《等腰三角形的轴对称性》习题及答案

合集下载

《等腰三角形的轴对称性》同步练习

《等腰三角形的轴对称性》同步练习

等腰三角形的轴对称性(1)知识与基础1、一个等腰三角形的一个内角为90,那么这个等腰三角形的一个底角等于()A、90°B、45°C、50°D、°2、若等腰三角形的一个内角等于88°,则另外两个角的度数分别为()A、88°、4°B、46°、46°或88°、4°C、46°、46°D、88°、24°3、若等腰三角形的一个内角等于92°,则另两个角的度数分别是()A、92°、16°B、44°、44°C、92°、16°或44°、44°D、46°、46°4、等腰三角形的一边长是10,另一连长是7,则它的周长是()A、27B、24C、17D、27或245、已知等腰三角形的一边等于3,一边等于6,则它的周长是()A、12B、12或15C、15D、15或186、在△ABC中,①若AB=BC=CA,则△ABC为等边三角形;②一个底角为60°的等腰三角形是等边三角形;③顶角为60°的等腰三角形是等边三角形;④有两个角都是60°的三角形是等边三角形。

上述结论中正确的有()A、1个B、2个C、3个D、4个7、有下列说法:①等腰三角形的底角一定是锐角;②等腰三角形的内角平分线与此角所对边上的高重合;③顶角相等的两个等腰三角形的面积相等;④等腰三角形的一边不可能是另一边的两倍。

其中正确的有()A、1个B、2个C、3个D、4个8、下列图形中,不一定是轴对称图形的是()A、正方形B、有一个角为45°的直角三角形;C、两个内角分别为33°、114°的三角形;D、有一个内角为60°的三角形;9、如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()B C A 、∠1=2∠2 B 、3∠1-∠2=180° C 、∠1+3∠2=180° D 、2∠1+∠2=180°应用与拓展10、有一个内角为60°的等腰三角形,腰长为6cm ,那么这个三角形的周长为___________cm .11、若等腰三角形的腰长为8,那么底边长的范围是__________________;若等腰三角形的底边长为8,那么腰长的范围是____________________。

等腰三角形的轴对称性(2)

等腰三角形的轴对称性(2)
A
E
D
O
1 B
2 C
如图,在△ABC中,BC=5cm,BP,CP分 别是∠ABC 和∠ ACB的角平分线 ,PD∥AB, PE ∥ AC , 则△PDE的周长是_____cm
A
P
21
B
3
D
E
C
1、任意剪一张直角三角形纸片
2、剪得的纸片是否能折成如图的形状?
3、把纸片展开如图,连接CD,你有什 么发现?
C
E N
D
A
M
B
1、如果一个三角形一边上的中
线等于这边的一半,这个三角形是否
为直角三角形?
A
D
C
B
2、直角三角形三边垂直平分线交点为什么是 斜边的中点?
如图,∠ABC、∠ACB的平分线交于点F, 过F作DE//BC,交AB于D、交AC于E,线段BD、 EC、DE有何数量的关系?说明理由.
A
D B
N
M
C
A
B
那么你能从理论上说明AB=AC吗?
如果一个三角形有两个角相等,那么这两个角 所对的边也相 ( 简称“等角对等边”)
符号语言
∵∠B=∠C ∴AB=AC (等角对等边)
图形
A
B
C
在△ABC中, ∠A=800∠B=500 ,那么 △ ABC是什么三角形?
A
B
C
如图,在△ABC中,AB=AC, 角平分线BD与CE相交于点O,OB与 OC相等吗?请说明理由。
FE C
已知△ABC中AB=AC,D,E分别是 AB和 BC上的点,连接DE并延长,且与AC的延长线 交于点F,若DE=EF,试说明BD=CF
A 过D作DH∥AF交BC于H

苏科版八年级数学上册《2.5等腰三角形的轴对称性》同步练习题-带答案

苏科版八年级数学上册《2.5等腰三角形的轴对称性》同步练习题-带答案

苏科版八年级数学上册《2.5等腰三角形的轴对称性》同步练习题-带答案一、单选题1.如图,在Rt△ABC 中,△ACB =90°,△CAB=36°,以C 为原点,C 所在直线为y 轴,BC 所在直线为x 轴建立平面直角坐标系 ,在坐标轴上取一点M 使△MAB 为等腰三角形,符合条件的 M 点有( )A .6个B .7个C .8个D .9个2.如图,等腰△ABC ,AB=AC ,∠BAC=120°,AD ⊥BC 于点D .点P 是BA 延长线上一点,O 点是线段AD 上一点,OP=OC ,下面的结论:△AC 平分△PAD ;△△APO=△DCO ;△△OPC 是等边三角形;△AC=AO+AP.其中正确结论的个数为( )A .4B .3C .2D .13.如图,在四边形ABCD 中,△BAD =△BCD =90°,△ADC =45°,BD =2a ,E 为BD 中点,给出下列结论:△AE =a , △△CAE =45°,△AC = 2a ,△取AC 的中点F , 则EF △AC , 其中正确的个数是( )A .1个B .2个C .3个D .4个4.如图,在ABC 中,AB=AC ,分别以点A 、点B 为圆心,以大于12AB 长为半径画弧,两弧交点的连线交AC 于点D ,交AB 于点E ,连接BD ,若40A ∠=︒,则DBC ∠=( )A.40︒B.50︒C.20︒D.30︒∠的度数为()5.如图,ABC中,已知AB AC=,DE垂直平分AC,40∠=︒则BCDAA.15︒B.30︒C.50︒D.65︒6.已知A和B两点在线段EF的中垂线上,且△EBF=100°,△EAF=70°,则△AEB等于() A.95°B.15°C.95°或15°D.170°或30°7.等腰三角形的顶角是50°,则它的底角是()A.65°B.80°C.50°或65°D.50°或80°8.已知等腰三角形的一个内角是50︒,则这个三角形顶角的度数是()A.130︒B.50︒C.80︒D.50︒或80︒⊥于D点,点E、F分别是AD的三等分点,若ABC的面积为9.如图,在ABC中,AB=AC,AD BC18,则图中阴影部分面积为()A.6B.8C.9D.10∠,若AB=m,10.如图,ABC中,∠B=2∠C,AD是BC边上的高,E是BA延长线上一点,AC平分DAEBC=p,BD=q,则下列等式一定成立的是()A .m q p +=B .2m q p +=C .2m q p +=D .12q m p +=二、填空题11.在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED =EC ,若三角形ABC 的边长为1,AE =2,则CD 的长为 .12.若等腰三角形的周长为30cm ,一边长为6cm ,则腰长为 .13.如图,CA 1是等腰Rt △ABC 斜边AB 上的高,以CA 1为直角边构造等腰Rt △CA 1B 1(点C ,A 1,B 1按顺时针方向排列),△A 1CB 1=90°,称为第一次构造;CA 2是Rt △CA 1B 1斜边上的高,再以CA 2为直角边构造等腰Rt △CA 2B 2(点C ,A 2,B 2按顺时针方向排列),△A 2CB 2=90°,称为第二次构造…,以此类推,当第n 次构造的Rt △CAnBn 的边CBn 与△ABC 的边CB 第二次重合时,构造停止,若S △ABC =1,则构造出的最后一个三角形的面积为 .14.等腰三角形的一个角的度数是36︒,则它的底角的度数是 .15.如图,在ABC 中,AB=AC ,AD 是BC 边上的中线,ABC ∠的平分线交AD 于点E ,EF AB ⊥于点F ,若5EF =,则ED 的长度为 .三、解答题16.已知等腰三角形的周长为15cm ,一腰上的中线把等腰三角形分成周长之差为3cm 的两个三角形,求等腰三角形的腰长.17.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒,OA OB 组成,两根棒在O 点相连并可绕O 转动、C 点固定OC CD DE ==点D E 、可在槽中滑动.若75BDE ∠=︒,请求出CDE ∠的度数.18.(1)如图1,在四边形ABCD 中,AD//BC ,G 为CD 上一点,连接AG ,BG .△若AG 平分DAB ∠,BG 平分ABC ∠,求AGB ∠的度数;△若90ABC ∠=︒,AD+BC=AB ,G 为CD 中点,求证:ABG 为等腰直角三角形;(2)某工程队需要在A ,B 两棵树的前方建立一座八角亭.按如下方法选址:如图2,甲工人从C 点直走到树A 处,然后向右转90后再直走一段路等于AC 的长度到点D 处;乙工人从C 点直走到树B 处,然后向左转90后再直走一段路等于BC 的长度到点E 处.工程队队长打算把八角亭建在DE 的中点G 处.过几天,工程队带着建筑材料来施工,却发现忘记标记起始点C ,正当大家懊恼时,队长说:别急,只要找到A ,B 两棵树连线的中点F ,由点F 引AB 的垂线,再往A ,B 两棵树前方量出AB 的长度的一半,就能找到之前的G 点(如图3所示).你觉得队长的方法对吗?为什么?19.如图,一条船上午6时从海岛A 出发,以15海里/时的速度向正北方向航行,上午8时到达海岛B 处,分别从A ,B 处望灯塔C ,测得30NAC ∠=︒ 60NBC ∠=︒.(1)求海岛B到灯塔C的距离;(2)若这条船继续向正北航行,问上午几时小船与灯塔C的距离最短?20.某中学八年级学生到野外开展数学综合实践活动,在营地看到一个不规则的建筑物,为测量该建筑物两端A,B间的距离,但同学们给出了以下建议:(1)甲同学的方案如下:先在平地上取一个可直接到达A,B的点O,连接AO,BO,并分别延长AO至点C,,DO=BO,最后测出CD的长即为A,B间的距离,请你说说该方案可行的理延长BO至点D,使CO AO由;(2)由于在EF处有一堵墙阻挡了路线,使得无法按照甲同学的方案直接测量出A,B间的距离,但同学们测得∠EOC=65°,∠C=80°,∠OEF=145°,CF=127m,EF=78m,请求出该建筑物两端A,B之间的距离.参考答案1.C2.B3.D4.D5.B6.C7.A8.D9.C10.B11.1或3/3或112.12cm13.1612 14.36︒或72°15.516.4cm 或6cm17.80︒18.(1)△90︒△略;(2)队长说法正确,略 19.(1)海岛B 到灯塔C 的距离为30海里(2)上午9时小船与灯塔C 的距离最短 20.(1)甲同学的方案可行;略(2)该建筑物两端A ,B 之间的距离为205m .。

等腰三角形的轴对称性(解析版)

等腰三角形的轴对称性(解析版)

2.5等腰三角形的轴对称性一、单选题1.如图,l∥m ,等边∥ABC 的顶点A 在直线m 上,则∥α=( )A .10°B .20°C .30°D .40°【答案】B【解析】过B 点作BF∥l ,如图,∥BF∥l ,∥∥CBF=40°,∥l∥m ,∥BF∥m ,∥∥ABF=α,∥∥ABC 是等边三角形∥∥ABC=60°=∥CBF+∥ABF ,∥α=20°,故选:B .2.如图,在ABC 中,AB AC =,AD 为BC 边上的中线,25B ∠=︒,则BAD ∠的度数为().A .55°B .65°C .75°D .45°【答案】B【解析】∥AB=AC ,AD 是BC 边上的中线,∥AD∥BC ,∥BAD=∥CAD ,∥∥B+∥BAD=90°,∥∥B=25°,∥∥BAD=65°,故选:B .3.如图,∥ABC 中,AB 的垂直平分线交BC 边于点E ,AC 的垂直平分线交BC 边于点N ,若∥BAC =70°,则∥EAN 的度数为( )A .35°B .40°C .50°D .55° 【答案】B【解析】70BAC ∠=︒,18070110B C ∴∠+∠=︒-︒=︒, AB 的垂直平分线交BC 于点E ,AC 的垂直平分线交BC 于点N ,EA EB NA NC ∴==,,EAB B NAC C ∴∠=∠∠=∠,,BAC BAE NAC EAN B C EAN ∴∠=∠+∠-∠=∠+∠-∠,1107040EAN B C BAC ∴∠=∠+∠-∠=︒-︒=︒,故选:B .4.如图,在∥ABC 中,AD∥BC ,垂足为D ,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,BD =DE ,若∥ABC 的周长为26cm ,AF =5cm ,则DC 的长为( )A .8cmB .7cmC .10cmD .9cm【答案】A 【解析】解:∥AD∥BC ,BD =DE ,EF 垂直平分AC ,∥AB =AE =EC ,∥∥ABC 周长26cm ,AF =5cm ,∥AC=10(cm),∥AB+BC=16(cm),∥AB+BE+EC=16(cm),即2DE+2EC=16(cm),∥DE+EC=8(cm),∥DC=DE+EC=8(cm),故选:A.5.如图,∥ABC是等边三角形,D为AB的中点,DE∥AC于点E,EF//AB交BC于点F,已知AE=5,则∥EFC的周长为()A.60B.45C.30D.15【答案】B【解析】解:∥∥ABC是等边三角形,∥∥A=60°,∥DE∥AC,∥∥ADE=30°,∥AD=2AE=2×5=10,∥D为AB的中点,∥AB=2AD=20,∥AC=AB=20,∥EC=AC﹣AE=15,∥EF∥AB,∥∥EFC=∥B=60°,∥FEC=∥A=60°,∥∥EFC是等边三角形,∥∥EFC的周长=3EC=3×15=45.故选:B.6.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.【答案】B【解析】如图所示,∥ACD和∥BCD都是等腰三角形;如图所示,∥ABC不能够分成两个等腰三角形;如图所示,∥ACD和∥BCD都是等腰三角形;如图所示,∥ACD和∥BCD都是等腰三角形;故选B.7.如图,将两个全等的有一个角为30°的直角三角形拼成如下图形,其中两条长直角边在同一直线上,则图中等腰三角形的个数是( )A .4B .3C .2D .1【答案】B【解析】如图,∥将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上. ∥EF∥DG ,∥E=∥D=60°,∥∥ENM=∥D=60°,∥MGD=∥E=60°,∥EM=NM=EN ,DM=GM=DG ,∥∥MEN ,∥MDG 是等边三角形.∥∥A=∥B=30°,∥MA=MB ,∥∥ABM 是等腰三角形.∥图中等腰三角形有3个.故选:B .8.如图,∥ABC 中,AB AC =,D 是BC 中点,下列结论,不一定正确的是( )A .AD BC ⊥B .AD 平分BAC ∠ C .2AB BD = D .B C ∠=∠【答案】C 【解析】解:∥AB=AC ,∥∥B=∥C ,∥AB=AC ,D 是BC 中点,∥AD 平分∥BAC ,AD∥BC ,所以,结论不一定正确的是AB=2BD .故选:C .二、填空题9.如图,在∥ABC 中,AB=AC ,BD∥AC ,CE∥AB ,D 、E 为垂足,BD 与CE 交于点O ,则图中全等三角形共有_________对.【答案】3【解析】解:有3对:理由是∥AB=AC ,∥∥ABC=∥ACB ,∥BD∥AC ,CE∥AB ,∥∥BDC=∥BEC=90°,∥BC=BC ,∥∥BEC∥∥BDC ,∥∥ADB=∥AEC ,∥A=∥A ,AB=AC ,∥∥ADB∥∥AEC ,∥AD=AE ,∥BE=DC ,∥∥EOB=∥DOC ,∥BEC=∥BDC ,∥∥BEO∥∥CDO ,故答案为3.10.如图,线段AB BC ,的垂直平分线12,l l 交于点O .若35B ︒∠=,则AOC ∠=__________︒【答案】70【解析】解:连接BO 并延长,如图:线段AB BC ,的垂直平分线12,l l 交于点O∥AO=OB=OC∥A=∥ABO ,∥C=∥CBO∥∥A+∥C=∥ABC=35°∥70AOC AOD COD A ABO C CBO A C ABC ∠=∠+∠=∠+∠+∠+∠=∠+∠+∠=故答案为:7011.如图,在ABC 中,AB AC =,50A ∠=︒,AB 的垂直平分线MN 交AC 于D 点,连接BD ,则DBC ∠的度数是________.【答案】15°【解析】∥AB=AC ,∥A=50∥,∥ ∥ABC=12(180∥−∥A)=12(180∥−50∥)=65∥, ∥MN 垂直平分线AB ,∥AD=BD ,∥ ∥ABD=∥A=50∥,∥ ∥DBC=∥ABC−∥ABD=65∥−50∥=15∥.故答案为:15∥.12.如图,∥ABD ,∥ACE 都是等边三角形,BE 和CD 交于O 点,则∥BOC=__________度.【答案】120【解析】∥∥ABD 、∥ACE 都是正三角形,∥AD=AB ,AC=AE ,∥DAB=∥CAE=60°,∥∥DAC=∥BAE ,∥∥ADC∥∥ABE(SAS),∥∥ADC=∥ABE ,∥∥DAB=∥BOD=60°,∥BOC=180-∥BOD=120°,故答案为:12013.已知:如图所示,点D 在BC 的延长线上,120ACD AB AC ︒∠==,,则ABC ∆的形状为___________【答案】等边三角形【解析】解:∥点D 在BC 的延长线上,120ACD ︒∠=,∥60ACB ︒∠=,∥AB AC =,∥∥ABC 的形状为等边三角形.故答案为:等边三角形.14.如图,在ABC 中,BO ,CO 分别是ABC ∠和ACB ∠的平分线,过O 点的直线分别交AB 、AC 于点D 、E ,且//DE BC .若68==,AB cm AC cm ,则ADE 的周长为________.【答案】14cm【解析】DE BC ∥,DOB OBC ∴∠=∠,又BO 是ABC ∠的平分线,DBO OBC ∴∠=∠,DBO DOB ∴∠=∠,BD OD ∴=,同理:OE EC =,ADE ∴的周长14 AD OD OE AE AD BD AE EC AB AC cm ====+++++++.15.在Rt∥ABC 中,∥B=90°,AC=16,BC=8,那么∥C=______度.【答案】60°【解析】∥Rt∥ABC 中,∥B=90°,AC=16,BC=8, ∥BC=12AC , ∥Rt∥ABC 中,∥B=90°,∥∥A=30°,∥∥C=90°-∥A=60°.故答案为:6016.如图,在ABC ∆中,AB AC =,D 是BC 的中点,DE AC ⊥,垂足为E ,50BAC ∠=︒,则ADE ∠的度数是______.【答案】65【解析】∥AB =AC ,D 为BC 的中点,∥∥BAD =∥CAD ,∥∥BAC =50°,∥∥DAC =25°,∥DE∥AC ,∥∥ADE =90°−25°=65°,故答案为65°.17.等腰直角ABC 中,90ACB ∠=︒,AH HG ⊥,BG HG ⊥,12HG =,4AH =,则BG =________.【答案】8【解析】ABC 是等腰直角三角形,且90ACB ∠=︒,BC CA ∴=,90BCG ACH ∠+∠=︒,,A BG HG H HG ⊥⊥,90G H ∴∠=∠=︒,90BCG CBG ∠∴∠+=︒,CBG ACH ∴∠=∠,在BCG 和CAH 中,G H CBG ACH BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BCG CAH AAS ∴≅,,CG AH BG CH ∴==,12,4H HG A ==,1248BG CH HG CG HG AH ∴==-=-=-=,故答案为:8.18.如图,在等边三角形ABC 中,BD=CE,AD,BE 交于点F,则AFE ∠=_________;【答案】60°【解析】解:在等边∥ABC 中,AB=BC ,∥ABC=∥C=60°,在∥ABD 和∥BCE 中,∥60AB BC ABC C BD CE =⎧⎪∠=∠=︒⎨⎪=⎩,∥∥ABD∥∥BCE (SAS ),∥∥BAD=∥CBE ,在∥ABF 中,∥AFE=∥BAD+∥ABF=∥CBE+∥ABF=∥ABC=60°,即∥AFE=60°.故答案为:60°.三、解答题19.如图,已知ABC 中,AB AC =.M 是BC 的中点,D 、E 分别是AB 、AC 边上的且AD AE =. 求证:MD ME =.【答案】见详解【解析】∥AB AC =,∥∥B=∥C ,∥M 是BC 的中点,∥BM=CM ,又∥AD AE =,∥AB -AD=AC -AE ,即BD=CE ,∥∆BDM∥∆CEM ,∥MD ME =.20.如图,点D ,E 在ABC 的边AB 上,,,8CA CB CD CE AE ===,求BD 的长.【答案】8BD =【解析】解:如图,过C 作CM AB ⊥,垂足为M .∥AC BC =,CD CE =,且CM AB ⊥,∥,==AM BM DM EM ,∥+=+AM EM BM DM ,∥AE BD =.∥8AE =,∥8BD =.21.如图,在Rt ABC △和Rt BAD △中,AB 为斜边,AC BD =,BC 、AD 相交于点E .(1)请说明AE BE =的理由;(2)若45=︒∠AEC ,1AC =,求CE 的长.【答案】(1)见解析;(2)CE=1.【解析】(1)证明:在Rt ACE 和Rt BDE △中,∥AEC ∠与BED ∠是对顶角,∥AEC BED ∠=∠.∥90C D ∠=∠=︒,AC BD =,∥Rt ACE ∥Rt BDE △(AAS ).∥AE BE =.(2)∥45=︒∠AEC ,90C ∠=︒,∥45CAE ∠=︒,∥AEC CAE ∠=∠ ,∥1CE AC ==.22.如图,ABC ∆为等边三角形,BD 平分ABC ∠交AC 于点D ,//DE BC 交AB 于点E . (1)求证:ADE ∆是等边三角形.(2)求证:12AE AB =.【答案】(1)见解析;(2)见解析【解析】(1)∥∥ABC 为等边三角形,∥∥A=∥ABC=∥C=60°.∥DE∥BC ,∥∥AED=∥ABC=60°,∥ADE=∥C=60°.∥∥ADE 是等边三角形(2)∥∥ABC 为等边三角形,∥AB=BC=AC .∥BD 平分∥ABC , ∥AD=12AC ∥∥ADE 是等边三角形,∥AE=AD . ∥AE=12AB . 23.已知ABC 中,90BAC ∠=︒,AB AC =,E 为BC 边上一点,过E 点的直线交AB 及AC 延长线于D 、F 两点,DE AE =.(1)求证DE EF =;(2)求证BD CF =;(3)若5BE =,3CE =,请直接写出CEF △的面积.【答案】(1)证明见解析;(2)证明见解析;(3)1.5.【解析】证明:(1),ED EA =,EDA EAD ∴∠=∠90BAC ∠=︒,90,EAD EAC EDA F ∴∠+∠=︒=∠+∠,EAC F ∴∠=∠,EA EF ∴=.ED EF ∴=(2)如图,过D 作//DM AC 交BC 于M ,DMB ACB ∴∠=∠,EDM F ∠=∠,AB AC =,B ACB ∴∠=∠,B DMB ∴∠=∠,DB DM ∴=,在EDM △与EFC 中,EDM F DE FEDEM FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩()EDM EFC ASA ∴≌,DM FC ∴=.BD CF ∴=(3)过D 作DP BC ⊥于P ,,90AB AC BAC =∠=︒,DB DM =,45B DMB ∴∠=∠=︒,45BDP MDP ∴∠=∠=︒,=BP MP DP ∴=,EDM EFC ≌,3EM EC ∴==,5BE =,2BM ∴=,1DP ,1131 1.522DME S ME DP ∴==⨯⨯=,1.5.CEF S ∴=24.如图,ABC ∆是等边三角形,BP 平分ABC ∠交AC 于点P ,延长BC 到点Q ,使得CP CQ =.(1)请用尺规作图的方法,过点P 作PM BQ ⊥,垂足为M ;(不写作法,保留作图痕迹)(2)求证:BM QM =.【答案】(1)答案见解析;(2)证明见解析.【解析】(1)解:如图,(2)证明:∥∥ABC是等边三角形,BP平分∥ABC,∥P是AC的中点(三线合一)∥∥ABC=2∥PBC,∥CP=CQ,∥∥Q=∥CPQ.又∥∥ACB=∥Q+∥CPQ,∥∥ACB=2∥Q,又∥∥ABC=∥ACB,∥2∥PBC=2∥Q,∥∥PBC=∥Q,∥PB=PQ.∆是等腰三角形,∥PBQ又∥PM∥BQ,∥BM=QM.25.如图,∥ACB和∥DCE均为等腰三角形,∥ACB=∥DCE=90°,点A,D,E在同一条直线上,连接BE.(1)求证:AD=BE;(2)若∥CAE=15°,AD=4,求AB的长.【答案】(1)见解析;(2)8【解析】(1)∥ACB和∥DCE均为等腰三角形,∥ACB=∥DCE=90°,∴∠=∠,ADC BCE在ACD △与BCE 中,AC BC ACD BCE DC EC =⎧⎪∠=∠⎨⎪=⎩()ACD BCE SAS ∴≌,AD BE ∴=;(2)ABC 是等腰直角三角形,45ABC ∴∠=︒,由(1)可知,15CAE CBE ∠=∠=︒,4BE AD ==,451560ABE ABC CBE ∴∠=∠+∠=︒+︒=︒,90ABE ACB ∴∠=∠=︒,则在Rt AEB 中,30EAB ∠=︒,28AB BE ∴==.26.如图,已知∥ABC 是等边三角形,D 、E 分别是BC 、AC 边上的点,且BD CE =,AD 、BE 相交于点P .(1)求证:AD BE =;(2)求出APE ∠ 的度数.【答案】(1)见解析;(2)60°.【解析】(1)∥∥ABC 是等边三角形,∥AB=BC=AC ,∥ABC=∥BAC=∥C=60°,在∥ABD 和∥BCE ,AB BC ABD C BD CE ⎧⎪∠∠⎨⎪⎩=== ,∥∥ABD∥∥BCE (SAS ),∥AD=BE.(2)∥∥ABD∥∥CBE,∥∥BAD=∥CBE,∥∥ABP+∥CBE=∥ABD=60°,∥∥ABP+∥BAD=60°,∥∥APB=180°-60°=120°.=180°-120°=60°.∥APE27.如图,∥ABC中,AB=AC,∥A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∥ECD的度数;(2)若CE=5,求BC长.【答案】(1)∥ECD=36°;(2)BC长是5.【解析】解:(1)∥DE垂直平分AC,∥CE=AE,∥∥ECD=∥A=36°;(2)∥AB=AC,∥A=36°,∥∥B=∥ACB=72°,∥∥BEC=∥A+∥ECD=72°,∥∥BEC=∥B,∥BC=EC=5.。

等腰三角形的轴对称性练习题

等腰三角形的轴对称性练习题

2.5等腰三角形的轴对称性一、单选题1.已知等腰三角形的周长为17,一边长为7,则此等腰三角形的底边长为()A.3B.7C.3或7D.3或52.如图,在直角三角形ABC中,∠ACB=90°,∠B=36°,点D、E在AB上,如果BC=BD,∠CED=∠CDE,那么图中的等腰三角形共有()个.A.3个B.4个C.5个D.6个3.已知一个等腰三角形的两边长分别是4和8,则该等腰三角形的周长为()A.16或20B.16C.20D.12或244.如图,在△ABC中,∠ACB=90°,D为AB的中点,DE⊥AC于点E,下列结论中不一定成立的是()A.AE=CE B.BD=BC C.BC=2DE D.CD=AD5.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=2,ED=6,则EB+DC的值为()A.6B.7C.8D.96.如图,线段AE⊥BD于C,AB=DE,∠A=30°,∠E=50°,F是DE的中点,则∠DBF的度数为()A.10°B.30°C.20°D.40°7.已知等腰三角形的两边长分别为x、y,且满足|2x﹣y+1|+(x+y﹣13)2=0,则该等腰三角形的周长为()A.22或26B.17C.17或22D.228.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°9.一艘轮船由海平面上A地出发向南偏西40°的方向行驶100海里到达B地,再由B地向北偏西20°的方向行驶100海里到达C地,则A,C两地相距()A.100海里B.80海里C.60海里D.40海里10.以下说法中,正确的命题是()(1)等腰三角形的一边长为4 cm,一边长为9 cm,则它的周长为17 cm或22 cm;(2)三角形的一个外角等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)如果三角形的一个外角的平分线平行于三角形一边,那么这个三角形是等腰三角形.A.(1)(2)(3) B.(1)(3)(5) C.(2)(4)(5) D.(4)(5)二、填空题。

初中数学人教版(五四制)八年级上册第二十章 轴对称20.3 等腰三角形-章节测试习题(4)

初中数学人教版(五四制)八年级上册第二十章  轴对称20.3 等腰三角形-章节测试习题(4)

章节测试题1.【答题】若等腰三角形的底角为54°,则顶角为()A. 108°B. 72°C. 54°D. 36°【答案】B【分析】根据等腰三角形的性质解答即可.【解答】∵等腰三角形的底角为54°,∴顶角=180°-2×54°=72°,选B.2.【答题】如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=50°,则∠CAD的大小为()A. 50°B. 65°C. 80°D. 60°【答案】B【分析】根据等腰三角形的性质解答即可.【解答】∵在△ABC中,AB=AC,∠1=50°,∴∠C=∠B=,又∵AD∥BC,∴∠CAD=∠C=65°.选B.3.【答题】下列三角形不一定全等的是()A. 面积相等的两个三角形B. 周长相等的两个等边三角形C. 斜边和一条直角边分别对应相等的两个直角三角形D. 有一个角是100°,腰长相等的两个等腰三角形【答案】A【分析】根据等腰三角形的性质和全等三角形的判定解答即可.【解答】A、如果△ABC和△DEF中,BC=1,BC上的高AD=2,△DEF的边EF=2,EF 上的高是1,两三角形的面积相等,但△ABC和△DEF不一定全等,故本选项正确;B、△ABC和△DEF,AB=BC=AC,DE=EF=DF,根据周长相等,则AB=BC=AC=DE=DF=EF,根据SSS即可推出两三角形全等,故本选项错误;C、根据直角三角形全等的判定定理HL,推出两三角形全等,故本选项错误;D、△ABC和△DEF中,AC=AB=DE=DF,只能是顶角是100°,在△ABC和△DEF中,,可得△ABC≌△DEF(SAS),故本选项错误;选A.方法总结:此题主要考查了三角形的有关知识,根据三角形的面积公式即可判断A;根据周长求出两三角形的三边相等,根据SSS即可判定两三角形全等;根据HL 即可判断两直角三角形全等;根据SAS即可判断两三角形全等.4.【答题】如图,等腰三角形ABC中,∠BAC=90°,在底边BC上截取BD=AB,过D 作DE⊥BC交AC于E,连接AD,则图中等腰三角形的个数是()A. 1B. 2C. 3D. 4【答案】D【分析】根据等腰三角形的性质和判定解答即可.【解答】三角形ABC是等腰三角形,且∠BAC=90°,所以∠B=∠C=45°,又DE⊥BC,所以∠DEC=∠C=45°,所以△EDC是等腰三角形,BD=AB,所以△ABD是等腰三角形,∠BAD=∠BDA,而∠EAD=90°﹣∠BAD,∠EDA=90°﹣∠BDA,所以∠EAD=∠EDA,所以△EAD是等腰三角形,因此图中等腰三角形共4个.选D.5.【答题】若等腰三角形中有一个角等于40°,则这个等腰三角形顶角的度数为()A. 40°B. 100°C. 40°或100°D. 40°或70°【答案】C【分析】根据等腰三角形的性质解答即可.【解答】解:∵等腰三角形中有一个角等于40°,∴①若40°为顶角,则这个等腰三角形的顶角的度数为40°;②若40°为底角,则这个等腰三角形的顶角的度数为:180°﹣40°×2=100°.∴这个等腰三角形的顶角的度数为:40°或100°.选C.6.【答题】如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC的度数为()A. 120°B. 30°C. 60°D. 80°【答案】C【分析】根据等腰三角形的性质解答即可.【解答】因为AB=AC,∠BAC=120°,所以∠B=30°.因为AB的垂直平分线交BC于点D,所以DB=DA,所以∠B=∠DAB=30°.所以∠ADC=∠B+∠DAB=30°+30°=60°.选C.7.【答题】已知A和B两点在线段EF的中垂线上,且∠EBF=100°,∠EAF=70°,则∠AEB等于()A. 95°B. 15°C. 95°或15°D. 170°或30°【答案】C【分析】根据等腰三角形的性质和判定解答即可.【解答】因为A和B两点在线段EF的中垂线上,所以AE=AF,BE=BF,所以∠AEF=∠AFE,∠BEF=∠BFE.因为∠EBF=100°,∠EAF=70°,所以∠AEF=(180°-70°)÷2=55°,∠BEF=(180°-100°)÷2=40°.①当点A,B在EF的同侧时,∠AEB=∠AEF-∠BEF=55°-40°=15°;②当点A,B在EF的异侧时,∠AEB=∠AEF+∠BEF=55°+40°=95°.选C.8.【答题】如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD的度数为()A. 50°B. 30°C. 75°D. 45°【答案】D【分析】根据等腰三角形的性质解答即可.【解答】因为AB=AC,∠A=30°,所以∠ABC=(180°-30°)÷2=75°,因为AB的垂直平分线交AC于D,所以DA=DB,所以∠A=∠DBA=30°.所以∠CBD=∠ABC-∠ABD=75°-30°=45°.选D.9.【答题】如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE的度数为()A. 80°B. 70°C. 60°D. 50°【答案】D【分析】根据等腰三角形的性质和判定解答即可.【解答】因为DE垂直平分AC,所以EA=EC,∠A=∠ACE.因为∠A=30°,所以∠ACE=30°.所以∠BCE=∠ACB-∠ACE=80°-30°=50°.选D.10.【答题】如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为()A. 6B. 9C. 3D. 8【答案】A【分析】根据等腰三角形的性质和判定解答即可.【解答】因为ED垂直平分BC,所以∠EDB=90°,EB=EC.因为∠B=30°,∠EDB=90°,所以BE=2DE=6.所以CE=BE=6.选A.11.【答题】如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB 于D,交AC于E,连接BE,则∠CBE等于()A. 80°B. 60°C. 40°D. 20°【答案】B【分析】根据等腰三角形的性质解答即可.【解答】因为AB=AC,∠A=20°,所以∠ABC=80°.因为DE是线段AB的垂直平分线,所以EB=EA,所以∠EAB=∠EBA=20°,所以∠CBE=∠ABC-∠ABE=80°-20°=60°.选B.12.【答题】如图,AB=AC,AB的垂直平分线交AB于D,交AC于E,BE恰好平分△ABC,有以下结论:(1)ED=EC;(2)△BEC的周长等与2AE+EC;(3)图中共有3个等腰三角形;(4)∠A=36°,其中正确的共有()A. 4个B. 3个C. 2个D. 1个【答案】B【分析】根据等腰三角形的性质和判定解答即可.【解答】(1)由题意可知DE⊥AB,BE平分∠ABC,∴当EC⊥BC时,有ED=EC,∵AB=AC,∴∠ACB不可能等于90°,∴ED=EC不正确;(2)∵E在线段AB的垂直平分线上,∴EA=EB,∴∠A=∠ABE,∵∠ABE=∠ABC,∠BEC=∠A+∠ABE,∴∠BEC=∠ABC,∵AB=AC,∴∠ABC=∠C,∴∠C=∠BEC,∴BE=BC,∴EC+EB+BC=EC+EA+EA=2EA+EC,∴(2)正确;(3)∵AB=AC,∴△ABC为等腰三角形,∠C=∠ABC,∵EA=EB,∴△EAB为等腰三角形,∠A=∠ABE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠C=2∠CBE,又∠BEC=∠A+∠ABE=2∠CBE,∴∠BEC=∠C,∴BE=BC,∴△BEC为等腰三角形,∴图中共有3个等腰三角形,∴(3)正确;(4)由(3)可得∠BEC=∠C=2∠EBC,∴2∠EBC+2∠EBC+∠EBC=180°,∴∠EBC=36°,∴∠A=∠ABE=∠EBC=36°,∴(4)正确;∴正确的有(2)(3)(4)共三个,选B.13.【答题】等腰三角形的一个外角比与它相邻的内角大30°,则这个等腰三角形的底角为()A. 75°B. 37.5°C. 52.5°或75°D. 30°【答案】C【分析】根据等腰三角形的性质解答即可.【解答】设这个外角的度数为,根据题意可得:,解得:,即这个外角为105°,则与其相邻的内角为75°.(1)当这个内角为顶角时,则底角为:;(2)当这个内角为底角时,底角就为75°;综合(1)、(2)可得这个等腰三角形的底角为52.5°或75°.选C.14.【答题】如图,D是ABC中BC边上一点,AB=AC=BD,则∠1和∠2的关系是()A. ∠1=2∠2B. ∠1+∠2=90°C. 180°-∠1=3∠2D. 180°+∠2=3∠1【答案】D【分析】根据等腰三角形的性质解答即可.【解答】AB=AC=BD由三角形角的性质知∠2+∠C=∠1,2∠C+∠2+∠1=180°,消去∠C,可得180°+∠2=3∠1.所以选D.15.【答题】如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM∥BC交∠ABC 的外角平分线于M,交AB,AC于F,E,以下结论:①MB⊥BD,②FD=EC,③EC=EF+DG,④CE=MD/2,其中一定正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】根据等腰三角形的性质和判定解答即可.【解答】解:∵BD分别是∠ABC及其外角的平分线,故MB⊥BD,①成立;而AB=AC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,FD=EC,②成立;∠C与∠BGC的大小不确定,∴DE不一定等于DG,∵EC=DF=EF+DE,∴EC不一定等于EF+DG;故错误;而CE=BF,④成立.选C.16.【答题】如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()A. 1+B. 1+C. 2-D. -1【答案】B【分析】根据等腰三角形的性质解答即可.【解答】第一次折叠后,等腰三角形的底边长为1,腰长为;第一次折叠后,等腰三角形的底边长为,腰长为,所以周长为.故答案为B.17.【答题】如图所示,在锐角△ABC中,点D、E分别是边AC、BC的中点,且DA=DE,那么下列结论错误的是()A. ∠1=∠2B. ∠1=∠3C. ∠B=∠CD. ∠3=∠B【答案】D【分析】根据等腰三角形的性质解答即可.【解答】∵点D、E分别是边AC、BC的中点,且DA=DE,∴DA=DC=DE.∴∠2=∠3,AE⊥BC,DE∥AB,∴∠1=∠2,∠B=∠C.故答案为D.18.【答题】如图,△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作MN∥BC,分别交AB,AC于点M,N,若AB=12,AC=18,BC=24,则△AMN的周长为()A. 30B. 36C. 39D. 42【答案】A【分析】根据等腰三角形的性质和判定解答即可.【解答】解:如图,∵OB、OC分别是∠ABC与∠ACB的平分线,∴∠1=∠5,∠3=∠6,又∵MN∥BC,∴∠2=∠5,∠6=∠4,∴BM=MO,NO=CN,∴△AMN的周长=AM+AN+MN=MA+AN+MO+ON=AB+AC,又∵AB=12,AC=18,∴△AMN 的周长=12+18=30选A.19.【答题】如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是().A. 21B. 20C. 19D. 18【答案】B【分析】根据等腰三角形的性质解答即可.【解答】解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D,∴BD=CD. ∵AB=6,CD=4,∴△ABC的周长=6+4+4+6=20选B.20.【答题】一个等腰三角形的顶角是底角的4倍,则其顶角的度数为()A. 20°B. 30°C. 80°D. 120°【答案】D【分析】根据等腰三角形的性质解答即可.【解答】解:设底角为x,顶角为4x.则2x+4x=180°,解得x=30°,∴4x=120°,选D.。

人教版初中八年级数学上册第十三章《轴对称》经典习题(含答案解析)

人教版初中八年级数学上册第十三章《轴对称》经典习题(含答案解析)

一、选择题1.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( ) A .75°B .90°C .105°D .120°或20°D 解析:D【分析】设两内角的度数为x 、4x ,分两种情况,列出方程,即可求解.【详解】解:设两内角的度数为x 、4x ,当等腰三角形的顶角为x 时,x +4x +4x =180°,x =20°;当等腰三角形的顶角为4x 时,4x +x +x =180°,x =30°,4x =120°;因此等腰三角形的顶角度数为20°或120°.故选:D .【点睛】本题考查了等腰三角形的性质,掌握分类讨论思想方法是解题的关键.2.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个D解析:D【分析】 首先根据等边三角形性质得出BC=AC ,CD=CE ,∠ACB=∠ECD=60°,即可证明△BCD 与△ACE 全等、△BCF 与△ACG 全等以及△DFC 与△EGC 全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC 与△CDE 为等边三角形,∴BC=AC ,CD=CE ,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD ,∠ACD=60°,即:∠ACE=∠BCD ,在△BCD 与△ACE 中,∵BC=AC ,∠ACE=∠BCD ,CD=CE ,∴△BCD ≌△ACE(SAS),∴AE=BD ,即①正确;在△BCF 与△ACG 中,由①可知∠CBF=∠CAG ,又∵AC=BC ,∠BCF=∠ACG=60°,∴△BCF ≌△ACG(ASA),∴AG=BF ,即②正确;在△DFC 与△EGC 中,∵△BCF ≌△ACG ,∴CF=CG .即④正确;∵∠GCF =60°,∴△CFG 为等边三角形,∴∠CFG=∠FCB=60°,∴FG ∥BE ,即③正确;综上,①②③④都正确.故选:D .【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.3.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- C解析:C【分析】根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标.【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3), ∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1)故选:C .【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y 轴对称的两点纵坐标相等,横坐标互为相反数是关键.4.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度A .25或60B .40或60C .25或40D .40C解析:C【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C .【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想. 5.如图所示,D 为 BC 上一点,且 AB =AC =BD ,则图中∠1 与∠2 的关系是( )A .∠1=2∠2B .∠1+∠2=180°C .∠1+3∠2=180°D .3∠2﹣∠1=180°D 解析:D【分析】根据三角形外角的性质得12C ∠+∠=∠,再根据等腰三角形的性质得B C ∠=∠,2BAD ∠=∠,由180BAC B C ∠+∠+∠=︒即可得出1∠与2∠的关系.【详解】解:∵2∠是ACD △的外角,∴12C ∠+∠=∠,∴∠C=∠2-∠1,∵AB AC =,∴B C ∠=∠,∵AB BD =,∴2BAD ∠=∠,∴112BAC BAD ∠=∠+∠=∠+∠,∵180BAC B C ∠+∠+∠=︒,∴122121180∠+∠+∠-∠+∠-∠=︒,即321180∠-∠=︒.故选:D .【点睛】本题考查等腰三角形的性质,解题的关键是利用等腰三角形的性质得到相等的角. 6.如图,C 是线段AB 上的一点,ACD △和BCE 都是等边三角形,AE 交CD 于M ,BD 交CE 于N ,交AE 于O ,则①DB AE =;②AMC DNC ∠=∠;③60AOB ∠=︒;④DN AM =;⑤CMN △是等边三角形.其中,正确的有( )A .2个B .3个C .4个D .5个C解析:C【分析】 易证△ACE ≌△DCB ,可得①正确;即可求得∠AOB =120°,可得③错误;再证明△ACM ≌△DCN ,可得②④正确和CM =CN ,即可证明⑤正确;即可解题.【详解】解:∵ACD △和BCE 都是等边三角形∵∠ACD =∠BCE =60°,∴∠DCE =60°,在△ACE 和△DCB 中,AC DC ACE DCB CB CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB (SAS ),∴∠BDC =∠EAC ,DB =AE ,①正确;∠CBD =∠AEC ,∵∠AOB =180°−∠OAB−∠DBC ,∴∠AOB =180°−∠AEC−∠OAB =120°,③错误;在△ACM 和△DCN 中,60BDC EAC DC ACACD DCN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ACM ≌△DCN (ASA ),∴AM =DN ,④正确;∠AMC =∠DNC ,②正确;CM =CN ,∵∠ACD =∠BCE =60°,∴∠MCN =180°-∠ACD-∠BCE =60°,∴△CMN 是等边三角形,⑤正确;故有①②④⑤正确.故选:C .【点睛】本题考查了全等三角形的判定和全等三角形对应边、对应角相等的性质,本题中求证△ACE ≌△DCB 和△ACM ≌△DCN 是解题的关键.7.北京有许多高校,下面四所高校校徽主体图案是轴对称图形的有( )A .1个B .2个C .3个D .4个B解析:B【分析】 根据轴对称图形的概念对各图案逐一进行判断即可得答案.【详解】第一个图案是轴对称图形,第二个图案不是轴对称图形,第三个图案是轴对称图形,第四个图案不是轴对称图形,综上所述:是轴对称图形的图案有2个,故选:B .【点睛】本题考查轴对称图形,判断轴对称图形的关键是寻找对称轴,图形沿对称轴折叠,对称轴两边的图形能够完全重合;熟练掌握轴对称图形的定义是解题关键.8.如图,已知等腰三角形ABC 中,AB AC =,15DBC ∠=︒,分别以A 、B 两点为圆心,以大于12AB 的长为半径画圆弧,两弧分别交于点E 、F ,直线EF 与AC 相交于点D ,则A ∠的度数是( )A .50°B .60°C .75°D .45°A解析:A【分析】 根据中垂线的性质可得DA=DB ,设∠A=x ,则∠ABD=x ,结合等腰三角形的性质以及三角形内角和定理,列出方程,即可求解.【详解】又作图可知:EF 是AB 的垂直平分线,∴DA=DB ,∴∠A=∠ABD ,设∠A=x ,则∠ABD=x ,∵15DBC ∠=︒,∴∠ABC=x+15°,∵AB=AC ,∴∠C=∠ABC=x+15°,∴2(x+15°)+x=180°,∴x=50°,故选A .【点睛】本题主要考查等腰三角形的性质,中垂线的性质以及三角形内角和定理,掌握中垂线的性质定理以及方程思想,是解题的关键.9.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM ∠=∠=,∴EFD △是等边三角形,2DE cm =,∴2EF FD ED cm ===,∴4DM cm =,EBM △是等边三角形,∴60EMB ∠=,∴30NDM ∠=,∴2NM cm =,∴4BN BM NM cm =-=,∴28BC BN cm ==.故选:D .【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN 的长度是解决问题的关键.10.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是( )A .30B .60︒C .40︒或50︒D .30或60︒D解析:D【分析】由三角形的高可在三角形的内部,也可在三角形的外部,所以分锐角三角形和钝角三角形两种情况作出符合题意的图形,再结合等腰三角形的性质与三角形的内角和定理求解即可.【详解】解:如图,分两种情况:①如图,当三角形的高在三角形的内部时,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=1802A ︒-∠ =60°; ②如图,当三角形的高在三角形的外部时,AB=AC ,BD ⊥AC ,∠ABD=30°, ∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=180302BAC ︒-∠=︒. 故选:D .【点睛】本题考查了等腰三角形的性质和直角三角形的两锐角互余,三角形的内角和定理的应用,三角形的高的含义,分类讨论的数学思想,掌握分类讨论解决问题是解题的关键. 二、填空题11.如图,在平面直角坐标系中,直线l 与x 轴交于点1B ,与y 轴交点于D ,且111,60OB ODB =∠=︒,以1OB 为边长作等边三角形11AOB ,过点1A 作12A B 平行于x 轴,交直线l 于点2B ,以12A B 为边长作等边三角形212A A B ,过点2A 作23A B 平行于x 轴,交直线l 于点3B ,以23A B 为边长作等边三角形323A A B ,…,按此规律进行下去,则点6A 的横坐标是______.5【分析】过A1作A1A⊥OB1于A过A2作A2B⊥A1B2于B过A3作A3C⊥A2B3于C根据等边三角形的性质以及含30°角的直角三角形的性质分别求得A1的横坐标为A2的横坐标为A3的横坐标为进而解析:5【分析】过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为1212-,,A2的横坐标为2212-,A3的横坐标为3212-,进而得到A n的横坐标为212n-,据此可得点A6的横坐标.【详解】解:如图所示,过A1作A1A⊥OB1于A,则OA=12OB1=12,即A1的横坐标为12=1212-,∵160ODB∠=°,∴∠OB1D=30°,∵A 1B 2//x 轴,∴∠A 1B 2B 1=∠OB 1D =30°,∠B 2A 1B 1=∠A 1B 1O =60°,∴∠A 1B 1B 2=90°,∴A 1B 2=2A 1B 1=2,过A 2作A 2B ⊥A 1B 2于B ,则A 1B =12A 1B 2=1, 即A 2的横坐标为12+1=2212-, 过A 3作A 3C ⊥A 2B 3于C ,同理可得,A 2B 3=2A 2B 2=4,A 2C =12A 2B 3=2, 即A 3的横坐标为12+1+2=3212-, 同理可得,A 4的横坐标为12+1+2+4=4212-, 由此可得,A n 的横坐标为212n -, ∴点A 6的横坐标是62163==31.522-, 故答案为31.5.【点睛】本题是一道找规律问题,涉及到等边三角形的性质、含30度角的直角三角形,解题的关键要利用等边三角形的性质总结出关于点A 的系列点的规律.12.如图,在ABC ∆中,CD 平分,ACB ∠点,E F 分别是,CD AC 上的动点.若6,12,ABC BC S ∆==则AE EF +的最小值是______________.【分析】作A 关于CD 的对称点H 由CD 是△ABC 的角平分线得到点H 一定在BC 上过H 作HF ⊥AC 于F 交CD 于E 连接AE 则此时AE +EF 的值最小AE +EF 的最小值=HF 过A 作AG ⊥BC 于G 根据垂直平分线的解析:4【分析】作A 关于CD 的对称点H ,由CD 是△ABC 的角平分线,得到点H 一定在BC 上,过H 作HF ⊥AC 于F ,交CD 于E ,连接AE ,则此时,AE +EF 的值最小,AE +EF 的最小值=HF ,过A 作AG ⊥BC 于G ,根据垂直平分线的性质和三角形的面积即可得到结论.【详解】作A 关于CD 的对称点H ,∵CD 是△ABC 的角平分线,∴点H 一定在BC 上,过H 作HF ⊥AC 于F ,交CD 于E ,连接AE ,则此时,AE +EF 的值最小,AE +EF 的最小值=HF ,过A 作AG ⊥BC 于G ,∵△ABC 的面积为12,BC 长为6,∴AG =4,∵CD 垂直平分AH ,∴AC =CH ,∴S △ACH =12AC•HF =12CH•AG , ∴HF =AG =4,∴AE +EF 的最小值是4,故答案是:4.【点睛】本题考查了轴对称−最短路线问题,解题的关键是正确的作出对称点和利用垂直平分线的性质证明AE +EF 的最小值为三角形某一边上的高线.13.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为_______.【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵垂直平分∴∴∵∴∴∵BD 平分∴∴故答案是【点睛】本题主要考查了垂直平分线和角平分线的性质结合三角形外角性质和三角形内角和定理计算是关键解析:87︒【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵DE 垂直平分BC ,∴DB DC =,∴∠=∠DBC C ,∵31C ∠=︒,∴31DBC ∠=︒,∴62ADB C DBC ∠=∠+∠=︒,∵BD 平分ABC ∠,∴31ABD DBC ∠=∠=︒,∴180623187A ∠=︒-︒-︒=︒.故答案是87︒.【点睛】本题主要考查了垂直平分线和角平分线的性质,结合三角形外角性质和三角形内角和定理计算是关键.14.如图,在ABC 中,D 是BC 上一点,,105AC AD DB BAC ==∠=︒,则B ∠=________°.25【分析】设∠ADC =α然后根据AC =AD =DB ∠BAC =105°表示出∠B 和∠BAD 的度数最后根据三角形的内角和定理求出∠ADC 的度数进而求得∠B 的度数即可【详解】解:∵AC =AD =DB ∴∠B = 解析:25【分析】设∠ADC =α,然后根据AC =AD =DB ,∠BAC =105°,表示出∠B 和∠BAD 的度数,最后根据三角形的内角和定理求出∠ADC 的度数,进而求得∠B 的度数即可.【详解】解:∵AC =AD =DB ,∴∠B =∠BAD ,∠ADC =∠C ,设∠ADC =α,∴∠B =∠BAD =2α , ∵∠BAC =105°,∴∠DAC =105°﹣2α, 在△ADC 中, ∵∠ADC +∠C +∠DAC =180°,∴2α+105°﹣2α=180°, 解得:α=50°,∴∠B =∠BAD =2α=25°, 故答案为:25.【点睛】 本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.15.若一条长为24cm 的细线能围成一边长等于6cm 的等腰三角形,则该等腰三角形的腰长为__________cm .【分析】分两种情况根据等腰三角形的性质及三角形的三边关系解答【详解】分两种情况:当6cm 的边为腰时底边长=24-6-6=12(cm )∵6+6=12故不能构成三角形;当6cm 的边为底边时腰长=(cm )解析:9【分析】分两种情况,根据等腰三角形的性质及三角形的三边关系解答.【详解】分两种情况:当6cm 的边为腰时,底边长=24-6-6=12(cm ),∵6+6=12,故不能构成三角形; 当6cm 的边为底边时,腰长=1(246)92⨯-=(cm ),由于6+9>9,故能构成三角形, 故答案为:9.【点睛】此题考查等腰三角形的性质:两腰相等,依据三角形三边关系,解题中运用分类思想解答.16.若点P(x-y ,y)与点Q(-1,-5)关于x 轴对称,则x+y=______.9【分析】根据关于x 轴对称的点横坐标相同纵坐标互为相反数可得答案【详解】由点P (x-yy )与点Q (-1-5)关于x 轴对称得x-y =-1y =5解得x =4y =5x+y=4+5=9故答案为:9【点睛】本题解析:9【分析】根据关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】由点P (x-y ,y )与点Q (-1,-5)关于x 轴对称,得x-y =-1,y =5.解得x =4,y =5,x+y=4+5=9,故答案为:9【点睛】本题考查了关于x 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.17.如图所示的网格是正方形网格,点A,B,C,D,O是网格线交点,那么∠___________CODAOB∠(填“>”,“<”或“=”).>【分析】如图过点B作BE⊥AC于E证明△BOE是等腰直角三角形得到∠BOE=过点C作CF⊥OC使FC=OC证明△OCF是等腰直角三角形得到∠FOC=由图知∠FOC>∠COD即可得到∠AOB>∠CO解析:>【分析】如图,过点B作BE⊥AC于E,证明△BOE是等腰直角三角形,得到∠BOE=45︒,过点C 作CF⊥OC,使FC=OC,证明△OCF是等腰直角三角形,得到∠FOC=45︒,由图知∠FOC>∠COD,即可得到∠AOB>∠COD.【详解】如图,过点B作BE⊥AC于E,∵OB=OE=2,∠BEO=90︒,∴△BOE是等腰直角三角形,∴∠BOE=45︒,过点C作CF⊥OC,使FC=OC,∴∠FCO=90︒,∴△OCF是等腰直角三角形,∴∠FOC=45︒,由图知∠FOC>∠COD,∴∠AOB>∠COD,故答案为:>..【点睛】此题考查等腰直角三角形的判定及性质,角的大小比较,根据图形确定角的位置关系是解题的关键.18.如图,∠AOB=45°,OC平分∠AOB,点M为OB上一定点,P为OC上的一动点,N 为OB上一动点,当PM+PN最小时,则∠PMO的度数为___________.45°【分析】找到点M 关于OC 对称点M′过点M′作M′N ⊥OB 于点N 交OC 于点P 则此时PM+PN 的值最小再根据角平分线的性质及三角形内角和即可得出答案【详解】解:如图找到点M 关于OC 对称点M′过点M解析:45°【分析】找到点M 关于OC 对称点M′,过点M′作M′N ⊥OB 于点N ,交OC 于点P ,则此时PM+PN 的值最小,再根据角平分线的性质及三角形内角和即可得出答案.【详解】解:如图,找到点M 关于OC 对称点M′,过点M′作M′N ⊥OB 于点N ,交OC 于点P ,则此时PM+PN 的值最小.∵PM=PM′,∴此时PM+PN=PM′+PN′=M′N′,∵点M 与点M′关于OC 对称,OC 平分∠AOB ,∴OM=OM′,∵∠AOB=45°,∴∠PM'O=∠AOB=45°,∴∠PMO=∠PM'O=45°,故答案为:45°.【点睛】本题考查了利用轴对称的知识寻找最短路径的知识,涉及到两点之间线段最短、垂线段最短的知识,有一定难度,正确确定点P 及点N 的位置是关键.19.如图,25AOB ∠=︒,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++的值最小时,βα-的大小=__________(度).50【分析】作M 关于OB 的对称点N 关于OA 的对称点连接交OB 于点P 交OA 于点Q 连接MPQN 可知此时最小此时再根据三角形外角的性质和平角的定义即可得出结论【详解】作M 关于OB 的对称点N 关于OA 的对称点解析:50【分析】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP PQ QN ++最小,此时OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,再根据三角形外角的性质和平角的定义即可得出结论.【详解】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP PQ QN++最小,即MP PQ QN M N ''++=, ∴OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,∵MPQ PQN αβ∠=∠=,, ∴11(180)(180)22QPN OQP αβ∠=︒-∠=︒-,, ∵QPN AOB OQP ∠=∠+∠,25AOB ∠=︒, ∴11(180)25(180)22αβ︒-=︒+︒- , ∴50βα-=︒ . 故答案为:50.【点睛】本题考查轴对称-最短问题、三角形内角和,三角形外角的性质等知识,灵活运用所学知识解决问题是解题的关键,综合性较强.20.如图,ABC ∆中,ABC ∠与ACB ∠的平分线交于点F ,过点F 作//DE BC 交AB 于点D ,交AC 于点E ,那么下列结论:①BDF ∆和CEF ∆都是等腰三角形;②DE BD CE =+;③ADE ∆的周长等于AB 与AC 的和;④BF CF =;⑤若80A ∠=︒,则130BFC ∠=︒.其中正确的有_______.(填正确的序号).①②③⑤【分析】①根据平行线性质和角平分线定义可以得到DB=DFEF=EC 从而得到△BDF 和△CEF 都是等腰三角形;②同①有DB=DFEF=EC 所以DE=DF+EF=BD+CE ;③由②得:△ADE 的解析:①②③⑤【分析】①根据平行线性质和角平分线定义可以得到DB=DF ,EF=EC ,从而得到△BDF 和△CEF 都是等腰三角形;②同①有DB=DF ,EF=EC ,所以DE=DF+EF=BD+CE ;③由②得:△ADE 的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC ;④因为∠ABC 不一定等于∠ACB ,所以∠FBC 不一定等于∠FCB ,所以BF 与CF 不一定相等;⑤由角平分线定义和三角形内角和定理可以得解.【详解】解:∵DE ∥BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∵△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∴∠DBF=∠DFB ,∠ECF=∠EFC ,∴DB=DF ,EF=EC ,即△BDF 和△CEF 都是等腰三角形;故①正确;∴DE=DF+EF=BD+CE ,故②正确;∴△ADE 的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC ;故③正确;∵∠ABC 不一定等于∠ACB ,∴∠FBC 不一定等于∠FCB ,∴BF 与CF 不一定相等,故④错误; 由题意知,1122FBC ABC FCB ACB ∠=∠∠=∠,, ∴()()11801802BFC FBC FCB ABC ACB ∠=︒-∠+∠=︒-∠+∠ =()()111801801801808022A ︒-︒-∠=︒-︒-︒ =130°,故⑤正确,故答案为①②③⑤.【点睛】 本题考查了等腰三角形的判定和性质、角平分线的性质、平行线的性质及三角形的内角和定理;题目利用了两直线平行,内错角相等及等角对等边来判定等腰三角形;等量代换的利用是解答本题的关键.三、解答题21.如图,点E 在ABC 的边AB 上,90ABC EAD ∠=∠=︒,30BAC ADE ∠=∠=︒,DE 的延长线交AC 于点G ,交BC 延长线于点F .AB=AD ,BH ⊥DF ,垂足为H .(1)求HAE ∠的度数;(2)求证:DH FB FH =+.解析:(1)=15∠HAE ;(2)见解析【分析】(1)连接BG ,先根据等腰三角形的判定得出AG=AD ,再根据SSS 得出△AGH ≌△ABH ,从而得出=∠∠HAE HAG ,继而得出HAE ∠的度数;(2)在DH 上取HM=HF ,连接BM ,根据垂直平分线的性质得出BF=BM ,再根据等腰三角形的判定得出DM=BM ,从而得出结论【详解】解:(1)连接BG∵90EAD ∠=︒,30BAC ∠=︒,∴∠DAG=120°,∵30ADE ∠=︒,∴30∠=∠=︒ADE AGD ,∴AG=AD ,∵AB=AD ,∴AG=AB ,∵30BAC ∠=︒,∴75∠=∠=︒AGB ABG ,∵BH ⊥DF ,90EAD ∠=︒,∴=90∠∠=︒BHE EAD ,∵=∠∠BEH AED ,∴30∠=∠=︒ADE EBH ,∴45∠=∠-∠=︒HBG ABG EBH ,∵90FHB ∠=︒,∴∠=∠HBG HGB ,∴GH=BH ,∵AG=AB ,AH=AH ,∴△AGH ≌△ABH ,∴=∠∠HAE HAG ,∵30BAC ∠=︒,∴=15∠HAE ;(2)在DH 上取HM=HF ,连接BM ;∵90ABC EAD ∠=∠=︒,∴AD//BF ,∴30∠=∠=︒F ADE ,∵BH ⊥DF ,HM=HF ,∴BF=BM∴30∠=∠=︒F BMF∵AB=AD ,90EAD ∠=︒∴45ADB ∠=︒,∵30ADE ∠=︒∴15∠=︒MDB ,∵30∠=︒=∠+∠BMF MBD MDB ,∴==15∠∠MBD MDB ,∴BM=DM=BF ,∵DH=DM+HM ,∴DH=FH+BF【点睛】本题考查了等腰三角形的性质和判定、全等三角形的性质和判定、垂直平分线的性质,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型. 22.如图,ABC 是边长为10的等边三角形,现有两点P 、Q 沿如图所示的方向分别从点A 、点B 同时出发,沿ABC 的边运动,已知点P 的速度为每秒1个单位长度,点Q 的运度为每秒2个单位长度,当点P 第一次到达B 点时,P 、Q 同时停止运动. (1)点P 、Q 运动几秒后,可得到等边三角形APQ ?(2)点P 、Q 运动几秒后,P 、Q 两点重合?(3)当点P 、Q 在BC 边上运动时,能否得到以PQ 为底边的等腰APQ ?如存在,请求出此时P 、Q 运动的时间.解析:(1)点P 、Q 运动103秒后,可得到等边三角形APQ ;(2)点P 、Q 运动10秒后,P 、Q 两点重合;(3)当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【分析】(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,利用,AP AQ = 列方程,解方程可得答案;(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,由追及问题中的相等关系:Q 的运动路程等于P 的运动路程加上相距的路程,列方程,解方程即可得到答案;(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.先证明:ACP △≌ABQ △,可得CP BQ =,再列方程,解方程并检验即可得到答案.【详解】解:(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,如图①,AP t =,102AQ AB BQ t =-=-,∵三角形APQ 是等边三角形,,AP AQ ∴=∴102t t =-,解得103t =, ∴点P 、Q 运动103秒后,可得到等边三角形APQ .(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,102x x +=,解得:10x =.∴点P 、Q 运动10秒后,P 、Q 两点重合.(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.理由如下: 由(2)知10秒时P 、Q 两点重合,恰好在C 处,如图②,假设APQ 是等腰三角形,∴AP AQ =,∴APQ AQP ∠=∠,∴APC AQB ∠=∠,∵ACB △是等边三角形,∴C B ∠=∠,在ACP △和ABQ △中,,,,AC AB C B APC AQB =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴ACP △≌ABQ △,∴CP BQ =,设当点P 、Q 在BC 边上运动时,P 、Q 运动的时间y 秒时,APQ 是等腰三角形, 由题意得:10CP y =-,302QB y =-,∴ 10302y y -=-, 解得:403y =, P 的最长运动时间为2020,1s = Q 从B A C B →→→的最长时间为30=152s , 由403<15, ∴ 403y =符合题意, ∴当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【点睛】 本题考查的是三角形全等的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,动点问题,掌握以上知识是解题的关键.23.已知AOB ∠及一点P ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法)(1)过点P 作OA 、OB 的垂线,垂足分别为点M 、N ;(2)猜想MPN ∠与AOB ∠之间的数量关系,并说明理由.解析:(1)见解析;(2)∠MPN+∠AOB=180°或∠MPN=∠AOB,理由见解析【分析】(1)根据垂线的定义画出图形即可解决问题;(2)根据四边形内角和为360°或“8字型”的性质即可解决问题;【详解】(1)过点P作OA、OB的垂线PM、PN如图所示;(2)猜想:∠MPN+∠AOB=180°或∠MPN=∠AOB.理由:左图中,在四边形PMON中,∵∠PMO=∠PNO=90°,∴∠MPN+∠AOB=180°.右图中,∵∠PJM=∠OJN,∠PMJ=∠JNO=90°,∴∠MPN=∠AOB.【点睛】本题考查了作图-基本作图,解题的关键是熟练掌握基本知识,属于中考常考题型.24.在等边三角形ABC中,点E为线段AB上一动点,点E与A,B不重合,点D在CB的延长线上,且ED=EC.(1)当E为边AB的中点时,如图1所示,确定线段AE与BD的大小关系,并证明你的结论;(2)如图2,当E不是边AB的中点时,(1)中的结论是否成立?若不成立,请直接写出EF BC交AC于点F)BD与AE的数量关系;若成立,请给予证明;(提示:过E作//(3)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,ABC 的边长为1,AE=2,请直接写出CD的长.解析:(1)AE=BD;见解析;(2)成立;AE=BD;见解析;(3)CD的长为3或1.【分析】(1)根据等边三角形三线合一的性质证得∠ECB=30°,由DE=CE,求出∠D=∠ECB=30°得到∠DEB=30°,推出BD=BE,根据AE=BE证得结论;(2)过E作EF∥BC交AC于点F,得到△AEF是等边三角形,推出BE=CF,利用∠DBE=∠EFC=120°,∠BED=∠ECF,证得△DEB≌△ECF(AAS),得到BD=EF=AE;(3)作EF∥BC交CA的延长线于点F,则△AEF为等边三角形,利用∠CEF=∠EDB,EB=CF=3,∠F=∠B=60°,证得△CEF≌△EDB(AAS),得到BD=EF=2,求出CD=BD-BC =1,同理可得CD=3【详解】解:(1)AE=BD;证明:∵△ABC为等边三角形,AE=BE,∴CE平分∠ACB,∴∠ECB=30°.∵DE=CE,∴∠D=∠ECB=30°.∵∠ABC=∠D+∠DEB=60°,∴∠DEB=30°,∴∠D=∠DEB,∴BD=BE.∵AE=BE,∴AE=BD;(2)当E为边AB上任意一点时,AE=BD仍成立;证明:如图1,过E作EF∥BC交AC于点F.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF.∵∠ABC=∠ACB=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°.∵DE =EC ,∴∠D =∠ECD ,∴∠BED =∠ECF ,∴△DEB ≌△ECF (AAS ),∴BD =EF ,∴AE =BD ;(3)CD 的长为3或1如图2,作EF ∥BC 交CA 的延长线于点F ,则△AEF 为等边三角形,∴AF =AE =EF =2,∠BEF =60°,∴∠CEF =60°+∠BEC .∵∠EDC =∠ECD =∠B +∠BEC =60°+∠BEC ,∴∠CEF =∠EDB .又∵EB =CF =3,∠F =∠B =60°,∴△CEF ≌△EDB (AAS ),∴BD =EF =2,∴CD =BD -BC =1,如图3,同理可得CD =3,综上所述,CD 的长为3或1【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,平行线的性质,等腰三角形等边对等角的性质,熟练掌握三角形的知识并熟练应用是解题的关键.25.如图,在Rt ABC △中,90ACB ∠=︒,CA CB =,M 是AB 的中点,点D 在BM 上,AE CD ⊥,BF CD ⊥,垂足分别为E ,F ,连接EM .(1)求证:CE BF =;(2)求证:AEM DEM ∠=∠.解析:(1)证明见解析;(2)证明见解析【分析】(1)先证明CAE BCF ∠=∠,再证明CAE BCF ≌△△,从而可得结论;(2)连接CM ,FM ,先证明ECM FBM ∠=∠,再证明CME BMF ≌△△,可得EM FM =,EMC FMB ∠=∠,再证明FME 是等腰直角三角形,可得45MED ∠=︒,从而可得结论.【详解】证明:(1)AE CD ⊥,BF CD ⊥,90AEC CFB ∴∠=∠=︒.90ACB ∠=︒,90BCF ACE ACE EAC ∴∠+∠=︒=∠+∠CAE BCF ∴∠=∠.CA BC =. ()CAE BCF AAS ∴≌△△.CE BF ∴=.(2)连接CM ,FM在Rt ABC △中,CA CB =,点M 是AB 的中点,90,ACB ∠=︒BM AM ∴=,CM AB ⊥,CM 平分ACB ∠,45ACM BCM CBM CAM ∴∠=∠=∠=∠=︒,CM BM AM ==,由CAE BCF ≌△△可得:ACE CBF ∠=∠.,ACM ECM CBM MBF ∴∠+∠=∠+∠ECM FBM ∴∠=∠.又CE BF =,()CME BMF SAS ∴≌△△.EM FM ∴=,EMC FMB ∠=∠.90EMF FMB DME CME DME ∠=∠+∠=∠+∠=︒.FME ∴△是等腰直角三角形.45MED ∴∠=︒,90AED ∠=︒,45AEM DEM ∴∠=∠=︒.【点睛】本题考查的的三角形全等的判定与性质,等腰直角三角形的判定与性质,掌握以上知识是解题的关键.26.如图,在所给平面直角坐标系(每小格均为边长是1个单位长度的正方形)中完成下列各题.(1)已知()6,0A -,()2,0B -,()4,2C -,画出ABC 关于y 轴对称的图形△111A B C △,并写出1B 的坐标;(2)在y 轴上画出点P ,使PA PC +最小;(3)在(1)的条件下,在y 轴上画出点M ,使11MB MC -最大.解析:(1)见解析;B 1(2,0);(2)见解析;(3)见解析【分析】(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0); (2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短即可;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边即可.【详解】解:(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0),如图;B 1(2,0);(2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短,则PA+PC=PA+PC 1=AC 1,则点P 为所求,如图;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边,11MB MC -最大=C 1B 1,如图.【点睛】 本题考查轴对称作图,线段公里,三角形三边关系,掌握轴对称作图,线段公里,三角形三边关系是解题关键.27.如图,点A ,C ,D ,B 四点共线,且AC BD =,A B ∠=∠,ADE BCF ∠=∠.(1)求证:ADE BCF ≌;(2)若9DE =,CG 4=,求线段EG 的长.解析:(1)证明见解析;(2)5EG =.【分析】(1)根据AC=BD 可得AD=BC ,然后利用已知条件根据ASA 即可证明全等;(2)根据(1)中的全等可得∠ADE=∠BCF ,再结合等角对等边可得4DG CG ==,最后利用线段的和差即可求得EG 的长度.【详解】解:(1)证明:∵AC=BD ,∴AC+CD=BD+CD ,∴AD=BC ,在△ADE 和△BCF 中,A B AD BCADE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△BCF (ASA );(2)∵△ADE ≌△BCF ,∴∠ADE=∠BCF ,∴4DG CG ==,∵9DE =,∴5EG DE DG =-=.【点睛】本题考查全等三角形的性质和判定,等腰三角形等角对等边.熟练掌握全等三角形的几种判定定理,并能结合题中所给条件灵活运用是解题关键.28.已知ABC 是等边三角形,点D 是AC 的中点,点P 在射线BC 上,点Q 在线段AB 上,120PDQ ∠=︒.(1)如图1,若点Q 与点B 重合,求证:DB DP =;(2)如图2,若点P 在线段BC 上,8AC =,求AQ PC +的值.解析:(1)证明见解析;(2)4.【分析】(1)由等边三角形的性质证明30DBC ∠=︒,再利用三角形的内角和定理求解30DPB ∠=︒,从而可得结论; (2)过点D 作//DE BC 交AB 于点E ,先证明ADE 为等边三角形,再证明QDE PDC ≌,可得QE PC =, 从而可得答案.【详解】证明:(1)∵ABC 为等边三角形,∴,60BA BC ABC =∠=︒∵D 为AC 的中点,∴DB 平分ABC ∠,∴30DBC ∠=︒. ∵120PDB ∠=︒,∴1801203030DPB ∠=︒-︒-︒=︒,∴DBC DPB ∠=∠,∴DB DP =.(2)过点D 作//DE BC 交AB 于点E .∵ABC 为等边三角形,8AC =,点D 是AC 的中点,∴4,60AD CD ABC ACB A ==∠=∠=∠=︒.∵//DE BC ,∴60AED B ∠=∠=︒.60ADE C ∠=∠=︒,∴ADE 为等边三角形,120EDC ∠=︒,∴4AD ED AE ===,。

轴对称习题13.1答案

轴对称习题13.1答案

轴对称习题13.1答案1. 判断下列图形是否为轴对称图形,并找出对称轴。

- 答案:给出的图形如果是等腰三角形,那么它关于底边的中垂线对称,这条中垂线就是对称轴。

如果是正方形,它有四条对称轴,分别是两条对角线和两条通过中心点的垂直于边的线。

2. 如果一个矩形的一边长为10厘米,另一边长为20厘米,求它的对称轴。

- 答案:矩形关于通过中心点的垂直于边的线对称,因此它的对称轴是两条对角线。

3. 证明:如果一个三角形的两边相等,那么它关于连接这两边中点的直线对称。

- 答案:设三角形ABC中AB=AC,连接BC的中点D。

由于AB=AC,根据等边对等角原理,我们知道∠BAC=∠BCA。

因此,三角形ABD和ACD是全等的,这意味着AD是三角形ABC的对称轴。

4. 计算:如果一个圆的半径为5厘米,求它的对称轴数量。

- 答案:一个圆有无限多条对称轴,每条对称轴都通过圆心,且垂直于圆的切线。

5. 应用题:在一个矩形的长边上取一点P,使得点P到矩形的两个短边的距离相等,求点P的坐标。

- 答案:设矩形的长边为AB,短边为CD,点P在AB上。

由于点P 到CD和EF(假设EF是另一条长边)的距离相等,点P必然位于矩形的对角线AC上。

点P的坐标可以通过几何关系计算得出,假设矩形的顶点A在原点,B在(20,0),那么点P的坐标将是(10,5),因为它到CD和EF的距离都是5厘米。

结束语:通过上述习题,我们可以看到轴对称在几何图形中的应用,它帮助我们理解图形的对称性质,并能够解决一些实际问题。

希望这些答案能够帮助你更好地理解轴对称的概念。

如果你有任何疑问,或者需要进一步的解释,欢迎提出。

等腰三角形的轴对称性3

等腰三角形的轴对称性3
例题: 1.如图,Rt△ABC,∠ACB =90°,如果 . ∠A=30°,那么BC与AB有怎样的数量关系? 试证明你的结论.
1 解:BC= AB. 2
2.5 等腰三角形的轴对称性(3)
证明:作斜边上的中线CD, ∵∠ACB=90°,∠A=30°, ∴∠B=60°. ∵∠ACB=90°,CD是斜边上的中线, 1 ∴CD= AB=BD(直角三角形斜边
巩固练习:
如图,在四边形ABCD中,∠ABC=∠ADC=90°, M、N分别是AC、BD的中点,试说明: (1)MD=MB;(2)MN⊥BD.
2.5 等腰三角形的轴对称性(3)
交流:
2.5 等腰三角形的轴对称性(3)
活动一 操作•观察
1.任意剪出一张直角三角形纸片(如图1).
你还有其 他发现吗?
图1
图2
图3
2.剪得的纸片是否能折成图2的形状? 3.△ACD与△BCD为什么是等腰三角形?请说明 理由.
2.5 等腰三角形的轴对称性(3)
活动二 探索•说理
A
直角三角形斜边上的中线 等于斜边的一半.
D
B
C
2.5 等腰三角形的轴对称性(3)
如图,如果AB=AC,AD∥BC,那么AD平 分∠EAC吗?试证明你的结论.
E.5 等腰三角形的轴对称性(3)
如图,如果AB=AC,AD平分∠EAC, 那么AD∥BC吗?
E
A
D
B
C
2.5 等腰三角形的轴对称性(3)
活动一 操作•观察
你能用折纸的方法将一个直角三 角形分成两个等腰三角形吗?
B D C A
CD=BD=AD, CE=AE,
∠A=∠ACD, ∠B=∠BCD,
∠ACB=∠DEA=∠DEC=90°.

3 简单的轴对称图形 第3课时 等腰三角形的性质(教材P50~51练习)

3 简单的轴对称图形 第3课时 等腰三角形的性质(教材P50~51练习)
24或27
.

3或

22. [应用意识](衢州中考变式)“三等分角”大约是在公元前五世纪由古希腊人提
出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有
槽的棒 OA , OB 组成,两根棒在 O 点相连并可绕 O 转动, C 点固定, OC = CD =
DE ,点 D , E 可在槽中滑动.若∠ BDE =75°,求∠ CDE 的度数.
F . 若△ AFC 是等边三角形,则∠ B =
30 °.

第12题

13. 如图所示,以正方形 ABCD 的边 AB 为边作等边△ ABE ,连接 DE ,则∠ AED
的度数为
15°
.

第13题

14. 如图,已知△ ABC 和△ BDE 都是等边三角形.试说明: AE = CD .
◉答案 解:∵△ ABC 和△ BDE 都是等边三角形,∴ AB = BC , BE = BD ,∠ ABC =
+ CD = AC + CD ,所以 CE = AC + CD .
∠ DBE =60°.在△ ABE 和△ CBD 中, AB = BC ,∠ ABE =∠ CBD , BE = BD ,∴△
ABE ≌△ CBD (SAS),∴ AE = CD .
15. [一题多解:代换法·平移法](招远期中)如图,在△ ABC 中, AB = AC ,∠ A
=30°,点 P 是△ ABC 内一点,连接 PB , PC . 若∠1=∠2,则∠ BPC 的度数是
∠ BDE =105°,∴∠ CDE =105°-25°=80°.
【母题探究——双等边三角形】
23. 母题:如图,△ ABC 是等边三角形, AD 是角平分线,△ ADE 是等边三角形,

2.5等腰三角形的轴对称性(1)(分层练习)解析版

2.5等腰三角形的轴对称性(1)(分层练习)解析版

2.5 等腰三角形的轴对称性(1)分层练习考查题型一等腰三角形的性质1“等边对等角”1.(2022·江苏南京·统考二模)如图,在△ABC中,AB=AC.为证明“等边对等角”这一结论,常添加辅助线AD,通过证明△ABD和△ACD全等从而得到角相等.下列辅助线添加方法和对应全等判定依据有错误的是()A.角平分线AD,全等依据SAS B.中线AD,全等依据SSSC.垂直平分线AD,全等依据HL D.高线AD,全等依据HL【答案】C【解析】解:A、∵AD是∠BAC的角平分线,∴∠BAD=∠CAD,又∵AB=AC,AD=AD,∴△ABD≌△ACD(SAS),即添加方法和对应全等判定依据正确;B、∵AD是BC边上的中线,∴BD=CD,又∵AB=AC,AD=AD,∴△ABD≌△ACD(SSS),即添加方法和对应全等判定依据正确;C、作辅助线时,不能直接说BC的垂直平分线经过了点A,即添加方法和对应全等判定依据错误;D、∵AD是BC边上的高线,∴AD⊥BC,即∠ADB=∠ADC=90°,∴在Rt△ABD和Rt△ACD中,AB=AC,AD=AD,∴△ABD≌△ACD(HL),即添加方法和对应全等判定依据正确;故选:C.2.(2023·山西·山西实验中学校考模拟预测)在解答“若等腰三角形的一个内角为70°,求它的顶角的度数”的问题时,用到的主要数学思想是()A.函数思想B.整体思想C.公理化思想D.分类讨论思想【答案】D【解析】解:70°的内角可以是顶角也可以是底角两种情况,分别求出顶角的度数为70°或40°,所以涉及的数学思想是分类思想,故选:D.3. (2023·福建省三明市·期末考试)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动。

《等腰三角形的判定》轴对称 1

《等腰三角形的判定》轴对称 1

等腰与全等综合 如图所示,在△ABC中,AB=AC,点 D,E,F 分别在 AB,BC ,AC 边上,且BE=CF,BD=CE. (1)求证△DEF是等腰三角形 ; (2)当∠A=40°时,求∠DEF的度数 . 提示:证△BED ≌△CFE.
答案:(2)70°.
等腰与全等综合 已知:如图,△ABC 中,AB=AC,D点在AB上,E点在AC 的 延长线上,且BD=CE,连结DE,交BC 于F. 求证:DF=EF.
已知:∠CAE是△ABC 的外角,AD平分∠CAE AD∥BC. 求证:AB=AC.
证明: ∵AD∥BC, ∴∠1=∠B(两直线平行,同位角相等) ∠2=∠C(两直线平行,内错角相等) ∵AD平分∠CAE , ∴∠1=∠2, ∴∠B=∠C, ∴ △ABC是等腰三角形.
练习 已知一个三角形的两个内角为50°和80°,则第三个角为_______ ,它是________三角形.
练习 3.求证:如果三角形一条边上的中线等于这条边的一半 ,那么这个三角形是直角三角形.
练习
4.如图,AC 和BD 相交于点O,且AB∥DC,OA =OB .求证:OC =OD.
例题
已知等腰三角形底边长为a ,底边上的高的长为h ,求作这 个等腰三角形. 作法: (1)作线段AB =a;
(2)作线段AB 的垂直平分线MN,与AB 相交于点D; (3)在MN上取一点C,使DC =h;
答案:3.
练习 如图,∠A =36°,AB=AC,BD 平分∠ ABC, CE平分∠ ACB 交BD 于点O,则图中一共有________个等腰三角形.
答案:8.
练习 如图,上午10 时,一条船从A处出发以20海里每小时的速度向 正北航行,中午12时到达B 处,从A、B 望灯塔C,∠NAC=40° ,∠NBC=80°.求从B 处到灯塔C 的距离.

等腰三角形的轴对称性测试题题目

等腰三角形的轴对称性测试题题目

等腰三角形的轴对称性测试题题目1、(1)等腰三角形的一个底角是70度,则它的顶角是;(2)等腰三角形的一个角是30度,则它的另外两个角分别为;(3)等腰三角形的一个角是100度,则它的另外两个角分别为;(4)等腰三角形的周长是10cm,腰长是4cm,则底边为;(5)等腰三角形的周长是20cm,一边长是8cm,则其它两边长为。

2、如果△ABC是轴对称图形,则它的对称轴一定是( )A.某一条边上的高 B.某一条边上的中线C.平分一角和这个角的对边的直线 D.某一个角的平分线3、如图,在△ABC中, AB = AC,点D在BC上,且AD = BD。

(1)找出相等的角并说明理由;(2)若∠ADC=70° ,求∠BAC的度数。

4、如图,已知∠A=150°,AB=BC=CD=DE=EF,求∠FEN的度数。

八. 【课后作业】及时巩固、查漏补缺1、如果等腰三角形的`一个外角为1350,那么底角为()A、450B、720C、67.50D、450或67.502、等腰三角形一腰上的中线分此三角形为两个三角形,若这两个三角形的周长相差2,且等腰三角形底边长是8,则它的腰长是()A、3或5B、 5或6C、5或10D、6或103、RtΔABC中,∠C=90°,∠A=30°,若要在直线BC或者直线AC上取一点P,使ΔPAB是等腰三角形,则符合条件的点P有()A.2个 B.4个 C.6个 D.8个4、已知一个等腰三角形的一边长为5,另一边长为7,则这个等腰三角形的周长是()A.12 B.17 C.17或19 D.195、如图,在△ABC中,∠A=100 °,BD=BE,CD=CF,求∠EDF的度数。

6、已知 ABC中∠BAC=140°,AB、AC的垂直平分线分别交BC于E 、F ,你能求出∠EA F的度数吗?7、如图,在△ABC中,AB=AC,D为BC中点,DE⊥AB,垂足为E,DF⊥AC,垂足为F,试说明DE=DF的道理。

等腰三角形经典练习题(5套)附带详细答案

等腰三角形经典练习题(5套)附带详细答案

练习一一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50° B.65° C.70° D. 75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线/二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)[9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.一、选择题1.B2.B3.C二、填空题4.底角,等边对等角~5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)|∴BD平分∠ABC.(角平分线定义)9.45练习2一、选择题1.△ABC是等边三角形,D、E、F为各@边中点,则图中共.有正三角形( )A.2个 B.3个C.4个 D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于 ( )A. 2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为 ________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.—三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.《9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.一、选择题[AQ CPB1.D 2.B二、填空题 3.2㎝ 4.120° 5.等边 6.6㎝ 三、解答题7.△ABC 是等边三角形.理由是 ∵△ABC 是等边三角形;∴∠A =∠B =∠C=60° ∵DE ∥AC ,∴∠BED =∠A=60°,∠BDE =∠C =60° ∴∠B =∠BED =∠BDE ∴△ABC 是等边三角形 8.∠BAC=120°9.证明:∵△ABC 中,∠ACB=90°,∠A=30°(已知)∴∠A +∠B=90°(直角三角形两锐角互余)》∴∠B= 90°-∠A= 90°-30°=60°∵△ABC 中,∠ACB=90°,∠A=30°(已知) ∴BC=(在直角三角形中,一个锐角等于30,那么它所对的直角边等于斜边的一半)∴△BDC 是等边三角形(有一个角是60°角的等腰三角形是等边三角形)。

最新苏科版八年级数学上册等腰三角形的轴对称性同步练习(含解析)

最新苏科版八年级数学上册等腰三角形的轴对称性同步练习(含解析)

等腰三角形的轴对称性一.选择题(共15小题)1.(2022•益阳)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形 B.直角三角形C.钝角三角形D.等腰三角形2.(2022•台湾)如图,△ABC中,AC=BC<AB.若∠1、∠2分别为∠ABC、∠ACB的外角,则下列角度关系何者正确()A.∠1<∠2 B.∠1=∠2 C.∠A+∠2<180°D.∠A+∠1>180°3.(2022•宁夏)如图,在△ABC中AC=BC,点D和E分别在AB 和AC上,且AD=AE.连接DE,过点A的直线GH与DE平行,若∠C=40°,则∠GAD的度数为()A.40°B.45°C.55°D.70°4.(2022•山西)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°5.(2022•衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°6.图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a,矩形面积为b.若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?()A.4a+2b B.4a+4b C.8a+6b D.8a+12b7.(2018•丹东)如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点D,交AB与点E,已知△BCE的周长为10,且BC=4,则AB的长为()A.3 B.4 C.5 D.6 8.(2018•兰州)如图,边长为4的等边△ABC中,D、E分别为AB,AC的中点,则△ADE的面积是()A.B.C.D.29.(2018•福建)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°10.(2018•玉林)如图,∠AOB=60°,OA=OB,动点C从点O 出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直11.在等边△ABC所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形.这样的点一共有()A.1个B.4个C.7个D.10个12.如图,直线l1∥l2,将等边三角形如图放置若∠α=25°,则∠β等于()A.35°B.30°C.25°D.20°13.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°14.如图,已知等边△ABC外有一点P,P落在∠BAC内,设P到BC、CA、AB的距离分别为h1,h2,h3,满足h2+h3﹣h1=6,那么等边△ABC的面积为()A.4B.8C.9D.12 15.如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.若α=10°,则β的度数是()A.40°B.50°C.60°D.不能确定二.填空题(共9小题)16.(2022•镇江)如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1=°.17.(2022•成都)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为.18.(2022•广安)等腰三角形的两边长分别为6cm,13cm,其周长为cm.19.(2022•绥化)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=度.20.(2022•哈尔滨)如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为.21.(2018•黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则Sn =.22.(2018•葫芦岛)如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△AnAn+1∁n的面积为.(用含正整数n的代数式表示)23.(2017•本溪)如图,∠AOB=60°,点O1是∠AOB平分线上一点,OO1=2,作O1A1⊥OA,O1B1⊥OB,垂足分别为点A1,B1,以A1B1为边作等边三角形A1B1O2;作O2A2⊥OA,O2B2⊥OB,垂足分别为点A2,B2,以A2B2为边作等边三角形A2B2O3;作O3A3⊥OA,O3B3⊥OB,垂足分别为点A3,B3,以A3B3为边作等边三角形A3B3O4;…按这样的方法继续下去,则△AnBnOn的面积为(用含正整数n的代数式表示).24.(2017•抚顺)如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,则△A1C1C2,△A2C2C3,△A3C3C4,…,△An∁nCn+1的周长和为.(n≥2,且n为整数)三.解答题(共16小题)25.(2022•攀枝花)如图,在△ABC中,CD是AB边上的高,BE 是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.26.(2022•杭州)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.27.(2022•重庆)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.28.(2022•重庆)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.29.(2016•常州)如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.30.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β,(1)如图1,若点D在线段BC上,点E在线段AC上.∠ABC =60°,∠ADE=70°,则α=°;β=°.(2)如图2,若点D在线段BC上,点E在线段AC上,则α,β之间有什么关系式?说明理由.(3)是否存在不同于(2)中的α,β之间的关系式?若存在,请写出这个关系式(写出一种即可),说明理由;若不存在,请说明理由.31.如图,四边形ABCD中,AD=CD,∠A=∠C.求证:AB=BC.32.如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,33.用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数为a,内部的格点个数为b,则S=a+(b﹣1).对于正三角形网格中的类似问题也有对应结论:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,如图是该正三角形格点中的两个多边形(设格点多边形的面积为S,该多边形各边上的格点个数为m,内部的格点个数为n):(1)根据图中提供的信息填表:sm n﹣1多边形1 11 15多边形2 8 1…………(2)则S与m、m﹣1之间的关系为(用含m、n的代数式表示).34.如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=35°,求∠A的度数.35.(2022•宜兴市二模)已知,如图,等边△ABC中,点D为BC 延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.36.(2018•东城区一模)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.37.如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3=12.第(2)个多边形由正方形“扩展”而来,边数记为a4=20,…,依此类推,由正n边形“扩展”而来的多边形的边数记为an(n⩾3)(1)由题意可得a5=;(2)求+++…+.38.已知,在△ABC中,AB=AC=5,AD平分∠BAC,点M是AC 的中点,在AD上取点E,使得DE=AM,EM与DC的延长线交于点F.(1)当∠BAC=90°时,①求AE的长;②求∠F的大小.(2)当∠BAC≠90°时,探究∠F与∠BAC的数量关系.39.在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=α.(1)如图1,将AD、EB延长,延长线相交于点O:①求证:BE=AD;②用含α的式子表示∠AOB的度数(直接写出结果);(2)如图2,当α=45°时,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N,求证:N是BD的中点.40.已知,在△ABC中,点D在BC上,点E在BC的延长线上,且BD=BA,CE=CA.(1)如图1,若∠BAC=90°,∠B=45°,试求∠DAE的度数;(2)若∠BAC=90°,∠B=60°,则∠DAE的度数为(直接写出结果);(3)如图2,若∠BAC>90°,其余条件不变,探究∠DAE与∠BAC 之间有怎样的数量关系?答案与解析一.选择题(共15小题)1.(2022•益阳)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形 B.直角三角形C.钝角三角形D.等腰三角形【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【解答】解:如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选:B.【点评】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2.(2022•台湾)如图,△ABC中,AC=BC<AB.若∠1、∠2分别为∠ABC、∠ACB的外角,则下列角度关系何者正确()A.∠1<∠2 B.∠1=∠2 C.∠A+∠2<180°D.∠A+∠1>180°【分析】由AC=BC<AB,得∠A=∠ABC<∠ACB,再由三角形的外角性质定理和三角形的内角和可得正确答案.【解答】解:∵AC=BC<AB,∴∠A=∠ABC<∠ACB,∵∠1、∠2分别为∠ABC、∠ACB的外角,∴∠2=∠A+∠ABC,∴∠A+∠2=∠A+∠A+∠ABC<∠ACB+∠A+∠ABC=180°,故选:C.【点评】本题考查了等腰三角形的性质定理,三角形的外角性质定理及三角形的内角和,这些都是一些基础知识点,难度不大.3.(2022•宁夏)如图,在△ABC中AC=BC,点D和E分别在AB 和AC上,且AD=AE.连接DE,过点A的直线GH与DE平行,若∠C=40°,则∠GAD的度数为()A.40°B.45°C.55°D.70°【分析】根据等腰三角形和平行线的性质即可得到结论.【解答】解:∵AC=CB,∠C=40°,∴∠BAC=∠B=(180°﹣40°)=70°,∵AD=AE,∴∠ADE=∠AED=(180°﹣70°)=55°,∵GH∥DE,∴∠GAD=∠ADE=55°,故选:C.【点评】本题考查了等边三角形的性质,平行线的性质,熟练掌握等腰三角形的性质是解题的关键.4.(2022•山西)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°【分析】先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角的性质可得∠AED的度数,由平行线的性质可得同位角相等,可得结论.【解答】解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°﹣30°=115°,∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°﹣75°=40°,故选:C.【点评】本题主要考查了等腰三角形的性质,平行线的性质,题目比较基础,熟练掌握性质是解题的关键.5.(2022•衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC,“进一步根”据三角形的外角性质”可知∠BDE=3∠ODC=75°”,即可求出∠ODC“的度”数,进而求出∠CDE的度数.【解答】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°,∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选:D.【点评】本题主要考查了等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.6.图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a,矩形面积为b.若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?()A.4a+2b B.4a+4b C.8a+6b D.8a+12b 【分析】根据已知条件即可得到结论.【解答】解:∵正三角形面积为a,矩形面积为b,∴图2中直角柱的表面积=2×4a+6b=8a+6b,故选:C.【点评】本题考查了等边三角形的性质,矩形的性质,列代数式,正确的识别图形是解题的关键.7.(2018•丹东)如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点D,交AB与点E,已知△BCE的周长为10,且BC=4,则AB的长为()A.3 B.4 C.5 D.6【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【解答】解:∵AB的垂直平分线DE,∴AE=CE,∵△BCE的周长为10,BC=4,∴4+BE+CE=10,∵AE=BE,∴AE+BE=10﹣4=6,∴AB=6.故选:D.【点评】本题考查了线段垂直平分线性质,等腰三角形性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.8.(2018•兰州)如图,边长为4的等边△ABC中,D、E分别为AB,AC的中点,则△ADE的面积是()A.B.C.D.2【分析】由于D、E是AB、AC的中点,因此DE是△ABC的中位线,由此可得△ADE和△ABC相似,且相似比为1:2;根据相似三角形的面积比等于相似比的平方,可求出△ABC的面积.【解答】解:∵等边△ABC的边长为4,∴S△ABC=×42=4,∵点D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,AD=AB,AE=AC,即===,∴△ADE∽△ABC,相似比为,故S△ADE:S△ABC=1:4,即S△ADE=S△ABC=×=,故选:A.【点评】本题主要考查等边三角形的性质、相似三角形性质及三角形的中位线定理,解题的关键是掌握等边三角形的面积公式、相似三角形的判定与性质及中位线定理.9.(2018•福建)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.【点评】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.10.(2018•玉林)如图,∠AOB=60°,OA=OB,动点C从点O 出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直【分析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出∠ABD=∠AOB=60°,进而判断出△AOC≌△ABD,即可得出结论.【解答】解:∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,②当点C在OB的延长线上时,如图2,同①的方法得出OA∥BD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选:A.【点评】此题主要考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.11.在等边△ABC所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形.这样的点一共有()A.1个B.4个C.7个D.10个【分析】本题利用了等边三角形是轴对称图形,三条高所在的直线也是对称轴,也是边的中垂线.【解答】解:在等边△ABC中,三条边上的高交于点O,由于等边三角形是轴对称图形,三条高所在的直线也是对称轴,也是边的中垂线,点O到三个顶点的距离相等,△ADB,△BOC,△AOC是等腰三角形,则点O是满足题中要求的点,高与顶角的两条边成的锐角为30°,以点A为圆心,AB为半径,做圆,延长AO交圆于点E,由于点E在对称轴AE上,有EC=EB,AE=AC=AB,△ECB,△AEC,△ABE都是等腰三角形,点E也是满足题中要求的点,作AD⊥AE交圆于点D,则有AC=AD,AD=AB,即△DAB,△ADC是等腰三角形,点D也是满足题中要求的点,同理,作AF ⊥AE交圆于点F,则点F也是满足题中要求的点;同理,以点B为圆心,AB为半径,做圆,以点C为圆心,AB为半径,做圆,都可以分别得到同样性质的三个点满足题中要求,于是共有10个点能使点与三角形中的任意两个顶点所组成的三角形都是等腰三角形.故选:D.【点评】本题容易找出三条边上的高交于点O,是满足题中要求的点,其它点容易漏掉,这样的点不一定是等腰三角形的顶角所在的点,也可以是底角所在的点,明白这点后,就要做圆来找到所要求的点.12.如图,直线l1∥l2,将等边三角形如图放置若∠α=25°,则∠β等于()A.35°B.30°C.25°D.20°【分析】过点B作BD∥l1,如图,根据平行线的性质可得∠ABD =∠β.根据平行线的传递性可得BD∥l2,从而得到∠DBC=∠α=35°.再根据等边△ABC可得到∠ABC=60°,就可求出∠DBC,从而解决问题.【解答】解:过点B作BD∥l1,如图,则∠ABD=∠β.∵l1∥l2,∴BD∥l2,∵∠DBC=∠α=35°.∵△ABC是等边三角形,∴∠ABC=60°,∴∠β=∠ABD=∠ABC﹣∠DBC=60°﹣25°=35°.故选:A.【点评】本题主要考查了平行线的性质、平行线的传递性、等边三角形的性质等知识,当然也可延长BA与l2交于点E,运用平行线的性质及三角形外角的性质解决问题.13.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【解答】解:∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°﹣60°﹣60°=60°,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,∠BAC=180°﹣60°﹣∠1=120°﹣∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°﹣∠2)+(120°﹣∠1)=180°,∴∠1+∠2=120°.故选:B.【点评】本题考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.14.如图,已知等边△ABC外有一点P,P落在∠BAC内,设P到BC、CA、AB的距离分别为h1,h2,h3,满足h2+h3﹣h1=6,那么等边△ABC的面积为()A.4B.8C.9D.12【分析】先设等边三角形ABC的边长为a,连接PA、PB、PC,根据S△PAB+S△PAC﹣S△PCB=S△CAB,得出ah1+ah2﹣ah3=,再根据h2+h3﹣h1=6,求得a=4即可得到等边△ABC的面积.【解答】解:设等边三角形ABC的边长为a,连接PA、PB、PC,则S△PAB+S△PAC﹣S△PCB=S△CAB,即ah1+ah2﹣ah3=,∴a(h2+h3﹣h1)=,∵h2+h3﹣h1=6,∴a=4,∴S△CAB==12,故选:D.【点评】本题主要考查了等边三角形面积的计算,等边三角形高线长与边长之间的关系.根据等边三角形的高计算等边三角形的面积是解决问题的关键.15.如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.若α=10°,则β的度数是()A.40°B.50°C.60°D.不能确定【分析】根据AB=AD,可得出∠B=∠ADB,再由∠ADB=α+∠C,可得出∠C=β﹣10°,再根据三角形的内角和定理得出β即可.【解答】解:∵AB=AD,∴∠B=∠ADB,∵α=10°,∠ADB=α+∠C,∴∠C=β﹣10°,∵∠BAC=90°,∴∠B+∠C=90°,即β+β﹣10°=90°,解得β=50°,故选:B.【点评】本题考查了等腰三角形的性质、三角形的内角和定理以及三角形外角的性质,是基础知识要熟练掌握.二.填空题(共9小题)16.(2022•镇江)如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1=40 °.【分析】根据等边三角形的性质得到∠BDC=60°,根据平行线的性质求出∠2,根据三角形的外角性质计算,得到答案.【解答】解:∵△BCD是等边三角形,∴∠BDC=60°,∵a∥b,∴∠2=∠BDC=60°,由三角形的外角性质可知,∠1=∠2﹣∠A=40°,故答案为:40.【点评】本题考查的是等边三角形的性质、平行线的性质,掌握三角形的三个内角都是60°是解题的关键.17.(2022•成都)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为9 .【分析】利用等腰三角形的性质和题目的已知条件证得△BAD≌△CAE后即可求得CE的长.【解答】解:∵AB=AC,∴∠B=∠C,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE=9,故答案为:9.【点评】本题考查了等腰三角形的性质,解题的关键是利用已知和隐含条件证得三角形全等.18.(2022•广安)等腰三角形的两边长分别为6cm,13cm,其周长为32 cm.【分析】题目给出等腰三角形有两条边长为6cm和13cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:由题意知,应分两种情况:(1)当腰长为6cm时,三角形三边长为6,6,13,6+6<13,不能构成三角形;(2)当腰长为13cm时,三角形三边长为6,13,13,周长=2×13+6=32cm.故答案为32.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.19.(2022•绥化)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=36 度.【分析】已知有许多线段相等,根据等边对等角及三角形外角的性质得到许多角相等,再利用三角形内角和列式求解即可.【解答】解:设∠A=x∵AD=BD,∴∠ABD=∠A=x,∠BDC=2x∵BD=BC∴∠C=∠BDC=2x,∠DBC=x∵在BDC中x+2x+2x=180°∴x=36°∴∠A=36°.故填36.【点评】本题考查了等腰三角形的性质及三角形内角和定理;根据三角形的边的关系,转化为角之间的关系,从而利用方程求解是正确解答本题的关键.20.(2022•哈尔滨)如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为2.【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC,BC的长.【解答】解:如图,连接AC交BD于点O∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形∴∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4∵CE∥AB∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°∴∠DAO=∠ACE=30°∴AE=CE=6∴DE=AD﹣AE=2∵∠CED=∠ADB=60°∴△EDF是等边三角形∴DE=EF=DF=2∴CF=CE﹣EF=4,OF=OD﹣DF=2∴OC==2∴BC==2【点评】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.21.(2018•黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则Sn=•()n﹣1 .【分析】先计算出S1=,再根据阴影三角形都相似,后面的三角形面积是前面面积的.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=B1C=1,∠ACB=60°,∴B1B2=B1C=,B2C=,∴S1=××=依题意得,图中阴影部分的三角形都是相似图形,且相似比为,故Sn=•()n﹣1.故答案为:•()n﹣1.【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.22.(2018•葫芦岛)如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△AnAn+1∁n的面积为()2n﹣2×.(用含正整数n的代数式表示)【分析】由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,一次看到△AnBn+1∁n的边长为()n﹣1×即可解决问题;【解答】解:由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,△AnAn+1∁n的边长为()n﹣1×,∴△AnAn+1∁n的面积为×[()n﹣1×]2=()2n﹣2×.【点评】本题考查等边三角形的性质、三角形的面积等知识,解题的关键是学会探究规律的方法,属于中考常考题型.23.(2017•本溪)如图,∠AOB=60°,点O1是∠AOB平分线上一点,OO1=2,作O1A1⊥OA,O1B1⊥OB,垂足分别为点A1,B1,以A1B1为边作等边三角形A1B1O2;作O2A2⊥OA,O2B2⊥OB,垂足分别为点A2,B2,以A2B2为边作等边三角形A2B2O3;作O3A3⊥OA,O3B3⊥OB,垂足分别为点A3,B3,以A3B3为边作等边三角形A3B3O4;…按这样的方法继续下去,则△AnBnOn的面积为或(用含正整数n的代数式表示).【分析】先根据勾股定理和直角三角形30度角的性质求A1O1=B1O1=OO1=1,OA1=OB1=,证明△A1OB1是等边三角形,则A1B1=,求△A1B1O1的面积=,易证得△A1B1O1∽△A2B2O2,可得==,根据面积比等于相似比的平方得:==,计算==,同理可得:==×,…,可得结论.【解答】解:如图,由题意得:∠A1OC1=∠B1OO1=30°,OO1=2,∠OA1O1=∠OB1O1=90°,∴A1O1=B1O1=OO1=1,∴OA1=OB1=,∵∠AOB=60°,∴△A1OB1是等边三角形,∴A1B1=,设OO4分别与A1B1,A2B2,A3B3的交点为C1,C2,C3,∴高OC1=,O1C1=2﹣=,∴△A1B1O1的面积为A1B1×O1C1=,易证得△A1B1O1∽△A2B2O2,∴==,∴==,∴==,同理可得:==×,…,==×=(或).故答案为:或.【点评】本题是图形变化类的规律题,考查了找规律,解决此类问题的关键是依据所给出的若干个具体数据、图形或式子,归纳出具有普遍性的规律,再依据规律求解.24.(2017•抚顺)如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,则△A1C1C2,△A2C2C3,△A3C3C4,…,△An∁nCn+1的周长和为.(n≥2,且n为整数)【分析】根据等边三角形的性质分别求出△A1C1C2,△A2C2C3,△A3C3C4,…,△An∁nCn+1的周长即可解决问题.【解答】解:∵等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,∴A1D1=D1C2,∴△A2C2C3的周长=△A1C1C2的周长=,∴△A1C1C2,△A2C2C3,△A3C3C4,…,△An∁nCn+1的周长分别为1,,,…,,∴△A1C1C2,△A2C2C3,△A3C3C4,…,△An∁nCn+1的周长和为1+++…+=.故答案为.【点评】本题考查等边三角形的性质、解题的关键是理解题意,灵活运用所学知识,属于中考常考题型.三.解答题(共16小题)25.(2022•攀枝花)如图,在△ABC中,CD是AB边上的高,BE 是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.【分析】(1)连接DE,根据垂直的定义得到∠ADC=∠BDC=90°,根据直角三角形的性质得到DE=CE,根据线段垂直平分线的性质即可得到结论;(2)根据等腰三角形的性质和三角形的外角的性质即可得到结论.【解答】解:(1)连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE.【点评】本题考查了等腰三角形的判定和性质,线段垂直平分线的性质,三角形的外角的性质,熟练掌握三角形的外角的性质是解题的关键.26.(2022•杭州)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.【分析】(1)根据线段垂直平分线的性质可知PA=PB,根据等腰三角形的性质可得∠B=∠BAP,根据三角形的外角性质即可证得APC=2∠B;(2)根据题意可知BA=BQ,根据等腰三角形的性质可得∠BAQ =∠BQA,再根据三角形的内角和公式即可解答.【解答】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.【点评】本题主要考查了等腰三角形的性质、垂直平分线的性质以及三角形的外角性质,难度适中.27.(2022•重庆)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.【分析】(1)根据等腰三角形的性质得到∠BAD=∠CAD,根据三角形的内角和即可得到∠BAD=∠CAD=90°﹣42°=48°;(2)根据等腰三角形的性质得到∠BAD=∠CAD根据平行线的性质得到∠F=∠CAD,等量代换得到∠BAD=∠F,于是得到结论.【解答】解:(1)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∠ADC=90°,又∠C=42°,∴∠BAD=∠CAD=90°﹣42°=48°;(2)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∵EF∥AC,∴∠F=∠CAD,∴∠BAD=∠F,∴AE=FE.【点评】本题考查了等腰三角形的性质,平行线的性质,正确的识别图形是解题的关键.28.(2022•重庆)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.。

等腰三角形的轴对称性练习题

等腰三角形的轴对称性练习题

2.5等腰三角形的轴对称性一、单选题1.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°2.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为()A.2 B.3 C.4 D.53.已知:如图,经过线段AB一端点A有一直线l,直线上l存在点C,使ABC为等腰三角形,这样的点C有()个.A.2 B.3 C.4 D.54.下列判断正确的是()(1)有两个角是60度的三角形是等边三角形(2)有一个角是60度的等腰三角形是等边三角形(3)三个内角都相等的三角形是等边三角形(4)三边都相等的三角形是等边三角形(5)腰和底边相等的等腰三角形是等边三角形.A.(1)(2)(3)(4)(5)B.(2)(3)(4)(5) C.(2)(3)(4)D.(2)(3)5.如图,在△ABC中,AB=AC,∠B=30°,AD⊥AB交BC于点D,AD=2,则BC的长是()A.4B.5C.6D.76.△ABC中,AB=AC,顶角是100°,则一个底角等于()A.40°B.50°C.80°D.100°7.如图,等腰△ABC中,AB=AC,∠A=36°.BD平分∠ABC,则∠BDC是()A.36°B.60°C.72°D.80°8.如图,在等边△ABC中,延长AB到点D,使得BD=AB,延长BC到点E,使得CE=2BC,连接DE、AE,若S△ADE=18,则S△ABC为()A.1.8B.2C.3D.4.59.如图的网格中,点A、B在格点上,在网格上找到点C,使△ABC为等腰三角形,这样的点C共有()A.8个B.9个C.10个D.11个10.如图,△ABC中,AB=AC,∠B=40°,D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=40°,DE 交线段AC于E,以下四个结论:①∠CDE=∠BAD;②当D为BC中点时,DE⊥AC;③当△ADE为等腰三角形时,∠BAD =20°;④当∠BAD=30°时,BD=CE.其中正确的结论的个数是()A.1 B.2 C.3 D.4二、填空题。

八年级数学角平分线的性质及等腰三角形(轴对称)基础练习(含答案)

八年级数学角平分线的性质及等腰三角形(轴对称)基础练习(含答案)

八年级数学角平分线的性质及等腰三角形(轴对称)基础练习试卷简介:全卷满分120分,测试时间60分钟,共四个大题:第一题选择,2个小题,每小题5分;第二题证明题,9个小题,每小题10分;第三题计算题,1个小题,10分;第四题探究题,一个小题,10分。

学习建议:本讲主要内容是角平分线的性质及等腰三角形,在中考中经常出现,大家需要熟练掌握这些知识,学会灵活运用。

本讲题目灵活多变,但万变不离其宗,只要掌握最基本的概念及相关性质,再多加练习,就能掌握。

一、单选题(共2道,每道5分)1.直线l1、l2、l3表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处B.二处C.三处D.四处答案:D解题思路:到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.故选D.易错点:易漏掉外角平分线试题难度:三颗星知识点:角平分线的性质2.已知:如图,在△ABC中,AB=AC,BC=BD,AD=DE=EB,则∠A的度数是()A.30°B.36°C.45°D.54°答案:C解题思路:∵AD=DE ∴∠A=∠AED ∵DE=EB ∴∠EBD=∠EDB ∵∠AED=∠EBD+∠EDB=2∠EBD ∴∠A=2∠EBD ∵BD=BC ∵∠BDC=∠A+∠EBD=3∠EBD ∴∠C=3∠EBD ∵AB=AC ∴∠C=∠ABC ∵∠A+∠C+∠ABC=180°∴∠A+2∠C=180°2∠EBD+2×3∠EBD=8∠EBD=4∠A=180°∴∠A=45°.易错点:对等腰三角形的性质及三角形的内角和定理、三角形外角的性质掌握不牢试题难度:三颗星知识点:等腰三角形的性质二、计算题(共1道,每道10分)1.如图,AO=OC,且DO垂直AC并交AB于点D,若AB=7cm,BC=5cm,则△BDC的周长是多少?答案:12cm解题思路:∵AO=OC,且DO垂直AC并交AB于点D ∴直线OD是线段AC的垂直平分线∴AD=CD ∴△BDC的周长=BD+CD+BC= BD+AD+BC=AB+BC=12cm易错点:对垂直平分线的性质掌握不牢试题难度:三颗星知识点:线段垂直平分线的性质三、证明题(共9道,每道10分)1.已知,△ABC的角平分线BM、CN相交于点P,求证点P到三边AB、AC、BC的距离相等.答案:作PD、PE、PF分别垂直于三边AB、BC、CA,D、E、F为垂足,∵BM为△ABC的角平分线,PD⊥AB,PE⊥BC,∴PD=PE(角平分线上的点到这个角两边的距离相等).同理可证:PF=PE.∴PD=PE=PF.即点P 到三边AB、BC、CA的距离相等.解题思路:作PD、PE、PF分别垂直于三边AB、BC、CA,D、E、F为垂足,根据角平分线性质可得PD=PE,PF=PE,所以PD=PE=PF.易错点:对角平分线的性质掌握不牢试题难度:二颗星知识点:角平分线的性质2.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA交OA于点D,PE⊥OB交OB于点E,F是OC上另一点,连接DF、EF,求证DF=EF.答案:∵点P在∠AOB的角平分线OC上′,PE⊥OB,∴PD=PE,∠DOP=∠EOP,∠PDO=∠PEO=90°,∴△DPO≌△EPO,∴∠DPO=∠EPO,∴∠DPF=∠EPF,在△DPF 和△EPF中,PD=PE,∠DPF=∠EPF,PF=PF ∴△DPF≌△EPF ∴DF=EF.解题思路:根据角平分线的性质,得PD=PE,根据三角形的外角的性质,得∠DPF=∠EPF,再根据SAS证明△DPF≌△EPF,则DF=EF.易错点:对角平分线的性质掌握不牢试题难度:三颗星知识点:全等三角形的性质3.如图,AD是△ABC的角平分线,DE、DF分别是△ABD与△ACD的高,求证AD垂直EF.答案:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF.∴D在线段EF的垂直平分线上.在Rt△ADE和Rt△ADF中,AD=AD,DE=DF ∴Rt△ADE≌Rt△ADF.∴AE=AF.∴A点在EF的垂直平分线上.∵两点确定一条直线,∴AD是线段EF的垂直平分线.解题思路:找到Rt△AED和Rt△ADF,通过两个三角形全等,找到各量之间的关系,即可证明.易错点:对三角形的角平分线的性质定理和垂直平分线的性质定理掌握不牢试题难度:三颗星知识点:线段垂直平分线的性质4.已知点D、E在△ABC的边BC上,AB=AC,AD=AE,求证BD=CE.答案:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠EAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∴BD=CE.解题思路:根据等腰三角形的性质可得到几组相等的角,再根据三角形外角的性质可推出∠BAD=∠CAE,从而可利用SAS判定△ABD≌△ACE,根据全等三角形的性质即可证得结论.易错点:对全等三角形的判定条件掌握不牢试题难度:二颗星知识点:全等三角形的判定与性质5.如图,AD是△ABC的角平分线,DE、DF分别是△ABD与△ACD的高,求证AD垂直平分EF.答案:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF.∴D在线段EF的垂直平分线上.在Rt△ADE和Rt△ADF中,AD=AD,DE=DF ∴Rt△ADE≌Rt△ADF.∴AE=AF.∴A点在EF的垂直平分线上.∵两点确定一条直线,∴AD是线段EF的垂直平分线.解题思路:找到Rt△AED和Rt△ADF,通过两个三角形全等,找到各量之间的关系,即可证明.易错点:对直角三角形全等的判定条件掌握不牢试题难度:三颗星知识点:角平分线的性质6.如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.答案:∵BD是正三角形ABC的AC边的中线,∴BD⊥AC,BD平分∠ABC,∠DBE=30°.∵CD=CE,∴∠CDE=∠E.∵∠ACE=120°,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°.∴BD=DE.解题思路:欲证BD=DE,只需证∠DBE=∠E,根据等边三角形的性质及角的等量关系可证明∠DBE=∠E=30°.易错点:对等腰三角形性质掌握不牢试题难度:三颗星知识点:等边三角形的性质7.如图:在△ABC中,BA=BC,D是AC的中点.求证:BD⊥AC.答案:∵D是AC的中点∴AD=CD 在△BAD和△BCD中,BA=BC,AD=CD,BD=BD ∴△BAD≌△BCD ∴∠BDA=∠BDC 又∵A、D、C在同一条直线上∴∠BDA=∠BDC=90°∴BD⊥AC解题思路:通过BA=BC,AD=CD,BD=BD可以证明△BAD和△BCD,进而得到∠BDA=∠BDC=90°,从而得到结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等腰三角形的轴对称性》习题
1.(1)如果等腰三角形的周长为10,底边长为4,那么腰长为;
(2)如果等腰三角形的周长为10,腰长为4,那么底边长为;(3)如果等腰三角形的周长为12,一边长为5,那么另两边长分别为
.
2.用三角尺画出一个等腰三角形的对称轴,你有几种画法?
3.在等腰三角形ABC中,∠A =4∠B.
(1)若∠A 是顶角,则∠C= °;
(2)若∠A 是底角,则∠C= °。

4.如图,在三角形平架中,AB=AC,在BC的中点D处挂一重锤,让它自己自然下垂。

如果调整架身,使垂线正好经过点A,那么就能确认BC处于水平位置,这是为什么?
5.在△ABC中,AB=AC,∠A=40°,点D 在AB 上。

(1)如果CD是角平分线,那么∠BCD = ° ;
(2)如果CD是高,那么∠BCD = °;
(3)如果CD = AD,那么∠BCD = °;
(4)如果CD = CB ,那么∠BCD = °。

6.在△ABC中,∠A=40°,当角∠B等于那些度数时,△ABC是等腰三角形?
7.如图,∠C=36°,∠B=72°,∠,BAD=36°.
(1)求∠1和∠2的度数。

(2)找出图中的等腰三角形,并说明理由。

(第7题)
8.如图。

(第8题)
(1)由Rt△CDE≌ Rt△ACF,可得∠DCE+∠ACF= °,从而∠ACB= °;(2)设小方格的边长为1,则AB= ;
(3)去AB的中点M,连接CM,则CM= ,理由是:。

9.如图,AB⊥ AC,点D在BC的延长线上,且AB=AC=CD.
(1) ∠ACB= °∠ABD= ° ;
(2)画∠ABD的平分线交AD于点E,则∠ AEB= °;
(3)你所画的线段BE与图中哪一条线段相等?请说明理由。

10.(1)按下列要求画图:画等边三角形ABC和它的两条中线BD、CE、BD、CE
相交于点O,连接DE;
(2)说出图中有哪几个三角形是等边三角形?哪几个三角形是等腰角形?
11.如图,AB=AC,∠BA⊥CA=120,AD⊥AB,AE⊥AC.
(1)图中,等于30°的角有:;60°的角有;
(2)△ADE是等边三角形吗?为什么?
(3) 在Rt△ABD中,∠B= °,AD BD;在Rt△ACE 中,有类
似的结论吗?
12.如图, △ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,度量并
比较AD与BE的大小,你能对所得结论说明理由吗?
答案:1.(1) 3 ;(2) 2 ;(3) 5、2或3.5、3.5.
答案:2.方法1:用三角尺量出等腰三角形的底边的长,找出中点,画出底边
上的中线所在的直线,就是等腰三角形的对称轴。

方法2:用三角尺画出等腰三角形底边上的高所在的直线,就是等腰三
角形的对称轴。

答案:3.(1)30°;(2)80° .
答案:4.因为AB=AC,CD =BD,根据“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,所以AD⊥BC。

而AD是重锤所在的直线,
所以BC是水平线。

答案:5.(1)35°;(2) 20°;(3)30°;(4) 40°.
答案:6.当∠B=70°(∠C=∠B)或∠B=40°(∠B=∠A)或∠B=100°(∠C=∠A)时,△ABC是等腰三角形。

答案:7.(1) ∠1=36°, ∠2=72°;
(2) △ACD是等腰三角形,因为∠1= ∠C=36°.所以AD=CD.
理由是:“等角对等边”。

同样道理可知:△ABD、△ABC是等腰三角形。

答案:8.(1)90°,90°;(2)10;(3)AM或BM 或1/2AB.直角三角形斜边上的
中线等于斜边的一半。

答案:9.(1)45°,22.5°(2)45°;
(3)DE.因为∠EBD=∠EDB=22.5°,所以,BE=DE.理由是:“等角对等边”。

答案:10.(1)图略;(2)等边三角形有两个,即△ABC、△ADE、;等腰三角形有6 个,即△ABC、△ADE、△OBC、△ODE、△BDE、△CDE.
答案:11.(1)∠B,∠C, ∠BAE, ∠CAD; ∠ADB, ∠AEC, ∠DAE;
(2) 30°,1/2.
答案:12.AB=BE.因为△ABC 和△CDE都是等边三角形,
所以∠ ACB=∠ DCE= 60° ,AC=BC,CD=CE.
于是,∠ ACB+∠ BCD=∠ DCE+∠ BCD,即∠ ACD=∠ BCE,
在△ACD=△BCE中,因为AC=BC, ∠ACD=∠BCE,CD=CE, 根据“SAS”可知△ACD ≌△BCE.所以AD=BE.。

相关文档
最新文档