第六节 正规子群与商群 北京大学计算机系离散数学讲义(ppt版)
离散数学ppt课件
02
集合论基础
集合的基本概念
总结词
集合是离散数学中的基本概念, 是研究离散对象的重要工具。
详细描述
集合是由一组确定的、互不相同 的、可区分的对象组成的整体。 这些对象称为集合的元素。例如 ,自然数集、平面上的点集等。
集合的运算和性质
总结词
集合的运算和性质是离散数学中的重要内容,包括集合的交、并、差、补等基本运算,以及集合的确定性、互异 性、无序性等性质。
生,1表示事件一定会发生。
离散概率论的运算和性质
概率的加法性质
如果两个事件A和B是互斥的,那么P(A或B)等于P(A)加上 P(B)。
概率的乘法性质
如果事件A和B是独立的,那么P(A和B)等于P(A)乘以P(B) 。
全概率公式
对于任意的事件A,存在一个完备事件组{E1, E2, ..., En}, 使得P(Ai)>0 (i=1,2,...,n),且E1∪E2∪...∪En=S,那么 P(A)=∑[i=1 to n] P(Ai)P(A|Ei)。
工程学科
离散数学在工程学科中也有着重要的 应用,如计算机通信网络、控制系统 、电子工程等领域。
离散数学的重要性
基础性
离散数学是数学的一个重要分支 ,是学习其他数学课程的基础。
应用性
离散数学在各个领域都有着广泛的 应用,掌握离散数学的知识和方法 对于解决实际问题具有重要的意义 。
培养逻辑思维
学习离散数学可以培养人的逻辑思 维能力和问题解决能力,对于个人 的思维发展和职业发展都有很大的 帮助。
详细描述
邻接矩阵是一种常用的表示图的方法,它是 一个二维矩阵,其中行和列对应于图中的节 点,如果两个节点之间存在一条边,则矩阵 中相应的元素为1,否则为0。邻接表是一 种更有效的表示图的方法,它使用链表来存 储与每个节点相邻的节点。
1.5正规子群与商群
a ≡ b(mod n) .模 n 同余关系 ≡ 决定的 Z 的分类为
Z n = {[0], [1], L , [n − 1]} ,
其 中 [i ] = {kn + i | k ∈ Z} , i = 0, 1, L, n − 1 , 都称 为 同余类. 模 n 同余类
Company Logo
Company Logo
§5 正规子群与商群
的一个分类时, 当 P 是 A 的一个分类时 , 一般将 A 中每一 当然, 个元素 a 所属的类记作 [a] . 当然 , [a ] 的含义不 有关, 有关. 但与 A 有关,而且与 P 有关. 定 义 5.5 设 ∼ 是 A 上 的 一 个 等 价 关
R ,记作 a Rb .
Company Logo
§5 正规子群与商群
例 1
设 A 是 平面 p 上 的 所有直线构
成的集合. 成的集合.令 集合
⊥= {(a, b) | a, b ∈ A 且 a 垂直于 b} ,
‖ = {(a, b) | a, b ∈ A 且 a 平行于 b} .
Company Logo
§5 正规子群与商群
[a] = [b] .这就表明 P 中的任意两个不同的
集合互不相交. 的一个分类. 集合互不相交.所以 P 是 A 的一个分类. (2)对于任意的 (2) 对于任意的 a ∈ A , 由于 a 与 a 属 于同一类, 这表明~ 于同一类,因此 a ~ a .这表明~具有自反 性 . 对于任意的 a, b ∈ A , 若 a ~ b , 则 a 与 属于同一类,从而, 属于同一类. b 属于同一类,从而, b 与 a 属于同一类.因
Company Logo
离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)
1.1 命题及联结词
定义1.5双条件:当p与q值相同时,pq为1,不同 为0。 称p当且仅当q
“普通老师赚了100万当且仅当他 中了100万的彩票”, 普通老师赚了100万 普通老师买彩票中了100万大奖
故pq为0
1.1 命题及联结词
定义1.4条件式当p是1 ,q是0时,pq为0,即 10为0,其他情况为1。 p称为前件,q称为后件
(1)当p为1即“我期终考了年级前10”
q为0即“我老妈没有奖励1000元” 这时老妈的话为假,即pq为0 (2)当p为1即“我期终考了年级前10” q为1即“我老妈奖励1000元” 这时妈妈的话就对了,即pq为1
由于所有内容(整数,实数,字符,汉字,图片,声 音,视频,网页,……)进入电脑后,全是01组成的字 符串,从而都可以用布尔运算即逻辑运算实现,命题逻 辑成为计算机的基础。
命题逻辑将数学由连续变到离散,由高数进入离散。
Google采用逻辑运算进行搜索:数字之美 吴军 杨圣洪 000100010001110000 两者对应位置与运算。 离散数学 100100000000100001
陈述句(6)的正确性,到2018年12月时能确定的,若届 时建成了则它是对的、为真命题,否为假命题。
1.1 命题及联结词
对错确定的陈述语句称为命题。如:
(7) x与y之和为100,其中x为整数,y为整数 (8)1加1等于10 (7)的对错不确定。当x为50、y为50时是对的,当x为 51、y为52时是错的。 (8)的对错是不确定的,为二进制时正确,当为八进制、 十进制时是错的,因此这两个陈述句不是命题。 (9)青枫峡的红叶真美呀! (10)动作快点! (11)你是杨老师吗? 这三个语句不是陈述语句,因此不是命题。
《离散数学》课件第6章 (2)
〈SS, , 〈Σ*, τ〉不是可交换半群。
定义 6.1.3 含有关于*运算的幺元的半群〈S, *〉, 称
它为独异点(monoid), 或含幺半群, 常记为〈S, *, e〉(e是
幺元)。
第六章 几个典型的代数系统
【例6.1.4】
〈Z, +〉是独异点, 幺元是0, 〈Z, +, 0〉;
〈Z, ×〉是独异点, 幺元是1, 〈Z, ×, 1〉;
(4) A≠ , 〈P(A), ∩〉是半群, 幺元为A, 非空集合无逆
元, 所以不是群。
(5) A≠ , 〈P(A), 是S, 所以是群。
S∈P(A), S的逆元
(6) 〈Q+, ·〉(正有理数与数乘)为一群, 1为其幺元。 〈Q, ·〉不是群, 因为数0无逆元。
因为零元无逆元, 所以含有零元的代数系统就不会是群。
逻辑关系见图6.1.1。
第六章 几个典型的代数系统
图6.1.1
第六章 几个典型的代数系统
定义 6.1.1 设〈S, *〉是代数系统, *是二元运算, 如果*运算满足结合律, 则称它为半群(semigroups)。
换言之, x, y, z∈S, 若*是S上的封闭运算且满足 (x*y)*z=x*(y*z), 则〈S, *〉是半群。
设半群〈S, *〉中元素a(简记为a∈S)的n次幂记为an, 递 归定义如下:
a1=a an+1=an*a1 n∈Z+ 即半群中的元素有时可用某些元素的幂表示出来。
因为半群满足结合律, 所以可用数学归纳法证明
am*an=am+n, (am)n=amn。
第六章 几个典型的代数系统
普通乘法的幂、 关系的幂、 矩阵乘法的幂等具体的代 数系统都满足这个幂运算规则。
离散数学群与子群-PPT
解:由题意,R上得二元运算★得运算表如上所示,由表知,运算★在R上就 是封闭得。
对于任意a, b, cR,(a★b)★c表示将图形依次旋转a, b和c,而 a★(b★c)表示将图形依次旋转b,c和a,而总得旋转角度都就是 a+b+c(mod 360),因此(a★b)★c= a★(b★c),即★运算满足结合性。
a
b
c
d
b
d
a
c
定理5、4、4 群〈G,*〉得运算表中任一行(列)得元素都就是G中元 素得一个置换。且不同行,不同列得置换都不同。 证明 首先,证明运算表中得任一行或任一列所含G中得一个元素不可能多 于一次。用反证法,如果对应于元素a∈G得那一行中有两个元素都就 是c,即有 a*b1=a*b2=c 且b1≠b2 由可约性可得 b1=b2,这与b1≠b2矛盾。
其次,要证明G中得每一个元素都在运算表得每一行和每一列中出现。考 察对应于元素a∈G得那一行,设b就是G中得任一元素,由于 b=a*(a1*b),所以b必定出现在对应于a得那一行中。
再由运算表中没有两行(或两列)相同得事实,便可得出:<G,*>得运算表中 每一行都就是G得元素得一个置换,且每一行都就是不相同得。同样得 结论对于列也就是成立得。
结果都等于另一个元素, ) 3) G中任何元素得逆元就就是她自己; 。 故〈G,*〉为一个群。 此外,运算就是可交换得,一般称这个群为克莱因(Klein)四元群,简称四元群。
思考练习
已知:在整数集 I 上得二元运算定义为:a,b∈I,
a b=a+b-2
证明:< I , >为群。
么元为:2 逆元:x-1=4-x
离散数学群与子群
一、群得概念
《离散数学概述》PPT课件
同 子代数 种
的 积代数 同
类 商代数 型
的 新代数系统
22
半群与群
广群 二元运算的封闭性
结合律
半群
交换律
交换半群
单位元 交换律
独异点
每个元素可逆 交换律
群
交换独异点 实例
Abel群
生成元
Klein群 循环群
有限个元素
有限群
编辑ppt
实例
n元置换群
23
图论
图论是离散数学的重要组成部分,是近代应用数学的重要分支。
由于在计算机内,机器字长总是有限的, 它代表离散的数或其
它离散对象,因此随着计算机科学和技术的迅猛发展,离散数
学就显得重要。
编辑ppt
5
离散数学的内容
数理逻辑: “证明”在计算科学的某些领域至关重要,构 造一个证明和写一个程序的思维过程在本质上是一样的。
组合分析:解决问题的一个重要方面就是计数或枚举对象。
编辑ppt
20
代数系统
近世代数,……,是关于运算的学说,是关于运算规则 的学说,但它不把自己局限在研究数的运算性质上,而 是企图研究一般性元素的运算性质。
——M.Klein
数学之所以重要,其中心原因在于它所提供的数学系统 的丰富多彩;此外的原因是,数学给出了一个系统,以 便于使用这些模型对物理现实和技术领域提出问题,回 答问题,并且也就探索了模型的行为。
1736年是图论历史元年,因为在这一年瑞士数学家欧拉(Euler) 发表了图论的首篇论文——《哥尼斯堡七桥问题无解》,所以人
们普遍认为欧拉是图论的创始人。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专 著《有限图与无限图理论》,这是图论发展史上的重要的里程碑 ,它标志着图论将进入突飞猛进发展的新阶段。
(完整word版)3。2 正规子群与商群
§3.2 正规子群与商群对一般的群G 及N G ≤,左、右陪集不一定相等,即一般aN Na ≠, (见上一章例子,3,{(1),(12)}G S N ==,(13)(13)N N ≠)。
但对某些群G 及其子群N G ≤,总有性质:,a G aN Na ∀∈=。
例如,取3,G S = 3{(1),(123),(132)},N A G ==≤ 则当a 取3(1),(123),(132)A ∈时,总有aN Na =。
而当a 取(12),(13),(23)时, (12){(12),(23),(13)}(12)N N ==,(13){(13),(23),(12)}(13)N N ==,(23){(23),(13),(12)}(23)N N ==,所以3a G S ∀∈=,都有aN Na =。
再比如,交换群的子群总满足上述性质。
设G 是群,N G ≤,若,a G aN Na ∀∈=有,则 称N 是G 的正规子群(Normal subgroup ),记作N G 。
由前面,3A 是3S 的正规子群:33.A S交换群的子群都是正规子群;任何群的中心都是的正规子群:()C G G 。
{}e 和G 总是G 的正规子群,称为平凡正规子群,其余的正规子 群称为非平凡正规子群。
定理1. 设N G ≤,则 1,NG a G aNa N -⇔∀∈⊆有; ⇔,,a G x N ∀∈∀∈ 都有1.axa N -∈例1 证明n n A S 。
例2. 设(){|(),||0}n n G GL R A A M R A =∈≠且,(){|||1}n N SL R A A R A =∈=,且, 证明:N G 。
证明:,X G A N ∀∈∀∈,则111||||||||||||||||1,X AX X A X X A X A ---==== 从而,1X AX N -∈,所以N G 。
例3 证明:{}44(1),(12)(34),(13)(24),(14)(23)K S =。
06离散数学课件资料
2024/7/3
离散数学
10
二、群的概念
群中的幂:设群<G, > ,则对 xG, x0 = e ,xn+1 = xn x,(n为非负整数) x-n= (x -1)n= (xn)-1,(n为正整数)
幂运算的性质: (1) xG,(x-1)-1 = x, (2) x, yG,(x y)-1 = y -1 x–1, (3) xG,xm xn = xm + n ,m, n为整数
(1)
(2)
(3)
代数系统
半群
独异点
群
2024/7/3
离散数学
6
二、群的概念
例1:设G= R-{1/2},对 x, yG,x * y = x + y – 2xy , 试证明<G, * >是否为群? 证明: (1) 若 x, yG,x * y = x + y – 2xy G,故* 运算
关于G满足封闭性。 (2) 若 x, y , zG ,
是<Z, +>的平凡子群;
设<G,*>是一个群,B是G的一个有限非空子
有限子群 判定定理
集。若运算*在集合B上封闭,则 <B,*>是
<G,*>的子群。
子群的 设<G, * >为群,H是G的非空子集,如果对 x, 判定定理 yH,x * y -1H,则<H,*>是<G, * >的子群。
2024/7/3
如:<Z+, +>和<N, +>是<Z, +>的子半群,且<N, +>是 <Z, +>的子独异点,但<Z+, +>却不是。
《离散数学讲义》课件
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
北大离散数学chap6 ppt课件
15
例4、Z60,1,2,3,4,5,求模6的加群 Z 6 ,
中各元素的阶。
解:因 2220,即 2 3 0 , 所以 2 3 。
同理可得:1 6 ,3 2 , 4 3
5 6 ,0 1 。
2020/10/28
16
6、群的性质。
(1) x, yG,(x1)1 x,(xy) 1y 1 x 1。 (2) 若 G 1 ,则 G 中无零元。 (3) G 中消去律成立,即
若 ab ac,则 b c , 若 ba ca,则 b c 。
2020/10/28
17
6、群的性质。 (4) 幺元是群中唯一的幂等元。
(5) a,bG,方程 ax b和 ya b 在 G
中有唯一解。 (6) 有限群的运算表中,每一行 (每一列)都是
G 中元素的一个排列。
不同行 (列)的排列不同。
证明:反之,设 a,bG,(ab)2 a2b2 , 即 (ab)(ab)(aa)(bb), 即 a(ba)ba(ab)b,
由消去律,得 ba ab ,
故G 为阿贝尔群。
2020/10/28
20
例6、如果 G 中的每一个元素 a 都满足 a 2 e , 则 G 是阿贝尔群。 证明:a,bG , 由题设知,a1 a ,b 1 b,(ab)1 ab
2020/10/28
8
二、群。 1、定义。
代数系统 G , 满足:
①结合律, ②有幺元, ③任意元有逆元,
则称 G , 为群。
2020/10/28
9
例2、(1) Z , ,Q , , R , 都是群, 因任意元素 x 的逆元 ( x ) 存在, 而 Z , ,N , 不是群,
Z , 没有幺元,
精品课程《离散数学》PPT课件(全)
言1
为什么学习离散数学?
离散数学是现代数学的一个重要分支,是计算机科学与技术 的理论基础,所以又称为计算机数学,是计算机科学与技术 专业的核心、骨干课程。
它以研究离散量的结构和相互间的关系为主要目标,其研 究对象一般是有限个或可数个元素,因此它充分描述了计算 机科学离散性的特点。
离散数学是什么课?
真值为1
25
1.1 命题符号化及联结词
以下命题中出现的a是给定的一个正整数: (3) 只有 a能被2整除, a才能被4整除。
(4) 只有 a能被4整除, a才能被2整除。
解: 令r: a能被4整除, s: a能被2整除。 真值不确定 (3)符号化为 s r (4)符号化为 r s
真值为1
26
19
1.1 命题符号化及联结词
3.析取词 设p,q为二命题,复合命题“p或q” 称为p与q的析取式,记作p ∨ q,符号∨称 为析取联结词。 运算规则:
p 0 0 1 1 q 0 1 0 1 p∨q 0 1 1 1
20
1.1 命题符号化及联结词
析取运算特点:只有参与运算的二命题全为假时,运算结果才 为假,否则为真。 相容或:二者至少有一个发生,也可二者都发生 排斥或:二者只有一个发生,即非此即彼 例如: (1)小王爱打球或爱跑步。 设p:小王爱打球。 q:小王爱跑步。 则上述命题可符号化为:p ∨ q (2)张晓静是江西人或湖南人。 设p:江西人。 q:湖南人。 则上述命题就不可简单符号化为:p ∨ q 而应描述为(p∧ q) ∨( p∧q)(也可用异或联接词∨)
(1)星期天天气好,带儿子去了动物园; (2)星期天天气好,却没带儿子去动物园; (3)星期天天气不好,却带儿子去了动物园; (4)星期天天气不好,没带儿子去动物园。
正规子群与商群
正規子群與商群bee *108.03.03∼108.03.03順便證明了Lagrange 定理。
1.定義【共軛變換】(conjugation):x →gxg −1。
【正規子群的定義與符號】:設N 是G 的子群。
若∀n ∈N,∀g ∈G ,gng −1∈N (即共軛不變),則N 是G 的一個正規子群(normal subgroup),記為N ▹G 。
這定義顯然來的突兀,應該了解要這一個定義的目的。
2.陪集設H 是G 的一個子集,考慮aH ={ah }(1)我們發現:當a,b ∈G 時,可得aH =bH 或者是aH ∩bH =∅。
於是我們可以用H 當標準把G 中的元素分類,若aH =bH ,則a,b 為同一類。
這樣我們可以得到一個等價關係,並用符號a 表示{b bH =aH }。
同時,用G H表示集合{g }。
g 實際上是一個集合,稱為左陪集(left coset),我們現在的想法是把coset 拿來當元素,然後定義一個新的群。
當然,這樣我們需要運算,這個運算就採用原先的運算。
即g 1·g 2={g 1h 1g 2h 2}=g 1hg 2(2)因為G 不一定是交換群,所以g 1h 1g 2h 2的順序不可以隨便交換。
*bee 美麗之家:http:/.tw/bee接下來我們必須驗證這一個運算對於陪集來說擁有群的運算性質。
(1)結合律。
顯然o.k.(2)單位元素。
∀h∈H,h=e=H,我們把e視為單位元素。
計算g·e={gh1eh2}=gH=g。
(3)反元素。
設g∈G,看看g是不是有反元素,直覺的想法是找g−1。
計算g·g−1={gh1g−1h2}=ghg−1?===H(3)如果G是交換群,這件事就搞定拉!可是G不一定是交換群,於是得要求∀g∈G,gh1g−1=h,其中h∈H(4)這就是正規子群的要求。
於是利用原先的群運算,如果H是一個【正規子群】,而不僅僅是一個子群,那麼,我們就可以創造一個新的群:商群:GH(quotient group)3.補充(1)如果G是一個交換群,那麼所有的子群H都是正規群。
离散数学PPT【共34张PPT】
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
3-2正规子群和商群
§2 正规子群和商群
1. 正规子群的定义 2.正规子群的性质
3.商群
2014-4-9
18:39
一、正规子群的定义
定义 1 N G 且 a G , aN Na ,则称 N 是群 G 的一个正规子群(或不变子群) ,记作
N G .
例1 任意群 G 的两个平凡子群都是正规子群. 例2 任意群 G 的中心
证明: ①N G / N ,故非空; ② 有乘法运算 (aN )( bN ) ( ab) N ; ③ ( aNbN )cN aN ( bNcN ) (abc ) N ,有结合律; ④ ( eN )( aN ) aN ,有左单位元 eN N ; 1 ⑤ (a N )(aN ) eN ,有逆元.
2014-4-9 18:39
定理6
有限交换群G为单群的充分必要条件是, G 为素数.
证明:
设 G 为素数.则G是一个素阶循环群 , 从而 反之, 设G是单群且G n 1.在G中任取
G显然是一个单群 . 元素a e.若 a n, 则由于G是交换群, 故 e a G. 这与G是单群矛盾 .因此必a n , 从而G a 为n阶循环群, 再由定理5可知, n必为素数.
N H G ,且 N G,则 N H .
设是群G到群G的一个同态满射 , 则在之下 G的正规子群的像是 G的一个正规子群 , G的 正规子群的逆象是 G的一个正规子群 .
2014-4-9 18:39
四、商群
G / N {aN | a G} N G 关于 aN bN ( ab ) N 做成群.
2014-4-9 18:39
五 商群的应用
定理5 设G是一个pn阶有限交换群,其中p是一个素数,则 G有p阶元素,从而有p阶子群. 证:
北大离散数学ppt课件
2020/6/2
《集合论与图论》第5讲
35
特殊关系(续)
设A为任意集合, 则可以定义P(A)上的: 包含关系:
A = { <x,y> | xA yA xy } 真包含关系:
A = { <x,y> | xA yA xy }
2020/6/2
第5讲 二元关系的基本概念 北京大学
内容提要 1. 有序对与卡氏积 2. 二元关系 3. 二元关系的基本运算
2020/6/2
《集合论与图论》第5讲
1
有序对与卡氏积
有序对(有序二元组) 有序三元组, 有序n元组 卡氏积 卡氏积性质
2020/6/2
《集合论与图论》第5讲
2
有序对(ordered pair)
D
A
A
C
BC
B
A(BC) = (AB)(AC) ACBDABCD
2020/6/2
《集合论与图论》第5讲
16
例题1(证明(2))
(2) 若A, 则ABAC BC. 证明: () 若 B=, 则 BC.
设 B, 由A, 设xA. y, yB<x,y>AB
<x,y>AC xAyC yC. BC
2020/6/2
2020/6/2
《集合论与图论》第5讲
14
例题1
例题1: 设A,B,C,D是任意集合, (1) AB= A= B= (2) 若A, 则 ABAC BC. (3) AC BD ABCD,
并且当(A=B=)(AB)时, ABCD ACBD.
2020/6/2
《集合论与图论》第5讲
15
卡氏积图示
2m2
2020/6/2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f:G1G2, 且x,yG1,f(xy)=f(x)f(y)
实例:
(1) 整数加群<Z,+>的自同态:
fc(x)=cx,c 为给定整数
(2) 模 n 加群<Zn,>的自同态:
fp(x)=(px)modn, p=0,1,…,n-1
2020/6/16
同态性质的证明
证明 (1)kerf⊴ G1 (2)a,bG1, f(a)=f(b) akerf = bkerf
证: (1)显然 kerf 非空. a,bkerf,
f(ab-1) = f(a)f(b)-1 = e2e2-1=e2 ab-1kerf kerf 为 G1 的子群,下面证明正规性.
第六节 正规子群与商群
正规子群及判定 定义 判别定理 判别法
商群 定义及其实例 性质
2020/6/16
商群的性质
性质:|G/H|=[G:H],商群的阶是|G|的因子 保持群 G 的性质:交换性,循环性等.
例 1 G 为有限 Abel 群,|G|=n, p | n, 则 G 中有 p 阶元. 证明思路:归纳法——商群满足条件推出原来群中性质.
fx:GG, fx(a)=xax-1
关系: EndG 为独异点 AutG 为群 InnG 为 AutG 的正规子群 IG=fe 属于 InnG
2020/6/16
gG1, akerf, f(gag-1) = f(g)f(a)f(g-1)= f(g)f(g-1) = f(e1)=e2 (2)f(a)=f(b) f(a)–1f(b)=e2 f(a-1b)=e2 a-1bkerf akerf=bkerf
2020/6/16
自同态与自同构
EndG:G 的自同态的集合 AutG:G 的自同构的集合 InnG:G 的内自同构的集合
(3) G1=<Z,+>,G2=<Zn,>,G1 到 G2 的满同态
f:ZZn, f(x)=(x)modn 说明:将群看成代数系统<G, o,-1,e>,则同态 f 满足:
2020/6/16
f(e1)=e2 ,f(x-1)=f(x)-1
同态映射的性质
同态保持元素的性质 f(e1)=e2,f(x-1)=f(x)-1,f 将生成元映到生成元 |f(a)| 整除 |a|,同构条件下,|f(a)| = |a|
归纳步骤. 假设 m<n 为真,证明对于 n 为真. 设|G|=n, 取 aG, ae, 寻找 p 阶元.
① p 整除|a|, 则 a|a|/ p 为 p 阶元. ② p 不整除 |a|, 令 H=<a>, 构造 G/H, |G/H|=m, p 整除 m.
G/H 中有 p 阶元 Hb, 导出 b 与 a 的关系 (Hb)p=H bpH bp=at
同态保持子代数的性质
H G1 f(H) G2 H⊴G1, f 为满同态,f(H)⊴G2 同态核的性质, kerf = {x | xG, f(x)=e2} kerf={e1} f 为单同态 kerf⊴G1,a,bG1, f(a)=f(b) akerf = bkerf 同态基本定理 (1)H 为 G 的正规子群,则 G/H 是 G 的同态像 (2)若 G’为 G 的同态像(f(G)=G’),则 G/kerf G’.