线 性 回 归 方 程 推 导

合集下载

线性回归方程公式推导

线性回归方程公式推导

线性回归方程公式推导从现代经济学研究看,线性回归是一种多变量经济分析方法,它能够用来研究变量之间的关系,以便确定哪些变量具有影响性。

线性回归模型是描述一个响应变量和一组predictor变量之间关系的线性关系模型。

线性回归模型有多种形式,其中最常见的是最小二乘法,即OLS,其核心思想是通过最小化以下损失函数来确定回归系数:S=1/n (yi-i)其中,yi是实际值,i是预测值,n是数据样本的个数。

有了线性回归模型,就可以推导出公式,即OLS回归方程。

它表述的意思是,假设回归系数β的值是已知的,即满足公式:β=(XX)^-1XY其中,X指的是一个有m个变量的矩阵,Y指的是一个有n个观测值的矩阵,X指的是X矩阵的转置矩阵,(XX)^-1指的是求XX的逆矩阵,XY指的是X和Y的点乘积。

由此,OLS回归模型就可以用变量yi=b1x1i+b2x2i+…+bpxpi+εi来表示,其中b1, b2,, bp分别是变量x1i, x2i,, xpi的回归系数,εi是误差项,它以期望值为零的正态分布的形式出现,表示随机噪声。

一般来说,OLS即可用来估计参数的可能性,但是,由于它们常常受到多重共线性的影响,因此需要检验其可靠性。

OLS的优点是可以提供一种最优的参数估计法,它能够有效地提高参数估计的准确性。

此外,OLS进行变量检验时,也可以有效地识别出具有影响性的变量。

不过,OLS也有其缺点,尤其是当数据存在某些问题时,可能会导致OLS的估计结果出现偏差。

主要问题包括多重共线性、异方差性和异常值。

对于这些问题,最好的解决方法是对数据进行相关性分析,从而将偏差减少到最小。

综上所述,OLS回归方程公式能够有效地描述变量之间的关系,检验其可靠性,以便确定哪些变量具有影响性。

为了确保其准确性,应当有效地处理多重共线性等问题,从而使得OLS具有更强的适用性。

求线性回归直线方程的步骤

求线性回归直线方程的步骤

请同学们回忆一下,我们以前是否学过 变量间的关系呢?
两个变量间的函数关系.
相关关系与函数关系的异同点:
相同点:两者均是指两 个变量间的关系. 不同点:①函数关系是一种确定的关系; 相关关系是一种 非确定的关系.事实上,函数关系是两个非 随机变量的关系,而相关关系是随机变量 与随机变量间的关系. ②函数关系是一种因果关系,而相关关系 不一定是因果关 系,也可能是伴随关系.
20
30
40
^ (4)当x=2时,y=143.063, 因此,这天大 约可以卖出143杯热饮。
小结:
(1)判断变量之间有无相关关系,简便方 法就是画散点图。 (2)当数字少时,可用人工或计算器,求 回归方程;当数字多时,用Excel求回归方 程。 (3)利用回归方程,可以进行预测。
热饮杯数 156 150 132 128 130 116 104 89 93 76 54
(1)画出散点图;
(2)从散点图中发现气温与热饮销售杯数之间关系的一
般规律; (3)求回归方程; (4)如果某天的气温是 2 C,预测这天卖出的热饮杯数。
0
解: (1)散点图
160 150 140 130 120 110 100 90 80 70 60 50 40 -10 0
10x y
2
x
i 1

2 i
10 x
110 10 0 1 110 10 0
a y bx 0 b 0 0
∴所求回归直线方程为 ^ y=x
小结:求线性回归直线方程的步骤: 第一步:列表 x , y , x y ;
i i i i
第二步:计算
x, y, xi , xi y
脂肪含量 40 35 30 25 20 15 10 5 0 20 25 30 35 40 年龄 45 50 55 60 65

线 性 回 归 方 程 推 导

线 性 回 归 方 程 推 导

线性回归算法推导线性回归之最小二乘法推导及python实现前言线性模型基本形式模型评估寻找最优解python实现最小二乘法本文章为个人的学习笔记。

学习书籍《机器学习》(周志华著,俗称西瓜书)。

线性模型基本形式首先是最基本的线性模型:f(x)=w1x1+w2x2+w3x3+.+wnxn+bf( textbf{x} )=w_1x_1+w_2x_2+w_3x_3+.+w_nx_n+bf(x)=w1?x1?+w 2?x2?+w3?x3?+.+wn?xn?+b化简成向量形式f(x)=xw+bf( textbf{x})= textbf{x}textbf{w} +b f(x)=xw+bf(x)≈yf( textbf{x})approx yf(x)≈y其中x=(x1,x2,x3.,xn)textbf{x}=(x_1,x_2,x_3.,x_n)x=(x1?,x2?,x3?. ,xn?),xix_ixi? 代表xtextbf{x}x的第i个属性。

而w=(w1;w2;w3;.;wn)textbf{w}=(w_1;w_2;w_3;.;w_n)w=(w1?;w2?;w3 ;.;wn)对应于 xtextbf{x}x 不同属性的系数。

其中yyy代表了数据xtextbf{x}x的真实情况,而f(x)f(bf{x})f(x)得到的是对xtextbf{x}x的预测值,我们通过(y,x)(y,textbf{x})(y,x)对模型进行训练,力求通过线性模型f(x)f(bf{x})f(x)来对yyy未知的数据进行预测。

为了计算方便,令:x=(x1,x2,x3.,xn,1)textbf{x}=(x_1,x_2,x_3.,x_n,1)x=(x1?,x 2?,x3?.,xn?,1)w=(w1;w2;w3;.;wn;b)textbf{w}=(w_1;w_2;w_3;.;w _n;b)w=(w1?;w2?;w3?;.;wn?;b)线性模型就写成如下形式:f(x)=wxf( textbf{x})= textbf{w} textbf{x} f(x)=wx模型评估线性回归的目标就是要找到一个最合适的模型来使得预测的准确度最大化。

线性回归方程b的公式推导

线性回归方程b的公式推导

线性回归方程b的公式推导线性回归方程b是统计学中一种重要的回归分析技术,它是为了预测一个或多个变量之间的关系而拟合的数学模型,它可以帮助我们更好地理解模型中的变量之间的特定关系,并可以用来预测未知的分类问题。

线性回归方程b属于传统的机器学习算法之一,广泛用于各行各业。

线性回归方程b的定义为:Y或者Yi是解释变量,X者 Xi解释变量,b系数,u残差项。

如果某一变量Yi具有另一变量Xi的线性拟合关系,则Yi可以用Xi来描述,这个关系可以用线性回归方程b 来表达:Yi = bX1 + bX2 + + bXn + u。

线性回归模型的参数b又分成两部分,一部分是回归系数,是描述变量的关系的,一部分是残差项,即残差是形成的拟合曲线的垂直距离,表示因为未知的原因而无法拟合的数据。

有了线性回归方程b,此时我们就可以开始推导线性回归方程b 的公式来求解回归系数b了。

首先,将方程Yi = bX1 + bX2 + + bXn + u转换为矩阵形式,Yi = BX + u,其中,B为系数矩阵(由回归系数b组成),X为自变量矩阵(由解释变量Xi组成),u为残差项。

接着,在只有唯一解的前提下,可用最小二乘法(OLS)来求解回归系数b的值:BOLS=(XX)^(-1)XY,其中XX是X的转置矩阵乘以X矩阵为正定阵,XY是X的转置矩阵乘以Y矩阵。

有了上述的公式,我们就可以进行求解回归系数b的值了。

回归系数b的求解可分为以下几步:首先,从样本中抽取多个解释变量和一个被解释变量;然后,计算XX和XY;接下来,计算BOLS,即(XX)^(-1)XY;最后,根据BOLS确定其中的回归系数b。

以上就是线性回归方程b的推导过程。

线性回归方程b不仅可以用于求解拟合程度,而且可以用来预测未知的数据。

此外,它也不仅仅可以用于线性回归,还可以用于其他类型的回归分析,比如多项式回归、局部加权回归、非线性回归等。

以上就是关于线性回归方程b推导公式的相关内容,线性回归方程b是统计学中一种重要的回归分析技术,它可以用来推导回归系数b的计算,并可以用来预测未知的分类问题。

11线性回归方程的求法

11线性回归方程的求法

根据最小二乘法估计a 和 b就是未知参数a和b的最好估计,
i xi 1 2 y i x i2
2 , x i i=1 n
x
, y
, xi yi
i=1
n
.
例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。
1 编号 身高/cm 165 体重/kg 48
2 3 4 5 6 7 8 165 157 170 175 165 155 170 57 50 54 64 61 43 59
求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 ( x, y)称为 172cm的女大学生的体重。
n
样本点的中心 根据最小二乘法估计a 和 b就是未知参数 a和b的最好估计,
例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。
1 编号 身高/cm 165 体重/kg 48
2 3 4 5 6 7 8 165 157 170 175 165 155 170 57 50 54 64 61 43 59
求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。
施化肥量x 15
20
25
30
35
40
45
水稻产量y 330 345 365 y
500 450 400 350 300 10
405 445
450 455
散点图
水稻产量
··
20
·
·
· · ·
施化肥量
30 40 50
x
探索2:在这些点附近可画直线不止一条, 哪条直线最能代表x与y之间的关系呢? 发现:图中各点,大致分布在某条直线附近。

线 性 回 归 方 程 推 导

线 性 回 归 方 程 推 导

线性回归之最小二乘法线性回归Linear Regression——线性回归是机器学习中有监督机器学习下的一种简单的回归算法。

分为一元线性回归(简单线性回归)和多元线性回归,其中一元线性回归是多元线性回归的一种特殊情况,我们主要讨论多元线性回归如果因变量和自变量之间的关系满足线性关系(自变量的最高幂为一次),那么我们可以用线性回归模型来拟合因变量与自变量之间的关系.简单线性回归的公式如下:y^=ax+b hat y=ax+by^?=ax+b多元线性回归的公式如下:y^=θTx hat y= theta^T x y^?=θTx上式中的θthetaθ为系数矩阵,x为单个多元样本.由训练集中的样本数据来求得系数矩阵,求解的结果就是线性回归模型,预测样本带入x就能获得预测值y^hat yy^?,求解系数矩阵的具体公式接下来会推导.推导过程推导总似然函数假设线性回归公式为y^=θxhat y= theta xy^?=θx.真实值y与预测值y^hat yy^?之间必然有误差?=y^?yepsilon=haty-y?=y^?y,按照中心极限定理(见知识储备),我们可以假定?epsilon?服从正态分布,正态分布的概率密度公式为:ρ(x)=1σ2πe?(x?μ)22σ2rho (x)=frac {1}{sigmasqrt{2pi}}e^{-frac{(x-mu)^2}{2sigma^2}}ρ(x)=σ2π1e2σ2(x?μ)2?为了模型的准确性,我们希望?epsilon?的值越小越好,所以正态分布的期望μmuμ为0.概率函数需要由概率密度函数求积分,计算太复杂,但是概率函数和概率密度函数呈正相关,当概率密度函数求得最大值时概率函数也在此时能得到最大值,因此之后会用概率密度函数代替概率函数做计算.我们就得到了单个样本的误差似然函数(μ=0,σmu=0,sigmaμ=0,σ为某个定值):ρ(?)=1σ2πe?(?0)22σ2rho (epsilon)=frac {1}{sigmasqrt{2pi}}e^{-frac{(epsilon-0)^2}{2sigma^2}}ρ(?)=σ2π?1?e?2σ2(?0)2?而一组样本的误差总似然函数即为:Lθ(?1,?,?m)=f(?1,?,?m∣μ,σ2)L_theta(epsilon_1,cdots,e psilon_m)=f(epsilon_1,cdots,epsilon_m|mu,sigma^2)Lθ?(?1?,? ,?m?)=f(?1?,?,?m?∣μ,σ2)因为我们假定了?epsilon?服从正态分布,也就是说样本之间互相独立,所以我们可以把上式写成连乘的形式:f(?1,?,?m∣μ,σ2)=f(?1∣μ,σ2)?f(?m∣μ,σ2)f(epsilon_1,cdots,epsilon_m|mu,sigma^2)=f(epsilon_1|mu,sigma^2)*cdots *f(epsilon_m|mu,sigma^2)f(?1?,?,?m?∣μ,σ2)=f(?1?∣μ,σ2)?f(?m?∣μ,σ2) Lθ(?1,?,?m)=∏i=1mf(?i∣μ,σ2)=∏i=1m1σ2πe?(?i?0)22σ2L_theta(epsilon_1,cdots,epsilon_m)=prod^m_{i=1}f(epsilon _i|mu,sigma^2)=prod^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(epsilon_i-0)^2}{2sigma^2}}Lθ? (?1?,?,?m?)=i=1∏m?f(?i?∣μ,σ2)=i=1∏m?σ2π?1?e?2σ2(?i?0)2?在线性回归中,误差函数可以写为如下形式:i=∣yiy^i∣=∣yiθTxi∣epsilon_i=|y_i-haty_i|=|y_i-theta^Tx_i|?i?=∣yi?y^?i?∣=∣yi?θTxi?∣最后可以得到在正态分布假设下的总似然估计函数如下:Lθ(?1,?,?m)=∏i=1m1σ2πe?(?i?0)22σ2=∏i=1m1σ2πe?(yi θTxi)22σ2L_theta(epsilon_1,cdots,epsilon_m)=prod^m_{i=1} frac{1}{sigmasqrt{2pi}}e^{-frac{(epsilon_i-0)^2}{2sigma^2}}=pro d^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}L θ?(?1?,?,?m?)=i=1∏m?σ2π?1?e?2σ2(?i?0)2?=i=1∏m?σ2π?1 e2σ2(yi?θTxi?)2?推导损失函数按照最大总似然的数学思想(见知识储备),我们可以试着去求总似然的最大值.遇到连乘符号的时候,一般思路是对两边做对数运算(见知识储备),获得对数总似然函数:l(θ)=loge(Lθ(?1,?,?m))=loge(∏i=1m1σ2πe?(yi?θTxi)22σ2)l(theta)=log_e(L_theta(epsilon_1,cdots,epsilon_m))=log_ e(prod^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}) l(θ)=loge?(Lθ?(?1?,?,?m?))=loge?(i=1∏m?σ2π?1?e?2σ2(yi θTxi?)2?)l(θ)=loge(∏i=1m1σ2πe?(yi?θTxi)22σ2)=∑i=1mloge1σ2πexp(?(yi?θTxi)22σ2)=mloge1σ2π?12σ2∑i=1m(yi?θTxi)2l (theta) = log_e(prod^m_{i=1}frac {1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}) = sum_{i=1}^mlog_efrac {1}{sigmasqrt{2pi}}exp({-frac{(y_i-theta^Tx_i)^2}{2sigma^2} })=mlog_efrac{1}{sigmasqrt{2pi}}-frac{1}{2sigma^2}sum^m_{i= 1}(y^i-theta^Tx^i)^2l(θ)=loge?(i=1∏m?σ2π?1?e?2σ2(yi?θTxi?)2?)=i=1∑m?loge?σ2π?1?exp(?2σ2(yi?θTxi?)2?)=mloge?σ2π?1?2σ21?i=1∑m?(yi?θTxi)2前部分是一个常数,后部分越小那么总似然值越大,后部分则称之为损失函数,则有损失函数的公式J(θ)J(theta)J(θ):J(θ)=12∑i=1m(yi?θTxi)2=12∑i=1m(yi?hθ(xi))2=12∑i=1m (hθ(xi)?yi)2J(theta)=frac{1}{2}sum^m_{i=1}(y^i-theta^Tx^i)^2=frac{1}{2} sum^m_{i=1}(y^i-h_theta(x^i))^2=frac{1}{2}sum^m_{i=1}(h_the ta(x^i)-y^i)^2J(θ)=21?i=1∑m?(yi?θTxi)2=21?i=1∑m?(yi?hθ?(xi))2=21?i=1∑m?(hθ?(xi)?yi)2解析方法求解线性回归要求的总似然最大,需要使得损失函数最小,我们可以对损失函数求导.首先对损失函数做进一步推导:J(θ)=12∑i=1m(hθ(xi)?yi)2=12(Xθ?y)T(Xθ?y)J(theta)=fr ac{1}{2}sum^m_{i=1}(h_theta(x^i)-y^i)^2=frac{1}{2}(Xtheta-y )^T(Xtheta-y)J(θ)=21?i=1∑m?(hθ?(xi)?yi)2=21?(Xθ?y)T(Xθy)注意上式中的X是一组样本形成的样本矩阵,θthetaθ是系数向量,y也是样本真实值形成的矩阵,这一步转换不能理解的话可以试着把12(Xθ?y)T(Xθ?y)frac{1}{2}(Xtheta-y)^T(Xtheta-y)21?(Xθ?y) T(Xθ?y)带入值展开试试.J(θ)=12∑i=1m(hθ(xi)?yi)2=12(Xθ?y)T(Xθ?y)=12((Xθ)T? yT)(Xθ?y)=12(θTXT?yT)(Xθ?y)=12(θTXTXθ?yTXθ?θTXTy+yTy)J(theta)=frac{1}{2}sum^m_{i=1}(h_theta(x^i)-y^i)^2=frac{1} {2}(Xtheta-y)^T(Xtheta-y)=frac{1}{2}((Xtheta)^T-y^T)(Xtheta -y)=frac{1}{2}(theta^TX^T-y^T)(Xtheta-y)=frac{1}{2}(theta^T X^TXtheta-y^TXtheta-theta^TX^Ty+y^Ty)J(θ)=21?i=1∑m?(hθ?( xi)?yi)2=21?(Xθ?y)T(Xθ?y)=21?((Xθ)T?yT)(Xθ?y)=21?(θTXT yT)(Xθ?y)=21?(θTXTXθ?yTXθ?θTXTy+yTy)根据黑塞矩阵可以判断出J(θ)J(theta)J(θ)是凸函数,即J(θ)J(theta)J(θ)的对θthetaθ的导数为零时可以求得J(θ)J(theta)J(θ)的最小值.J(θ)?θ=12(2XTXθ?(yTX)T?XTy)=12(2XTXθ?XTy?XTy)=XTXθXTyfrac{partialJ(theta)}{partialtheta}=frac{1}{2}(2X^TXtheta-(y^TX)^T-X^Ty )=frac{1}{2}(2X^TXtheta-X^Ty-X^Ty)=X^TXtheta-X^Ty?θ?J(θ)? =21?(2XTXθ?(yTX)T?XTy)=21?(2XTXθ?XTy?XTy)=XTXθ?XTy 当上式等于零时可以求得损失函数最小时对应的θthetaθ,即我们最终想要获得的系数矩阵:XTXθ?XTy=0XTXθ=XTy((XTX)?1XTX)θ=(XTX)?1XTyEθ=(XTX)?1 XTyθ=(XTX)?1XTyX^TXtheta-X^Ty=0X^TXtheta=X^Ty((X^TX)^{-1}X^TX)theta=(X^TX)^{-1}X^TyEtheta=(X^TX)^{-1}X^Tytheta=(X^TX)^{-1}X^TyXTXθ?XTy=0XT Xθ=XTy((XTX)?1XTX)θ=(XTX)?1XTyEθ=(XTX)?1XTyθ=(XTX)?1XTy (顺便附上一元线性回归的系数解析解公式:θ=∑i=1m(xi?x ̄)(yi?y ̄)∑i=1m(xi?x  ̄)2theta=frac{sum^m_{i=1}(x_i-overline{x})(y_i-overline{y} )}{sum^m_{i=1}(x_i-overline{x})^2}θ=∑i=1m?(xi?x)2∑i=1m?( xi?x)(yi?y?)?)简单实现import numpy as npimport matplotlib.pyplot as plt# 随机创建训练集,X中有一列全为'1'作为截距项X = 2 * np.random.rand(100, 1)y = 5 + 4 * X + np.random.randn(100, 1)X = np.c_[np.ones((100,1)),X]# 按上面获得的解析解来求得系数矩阵thetatheta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)# 打印结果print(theta)# 测试部分X_test = np.array([[0],X_test = np.c_[(np.ones((2, 1))), X_test]print(X_test)y_predict = X_test.dot(theta)print(y_predict)plt.plot(X_test[:,-1], y_predict, 'r-')plt.axis([0, 2, 0, 15])plt.show()sklearn实现import numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import LinearRegression X = 2 * np.random.rand(100, 1)y = 5 + 4 * X + np.random.randn(100, 1)X = np.c_[np.ones((100,1)),X]# 新建线性回归模型model = LinearRegression(fit_intercept=False)# 代入训练集数据做训练model.fit(X,y)# 打印训练结果print(model.intercept_,model.coef_)X_test = np.array([[0],X_test = np.c_[(np.ones((2, 1))), X_test]print(X_test)y_predict =model.predict(X_test)print(y_predict)plt.plot(X_test[:,-1], y_predict, 'r-')plt.axis([0, 2, 0, 15])plt.show()使用解析解的公式来求得地模型是最准确的.计算量非常大,这会使得求解耗时极多,因此我们一般用的都是梯度下降法求解.知识储备距离公式机器学习中常见的距离公式 - WingPig - 博客园中心极限定理是讨论随机变量序列部分和分布渐近于正态分布的一类定理。

回归方程的预测区间公式推导

回归方程的预测区间公式推导

回归方程的预测区间公式推导在推导回归方程的预测区间公式之前,我们首先需要了解一些基本的概念和假设。

1.简单线性回归模型假设:简单线性回归模型是指只包含一个自变量和一个因变量的回归模型。

它的数学表达式为:Y=β0+β1X+εY是因变量,X是自变量,ε是随机误差项。

2.线性关系假设:回归模型假设因变量和自变量之间是线性关系。

3.正态误差假设:回归模型假设随机误差项ε是正态分布的。

4.同方差假设:回归模型假设对于任意自变量的取值,随机误差项ε的方差是相等的。

基于上述假设,我们可以推导出回归方程的预测区间公式。

步骤1:估计回归参数使用最小二乘法估计回归参数β0和β1的值。

步骤2:计算残差标准差计算残差标准差s,它是对观测值与回归方程的拟合值之间的差异的度量。

步骤3:计算预测区间的标准误差预测区间的标准误差可以通过以下公式计算:SE = s * √(1 + (1/n) + ((X - Xbar)^2 / ∑(X - Xbar)^2))其中,s是残差标准差,n是观测值的数量,X是要进行预测的自变量的值,Xbar是所有自变量的平均值,∑是求和符号。

步骤4:计算预测区间的上限和下限预测区间的上限是:Upper = Yhat + tα/2 * SE预测区间的下限是:Lower = Yhat - tα/2 * SE其中,Yhat是根据回归方程求得的在自变量X处的拟合值,tα/2是自由度为n-2的t分布的上分位点。

根据上述步骤,我们可以推导出回归方程的预测区间的公式。

预测区间的公式可以帮助分析人员评估预测结果的不确定性,提供了对未来观测值的置信度范围。

通过预测区间,我们可以更好地理解预测结果,并做出更准确的决策。

线 性 回 归 方 程 推 导

线 性 回 归 方 程 推 导

线性回归方程推导理论推导机器学习所针对的问题有两种:一种是回归,一种是分类。

回归是解决连续数据的预测问题,而分类是解决离散数据的预测问题。

线性回归是一个典型的回归问题。

其实我们在中学时期就接触过,叫最小二乘法。

线性回归试图学得一个线性模型以尽可能准确地预测输出结果。

?先从简单的模型看起:?首先,我们只考虑单组变量的情况,有:?使得?假设有m个数据,我们希望通过x预测的结果f(x)来估计y。

其中w和b都是线性回归模型的参数。

?为了能更好地预测出结果,我们希望自己预测的结果f(x)与y 的差值尽可能地小,所以我们可以写出代价函数(cost function)如下:?接着代入f(x)的公式可以得到:?不难看出,这里的代价函数表示的是预测值f(x)与实际值y之间的误差的平方。

它对应了常用的欧几里得距离简称“欧氏距离”。

基于均方误差最小化来求解模型的方法我们叫做“最小二乘法”。

在线性回归中,最小二乘法实质上就是找到一条直线,使所有样本数据到该直线的欧式距离之和最小,即误差最小。

?我们希望这个代价函数能有最小值,那么就分别对其求w和b的偏导,使其等于0,求解方程。

?先求偏导,得到下面两个式子:?很明显,公式中的参数m,b,w都与i无关,简化时可以直接提出来。

?另这两个偏导等于0:?求解方程组,解得:?这样根据数据集中给出的x和y,我们可以求出w和b来构建简单的线性模型来预测结果。

接下来,推广到更一般的情况:?我们假设数据集中共有m个样本,每个样本有n个特征,用X矩阵表示样本和特征,是一个m×n的矩阵:?用Y矩阵表示标签,是一个m×1的矩阵:?为了构建线性模型,我们还需要假设一些参数:?(有时还要加一个偏差(bias)也就是,为了推导方便没加,实际上结果是一样的)好了,我们可以表示出线性模型了:?h(x)表示假设,即hypothesis。

通过矩阵乘法,我们知道结果是一个n×1的矩阵。

线性回归方程的求法(需要给每个人发)

线性回归方程的求法(需要给每个人发)

耿老师总结的高考统计部分的两个重要公式的具体如何应用第一公式:线性回归方程为ˆˆˆy bx a =+的求法:(1) 先求变量x 的平均值,既1231()n x x x x x n=+++⋅⋅⋅+ (2) 求变量y 的平均值,既1231()n y y y y y n=+++⋅⋅⋅+ (3) 求变量x 的系数ˆb,有两个方法 法1121()()ˆ()niii nii x x y y bx x ==--=-∑∑(题目给出不用记忆)[]112222212()()()()...()()()()...()n n n x x y y x x y y x x y y x x x x x x --+--++--=⎡⎤-+-++-⎣⎦(需理解并会代入数据)法2121()()ˆ()niii nii x x y y bx x ==--=-∑∑(题目给出不用记忆)[]1122222212...,...n n n x y x y x y nx y x x x nx ++-⋅=⎡⎤+++-⎣⎦(这个公式需要自己记忆,稍微简单些)(4) 求常数ˆa,既ˆˆa y bx =- 最后写出写出回归方程ˆˆˆybx a =+。

可以改写为:ˆˆy bx a =-(ˆy y 与不做区分) 例.已知,x y 之间的一组数据:求y 与x 的回归方程:解:(1)先求变量x 的平均值,既1(0123) 1.54x =+++= (2)求变量y 的平均值,既1(1357)44y =+++= (3)求变量x 的系数ˆb,有两个方法 法1ˆb =[]11223344222212342222()()()()()()()()()()()()(0 1.5)(14)(1 1.5)(34)(2 1.5)(54)(3 1.5)(74)57(0 1.5)(1 1.5)(2 1.5)(3 1.5)x x y y x x y y x x y y x x y y x x x x x x x x --+--+--+--=⎡⎤-+-+-+-⎣⎦--+--+--+--==⎡⎤-+-+-+-⎣⎦法2ˆb =[][]11222222222212...011325374 1.5457...0123n n n x y x y x y nx y x x x nx ++-⋅⨯+⨯+⨯+⨯-⨯⨯==⎡⎤⎡⎤+++-+++⎣⎦⎣⎦ (4)求常数ˆa,既525ˆˆ4 1.577a y bx =-=-⨯=最后写出写出回归方程525ˆˆˆ77ybx a x =+=+第二公式:独立性检验两个分类变量的独立性检验: 注意:数据a 具有两个属性1x ,1y 。

线 性 回 归 方 程 推 导 ( 2 0 2 0 )

线 性 回 归 方 程 推 导 ( 2 0 2 0 )

用python求解多元线性回归方程的权重和残差最近学金融的妹妹要处理数据写论文,对一个文科妹子来说,数学学不会,公式看不懂怎么破~作为姐姐的我看在眼里,疼在心里,打算帮妹妹解决掉数据计算这方面的问题。

原来就是求三元线性回归的残差啊,害,这有什么难的,妹妹就是不会算权重,一直在网上寻找已经算好权重的数据,为此特意开通了什么会员,咱也不知道咱也不敢问。

于是乎,利用自己所学的python,写下了这个程序。

简单介绍一下什么是线性回归?答:线性回归是通过一个或多个自变量与因变量之间进行建模的回归分析。

其中可以为一个或多个自变量之间的线性组合。

一元线性回归涉及到的变量只有一个;多元线性回归涉及到的变量有两个及两个以上。

线性关系模型为:w 为权重,b 为偏置项,其中 w 、x 为矩阵。

转换成矩阵如下:话不多说,上案例。

妹妹论文中的公式是:可简化为:根据推导得到:典型的多元线性回归方程,具体推导就不详细说明了,大家自行百度。

接下来上代码。

如果不怕麻烦想试一下’.txt’文件转‘.csv’ 文件,就看方法一,想直接用.xlsx转.csv的看方法二。

方法一:先将excel表转换成.txt文件接下来打开.txt文件,另存为’utf-8’格式,如果不是,会报错。

from numpy.linalg import inv # 矩阵求逆from numpy import dot # 求矩阵点乘import numpy as npimport pandas as pdtxt = np.loadtxt('file.txt')txtDF = pd.DataFrame(txt)txtDF.to_csv('file.csv', index=False)data = pd.read_csv('file.csv')dataset = pd.DataFrame(data,copy = True)test = dataset.iloc[:, 0:4]test = test.copy()X = test.iloc[:, [1,2,3]]Y = test.iloc[:, 0]theta = dot(dot(inv(dot(X.T, X)), X.T), Y)y = dot(theta, X.T)print('权重',theta) # 权重loss = np.array(Y-y) # 残差print('残差',loss)运行结果:权重和残差都可以算出来了。

线 性 回 归 方 程 推 导

线 性 回 归 方 程 推 导

一元线性回归与多元线性回归理论及公式推导一元线性回归回归分析只涉及到两个变量的,称一元回归分析。

一元回归的主要任务是从两个相关变量中的一个变量去估计另一个变量,被估计的变量,称因变量,可设为Y;估计出的变量,称自变量,设为X。

回归分析就是要找出一个数学模型Y=f(x)y=ax+b多元线性回归注:为使似然函数越大,则需要最小二乘法函数越小越好线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值误差满足,均值为0的高斯分布,即正态分布。

这个假设是靠谱的,符合一般客观统计规律。

若使模型与测量数据最接近,那么其概率积就最大。

概率积,就是概率密度函数的连续积,这样,就形成了一个最大似然函数估计。

对最大似然函数估计进行推导,就得出了推导后结果:平方和最小公式1.x的平方等于x的转置乘以x。

2.机器学习中普遍认为函数属于凸函数(凸优化问题),函数图形如下,从图中可以看出函数要想取到最小值或者极小值,就需要使偏导等于0。

3.一些问题上没办法直接求解,则可以在上图中选一个点,依次一步步优化,取得最小值(梯度优化)SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。

解决方案:1.动态更改学习速率a的大小,可以增大或者减小2.随机选样本进行学习批量梯度下降每次更新使用了所有的训练数据,最小化损失函数,如果只有一个极小值,那么批梯度下降是考虑了训练集所有数据,是朝着最小值迭代运动的,但是缺点是如果样本值很大的话,更新速度会很慢。

随机梯度下降在每次更新的时候,只考虑了一个样本点,这样会大大加快训练数据,也恰好是批梯度下降的缺点,但是有可能由于训练数据的噪声点较多,那么每一次利用噪声点进行更新的过程中,就不一定是朝着极小值方向更新,但是由于更新多轮,整体方向还是大致朝着极小值方向更新,又提高了速度。

小批量梯度下降法是为了解决批梯度下降法的训练速度慢,以及随机梯度下降法的准确性综合而来,但是这里注意,不同问题的batch是不一样的,nlp的parser训练部分batch一般就设置为10000,那么为什么是10000呢,我觉得这就和每一个问题中神经网络需要设置多少层,没有一个人能够准确答出,只能通过实验结果来进行超参数的调整。

线 性 回 归 方 程 推 导

线 性 回 归 方 程 推 导

线性回归及其变式Q1:线性回归的原理Q2:线性回归损失函数的推导过程Q3:求解线性回归损失函数的方法有哪些Q4:如何解决共线性(待补充)Q5:如何防止过拟合Q6:分布式训练怎么做(待补充)Q7:正则化的目的和方法Q8:为什么L1正则化能产生稀疏解,L2则不可以Q1:线性回归的原理线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。

其表达形式为y = w'x+e,e 为误差服从均值为0的正态分布。

可以利用梯度下降法等方法求出权重w'的值。

Q2:线性回归损失函数的推导过程首先线性回归有3个假设:(1)误差存在且为;(2)误差的分布基本符合正态分布,因为通常我们不知道是什么分布的时候,根据经验来说正态分布往往效果不错。

(3)每一个样本的误差都是独立同分布的,且满足随机性。

于是我们可以得到第个样本的误差为的概率是:然后,?是真实值与预测值之间的误差,于是把这两个值代进去。

这是一个似然函数,我们希望它的值越大越好!常规操作取一个log,于是就有由此可以得到线性回归的损失函数或者说目标函数就是之所以有1-2这么个系数,只是因为后续用到梯度下降的时候,求导可以把它约掉,方便计算而已,这不会影响最终的结果。

而且注意噢,这里可是没有除以m的!!!!Q3:求解线性回归损失函数的方法有哪些(1)梯度下降法梯度下降又可以是批梯度下降,也可以是随机梯度下降。

下面是只有一个样本的时候的批梯度下降的公式推导。

当有m个样本时,在学习速率后面做一个累加即可。

如果是随机梯度下降,每次只需要用到一个样本就行了。

(2)正规方程组上一个简单的推导过程。

Q4:如何解决共线性Q5:如何防止过拟合通过添加正则化项来防止过拟合。

(1)Lasso回归使用L1正则化(2)Ridge回归使用L2正则化(3)ElasticNet回归使用L1+L2正则化Lasso回归可以将系数收缩到0,从而达到变量选择的效果,这是一种非常流行的变量选择方法。

线性回归方程a尖公式

线性回归方程a尖公式

线性回归方程a尖公式第一:用所给样本求出两个相关变量的(算术)平均值第二:分别计算分子和分母:(两个公式任选其一)分子第三:计算b:b=分子/分母用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零。

先求x,y的平均值X,Y再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX) 后把x,y的平均数X,Y代入a=Y-bX求出a并代入总的公式y=bx+a得到线性回归方程(X为xi的平均数,Y为yi的平均数)线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,应用十分广泛。

变量的相关关系中最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点,将散布在某一直线周围。

因此,可以认为关于的回归函数的类型为线性函数。

分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

介绍线性回归方程的求法:1.根据所给样本计算两个相关变量的平均值(算术)。

2.分子和分母分开计算:(两个公式任意选择一个)分子。

3.计算b:b=分子/分母4.用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零。

5.首先求x,y的平均X,Y。

6.用以下公式代入求解:b=(x1y1+x2y2+……xnyn-nXY)/(x1+x2+……xn-nX)之后,将x,y的平均数X,Y带入a=Y-bX。

7.求出a并代入总的公式y=bx+a得到线性回归方程(X为xi的平均数,Y为yi的平均数)直线回归方程:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。

线 性 回 归 方 程 推 导 ( 2 0 2 0 )

线 性 回 归 方 程 推 导 ( 2 0 2 0 )

多元线性回归推导过程常用算法一多元线性回归详解1此次我们来学习人工智能的第一个算法:多元线性回归.文章会包含必要的数学知识回顾,大部分比较简单,数学功底好的朋友只需要浏览标题,简单了解需要哪些数学知识即可.本章主要包括以下内容数学基础知识回顾什么是多元线性回归多元线性回归的推导过程详解如何求得最优解详解数学基础知识回顾我们知道,y=ax+b这个一元一次函数的图像是一条直线.当x=0时,y=b,所以直线经过点(0,b),我们把当x=0时直线与y轴交点到x轴的距离称为直线y=ax+b图像在x轴上的截距,其实截距就是这个常数b.(有点拗口,多读两遍)截距在数学中的定义是:直线的截距分为横截距和纵截距,横截距是直线与X轴交点的横坐标,纵截距是直线与Y轴交点的纵坐标。

根据上边的例子可以看出,我们一般讨论的截距默认指纵截距.既然已知y=ax+b中b是截距,为了不考虑常数b的影响,我们让b=0,则函数变为y=ax.注意变换后表达式的图像.当a=1时,y=ax的图像是经过原点,与x轴呈45°夹角的直线(第一,三象限的角平分线),当a的值发生变化时,y=ax 的图像与x轴和y轴的夹角也都会相应变化,我们称为这条直线y=ax的倾斜程度在发生变化,又因为a是决定直线倾斜程度的唯一的量(即便b不等于0也不影响倾斜程度),那么我们就称a为直线y=ax+b的斜率.斜率在数学中的解释是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量.还是y=ax+b,我们知道这个函数的图像是一条直线,每个不同的x对应着直线上一点y.那么当自变量x的值变化的时候,y值也会随之变化.数学中我们把x的变化量成为Δx,把对应的y的变化量成为Δy,自变量的变化量Δx与因变量的变化量Δy的比值称为导数.记作y'.y'=Δy-Δx常用的求导公式在这部分不涉及,我们用到一个记住一个即可.4-矩阵和向量什么是向量:向量就是一个数组.比如[1,2,3]是一个有三个元素的向量.有行向量和列向量之分,行向量就是数字横向排列:X=[1,2,3],列向量是数字竖向排列,如下图什么是矩阵:矩阵就是元素是数组的数组,也就是多维数组,比如[[1,2,3],[4,5,6]]是一个两行三列的矩阵,也叫2*3的矩阵. 行代表内层数组的个数,列代表内层数组的元素数.一个矩阵中的所有数组元素相同.5-向量的运算:一个数乘以一个向量等于这个数同向量中的每个元素相乘,结果还是一个向量.2 * [1,2,3] = [2,4,6]一个行向量乘以一个列向量,是两个向量对位相乘再相加,结果是一个实数.= 11 + 22 + 3*3 = 14附加:转置转置用数学符号T来表示,比如W向量的转置表示为.转置就是将向量或者矩阵旋转九十度.一个行向量的转置是列向量,列向量的转置是行向量.一个m*n的矩阵转置是n*m的矩阵.注:以上概念完全是为了读者能容易理解,并不严谨,若想知道上述名词的严谨解释,请自行百度.什么是多元线性回归我们知道y=ax+b是一元一次方程,y=ax1+bx2+c(1和2是角标,原谅我的懒)是二元一次方程.其中,"次"指的是未知数的最大幂数,"元"指的是表达式中未知数的个数(这里就是x的个数).那么"多元"的意思可想而知,就是表达式中x(或者叫自变量,也叫属性)有很多个.当b=0时,我们说y=ax,y和x的大小始终符合y-x=a,图像上任意一点的坐标,y值都是x值的a倍.我们把这种横纵坐标始终呈固定倍数的关系叫做"线性".线性函数的图像是一条直线.所以我们知道了多元线性回归函数的图像一定也是一条直线.现在我们知道了多元线性回归的多元和线性,而回归的概念我们在人工智能开篇(很简短,请点搜索"回归"查看概念)中有讲述,所以多元线性回归就是:用多个x(变量或属性)与结果y的关系式来描述一些散列点之间的共同特性.这些x和一个y关系的图像并不完全满足任意两点之间的关系(两点一线),但这条直线是综合所有的点,最适合描述他们共同特性的,因为他到所有点的距离之和最小也就是总体误差最小.所以多元线性回归的表达式可以写成:y= w0x0 + w1x1 + w2x2 + . + wnxn (0到n都是下标哦)我们知道y=ax+b这个线性函数中,b表示截距.我们又不能确定多元线性回归函数中预测出的回归函数图像经过原点,所以在多元线性回归函数中,需要保留一项常数为截距.所以我们规定 y= w0x0 + w1x1 + w2x2 + . + wnxn中,x0=1,这样多元线性回归函数就变成了: y= w0 + w1x1 + w2x2 + . + wnxn,w0项为截距.如果没有w0项,我们 y= w0x0 + w1x1 + w2x2 + . + wnxn就是一个由n+1个自变量所构成的图像经过原点的直线函数.那么就会导致我们一直在用一条经过原点的直线来概括描述一些散列点的分布规律.这样显然增大了局限性,造成的结果就是预测出的结果函数准确率大幅度下降.有的朋友还会纠结为什么是x0=1而不是x2,其实不管是哪个自变量等于1,我们的目的是让函数 y= w0x0 + w1x1 + w2x2 + . + wnxn编程一个包含常数项的线性函数.选取任何一个x都可以.选x0是因为他位置刚好且容易理解.多元线性回归的推导过程详解1-向量表达形式我们前边回顾了向量的概念,向量就是一个数组,就是一堆数.那么表达式y= w0x0 + w1x1 + w2x2 + . + wnxn是否可以写成两个向量相乘的形式呢?让我们来尝试一下.假设向量W= [w1,w2.wn]是行向量,向量X= [x1,x2.xn],行向量和列向量相乘的法则是对位相乘再相加, 结果是一个实数.符合我们的逾期结果等于y,所以可以将表达式写成y=W * X.但是设定两个向量一个是行向量一个是列向量又容易混淆,所以我们不如规定W和X都为列向量.所以表达式可以写成 (还是行向量)与向量X 相乘.所以最终的表达式为:y= * X,其中也经常用θ(theta的转置,t是上标)表示.此处,如果将两个表达式都设为行向量,y=W * 也是一样的,只是大家为了统一表达形式,选择第一种形式而已.2-最大似然估计最大似然估计的意思就是最大可能性估计,其内容为:如果两件事A,B 相互独立,那么A和B同时发生的概率满足公式P(A , B) = P(A) * P(B)P(x)表示事件x发生的概率.如何来理解独立呢?两件事独立是说这两件事不想关,比如我们随机抽取两个人A和B,这两个人有一个共同特性就是在同一个公司,那么抽取这两个人A和B的件事就不独立,如果A和B没有任何关系,那么这两件事就是独立的.我们使用多元线性回归的目的是总结一些不想关元素的规律,比如以前提到的散列点的表达式,这些点是随机的,所以我们认为这些点没有相关性,也就是独立的.总结不相关事件发生的规律也可以认为是总结所有事件同时发生的概率,所有事情发生的概率越大,那么我们预测到的规律就越准确.这里重复下以前我们提到的观点.回归的意思是用一条直线来概括所有点的分布规律,并不是来描述所有点的函数,因为不可能存在一条直线连接所有的散列点.所以我们计算出的值是有误差的,或者说我们回归出的这条直线是有误差的.我们回归出的这条线的目的是用来预测下一个点的位置.考虑一下,一件事情我们规律总结的不准,原因是什么?是不是因为我们观察的不够细或者说观察的维度不够多呢?当我们掷一个骰子,我们清楚的知道他掷出的高度,落地的角度,反弹的力度等等信息,那上帝视角的我们是一定可以知道他每次得到的点数的.我们观测不到所有的信息,所以我们认为每次投骰子得到的点数是不确定的,是符合一定概率的,未观测到的信息我们称为误差.一个事件已经观察到的维度发生的概率越大,那么对应的未观测到的维度发生的概率就会越小.可以说我们总结的规律就越准确.根据最大似然估计P(y) = P(x1,x2 . xn)= P(x1) * P(x2) . P(xn)当所有事情发生的概率为最大时,我们认为总结出的函数最符合这些事件的实际规律.所以我们把总结这些点的分布规律问题转变为了求得P(x1,x2 . xn)= P(x1) * P(x2) . P(xn)的发生概率最大.3-概率密度函数数学中并没有一种方法来直接求得什么情况下几个事件同时发生的概率最大.所以引用概率密度函数.首先引入一点概念:一个随机变量发生的概率符合高斯分布(也叫正太分布).此处为单纯的数学概念,记住即可.高斯分布的概率密度函数还是高斯分布.公式如下:公式中x为实际值,u为预测值.在多元线性回归中,x就是实际的y,u 就是θ * X.既然说我们要总结的事件是相互独立的,那么这里的每个事件肯定都是一个随机事件,也叫随机变量.所以我们要归纳的每个事件的发生概率都符合高斯分布.什么是概率密度函数呢?它指的就是一个事件发生的概率有多大,当事件x带入上面公式得到的值越大,证明其发生的概率也越大.需要注意,得到的并不是事件x发生的概率,而只是知道公式的值同发生的概率呈正比而已.如果将y= θT* X中的每个x带入这个公式,得到如下函数求得所有的时间发生概率最大就是求得所有的事件概率密度函数结果的乘积最大,则得到:求得最大时W的值,则总结出了所有事件符合的规律.求解过程如下(这里记住,我们求得的是什么情况下函数的值最大,并不是求得函数的解):公式中,m为样本的个数,π和σ为常数,不影响表达式的大小.所以去掉所有的常数项得到公式:因为得到的公式是一个常数减去这个公式,所以求得概率密度函数的最大值就是求得这个公式的最小值.这个公式是一个数的平方,在我国数学资料中把他叫做最小二乘公式.所以多元线性回归的本质就是最小二乘.J(w)′=2(Y?Xw)TXJ(w)^{#x27;}=2(Y-Xtextbf{w})^TXJ(w)′=2(Y?Xw )TXSystem.out.print("("+xy[0]+",");X为自变量向量或矩阵,X维度为N,为了能和W0对应,X需要在第一行插入一个全是1的列。

《线性回归方程》课件1

《线性回归方程》课件1

i 1
i 1
i 1
i 1
i 1
方程
类似地,我们可以推得,求回归
yˆ bx a 中系数a,b的一般公式:
n
n
xi yi nx y (xi x)(yi y)
b
i1 n
xi2
2
nx
i1
n
(xi x)2
,
i1
i1
a ybx
以上公式的推导较复杂,故不作推导,但它 的原理较为简单:即各点到该直线的距离的平 方和最小,这一方法叫最小二乘法。
线性回归方程
问题引入:
有些教师常说:“如果你的数学成绩好,那 么你的物理学习就不会有什么大问题” 按照这种 说法,似乎学生的物理成绩与数学成绩之间也存 在着某种关系。你如何认识它们之间存在的关系?
数学成绩
物理成绩
学习兴趣
学习时间
其他因素
结论:变量之间除了函数关系外,还有

变量之间的关系
函数关系---变量之间是一种确定 性的关系.如:圆的面积S和半径r之间 的关系.
b
i 1 n
xi2
2
nx
i1
n
(xi x)2
,
i 1
i 1
a y bx
数学3——统计 1. 画散点图 2. 了解最小二乘法的思想 3. 求回归直线方程 4. 用回归直线方程解决应用问题
近似表示的相关关系叫做线性相关关系.
如果散点图中的点分布从整体 上看大致在一条直线附近我们就称 这两个变量之间具有线性相关关系
线性回归方程: 一般地,设有n个观察数据如下:
x x1 x2 x3 … xn
y y1 y2 y3 … yn 当a,b使
Q ( y1 bx1 a)2 ( y2 bx2 a)2 ... ( yn bxn a)2

一元线性回归方程公式

一元线性回归方程公式

一元线性回归方程公式
一元线性回归方程公式:
y = ax + b
元线性回归方程反映一个因变量与一个自变量之间的线性关系,当直线方程Y'=a+bx的a和b确定时,即为一元回归线性方程。

经过相关分析后,在直角坐标系中将大量数据绘制成散点图,这些点不在一条直线上,但可以从中找到一条合适的直线,使各散点到这条直线的纵向距离之和最小,这条直线就是回归直线,这条直线的方程叫作直线回归方程。

注意:一元线性回归方程与函数的直线方程有区别,一元线性回归方程中的自变量X对应的是因变量Y的一个取值范围。

1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性回归——正规方程推导过程
线性回归——正规方程推导过程
我们知道线性回归中除了利用梯度下降算法来求最优解之外,还可以通过正规方程的形式来求解。

首先看到我们的线性回归模型:
f(xi)=wTxif(x_i)=w^Tx_if(xi?)=wTxi?
其中w=(w0w1.wn)w=begin{pmatrix}w_0w_1.w_nend{pmatrix}w=?w0?w1?. wn?,xi=(x0x1.xn)x_i=begin{pmatrix}x_0x_1.x_nend{pmatrix}xi?=?x0 x1.xn,m表示样本数,n是特征数。

然后我们的代价函数(这里使用均方误差):
J(w)=∑i=1m(f(xi)?yi)2J(w)=sum_{i=1}^m(f(x_i)-y_i)^2J(w) =i=1∑m?(f(xi?)?yi?)2
接着把我的代价函数写成向量的形式:
J(w)=(Xw?y)T(Xw?y)J(w)=(Xw-y)^T(Xw-y)J(w)=(Xw?y)T(Xw?y) 其中X=(1x11x12?x1n1x21x22?x2n?1xm1xm2?xmn)X=begin{pmatrix}
1 x_{11} x_{12} cdots x_{1n}
1 x_{21} x_{22} cdots x_{2n}
vdots vdots vdots ddots vdots
1 x_{m1} x_{m2} cdots x_{mn}
end{pmatrix}X=?11?1?x11?x21?xm1?x12?x22?xm2?x1n?x2n?xmn?
最后我们对w进行求导,等于0,即求出最优解。

在求导之前,先补充一下线性代数中矩阵的知识:
1.左分配率:A(B+C)=AB+ACA(B+C) = AB+ACA(B+C)=AB+AC;右分配率:(B+C)A=BA+CA(B+C)A = BA + CA(B+C)A=BA+CA
2.转置和逆:(AT)?1=(A?1)T(A^T)^{-1}=(A^{-1})^T(AT)?1=(A?1)T,(AT)T=A(A^T)^T=A(AT)T=A
3.矩阵转置的运算规律:(A+B)T=AT+BT(A+B)^T=A^T+B^T(A+B)T=AT+BT;
(AB)T=BTAT(AB)^T=B^TA^T(AB)T=BTAT
然后介绍一下常用的矩阵求导公式:
1.δXTAXδX=(A+AT)Xfrac{delta X^TAX}{delta X}=(A+A^T)XδXδXTAX?=(A+AT)X
2.δAXδX=ATfrac{delta AX}{delta X}=A^TδXδAX?=AT
3.δXTAδX=Afrac{delta X^TA}{delta X}=AδXδXTA?=A
然后我们来看一下求导的过程:
1.展开原函数,利用上面的定理
J(w)=(Xw?y)T(Xw?y)=((Xw)T?yT)(Xw?y)=wTXTXw?wTXTy?yTXw+yT yJ(w)=(Xw-y)^T(Xw-y)=((Xw)^T-y^T)(Xw-y)=w^TX^TXw-w^TX^Ty-y^
TXw+y^TyJ(w)=(Xw?y)T(Xw?y)=((Xw)T?yT)(Xw?y)=wTXTXw?wTXTy?yT Xw+yTy
2.求导,化简得,
δJ(w)δw=(XTX+(XTX)T)w?XTy?(yTX)T=0?2XTXw?2XTy=0?XTXw=X Ty?w=(XXT)?1XTyfrac{delta J(w)}{delta w}=(X^TX+(X^TX)^T)w-X^Ty-(y^TX)^T=0implies
2X^TXw-2X^Ty=0implies X^TXw=X^Tyimplies w=(XX^T)^{-1}X^TyδwδJ(w)?=(XTX+(XTX)T)w?XTy?(yTX)T=0?2XTX w?2XTy=0?XTXw=XTy?w=(XXT)?1XTy
最后补充一下关于矩阵求导的一些知识,不懂可以查阅:矩阵求导、几种重要的矩阵及常用的矩阵求导公式
这次接着一元线性回归继续介绍多元线性回归,同样还是参靠周志华老师的《机器学习》,把其中我一开始学习时花了较大精力弄通的推导环节详细叙述一下。

ax.plot(test_X[:, 0], test_X[:, 1], pred_y, c='r')
前部分是一个常数,后部分越小那么总似然值越大,后部分则称之为损失函数,则有损失函数的公式J(θ)J(theta)J(θ): 截距在数学中的定义是:直线的截距分为横截距和纵截距,横截距是直线与X轴交点的横坐标,纵截距是直线与Y轴交点的纵坐标。

根据上边的例子可以看出,我们一般讨论的截距默认指纵截距.
data = pd.read_excel('1.xlsx',index_col=0)
b_gradient = -(1.0-n)*np.dot((y-pred_y).T,
np.ones(shape=[n, 1]))
J(w)=(Xw?y)T(Xw?y)J(w)=(Xw-y)^T(Xw-y)J(w)=(Xw?y)T(Xw?y) 我们使用(x(i,0),x(i,1),x(i,2)…x(i,m))表示第i组数据,一共n组数据。

private String recusiveSearchClassType(TreeNode node, frac{{partial E}}{{partial b}} = frac{1}{m}sumlimits_{i = 1}^m {({w^T}{x^i} + b - {y^i}} ){x^i}。

相关文档
最新文档