=P,则m与n必不平行,否则与n∩lP相矛盾.综上可知:可以填的条件是③或①.点评:熟练掌握空间点、线、面的位置关系是解题的关键.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AA1⊥底面ABCD,AB=2,AA1=BC=4,∠ABC=60°,点E为BC中点,点F为B1C1中点.(Ⅰ)求证:平面A1ED⊥平面A1AEF;(Ⅱ)求点F到平面A1ED的距离.考点:平面与平面垂直的判定;点、线、面间的距离计算.专题:证明题;空间位置关系与距离.分析:(Ⅰ)依题意,易证DE⊥AE,从而可证DE⊥平面A1AEF,由面面垂直的判断定理即可证得结论;(Ⅱ)利用三棱锥的轮换体积公式=即可求得点F到平面A1ED的距离.解答:证明:(Ⅰ)依题意知,△ABE为等边三角形,所以AE=AB=2,在等腰三角形ECD中,EC=CD=2,∠ECD=120°,∴由余弦定理可知,DE=2;在△AED中,AD=4,AE=2,DE=2,AD2=AE2+DE2,∴DE⊥AE;又AA1⊥底面ABCD,∴AA1⊥DE,又AA1∩AE=A,∴DE⊥平面A1AEF,DE⊂平面A1ED,∴平面A1ED⊥平面A1AEF;(Ⅱ)设点F到平面A1ED的距离为h,则=•h=×DE•A1E•h=××2×2•h;又=•DE=×EF•A1F•DE=××4×2×2;∵=,∴××2×2•h=××4×2×2,∴h==.点评:本题考查线面垂直的判定与平面与平面垂直的判定,考查点、线、面间的距离计算,考查推理与证明的能力,属于中档题.18.(12分)如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G,H分别是线段PA,PD,CD,AB的中点.(Ⅰ)求证:PB∥平面EFGH;(Ⅱ)求二面角C﹣EF﹣G的余弦值.考点:二面角的平面角及求法;直线与平面平行的判定.专题:空间位置关系与距离;空间角.分析:(Ⅰ)先证明E、F、G、H四点共面,再利用三角形中位线的性质证明EH∥PB,利用线面平行的判定证明PB∥平面EFGH;(Ⅱ)证明∠BEH为二面角C﹣EF﹣G的平面角,利用余弦定理即可求二面角C﹣EF﹣G的余弦值.解答:(Ⅰ)证明:∵E、F、G分别是线段PA、PD、CD的中点,∴GH∥AD∥EF,∴E、F、G、H四点共面.又H为AB的中点,∴EH∥PB,∵EH⊂面EFGH,PB⊄平面EFGH,∴PB∥面EFGH;(Ⅱ)解:∵平面PAD⊥平面ABCD,四边形ABCD为正方形,△PAD是直角三角形,∴AD⊥AB,AD⊥PA∵AB∩PA=A∴AD⊥平面PAB∵EF∥AB∴EF⊥平面PAB∴∠BEH为二面角C﹣EF﹣G的平面角△BEH中,BH=1,EH=,BE=,∴cos∠BEH==.点评:本题考查线面平行,考查面面角,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.19.(12分)如图,正三棱柱ABC﹣A1B1C1的所有棱长都为2,D为CC1中点.(Ⅰ)求证:AB1⊥平面A1BD;(Ⅱ)求直线B1C1与平面A1BD所成角的正弦值.考点:直线与平面所成的角;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(Ⅰ)取BC中点E,连接B1E,证明BD⊥平面AEB1,得BD⊥AB1,由直线与平面垂直的判定定理,可得所证结论.(Ⅱ)设AB1∩A1B=O,延长BD,B1C1,相交于F,连接OF,则∠OFB1为直线B1C1与平面A1BD 所成角,利用正弦函数可得结论.解答:(Ⅰ)证明:由正三棱柱ABC﹣A1B1C1的所有棱长都相等可知:AB1⊥A1B如图,取BC的中点E,连接B1E,则Rt△BCD≌Rt△B1BE∴∠BB1E=∠CBD∴∠CBD+∠BEB1=∠BB1E+∠BEB1=90°∴BD⊥B1E由平面ABC⊥平面BCC1B1,平面ABC∩平面BCC1B1=BC,且AE⊥BC得,AE⊥平面BCC1B1∴AE⊥BD∵B1E⊂平面AEB1,AE⊂平面AEB1,AE∩B1E=E∴BD⊥平面AEB1∴BD⊥AB1∵A1B⊂平面A1BD,BD⊂平面A1BD,A1B∩BD=B∴AB1⊥平面A1BD;(Ⅱ)解:设AB1∩A1B=O,延长BD,B1C1,相交于F,连接OF,则∠OFB1为直线B1C1与平面A1BD所成角.∵正三棱柱ABC﹣A1B1C1的所有棱长都为2,D为CC1中点,∴,B1F=4∴sin∠OFB1==.点评:本题考查线面垂直,考查线面角,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.20.(12分)已知ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△OED,ODF都是正三角形.(Ⅰ)证明:平面ABC∥平面OEF;(Ⅱ)求棱锥F﹣ABC的体积;(III)求异面直线AB与FD成角的余弦值.考点:平面与平面平行的判定;棱柱、棱锥、棱台的体积;直线与平面所成的角.专题:空间位置关系与距离;空间角.分析:(Ⅰ)利用三角形中位线的性质证明故BC∥EF,AC∥OF,即可证明平面ABC∥平面OEF;(Ⅱ)利用等体积V F﹣ABC=V C﹣ABE=V C﹣ABO,即可求棱锥F﹣ABC的体积;(III)证明∠COE(或其补角)就是异面直线AB与FD成角,取AO中点M,连接CM,ME,则CM⊥平面ABED,在△COE中,利用余弦定理,即可求异面直线AB与FD成角的余弦值.解答:(I)证明:设G是线段DA与线段EB延长线的交点,由于△OAB与△ODE都是正三角形,所以OB∥DE,OB=DE同理,设G′是线段DA与线段FC延长线的交点,有OG′=OD=2,又由于G与G′都在线段DA的延长线上,所以G与G′重合,在△GED和△GFD中,由OB∥DE,OB=DE和OC∥DF,OC=DF,可知B,C分别是GE,GF的中点,所以BC是△GFE的中位线,故BC∥EF同理AC∥OF,∴平面ABC∥平面OEF;(Ⅱ)解:过点F作FQ⊥AD,交AD于点Q.由平面ABED⊥平面ACFD,FQ就是四棱锥F﹣OBED 的高,且FQ=,由(I)知,V F﹣ABC=V C﹣ABE=V C﹣ABO===;(III)解:由(I)知,AB∥OE,CO∥DF∴∠COE(或其补角)就是异面直线AB与FD成角,取AO中点M,连接CM,ME,则CM⊥平面ABED,∵ME==∴CE===在△COE中,cos∠COE==﹣∴异面直线AB与FD成角的余弦值是.点评:本题考查面面平行,考查三棱锥体积的计算,考查异面直线所成角,考查学生分析解决问题的能力,属于中档题.21.(12分)(2013•温州一模)如图,已知平面QBC与直线PA均垂直于Rt△ABC所在平面,且PA=AB=AC.(Ⅰ)求证:PA∥平面QBC;(Ⅱ)PQ⊥平面QBC,求二面角Q﹣PB﹣A的余弦值.考点:二面角的平面角及求法;直线与平面平行的判定.专题:空间角.分析:(Ⅰ)利用线面垂直的性质定理及线面平行的判定定理即可证明;(Ⅱ)方法一:利用三角形的中位线定理及二面角的平面角的定义即可求出.方法二:通过建立空间直角坐标系,利用平面的法向量所成的夹角来求两平面的二面角的平面角.解答:解:(I)证明:过点Q作QD⊥BC于点D,∵平面QBC⊥平面ABC,∴QD⊥平面ABC,又∵PA⊥平面ABC,∴QD∥PA,又∵QD⊂平面QBC,PA⊄平面QBC,∴PA∥平面QBC.(Ⅱ)方法一:∵PQ⊥平面QBC,∴∠PQB=∠PQC=90°,又∵PB=PC,PQ=PQ,∴△PQB≌△PQC,∴BQ=CQ.∴点D是BC的中点,连接AD,则AD⊥BC,∴AD⊥平面QBC,∴PQ∥AD,AD⊥QD,∴四边形PADQ是矩形.设PA=2a,∴,PB=2a,∴.过Q作QR⊥PB于点R,∴=,==,取PB中点M,连接AM,取PA的中点N,连接RN,∵PR=,,∴MA∥RN.∵PA=AB,∴AM⊥PB,∴RN⊥PB.∴∠QRN为二面角Q﹣PB﹣A的平面角.连接QN,则QN===.又,∴cos∠QRN===.即二面角Q﹣PB﹣A的余弦值为.(Ⅱ)方法二:∵PQ⊥平面QBC,∴∠PQB=∠PQC=90°,又∵PB=PC,PQ=PQ,∴△PQB≌△PQC,∴BQ=CQ.∴点D是BC的中点,连AD,则AD⊥BC.∴AD⊥平面QBC,∴PQ∥AD,AD⊥QD,∴四边形PADQ是矩形.分别以AC、AB、AP为x、y、z轴建立空间直角坐标系O﹣xyz.不妨设PA=2,则Q(1,1,2),B(0,2,0),P(0,0,2),设平面QPB的法向量为.∵=(1,1,0),=(0,2,﹣2).∴令x=1,则y=z=﹣1.又∵平面PAB的法向量为.设二面角Q﹣PB﹣A为θ,则|cosθ|===又∵二面角Q﹣PB﹣A是钝角∴.点评:熟练掌握线面垂直的性质定理及线面平行的判定定理、二面角的定义及通过建立空间直角坐标系并利用平面的法向量所成的夹角来求二面角的平面角是解题的关键.22.(12分)如图,三棱柱ABC﹣A1B1C1中,BC=2,BC1=,CC1=,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC1B1,E为棱AB的中点,F为CC1上的动点.(Ⅰ)在线段CC1上是否存在一点F,使得EF∥平面A1BC1?若存在,确定其位置;若不存在,说明理由.(Ⅱ)在线段CC1上是否存在一点F,使得EF⊥BB1?若存在,确定其位置;若不存在,说明理由.(III)当F为CC1的中点时,若AC≤CC1,且EF与平面ACC1A1所成的角的正弦值为,求二面角C﹣AA1﹣B的余弦值.考点:用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面垂直的性质.专题:空间位置关系与距离;空间角.分析:(I)存在,中点,利用线面平行的判定定理可得结论;(Ⅱ)存在,当F在靠端点C1一侧的四等分点时.(III)建立空间直角坐标系,确定平面ACC1A1、平面AA1B的一个法向量,利用向量的夹角公式,即可得到结论.解答:解:(I)存在,中点.取A1B的中点D,连接ED,DC1,则ED∥AA1,ED=AA1,∵F为CC1上的动点,∴ED∥FC1,ED=FC1,∴四边形DEFC1是平行四边形∴EF∥DC1,∴EF⊄平面A1BC1,DC1⊂平面A1BC1,∴EF∥平面A1BC1;(Ⅱ)存在,当F在靠端点C1一侧的四等分点时.(III)建立如图所示的空间直角坐标系,设平面ACC1A1的一个法向量为又则,,令z1=1,则又∴=…(6分)解得b=1,或,∵AC≤CC1∴b=1∴同理可求得平面AA1B的一个法向量∴=又二面角C﹣AA1﹣B为锐二面角,故余弦值为.点评:本题考查线面平行,考查面面角,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.。

高中数学必修二 期末考测试(提升)(含答案)

高中数学必修二   期末考测试(提升)(含答案)

期末考测试(提升)一、单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·浙江)如图,正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是( )A .2+B .8C .6D .2+【答案】B【解析】由题意O B ''OABC 中,1OA BC ==,OB =OB OA ⊥,所以3OC AB ==, 所以四边形的周长为:2(13)8⨯+=. 故选:B .2.(2021·全国· 专题练习 )复数21i-(i 为虚数单位)的共轭复数是( ) A .1i + B .1i -C .1i -+D .1i --【答案】B【解析】化简可得21z i =-()()()21111i i i i +==+-+,∴21i-的共轭复数1z i =-,故选:B . 3.(2021·黑龙江·哈尔滨三中高一月考)如图,向量AB a =,AC b =,CD c =,则向量BD 可以表示为( )A .a b c +-B .a b c -+C .b a c -+D .b a c --【答案】C【解析】依题意BD AD AB AC CD AB =-=+-,即BD b a c =-+,故选:C.4.(2021·全国·专题练习)我国古代数学著作《九章算术》有如下问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,始与岸齐,问水深、葭长各几何?”意思是说:“有一个边长为1丈的正方形水池,在池的正中央长着一根芦苇,芦苇露出水面1尺.若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面.问水有多深?芦苇多长?”该题所求的水深为( ) A .12尺 B .10尺 C .9尺 D .14尺【答案】A【解析】设水深为x 尺,依题意得()22215x x +-=,解得12x =.因此,水深为12尺.故选:A.5.(2021·内蒙古·集宁一中)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,cC =A .π12 B .π6C .π4D .π3【答案】B【解析】sinB=sin(A+C)=sinAcosC+cosAsinC ,∵sinB+sinA(sinC ﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC ﹣sinAcosC=0,∴cosAsinC+sinAsinC=0, ∵sinC ≠0,∴cosA=﹣sinA ,∴tanA=﹣1, ∵π2<A <π,∴A= 3π4,由正弦定理可得c sin sin aC A=,∵a=2,sinC=sin c A a=12=22 , ∵a >c ,∴C=π6,故选B .6.(2021·浙江·高一期末)设非零向量a ,b 满足a b a b +=-,则 A .a ⊥bB .=a bC .a ∥bD .a b >【答案】A【解析】由a b a b +=-平方得222222a a b b a a b b +⋅+=-⋅+,即0a b ⋅=,则a b ⊥,故选A.7.(2021·上海市金山中学高一期末)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,3A a π==则2b 2c bc ++的取值范围为( ) A .(1,9] B .(3,9] C .(5,9] D .(7,9]【答案】D 【解析】因为,3A a π==由正弦定理可得22sin sin sin 3ab c AB B π===⎛⎫- ⎪⎝⎭, 则有22sin ,2sin 3b B c B π⎛⎫==- ⎪⎝⎭, 由ABC 的内角,,A B C 为锐角,可得0,220,32B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,512sin 2124sin 2462666266B B B B πππππππ⎛⎫⎛⎫∴<<⇒<-<⇒<-≤⇒<-≤ ⎪ ⎪⎝⎭⎝⎭, 由余弦定理可得222222cos 3,a b c bc A b c bc =+-⇒=+- 因此有2223b c bc bc ++=+ 28sin sin 33B B π⎛⎫=-+ ⎪⎝⎭2cos 4sin 3BB B =++ 22cos 25B B =-+(]54sin 27,96B π⎛⎫=+-∈ ⎪⎝⎭故选:D.8.(2021·北京·清华附中 )如图,正四棱柱1111ABCD A B C D -满足12AB AA =,点E 在线段1DD 上移动,F 点在线段1BB 上移动,并且满足1DE FB =.则下列结论中正确的是( )A .直线1AC 与直线EF 可能异面B .直线EF 与直线AC 所成角随着E 点位置的变化而变化 C .三角形AEF 可能是钝角三角形D .四棱锥A CEF -的体积保持不变 【答案】D【解析】如图所示,连接有关线段.设M ,N 为AC ,A 1C 1的中点,即为上下底面的中心,MN 的中点为O ,则AC 1的中点也是O ,又∵DE =B 1F ,由对称性可得O 也是EF 的中点,所以AC 1与EF 交于点O ,故不是异面直线,故A 错误;由正四棱柱的性质结合线面垂直的判定定理易得AC ⊥平面11BB D D , 因为EF ⊂平面11BB D D ,∴,AC EF ⊥故B 错误; 设AB a ,则12AA a =,设1,02DE B F x x a ==<<, 易得()22222222,254,AE a x AF a a x a ax x =+=+-=-+ ()22222222684,EF a a x a ax x =+-=-+因为()222242220,AE AF EF ax x x a x +-=-=->EAF ∴∠为锐角;因为()22222224220,AE EF AF a ax x a x +-=-+=->AEF ∴∠为锐角,因为2222210124,AF EF AE a ax x +-=-+ 当3x 2a =时取得最小值为2222101890,a a a a -+=> AFE ∴∠为锐角,故△AEF 为锐角三角形,故C 错误; 三棱锥A -EFC 也可以看做F -AOC 和E -AOC 的组合体, 由于△AOB 是固定的,E ,F 到平面AOC 的距离是不变的 (∵易知BB 1,DD 1平行与平面ACC 1A 1),故体积不变, 故D 正确. 故选:D.二、多选题(每题至少有2个选项为正确答案,每题5分,4题共20分)9.(2021·湖南·临澧县第一中学高一期末)设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件D .若||5()z z x i x R +=+∈,则实数a 的值为2 【答案】ACD【解析】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确 故选:ACD10.(2021·江苏南京·高一期末)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =3c =,3A C π+=,则下列结论正确的是( )A .cos C =B .sin B =C .3a =D .ABCS=【答案】AD【解析】3A C π+=,故2B C =,根据正弦定理:sin sin b cB C=,即32sin cos C C C =⨯,sin 0C ≠,故cos C =,sin C =sin sin 22sin cos 3B C C C ===2222cos c a b ab C =+-,化简得到2430a a -+=,解得3a =或1a =,若3a =,故4A C π==,故2B π=,不满足,故1a =.11sin 122ABC S ab C ==⨯⨯△故选:AD .11.(2021·安徽黄山·高一期末)在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续7天,每天新增疑似病例不超过5人”.过去7日,甲、乙、丙、丁四地新增疑似病例数据信息如下,则一定符合该标志的是( ) 甲地:总体平均数3x ≤,且中位数为0; 乙地:总体平均数为2,且标准差2s ≤; 丙地:总体平均数3x ≤,且极差2≤c ; 丁地:众数为1,且极差4c ≤. A .甲地 B .乙地C .丙地D .丁地【答案】CD【解析】甲地:满足总体平均数3x ≤,且中位数为0,举例7天的新增疑似病例为0,0,0,0,5,6,7,则不符合该标志;乙地:若7天新增疑似病例为1,1,1,1,2,2,6,满足平均数为2,标准差2s =,但不符合该标志;丙地:由极差2≤c 可知,若新增疑似病例最多超过5人,比如6人,那么最小值不低于4人, 那么总体平均数3x ≤就不正确,故每天新增疑似病例低于5人,故丙地符合该标志; 丁地:因为众数为1,且极差4c ≤,所以新增疑似病例的最大值5≤,所以丁地符合该标志. 故选:CD12.(2021·河北易县中学高一月考)已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则以下四个命题正确的有( ) A .当5,7,60a b A ===︒时,满足条件的三角形共有1个B.若sin :sin :sin 3:5:7A B C =则这个三角形的最大角是120 C .若222a b c +>,则ABC 为锐角三角形 D .若4Cπ,22a c bc -=,则ABC 为等腰直角三角形【答案】BD【解析】对于A,7sin 2sin 15b AB a===>,无解,故A 错误; 对于B,根据已知条件,由正弦定理得:::3:5:7a b c =,不妨令3a =,则5,7b c ==,最大角C 的余弦值为:222925491cos 2302a b c C ab +-+-===-,∴120C =︒,故B 正确;对于C ,由条件,结合余弦定理只能得到cos 0C >,即角C 为锐角,无法保证其它角也为锐角,故C 错误;对于D,2222 cos cos 2224a b c b bc b c C ab ab a π+-++=====,得到b c+=, 又()2222,,a c bc a bc c c b c -=∴=+=+=a∴=,sin 1,42A C A ππ∴===∴=,ABC ∴为等腰直角三角形,故D 正确.故选:BD.三、填空题(每题5分,4题共20分)13.(2021·甘肃省会宁县第一中学高一期末)2020年年初,新冠肺炎疫情袭击全国.口罩成为重要的抗疫物资,为了确保口罩供应,某工厂口罩生产线高速运转,工人加班加点生产.设该工厂连续5天生产的口罩数依次为1x ,2x ,3x ,4x ,5x (单位:十万只),若这组数据1x ,2x ,3x ,4x ,5x 的方差为1.44,且21x ,22x ,23x ,24x ,25x 的平均数为4,则该工厂这5天平均每天生产口罩__________十万只.【答案】1.6【解析】依题意,得22212520x x x +++=.设1x ,2x ,3x ,4x ,5x 的平均数为x , 根据方差的计算公式有()()()2221251 1.445x x x x x x ⎡⎤-+-++-=⎢⎥⎣⎦.()()2222125125257.2x x x x x x x x ∴+++-++++=,即22201057.2x x -+=, 1.6x ∴=.故答案为:1.614.(2021·江苏省海头高级中学高二月考)设复数z 满足341z i --=,则z 的最大值是_______. 【答案】6【解析】设复数(,)z x yi x y R =+∈,则22341,(3)(4)1x yi i x y +--=∴-+-=,所以复数对应的点的轨迹为(3,4)为圆心半径为1的圆,所以z 1516=+=.故答案为615.(2021·全国·高一单元测试)口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A =“取出的两球同色”,B =“取出的2球中至少有一个黄球”,C =“取出的2球至少有一个白球”,D “取出的两球不同色”,E =“取出的2球中至多有一个白球”.下列判断中正确的序号为________. ①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件:④()1P C E =;⑤()()P B P C =.【答案】①④【解析】口袋里装有1红,2白,3黄共6个形状相同小球,从中取出2球, 事件A = “取出的两球同色”, B = “取出的2球中至少有一个黄球”,C = “取出的2球至少有一个白球”,D “取出的两球不同色”,E = “取出的2球中至多有一个白球”,①,由对立事件定义得A 与D 为对立事件,故①正确;②,B 与C 有可能同时发生,故B 与C 不是互斥事件,故②错误; ③,C 与E 有可能同时发生,不是对立事件,故③错误; ④,P (C)631=155=-,P (E)1415=,8()15P CE =,从而()P C E P =(C)P +(E)()1P CE -=,故④正确; ⑤,C B ≠,从而P (B)P ≠(C),故⑤错误. 故答案为:①④.16.(2021·江苏省如皋中学高一月考)已知三棱锥O ABC -中,,,A B C 三点在以O 为球心的球面上,若2AB BC ==,120ABC ︒∠=,且三棱锥O ABC -O 的表面积为________.【答案】52π【解析】ABC 的面积122sin12032ABCS=⨯⨯= 设球心O 到平面ABC 的距离为h ,则1133O ABC ABCV Sh -===3h =, 在ABC 中,由余弦定理2222cos1208412AC AB BC AB BC =+-⋅=+=,∴=AC 设ABC 的外接圆半径为r ,由正弦定理 则2sin120ACr =,解得2r,设球的半径为R ,则22213R r h =+=, 所以球O 的表面积为2452S R ππ==. 故答案为:52π四、解答题(17题10分,其余每题12分,共70分)17.(2021·山西·长治市潞城区第一中学校高一月考)已知复数z 使得2z i R +∈,2zR i∈-,其中i 是虚数单位.(1)求复数z 的共轭复数z ;(2)若复数()2z mi +在复平面上对应的点在第四象限,求实数m 的取值范围.【答案】(1)42i +;(2)()2,2-.【解析】(1)设(),z x yi x y R =+∈,则()22z i x y i +=++ ∵2z i R +∈∴2y =- 又22242255z x i x x i R i i -+-==+∈--,∴4x =综上,有42z i =-∴42z i =+ (2)∵m 为实数,且()()()()2224212482z mi m i m m m i +=+-=+-+-⎡⎤⎣⎦∴由题意得()21240820m m m ⎧+->⎪⎨-<⎪⎩,解得22m -<<故,实数m 的取值范围是()2,2-18.(2021·江西省靖安中学)某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)根据图表,计算第七组的频率,并估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(2)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【答案】(1)频率为:0.08;平均分为102;(2)25.【解析】(1)由频率分布直方图得第七组的频率为:()10.0040.0120.0160.0300.0200.0060.004100.08-++++++⨯=.用样本数据估计该校的2000名学生这次考试成绩的平均分为: 700.04800.12900.161000.31100.21200.06x =⨯+⨯+⨯+⨯+⨯+⨯ 1300.081400.04102+⨯+⨯=.(2)样本成绩属于第六组的有0.00610503⨯⨯=人,设为,,A B C ,样本成绩属于第八组的有0.00410502⨯⨯=人,设为,a b ,从样本成绩属于第六组和第八组的所有学生中随机抽取2名,基本事件有: AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab 共10个他们的分差的绝对值小于10分包含的基本事件个数AB ,AC ,BC ,ab 共 4个 ∴他们的分差的绝对值小于10分的概率42105p ==. 19.(2021·河南·辉县市第一高级中学高一月考)已知三棱柱111ABC A B C -(如图所示),底面ABC 是边长为2的正三角形,侧棱1CC ⊥底面ABC ,14CC =,E 为11B C 的中点.(1)若G 为11A B 的中点,求证:1C G ⊥平面11A B BA ;(2)证明:1//AC 平面1A EB ;(3)求三棱锥1A EBA -的体积.【答案】(1)证明见解析;(2)证明见解析;【解析】(1)连接1C G ,由1CC ⊥底面ABC ,且11//CC BB ,可得1BB ⊥底面111A B C , 又由1C G ⊂底面111A B C ,所以11C G B B ⊥,又因为G 为正111A B C △边11A B 的中点,所以111C G A B ⊥,因为1111A B BB B =,且111,A B BB ⊂平面11A B BA ,所以1C G ⊥平面11A B BA .(2)连接1B A 交1A B 与G ,则O 为1A B 的中点,连接EO ,则1//EO AC .因为EO ⊂平面1EA B ,1AC ⊄平面1EA B ,所以1//AC 平面1EA B .(2)因为11A A BE E ABA V V --=,11142ABA S AB AA =⨯⨯=△.取1GB 的中点F ,连接EF ,则1//EF C G ,可得EF ⊥平面11A B BA ,即EF 为三棱锥1E ABA -的高,112EF C G ===,三棱锥1A EBA -的体积11111433A A BE E ABA ABA V V S EF --==⨯=⨯=△20.(2021·重庆第二外国语学校高一月考)已知1e ,2e 是平面内两个不共线的非零向量,122AB e e =+,12e e BE λ=-+,122EC e e =-+,且A ,E ,C 三点共线.(1)求实数λ的值;(2)若()12,1e =,()22,2e =-,求BC 的坐标;(3)已知()3,5D ,在(2)的条件下,若A ,B ,C ,D 四点按逆时针顺序构成平行四边形,求点A 的坐标.【答案】(1)32λ=-(2)(7,2)--(3)()10,7. 【解析】(1)()()()12121221AE AB BE e e e e e e λλ=+=++-+=++.因为A ,E ,C 三点共线,所以存在实数k ,使得AE k EC =,即()()121212e e k e e λ++=-+,得()1212(1)k e k e λ+=--.因为1e ,2e 是平面内两个不共线的非零向量, 所以12010k k λ+=⎧⎨--=⎩解得12k =-,32λ=-. (2)()()()121212136,31,17222,32B e BE EC e C e e e e ++=--=-+=--=--=---. (3)因为A ,B ,C ,D 四点按逆时针顺序构成平行四边形,所以AD BC =.设(),A x y ,则()3,5AD x y =--,因为()7,2BC =--,所以3752x x -=-⎧⎨-=-⎩解得107x y =⎧⎨=⎩ 即点A 的坐标为()10,7.21.(2021·安徽师大附属外国语学校高一月考)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,已知sin2sin .a B b A =(1)若3,a b ==c ;(2)求cos cos a C c A b-的取值范围. 【答案】(1)2c =;(2)()1,1-.【解析】(1)由sin 2sin a B b A =,得sin sin2sin sin A B B A =,得2sin sin cos sin sin A B A B A =,得1cos 2B =, 在ABC ,3B π∴=, 由余弦定理2222cos b c a ac B =+-, 得27923cos 3c c π=+-⨯,即2320c c -+=,解得1c =或2c =.当1c =时,22220,cos 0b c a A +-=-<< 即A 为钝角(舍),故2c =符合.(2)由(1)得3B π=, 所以23C A π=-,cos cos sin cos cos sin 22sin 3a C c A A C A C A b B π--⎛⎫∴===- ⎪⎝⎭, ABC 为锐角三角形,62A ππ∴<<,22333A πππ∴-<-<,2sin 23A π⎛⎫-< ⎪⎝⎭, cos cos 11a C c A b-∴-<<,故cos cos a C c A b-的取值范围是()1,1-. 22.(2021·全国·高一课时练习)如图在四棱锥P ABCD -中,底面ABCD 为菱形,PAD △为正三角形,平面PAD ⊥平面ABCD E F ,、分别是AD CD 、的中点.(1)证明:BD PF ⊥;(2)若M 是棱PB 上一点,三棱锥M PAD -与三棱锥P DEF -的体积相等,求M 点的位置.【答案】(1)证明见解析;(2)M 点在PB 上靠近P 点的四等分点处.【解析】(1)连接AC PA PD =,且E 是AD 的中点,PE AD ⊥∴.又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD PE =⊂,平面PAD .PE ∴⊥平面ABCD BD ⊂,平面ABCD BD PE ∴⊥,. 又ABCD 为菱形,且E F 、分别为棱AD CD 、的中点,//EF AC ∴.BD AC BD EF ⊥∴⊥,,又BD PE PE EF E BD ⊥⋂=∴⊥,,平面PEF ;PF ∴⊂平面PEF BD PF ∴⊥,. (2)如图,连接MA MD 、, 设PM MBλ=,则1PM PB λλ=+, 11M PAD B PAD P ABD V V V λλλλ---∴==++, 14DEF DAC S S =△△,则1144P DEF P ACD P ABD V V V ---==,又M PAD P DEF V V --=. 114λλ∴=+. 解得13λ=,即M 点在PB 上靠近P 点的四等分点处.。

高一数学必修2期末试题及答案解析

高一数学必修2期末试题及答案解析

高一数学必修2期末试题及答案解析参考公式:圆台的表面积公式:S r '2 r2 r'l rl (r'、r分别为圆台的上、下底面半径,I为母线长)柱体、椎体、台体的体积公式:V柱体二Sh(S为底面积,h为柱体高)1V椎体= §Sh(S为底面积,h为椎体高)1 ________V台体二S' ,S'S S h (S',S分别为上、下底面面积,h为台体高)3、选择题A 1个C、3个2.如图所示,正方体的棱长为标系中的坐标是1,点A是其一棱的中点,贝U点B、1,1」2A在空间直角坐C、D、3.如图所示,长方体ABCD A1B1C1D1 中, BAB1 30。

,贝U GD与BB所成的角是A 60B、90B、2个D、4个C 、30D 、45C 、2x y 3 0 3D 、 2x y 5 04.下列直线中,与直线x y 1 0的相交的是 A 2x 2y 6 B 、 x C 、 y x 3 D 、5.在空间四边形 ABCD 的各边 AB BC 、CD 、 DA 上的依次取点E 、F 、G 、H ,若EH 、FG 所在直线相交于点P ,则 A 、点 P 必在直线AC 上 B 、点 P 必在直线BD 上 C 、点 P 必在平面DBC 外 D 、点 P 必在平面ABC 内 6.已知直线a ,给出以下四个命题: ①若平面 II 平面 ,则直线a//平面 ②若直线a//平面,则平面 //平面 ③若直线a 不平行于平面,则平面 不平行于平面其中正确的命题是 A 、② B 、③ C 、①②D 、①③ 7.已知直线a a y 1 0与直线2x ay 1 0垂直, 则实数a 的值等于B 、C 、D > 0,28.如图所示,已知AB 平面BCD , BC CD ,则图中互相垂直的平面有 A 3对 B 、2对 1对 D 、0对9.已知P 2, 1是圆x y 225的弦AB 的中点,则弦 AB所在的直线的方程是 B 、x y 1B10.已知直线ax by c O(a,b,c都是正数)与圆x2 y2 1相切,则以a,b,c为三边长的三角形A、是锐角三角形B、是直角三角形C、是钝角三角形D、不存在二、填空题11.直线y 2x与直线x y 3的交点坐标是_________________ 。

(完整)人教版高中数学必修二期末测试题一及答案(20200814125816)

(完整)人教版高中数学必修二期末测试题一及答案(20200814125816)

高中数学必修二期末测试题一1、下图(1)所示的圆锥的俯视图为2、直线l :-、3x y 3 0的倾斜角D 、 150 o3、边长为a 正四面体的表面积是D 、 、,3a 2。

4、对于直线l:3x y 6 0的截距,下列说法正确的是距是6;C 、在x 轴上的截距是3;D 、在y 轴上的截、选择题(本大题共2道小题,每小题5分,共60分。

)A 、30;;60:; 120 ;B 、込 a 3 ;12C 、刍;4A 、在y 轴上的截距是6;B 、在x 轴上的截距是35、已知a// ,b ,则直线a与直线b的位置关系是()A、平行;B、相交或异面;C、异面;D、平行或异面。

6、已知两条直线|「x 2ay 1 0,l2:x 4y 0,且W,则满足条件a的值为()1 1A、;B、;C、2 ;2 2D、2。

7、在空间四边形ABCD中,E,F,G,H分别是AB, BC, CD, DA的中点。

若AC BD a,且AC与BD所成的角为60:,贝卩四边形EFGH的面积为()3 2 3 2 3 2A、 a ;B、 a ;C、 a ;8 4 2D、■-/3a。

8已知圆C:x2 y2 2x 6y 0 ,则圆心P及半径r分别为()A、圆心P 1,3,半径r 10 ;B、圆心P 1,3 ,半径r ;C、圆心P 1, 3,半径r 10 ;D、圆心P 1, 3 ,半径r J0。

9、下列叙述中错误的是()A、若P 口且口l,则PI ;B、三点A,B,C确定一个平面;C、若直线ap|b A,则直线a与b能够确定一个平面;D、若 A I,B I 且 A ,B ,贝卩I 。

10、两条不平行的直线,其平行投影不可能是( )A、两条平行直线;B、一点和一条直线;C、两条相交直线;D、两个点。

11、长方体的一个顶点上的三条棱长分别为4、5,且它的8个顶3、点都在同一个球面上,则这个球的表面积是( )C 、125A、25 ;B、50 ;;D、都不对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末测试题
考试时间:90分钟 试卷满分:100分
一、选择题
1.点(1,-1)到直线x -y +1=0的距离是( ). A .
2
1 B .
2
3 C .
2
2 D .
2
2
3 2.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ). A .x -2y -1=0
B .x -2y +1=0
C .2x +y -2=0
D .x +2y -1=0
3.下列直线中与直线2x +y +1=0垂直的一条是( ). A .2x ―y ―1=0 B .x -2y +1=0 C .x +2y +1=0
D .x +
2
1
y -1=0 4.已知圆的方程为x 2+y 2-2x +6y +8=0,那么通过圆心的一条直线方程是( ). A .2x -y -1=0 B .2x +y +1=0 C .2x -y +1=0
D .2x +y -1=0
5.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为( ).
A .三棱台、三棱柱、圆锥、圆台
B .三棱台、三棱锥、圆锥、圆台
C .三棱柱、四棱锥、圆锥、圆台
D .三棱柱、三棱台、圆锥、圆台
6.直线3x +4y -5=0与圆2x 2+2y 2―4x ―2y +1=0的位置关系是( ). A .相离
B .相切
C .相交但直线不过圆心
D .相交且直线过圆心
7.过点P (a ,5)作圆(x +2)2+(y -1)2=4的切线,切线长为32,则a 等于( ). A .-1
B .-2
C .-3
D .0
(4)
(3)
(1)
(2)
8.圆A : x 2+y 2+4x +2y +1=0与圆B : x 2+y 2―2x ―6y +1=0的位置关系是( ). A .相交
B .相离
C .相切
D .内含
9.已知点A (2,3,5),B (-2,1,3),则|AB |=( ). A .6
B .26
C .2
D .22
10.如果一个正四面体的体积为9 dm 3,则其表面积S 的值为( ). A .183dm 2
B .18 dm 2
C .123dm 2
D .12 dm 2
11.如图,长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2,AD =1,E ,F ,G 分别是DD 1,AB ,CC 1的中点,则异面直线A 1E 与GF 所成角余弦值是( ).
A .
5
15 B .
2
2 C .
5
10 D .0
12.正六棱锥底面边长为a ,体积为2
3a 3
,则侧棱与底面所成的角为( ). A .30°
B .45°
C .60°
D .75°
13.直角梯形的一个内角为45°,下底长为上底长的23
,此梯形绕下底所在直线旋转一
周所成的旋转体表面积为(5+2)π,则旋转体的体积为( ).
A .2π
B .
3
2
+ 4π C .
3
2
+ 5π D .
3
7π 14.在棱长均为2的正四棱锥P -ABCD 中,点E 为PC 的中点,则下列命题正确的是( ).
A .BE ∥平面P AD ,且BE 到平面P AD 的距离为3
B .BE ∥平面P AD ,且BE 到平面P AD 的距离为3
6
2
C .BE 与平面P A
D 不平行,且B
E 与平面P AD 所成的角大于30° D .BE 与平面P AD 不平行,且BE 与平面P AD 所成的角小于30°
P
A
B
C
D
E (第14题)
(第11题)
二、填空题
15.在y 轴上的截距为-6,且与y 轴相交成30°角的直线方程是______________. 16.若圆B : x 2+y 2+b =0与圆C : x 2+y 2-6x +8y +16=0没有公共点,则b 的取值范围是________________.
17.已知△P 1P 2P 3的三顶点坐标分别为P 1(1,2),P 2(4,3)和P 3(3,-1),则这个三角形的最大边边长是__________,最小边边长是_________.
18.已知三条直线ax +2y +8=0,4x +3y =10和2x -y =10中没有任何两条平行,但它们不能构成三角形的三边,则实数a 的值为____________.
19.若圆C : x 2+y 2-4x +2y +m =0与y 轴交于A ,B 两点,且∠ACB =90º,则实数m 的值为__________.
三、解答题 20.求斜率为4
3
,且与坐标轴所围成的三角形的面积是6的直线方程.
21.如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱P A 与底面ABCD 所成的角的正切值为
2
6. (1)求侧面P AD 与底面ABCD 所成的二面角的大小;
(2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值;
(3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由.
22.求半径为4,与圆x 2+y 2―4x ―2y ―4=0相切,且和直线y =0相切的圆的方程.
(第21题)
B
P
参考答案
一、选择题 1.D
2.A
3.B
4.B
5.C
6.D
7.B
8.C
9.B
10.A 11.D 12.B 13.D 14.D 二、填空题
15.y =3x -6或y =―3x ―6. 16.-4<b <0或b <-64. 17.17,10. 18.-1. 19.-3. 三、解答题
20.解:设所求直线的方程为y =
43x +b ,令x =0,得y =b ;令y =0,得x =-3
4b ,由已知,得
21 34 - ⎪⎭

⎝⎛b b ·=6,即32b 2=6, 解得b =±3.
故所求的直线方程是y =
4
3
x ±3,即3x -4y ±12=0. 21.解:(1)取AD 中点M ,连接MO ,PM , 依条件可知AD ⊥MO ,AD ⊥PO ,
则∠PMO 为所求二面角P -AD -O 的平面角. ∵ PO ⊥面ABCD ,
∴∠P AO 为侧棱P A 与底面ABCD 所成的角. ∴tan ∠P AO =
26. 设AB =a ,AO =
2
2
a , ∴ PO =AO ·tan ∠POA =2
3
a , tan ∠PMO =
MO
PO
=3. ∴∠PMO =60°.
M
D
B
A
C
O
E
P
(第21题(1))
(2)连接AE ,OE , ∵OE ∥PD ,
∴∠OEA 为异面直线PD 与AE 所成的角. ∵AO ⊥BD ,AO ⊥PO ,∴AO ⊥平面PBD .又OE 平面PBD ,∴AO ⊥OE .
∵OE =21
PD =
2122 + DO PO =4
5
a ,
∴tan ∠AEO =EO
AO
=5102.
(3)延长MO 交BC 于N ,取PN 中点G ,连BG ,EG ,MG . ∵BC ⊥MN ,BC ⊥PN ,∴BC ⊥平面PMN . ∴平面PMN ⊥平面PBC .
又PM =PN ,∠PMN =60°,∴△PMN 为正三角形.∴MG ⊥PN .又平面PMN ∩平面PBC =PN ,∴MG ⊥平面PBC .
取AM 中点F ,∵EG ∥MF ,∴MF =21
MA =EG ,
∴EF ∥MG .
∴EF ⊥平面PBC .点F 为AD 的四等分点.
22.解:由题意,所求圆与直线y =0相切,且半径为4, 则圆心坐标为O 1(a ,4),O 1(a ,-4).
又已知圆x 2+y 2―4x ―2y ―4=0的圆心为O 2(2,1),半径为3, ①若两圆内切,则|O 1O 2|=4-3=1.
即(a -2)2+(4-1)2=12,或(a -2)2+(-4-1)2=12. 显然两方程都无解.
②若两圆外切,则|O 1O 2|=4+3=7.
即(a -2)2+(4-1)2=72,或(a -2)2+(-4-1)2=72. 解得a =2±210,或a =2±26. ∴所求圆的方程为
(x ―2―210)2+(y -4)2=16或(x -2+210)2+(y -4)2=16; 或(x ―2―26)2+(y +4)2=16或(x ―2+26)2+(y +4)2=16.
M
D
B
A
C
O E
P
(第21题(2))
M D
B
A
C
O
E P
N G F
(第21题(3))。

相关文档
最新文档