同底数幂的乘法练习题及答案
同底数幂的乘法练习题及答案
同底数幂的乘法-练习之勘阻及广创作一、填空题1.同底数幂相乘, 底数, 指数 . 2.A( )·a 4=a 20.(在括号内填数)3.若102·10m =102003, 则m=. 4.23·83=2n , 则n=.5.-a 3·(-a )5=; x ·x 2·x 3y=. 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n =.7.(a-b )3·(a-b )5=; (x+y )·(x+y )4=. 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,则m=________;若416a x x x =,则a=__________; 12. 若2,5m n a a ==,则m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;10×211=_________;a ·a m ·_________=a5m +115.(1)a ·a 3·a 5=(2)(3a)·(3a)=(3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2=(5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9二、选择题1. 下面计算正确的是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m =2. 81×27可记为( )A.39 B.73 C.63 D.1233. 若x y ≠,则下面多项式不成立的是( )A.22()()y x x y -=-B.33()x x -=-C.22()y y -=D.222()x y x y +=+4.下列各式正确的是( )A .3a 2·5a 3=15a 64·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 85.设a m =8, a n =16, 则a n m +=( )A .24 B.32 C6.若x 2·x 4·( )=x 16, 则括号内应填x 的代数式为( )A .x 10B. x 8C. x 4D. x 27.若a m=2,a n=3, 则a m+n=( ).A.5 B.6 C8.下列计算题正确的是( )m·a2=a2m3·x2·x=x5 C.x4·x4=2x4a+1·y a-1=y2a9.在等式a3·a2( )=a11中, 括号里面的代数式应当是( )78 C.a6510.x3m+3m+13m+x3 C.x3·x m+13m·x311:①(-a)3·(-a)2·(-a)=a6;②(-a)2·(-a)·(-a)4=a7;③(-a)2·(-a)3·(-a2)=-a7;④(-a2)·(-a3)·(-a)3=-a8.其中正确的算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一块长方形草坪的长是x a+1米, 宽是x b-1米a-ba+ba+b-1a-b+2 13.计算a-2·a4的结果是( )A.a-2B.a2 C.a-8D.a8 14.若x≠y, 则下面各式不能成立的是( )A.(x-y)2=(y-x)2B.(x-y)3=-(y-x)3C.(x+y)(x-y)=(x+y)(y-x)D.(x+y)2=(-x-y)2 15.a16可以写成()A.a8+a8B.a8·a2 C.a8·a8D.a4·a416.下列计算中正确的是( )A.a2+a2=a4 B.x·x2=x3C.t3+t3=2t6D.x3·x·x4=x717.下列题中不能用同底数幂的乘法法则化简的是( )A.(x+y)(x+y)2 B.(x-y)(x+y)2C.-(x-y)(y-x)2 D.(x-y)2·(x-y)3·(x-y)18. 计算200920082 B、 2 C、1-即是( ) A、200822D、20092-19.用科学记数法暗示(4×102)×(15×105)的计算结果应是( )A.60×107×107 C×108×1010三.判断下面的计算是否正确(正确打“√”, 毛病打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p2·(-p)4·(-p)3=(-p)9( )3.t m·(-t2n)=t m-2n( ) 4.p4·p4=p16( )5.m3·m3=2m3( ) 6.m2+m2=m4( )7.a2·a3=a6() 8.x2·x3=x5( )9.(-m)4·m3=-m7( )(1)(-2)3·23·(-2) (2)81×3n(3)x 2n+1·x n-1·x4-3n(4)4×2n+2-2×2n+12、计算题(1) 23x x x ⋅⋅ (2)23()()()a b a b a b -⋅-⋅-(3) 23324()2()x x x x x x -⋅+⋅--⋅ (4)122333m m m x x x x x x ---⋅+⋅-⋅⋅.(5)(101)4·(101)3; (6)(2x-y )3·(2x-y )·(2x-y )4; (7)a 1=m ·a 3-2a m ·a 4-3a 2·a 2+m . 3、计算并把结果写成一个底数幂的形式: (1)43981=⨯⨯(2)66251255=⨯⨯4.已知321(0,1)x x a a a a ++=≠≠, 求x5、62(0,1)xxp p p p p ⋅=≠≠, 求x6.已知x n -3·x n +3=x 10, 求n 的值.7.已知2m =4, 2n 2m +n 的值.8.若10,8abx x ==, 求a bx +9.一台电子计算机每秒可运行4×109次运算, 它工作5×102秒可作几多次运算?×107km, 冥王星和太阳的平均距离约是水星和太阳的平均距离的102倍, 那么冥王星和太阳的平均距离约为几多km?五、m=2,a n=3, 求a3m+2n的值.2011的个位数字. (1)x5·x3-x4·x4+x7·x+x2·x6(2)y2·y m-2+y·y m-1-y3·y m-34.已知:x=255, y=344,z=433, 试判断x、y、z的年夜小关系, 并说明理由 . 5.x m·x m+1+x m+3·x m-2+(-x)2·(-x)2m-1。
初中数学《同底数幂的乘法》专项习题(含答案)
同底数幂的乘法姓名:__________班级:__________考号:__________一 、选择题1.如果把()2x y -看作一个整体,下列计算正确的是( )A .()()()235222x y y x x y -⋅-=-B .()()()224222x y y x x y -⋅-=--C .()()()()23272222x y y x x y x y -⋅--=-D .()()()235222x y y x x y -⋅-=--二 、填空题 2.若3m a =,4n a =,求32m n a +的值为多少?3.计算:()()132()()n n y x x y x y y x +--+--= 4.已知:240x y +-=,那么1233x y -⋅的值为5.已知32131a a x x x x +⋅⋅=,则a 的值为6.在()222m m y y y -+⋅⋅=中,括号中应填的代数式是7.已知,3n a =,3m b =,则13m n ++的结果是8.已知:240x y +-=,则1233x y -的值为9.计算:()()2008200922-+-=10.已知:2n a =,3m a =,4k a =,则22n m k a +-的值为 .三 、解答题11.下列计算是否正确?错误的指出错误的原因,并加以改正. ⑴339a a a ⋅=;⑵4482a a a ⋅=;⑶336x x x +=;⑷22y y y ⋅=;⑸34x x x ⋅=;⑹236x x x ⋅=12.已知155a b ==-,n 为正整数,你能求出2222n n a b b +的值吗? 13.计算:⑴231122⎛⎫⎛⎫-⋅- ⎪ ⎪⎝⎭⎝⎭;⑵102a a a ⋅⋅;⑶()()()854x y y x x y -⋅-⋅-14.已知m 、n 是正整数,且3381m n ⋅=,求m 、n 的正整数对同底数幂的乘法答案解析一 、选择题1.D二 、填空题2.()()323232m n m n m n a a a a a +=⋅=⋅,当3m a =,4n a =时,原式3234432=⨯=3.()()()()13332()()0n n n n y x x y x y y x x y x y +++--+--=--+-=4.1221333x y x y -+-⋅=,240x y +-=,24x y ∴+=,2133327x y +-∴==5.96.3m y +7.3ab8.279.20082-10.当2n a =,3m a =,4k a =时,22223()()4n m k n m k a a a a +-=⋅÷=三 、解答题 11.(1)不正确,指数应是相加而不是相乘,应改为336a a a ⋅=(2)不正确,错在将系数也相加了,应改为448a a a ⋅=(3)不正确,336x x x +=是整式的加法,应改为3332x x x +=(4)不正确,y 的指数是1而不是0,应改为23y y y ⋅=(5)正确(6)不正确,指数相加而不是相乘,应改为235x x x ⋅=12.()222222n n n a b b ab ++=,当()222222n n n a b b ab ++=时,原式221515n +⎡⎤⎛⎫=⨯-= ⎪⎢⎥⎝⎭⎣⎦13.⑴511232⎛⎫-=- ⎪⎝⎭;⑵13a ;⑶()17x y --14.∵3381m n ⋅= ∴433m n +=,∵m 、n 都是正整数∴13x n =⎧⎨=⎩或22m n =⎧⎨=⎩或31m n =⎧⎨=⎩。
同底数幂的乘法练习题及标准答案
同底数幕的乘法-练习、填空题1. 同底数幕相乘,底数,指数2. A)• a4=a20.(在括号内填数)3. 若102• 1O m=1O 2003,则m=.4. 23• 83=2n,则n=.5. -a3• (-a) 5= ;x• x2• x3y=.6. a5• a n+a3• a n 2- a • a n 4+a2• a n 3二.7. (a-b) 3• (a-b) 5 = ;(x+y) • (x+y) 4 =.8. 10m110n1 = 4 5, 6(6)= .9. x2x3xx4=_2(x y) (x y)5 =_ _.10. 103100 10100 100 10010000 10 10= .11.若a m 3 4a a ,贝y m=_ 若x4x a x16,则a=。
12.若a m n2,a5,则a m n =13. _________________ -32X 33= _________; - (- a)2 = _____________ ; (-x)2• (-x)3= ; (a+ b) • (a+ b)4- ._________ ?0.510x 211 = _______ ; a a m•= a5m+12 3 4 5(6)4(m+n) • (m+n) -7(m+n)(m+n) +5(m+n)=14. a4 - = a3 - = a9二、选择题1. 下面计算正确的是()A . b3b2b6; B . x3x3x6; C . a4a2a6; D . mm5m615. (1)a • a3• a5= (2)(3a) • (3a)=⑶X m x m1X m13 2 24 5(4)(x+5) • (x+5) = (5)3a • a +5a • a =2. 81 X 27 可记为()A. 93 B. 37 C. 36 D. 3123. 若x y,则下面多项式不成立的是()A. (y x)2(x y)2B. ( x)3x3C. ( y)2y2D. (x y)2x2y24. 下列各式正确的是( )A. 3a2• 5a3=15a6B.-3x4•(-2x2)=-6x6C. 3x3• 2x4=6x12D.(-b)3•(-b)5=b85. 设a m=8,a n=16,则a mn=( )A .24 B.32 C.64 D.1286. 若x2• x4• ( ) =x16,则括号内应填x的代数式为( )A. x10B. x8C. x4 D. x27. 若a m= 2,a n= 3,贝S a m+= ( ).A.5 B.6 C.8 D.98. 下列计算题正确的是()A.a m a2= a2m B.x3 x2 x = x5 C.x4 x 4=2x4 D.y a+1 y a-1= y2a9. 在等式a3 a"( )= a11中,括号里面的代数式应当是()A.a7B.a8 C.s6D.a510. x3m+3可写成()A3x m+1B.x3m+x3 C.x3 x m+1D.x3m x311:①(-a)3 (-a)2 (-a)二a6。
同底数幂乘法练习题含详细答案解析
《同底数幂的乘法》习题1.下列各式中,计算过程正确的是( ) A .x 3+x 3=x 3+3=x 6 B .x 3·x 3=2x 3C .x ·x 3·x 5=x 0+3+5=x 8D .x 2·(-x )3=-x 2+3=-x 5 2.计算(-2)2009+(-2)2010的结果是( )A .22019B .22009C .-2D .-22010 3.当a <0,n 为正整数时,(-a )5·(-a )2n 的值为( ) A .正数 B .负数 C .非正数 D .非负数4.一个长方体的长为4×103厘米,宽为2×102厘米,高为2.5×103厘米,则它的体积为( ) 立方厘米.(结果用科学记数法表示)A .2×109B .20×108C .20×1018D .8.5×108 5.下面计算正确的是( )A .326b b b =;B .336x x x +=;C .426a a a +=;D .56mm m = 6.81×27可记为( ) A.39; B.73; C.63; D.1237.若x y ≠,则下面多项式不成立的是( )A.22()()y x x y -=-; B.33()()y x x y -=--;C.22()()y x x y --=+; D.222()x y x y +=+8.计算:(-2)3·(-2)2=______. 9.计算:a 7·(-a )6=_____.10.计算:(x +y )2·(-x -y )3=______.11.计算:(3×108)×(4×104)=_______.(结果用科学记数法表示) 12.(一题多解题)计算:(a -b )2m-1·(b -a )2m·(a -b )2m+1,其中m 为正整数.13. 计算并把结果写成一个底数幂的形式:①43981⨯⨯;②66251255⨯⨯14.一个长方形农场,它的长为3×107m,宽为5×104m,试求该农场的面积.(结果用科学记数法表示)15.木星是太阳系九大行星中最大的一颗,木星可以近似地看作球体,已知木星的半径大约是7×104km,木星的体积大约是多少km3( 取3.14)?参考答案1.答案:D解析:【解答】x3+x3=2x3,所以A错误;x3·x3=x3+3=x6,所以B错误;x·x3·x5=x1+3+5=x9,所以C 错误;x 2·(-x )3=x 2·(-x 3)=-(x 2·x 3)=-x 2+3=-x 5.所以D 是正确的. 故选D .【分析】根据合并同类项、同底数幂的乘法,可得答案. 2.答案:B解析:【解答】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)] =-22009×(-1)=22009, 故选B .【分析】根据提取公因式的方法计算 3.答案:A解析:【解答】(-a )5·(-a )2n =(-a )2n+5, 因为a <0,所以-a >0,所以(-a )2n+5>0,故选A . 【分析】运用同底数幂的乘法计算得出答案. 4.答案:A解析:【解答】长主体的体积为4×103×2×102×2.5×103=20×108=2×109(立方厘米), 因为用a ×10n 表示一个大于10的数时,1≤a <10,n 是正整数,故选A . 【分析】先根据题意列出4×103×2×102×2.5×103再运用同底数幂的乘法计算. 5.答案:D解析:【解答】A 应为b 5所以A 错误; B 应为2x 3所以B 错误; C 不能就算所以C 错误. 故选D .【分析】根据同底数幂相乘,底数不变,指数相加即可求 6.答案:B解析:【解答】81×27=37,故选B .【分析】先化为底数是3的同底数的幂,在运用法则计算 7.答案:D解析:【解答】A.22()()y x x y -=-正确; B.33()()y x x y -=--正确;C.22()()y x x y --=+正确; D.222()x y x y +=+错误故选D .【分析】根据奇数次幂,偶数次幂的性质得出答案. 8.答案:-32解析:【解答】(-2)3·(-2)2=(-2)5=-25=-32.【分析】运用同底数幂的乘法计算. 9.答案:a解析:【解答】a 7·(-a )6=a 7·a 6=a 7+6=a 13. 【分析】运用同底数幂的乘法计算. 10.答案:-(x +y )5解析:【解答】(x +y )2·(-x -y )3=(x +y )2·[-(x +y )] 3 =(x +y )2·[-(x +y )3]=-[(x +y )2·(x +y )3]=-(x +y )5. 【分析】先画出同底数幂的乘法,在运用法则计算. 11.答案:1.2×1013解析:【解答】(3×108)×(4×104)=3×108×4×104=12×1012=1.2×1013. 【分析】先把3与4相乘,108与104相乘,再求积 12.答案:(a -b )6m , (b -a )2m 解析:【解答】① 因为m 为正整数,所以2m 为正偶数,则(b -a )2m =(a -b )2m ,(a -b )2m -1·(b -a )2m ·(a -b )2m+1 =(a -b )2m -1·(a -b )2m ·(a -b )2m+1=(a -b )2m-1+2m+2m+1=(a -b )6m .② 因为m 为正整数,所以2m -1,2m +1都是正奇数, 则(a -b )2m -1=-(b -a )2m -1,(a -b )2m+1=-(b -a )2m+1, (a -b )2m -1·(b -a )2m ·(a -b )2m+1=[-(b -a )2m -1] ·(b -a )2m ·[-(b -a )2m+1] =(b -a )2m-1+2m+2m+1=(b -a )2m .【分析】在转化为同底数幂的过程中,要根据指数的奇偶性讨论符号问题. 13.答案:310,513解析:【解答】①424103333⨯⨯=,②436135555⨯⨯= 【分析】先确定同底数,化成同底数幂的形式再计算. 14.答案:1.5×1012m 2解析:【解答】3×107×5×104=15×1011=1.5×1012(m 2) 答:该农场的面积是1.5×1012m 2.【分析】根据题意列出式子3×107×5×104再计算. 15.答案:1.44×1015km 3 解析:【解答】 V=43πR 3=43π×(7×104)3=43π×73×1012≈43×3.14×73×1012≈1436×1012≈1.44×1015(km3)答:木星的体积大约是1.44×1015km3.【分析】根据球的体积公式V=43πR3,将木星看作球,即可求出结果.。
同底数幂的乘法练习题及答案
同底数幂的乘法练习题及答案基础题一.选择题1.x2+5可以写成()A.x2.x5 B.x2.x5 C.2x.x5 D.2x.5x2.x n . x n+1等于()A.x2n.x5 B.x2n+1.x C.x2n+1 D.2x n.x3.a.a6等于()A.7a B.a a C.a7 D.a.a4.(-2)4×(-2)3等于()A.(-2)12 B.4×(-2)C.(-2)7 D.12×(-2)5.x m.x3m+1等于()A.x m.3m+1B.x4m+1C..x m D.x m.x26.下面计算正确的是()A.b5· b5= 2b5B.b5 + b5 = b10C.x5·x5 = x25D.y5· y5 = y107.下面计算错误的是()A. c . c3=c4B.m.m3 =4mC. x5 .x20 = x25D.y3 . y5 = y88. a·a2m+2等于()A. a3mB.2a2m+2C.a2m+3 D.a m+a2m9.(x+y)3·(x+y)4等于().A.7 (x+y)(x+y)B.(x+y)3 +(x+y)4C.(x+y)7 D.12(x+y)10.x5+n 可以写成()A. x5 .x nB.x5 +x nC.x+x nD.5x n11.(2a+b)3(2a+b)m-4等于()A. 3(2a+b)m-4B.(2a+b)m-1C. (2a+b)m-7D.(2a+b)m12.(2a-b)3(2a-b)m-4等于()A.3(2a-b)m-4B.(2a-b)m-1C.(2a-b)m-7D.(2a-b)m13.(2a)3(2a)m等于()A.3(2a)m-4B.(2a)m-1C.(2a)m+3D.(2a)m+114.a n·a m等于()A a m-n B.a mn C.a m +a+n D.a m+n15.x a+n 可以写成()A.x a .x nB.xa +x nC.x+x nD.ax n二.填空题.16.8 = 2x,则 x = ;17.8 × 4 = 2x,则 x = ;18.27×9×3= 3x,则 x = .19. y4.y3.y2.y=y10,则x =20. -a(-a)4(-a)b =a8,则b=三.计算题21 x p(-x)2p -x2p (p为正整数)22 32×(-2)2n(-2)(n为正整数)23.(2a+b)3(2a+b)m-4(2a+b)2n+124.(x—y)2(y—x)525.(x-y)2(y-x)3(x-y)2a(a为正整数)精选题1.下列计算正确的是()A.2a+5a=7a B.2x﹣x=1C.3+a=3a D.x2•x3=x62.下列运算正确的是()A.2a+3b=5ab B.5a﹣2a=3aC.a2•a3=a6 D.(a+b)2=a2+b23.下列计算结果正确的是()A.2a3+a3=3a6B.(﹣a)2•a3=﹣a6C.(﹣)﹣2=4 D.(﹣2)0=﹣14.下列计算正确的是()A.|﹣2|=﹣2 B.a2•a3=a6C.(﹣3)﹣2=D. =35.下列运算正确的是()A.a2•a3=a6 B.﹣2(a﹣b)=﹣2a﹣2bC.2x2+3x2=5x4D.(﹣)﹣2=46.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A.B.C. D.a2014﹣1同底数幂的乘法练习题及答案基础题1 A2 C3 C 4.C 5.B 6.D 7.B. 8 C 9 C 10.A 11 B 12 B 13 C 14 D 15 A16. 3 17 . 5 18.6 19.4 20.321.x p(-x)2p -x2p =x3p-2p =x p22.32×(-2)2n(-2)=-9×22n+123.(2a+b)3(2a+b)m-4(2a+b)2n+1=(2a+b)3+m-4+2n+1=(2a+b)m+2n24.(x—y)2(y—x)5=(y—x)5+2=(y—x)725.(x-y)2(y-x)3(x-y)2a=(y-x)2+3+2a=(y-x)5+2a精选题1.A;2.B;3.C;4.C;5.D;6.B;。
人教版八年级数学上册《幂的运算》专项练习题-附含答案
人教版八年级数学上册《幂的运算》专项练习题-附含答案一.同底数幂的乘法1.已知2m•2m•8=211则m=4.试题分析:将已知中的2m•2m•8化为同底数的幂然后利用同底数幂的乘法法则进行计算再根据指数相同列式求解即可.答案详解:解:2m•2m•8=2m•2m•23=2m+m+3∵2m•2m•8=211∴m+m+3=11解得m=4.所以答案是4.2.已知2x+3y﹣2=0 求9x•27y的值.试题分析:直接利用幂的乘方运算法则将原式变形进而化简得出答案.答案详解:解:∵2x +3y ﹣2=0∴2x +3y =2∴9x •27y =32x •33y =32x +3y =32=9.3.已知3x +2=m 用含m 的代数式表示3x ( )A .3x =m ﹣9B .3x =m 9C .3x =m ﹣6D .3x =m 6 试题分析:根据同底数幂的乘法法则解答即可.答案详解:解:∵3x +2=3x ×32=m∴3x =m 9. 所以选:B .二.同底数幂的除法4.已知:3m =2 9n =3 则3m ﹣2n = 23 .试题分析:先利用幂的乘方变为同底数幂 再逆用同底数幂的除法求解.答案详解:解:∵9n =32n =3∴3m ﹣2n =3m ÷32n =23所以答案是:23.5.已知m =154344 n =54340 那么2016m ﹣n = 1 . 试题分析:根据积的乘方的性质将m 的分子转化为以3和5为底数的幂的积 然后化简从而得到m =n 再根据任何非零数的零次幂等于1解答.答案详解:解:∵m =154344=34⋅54344=54340 ∴m =n∴2016m ﹣n =20160=1. 所以答案是:1.6.已知k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2 则9a ÷27b = 9 . 试题分析:先将9a ÷27b 变形 再由k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2分别得出a b c 的关系式 然后联立得方程组 整体求得(2a ﹣3b )的值 最后代入将9a ÷27b 变形所得的式子即可得出答案.答案详解:解:9a ÷27b=(32)a ÷(33)b=(3)2a ﹣3b∵k a =4 k b =6 k c =9∴k a •k c =k b •k b∴k a +c =k 2b∴a +c =2b ①;∵2b +c •3b +c =6a ﹣2∴(2×3)b +c =6a ﹣2∴b +c =a ﹣2②;联立①②得:{a +c =2b b +c =a −2∴{c =2b −a c =a −2−b∴2b ﹣a =a ﹣2﹣b∴2a ﹣3b =2∴9a ÷27b=(3)2a ﹣3b=32=9.所以答案是:9.三.幂的乘方与积的乘方(注意整体思想的运用)7.已知2m =a 32n =b m n 为正整数 则25m +10n = a 5b 2 .试题分析:根据积的乘方与幂的乘方及同底数幂的乘法的运算法则解答.答案详解:解:∵2m =a 32n =b∴25m +10n =(2m )5•(25)2n =(2m )5•322n =(2m )5•(32n )2=a 5b 2所以答案是:a 5b 2.8.计算:(﹣0.2)100×5101= 5 .试题分析:根据幂的乘方与积的乘方运算法则 将所求的式子变形为(﹣0.2×5)100×5再求解即可.答案详解:解:(﹣0.2)100×5101=(﹣0.2)100×5100×5=(﹣0.2×5)100×5=5所以答案是:5.9.若x+3y﹣3=0 则2x•8y=8.试题分析:根据已知条件求得x=3﹣3y然后根据同底数幂的乘法法则进行解答.答案详解:解:∵x+3y﹣3=0∴x=3﹣3y∴2x•8y=23﹣3y•23y=23=8.所以答案是:8.四.幂的运算中的规律10.阅读材料:求1+2+22+23+24+…+22017+22018的值.解:设S=1+2+22+23+24+…+22017+22018①将等式两边同时乘 2 得2S=2+22+23+24+25+…+22018+22019②②﹣①得2S﹣S=22019﹣1 即S=22019﹣1所以1+2+22+23+24+…+22017+22018=22019﹣1.请你仿照此法计算:(1)1+2+22+23+24+…+29+210;(2)1+3+32+33+34+…+3n﹣1+3n(其中n为正整数).试题分析:(1)直接利用例题将原式变形进而得出答案;(2)直接利用例题将原式变形进而得出答案.答案详解:解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘2得:2S=2+22+23+24+…+210+211②②﹣①得2S﹣S=211﹣1即S=211﹣1∴1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n①将等式两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②②﹣①得3S﹣S=3n+1﹣1即S=12(3n+1﹣1)∴1+3+32+33+34+…+3n=12(3n+1﹣1).11.(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)根据上面的猜想可以知道:20082009>20092008.试题分析:先要正确计算(1)中的各个数根据计算的结果确定所填的符号观察所填符号总结规律.答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)∵n =2008>3∴20082009>20092008.12.求1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.试题分析:依据12=1−12 12+14=1−14 12+14+18=1−18 …可得规律12+14+18+⋯+12200=1−12200 进而得到1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.答案详解:解:∵12=1−1212+14=1−1412+14+18=1−18…12+14+18+⋯+12200=1−12200∴1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200=1+12+14+18+⋯+12200=1+1−12200=2−12200.13.探究:22﹣21=2×21﹣1×21=2( 1 )23﹣22= 2×22﹣1×22 =2( 2 )24﹣23= 2×23﹣1×23 =2( 3 )……(1)请仔细观察 写出第4个等式;(2)请你找规律 写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.试题分析:(1)根据给出的内容 直接可以仿写25﹣24=2×24﹣1×24=24(2)2n +1﹣2n =2×2n ﹣1×2n =2n(3)将原式进行变形 即提出负号后 就转化为原题中的类型 利用(1)(2)的结论 直接得出结果.答案详解:解:探究:22﹣21=2×21﹣1×21=2123﹣22=2×22﹣1×22=2224﹣23=2×23﹣1×23=23(1)25﹣24=2×24﹣1×24=24;(2)2n+1﹣2n=2×2n﹣1×2n=2n;(3)原式=﹣(22020﹣22019﹣22018﹣22017﹣……﹣22﹣2)=﹣2.所以答案是:1;2×22﹣1×22;2;2×23﹣1×23;3五.新定义14.定义一种新运算(a b)若a c=b则(a b)=c例(2 8)=3 (3 81)=4.已知(3 5)+(3 7)=(3 x)则x的值为35.试题分析:设3m=5 3n=7 根据新运算定义用m、n表示(3 5)+(3 7)得方程求出x 的值.答案详解:解:设3m=5 3n=7依题意(3 5)=m(3 7)=n∴(3 5)+(3 7)=m+n.∴(3 x)=m+n∴x=3m+n=3m×3n=5×7=35.所以答案是:35.15.规定两数a b之间的一种运算记作(a b);如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:①(5 125)=3(﹣2 ﹣32)=5;②若(x 18)=﹣3 则x=2.(2)若(4 5)=a(4 6)=b(4 30)=c试探究a b c之间存在的数量关系;(3)若(m8)+(m3)=(m t)求t的值.试题分析:(1)①根据新定义的运算进行求解即可;②根据新定义的运算进行求解即可;(2)根据新定义的运算进行求解即可;(3)根据新定义的运算进行求解即可.答案详解:解:①∵53=125∴(5 125)=3∵(﹣2)5=﹣32∴(﹣2 ﹣32)=5所以答案是:3;5;②由题意得:x﹣3=1 8则x﹣3=2﹣3∴x=2所以答案是:2;(2)∵(4 5)=a(4 6)=b(4 30)=c ∴4a=5 4b=6 4c=30∵5×6=30∴4a•4b=4c∴a+b=c.(3)设(m8)=p(m3)=q(m t)=r ∴m p=8 m q=3 m r=t∵(m8)+(m3)=(m t)∴p+q=r∴m p+q=m r∴m p•m r=m t即8×3=t∴t=24.16.规定两数a b之间的一种运算记作(a b):如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:(3 27)=3(5 1)=0(2 14)=﹣2.(2)小明在研究这种运算时发现一个现象:(3n4n)=(3 4)小明给出了如下的证明:设(3n4n)=x则(3n)x=4n即(3x)n=4n所以3x=4 即(3 4)=x所以(3n4n)=(3 4).请你尝试运用这种方法证明下面这个等式:(3 4)+(3 5)=(3 20)试题分析:(1)分别计算左边与右边式子即可做出判断;(2)设(3 4)=x(3 5)=y根据同底数幂的乘法法则即可求解.答案详解:解:(1)∵33=27∴(3 27)=3;∵50=1∴(5 1)=0;∵2﹣2=1 4∴(2 14)=﹣2;(2)设(3 4)=x(3 5)=y则3x=4 3y=5∴3x+y=3x•3y=20∴(3 20)=x+y∴(3 4)+(3 5)=(3 20).所以答案是:3 0 ﹣2.六.阅读类---紧扣例题化归思想17.阅读下列材料:一般地n个相同的因数a相乘a⋅a⋯a︸n个记为a n.如2×2×2=23=8 此时3叫做以2为底8的对数记为log28(即log28=3).一般地若a n=b(a>0且a≠1 b>0)则n叫做以a为底b的对数记为log a b(即log a b=n).如34=81 则4叫做以3为底81的对数记为log381(即log381=4).(1)计算以下各对数的值:log24=2log216=4log264=6.(2)观察(1)中三数4、16、64之间满足怎样的关系式log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果你能归纳出一个一般性的结论吗?log a M+log a N=log a(MN);(a>0且a≠1 M>0 N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.试题分析:首先认真阅读题目准确理解对数的定义把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察不难找到规律:4×16=64 log24+log216=log264;(3)由特殊到一般得出结论:log a M+log a N=log a(MN);(4)首先可设log a M=b1log a N=b2再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.答案详解:解:(1)log24=2 log216=4 log264=6;(2)4×16=64 log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1log a N=b2则a b1=M a b2=N∴MN=a b1⋅a b2=a b1+b2∴b1+b2=log a(MN)即log a M+log a N=log a(MN).18.阅读下列材料:若a3=2 b5=3 则a b的大小关系是a>b(填“<”或“>”).解:因为a15=(a3)5=25=32 b15=(b5)3=33=27 32>27 所以a15>b15所以a >b .解答下列问题:(1)上述求解过程中 逆用了哪一条幂的运算性质 CA .同底数幂的乘法B .同底数幂的除法C .幂的乘方D .积的乘方(2)已知x 7=2 y 9=3 试比较x 与y 的大小.试题分析:(1)根据幂的乘方进行解答即可;(2)根据题目所给的求解方法 进行比较.答案详解:解:∵a 15=(a 3)5=25=32 b 15=(b 5)3=33=27 32>27 所以a 15>b 15 所以a >b 所以答案是:>;(1)上述求解过程中 逆用了幂的乘方 所以选C ;(2)∵x 63=(x 7)9=29=512 y 63=(y 9)7=37=2187 2187>512∴x 63<y 63∴x <y .19.阅读下面一段话 解决后面的问题.观察下面一列数:1 2 4 8 … 我们发现 这一列数从第二项起 每一项与它前一项的比都等于2.一般地 如果一列数从第二项起 每一项与它前一项的比都等于同一个常数 这一列数就叫做等比数列 这个常数叫做等比数列的比.(1)等比数列5 ﹣15 45 …的第四项是 ﹣135 .(2)如果一列数a 1 a 2 a 3 a 4 …是等比数列 且公比为q 那么根据上述的规定 有a 2a 1=q ,a 3a 2=q ,a 4a 3= …所以a 2=a 1q a 3=a 2q =(a 1q )q =a 1q 2 a 4=a 3q =(a 1q 2)q =a 1q 3 … a n = a 1q n ﹣1 (用含a 1与q 的代数式表示).(3)一个等比数列的第二项是10 第三项是20 则它的第一项是 5 第四项是 40 . 试题分析:(1)由于﹣15÷5=﹣3 45÷(﹣15)=﹣3 所以可以根据规律得到第四项.(2)通过观察发现 第n 项是首项a 1乘以公比q 的(n ﹣1)次方 这样就可以推出公式了;(3)由于第二项是10 第三项是20 由此可以得到公比然后就可以得到第一项和第四项.答案详解:解:(1)∵﹣15÷5=﹣3 45÷(﹣15)=﹣3∴第四项为45×(﹣3)=﹣135.故填空答案:﹣135;(2)通过观察发现第n项是首项a1乘以公比q的(n﹣1)次方即:a n=a1q n﹣1.故填空答案:a1q n﹣1;(3)∵公比等于20÷10=2∴第一项等于:10÷2=5第四项等于20×2=40.a n=a1q n﹣1.故填空答案:它的第一项是5 第四项是40.七.整式除法(难点)20.我阅读:类比于两数相除可以用竖式运算多项式除以多项式也可以用竖式运算其步骤是:(i)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).(ii)用竖式进行运算.(ii)当余式的次数低于除式的次数时运算终止得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求(5x4+3x3+2x﹣4)÷(x2+1)的商式和余式.解:答:商式是5x2+3x﹣5 余式是﹣x+1;我挑战:已知x4+x3+ax2+x+b能被x2+x+1整除请直接写出a、b的值.试题分析:我会做:根据“我阅读”的步骤计算填空即可;我挑战:用竖式计算令余式为0即可算出a b的值.答案详解:解:我阅读:(iii)余式是﹣x+1所以答案是:0x2﹣5x2﹣5x2﹣5x2+0x﹣5 ﹣x+1;我挑战:∴x4+x3+ax2+x+b=(x2+x+1)(x2+a﹣1)+(2﹣a)x+b﹣a+1 ∵x4+x3+ax2+x+b能被x2+x+1整除∴(2﹣a)x+b﹣a+1=0∴2﹣a=0且b﹣a+1=0解得a=2 b=1.21.计算:3a3b2÷a2+b•(a2b﹣3ab).试题分析:根据单项式的除法以及单项式乘以多项式进行计算即可.答案详解:解:原式=3ab2+a2b2﹣3ab2=a2b2.22.计算:(2a3•3a﹣2a)÷(﹣2a)试题分析:依据单项式乘单项式法则进行计算然后再依据多项式除以单项式法则计算即可.答案详解:解:原式=(6a4﹣2a)÷(﹣2a)=6a4)÷(﹣2a)﹣2a÷(﹣2a)=﹣3a3+1.八.巧妙比大小---化相同23.阅读下列解题过程试比较2100与375的大小.解:∵2100=(24)25=1625375=(33)25=2725而16<27∴2100<375请根据上述解答过程解答:比较255、344、433的大小.试题分析:根据幂的乘方的逆运算把各数化为指数相同、底数不同的形式再根据底数的大小比较即可.答案详解:解:∵255=3211344=8111433=6411且32<64<81∴255<433<344.24.比较20162017与20172016的大小我们可以采用从“特殊到一般”的思想方法:(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n>2时n n+1>(n+1)n;(3)根据上面的猜想则有:20162017>20172016(填“>”、“<”或“=”).试题分析:(1)通过计算可比较大小;(2)观察(1)中的符号归纳n n+1与(n+1)n(n为正整数)的大小关系;(3)由(2)中的规律可直接得到答案;答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65(2)通过观察可以看出;n≤2时n n+1<(n+1)n;n>2时n n+1>(n+1)n;(3)由(2)得到的结论;2016>2∴20162017>20172016.所以答案是:(1)<<>>;≤2 >2;>.25.(1)用“>”、“<”、“=”填空:35<3653<63(2)比较下列各组中三个数的大小并用“<”连接:①41086164②255344433.试题分析:(1)根据底数为大于1的正数时底数相同指数越大幂越大和指数相同时底数越小幂越小填空即可;(2)①先把这3个数化为底数都为2的幂比较大小;②根据(a m)n=a mn(m n是正整数)的逆运算把三个数化为指数相同的数再比较底数的大小即可.答案详解:解:(1)∵3>1∴35<36所以答案是:<;∵1<5<6∴53<63所以答案是:<;(2)①∵410=(42)5=220164=(42)4=21686=218∵220>218>216∴164<86<410;②∵255=(25)11344=(34)11433=(43)11又∵25=32<43=64<34=81∴255<433<344.九.幂的运算的综合提升26.已知5a=2b=10 求1a +1b的值.试题分析:想办法证明ab=a+b即可.答案详解:解:∵5a=2b=10∴(5a)b=10b(2b)a=10a∴5ab=10b2ab=10a∴5ab•2ab=10b•10a∴10ab=10a+b∴ab=a+b∴1a+1b=a+bab=127.已知6x=192 32y=192 则(﹣2017)(x﹣1)(y﹣1)﹣2=−1 2017.试题分析:由6x=192 32y=192 推出6x=192=32×6 32y=192=32×6 推出6x﹣1=32 32y ﹣1=6 可得(6x﹣1)y﹣1=6 推出(x﹣1)(y﹣1)=1 由此即可解决问.答案详解:解:∵6x=192 32y=192∴6x=192=32×6 32y=192=32×6∴6x﹣1=32 32y﹣1=6∴(6x﹣1)y﹣1=6∴(x﹣1)(y﹣1)=1∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=−1 201728.已知三个互不相等的有理数既可以表示为1 a a+b的形式又可以表示0 bab的形式试求a2n﹣1•a2n(n≥1的整数)的值.试题分析:由于ba 有意义则a≠0 则应有a+b=0 则ba=−1 故只能b=1 a=﹣1了再代入代数式求解.答案详解:解:由题可得:a≠0 a+b=0∴ba=−1 b=1∴a=﹣1又∵2n﹣1为奇数﹣1的奇数次方得﹣1;2n为偶数﹣1的偶数次方得1∴a2n﹣1•a2n=(﹣1)2n﹣1×(﹣1)2n=﹣1×1=﹣1.29.化简与求值:(1)已知3×9m×27m=321求(﹣m2)3÷(m3•m2)m的值.(2)已知10a=5 10b=6 求①102a+103b的值;②102a+3b的值.试题分析:(1)先根据幂的乘方的运算法则求出m的值然后化简(﹣m2)3÷(m3•m2)m并代入求值;(2)根据幂的乘方以及同底数幂的乘法法则求解.答案详解:解:(1)3×9m×27m=3×32m×33m=35m+1=321∴5m+1=21解得:m=4则(﹣m2)3÷(m3•m2)m=﹣m6﹣5m将m=4代入得:原式=﹣46﹣20=﹣4﹣14;(2)①102a+103b=(10a)2+(10b)3=52+63=241;②102a+3b=(10a)2•(10b)3=25×216=5400.。
同底数幂的乘法(含答案
同底数幂的乘法(含答案)A卷:基础题一、选择题1.下列各式中,计算过程正确的是()A.x3+x 3=x3+3=x6B.x3•x3=X2x3C.x•x3•x5= x0+3+5=x8D.x2•(-x)3=-x2+3=-x5 2.计算(-2)2009+(-2)2010的结果是()A.22019B.22009C.-2 D.-22010 3.当a〈0,n为正整数时,(-a)5•(-a)2n的值为()A.正数B.负数C.非正数D.非负数4.一个长方体的长为4×103厘米,宽为2×102厘米,高为2.5×103厘米,则它的体积为()立方厘米.(结果用科学记数法表示) A.2×109B.20×108C.20×1018D.8。
5×108二、填空题5.计算:(-2)3•(-2)2=______.6.计算:a7•(-a)6=_____.7.计算:(x+y)2•(-x-y)3=______.8.计算:(3 ×108)×(4×104)=_______.(结果用科学记数法表示)三、计算题9.计算:x m•x m+x2•x2m-2.四、解答题10.一个长方形农场,它的长为3×107m,宽为5×104m,试求该农场的面积.(结果用科学记数法表示)B卷:提高题一、七彩题1.(一题多解题)计算:(a-b)2m-1•(b-a)2m•(a-b)2m+1,其中m为正整数.2.(一题多变题)已知x m=3,x n=5,求x m+n.(1)一变:已知x m=3,x n=5,求x2m+n;(2)二变:已知x m=3,x n=15,求x n.二、知识交叉题3.(科内交叉题)已知(x-y)•(x-y)3•(x-y)m=(x-y)12,求(4m2+2m+1)-2(2m2-m-5)的值.4.(科外交叉题)据生物学统计,一个健康的成年女子体内的血量一般不低于4×103毫升,每毫升血中红细胞的数量约为4。
同底数幂的乘法专项练习50题(有答案)
同底数幂的乘法专项练习50题(有答案)一、 知识点:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________; (3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a⋅=)()()(+(5)若m 、n 均为正整数,则a m ·a n =_______,即同底数幂相乘,底数______,指数_____.二、专项练习: (1)=⋅64a a(2)=⋅5b b(3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c(5)=⋅⋅p n ma a a (6)=-⋅12m t t (7)=⋅+q qn 1(8)=-+⋅⋅112p p n n n(9)=-⋅23b b (10)=-⋅3)(a a(11)=--⋅32)()(y y (12)=--⋅43)()(a a(13)=-⋅2433 (14)=--⋅67)5()5((15)=--⋅32)()(q q n(16)=--⋅24)()(m m(17)=-32 (18)=--⋅54)2()2((19)=--⋅69)(b b (20)=--⋅)()(33a a(21) 111010m n +-⨯= (22) 456(6)-⨯-=(23)234x x xx += (24)25()()x y x y ++=(25)31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=(26) 若34ma a a =,则m=________; 若416ax x x =,则a=__________;若2345yxx x x x x =,则y=______; 若25()x a a a -=,则x=_______.(27) 若2,5m na a ==,则m na +=________.(28)19992000(2)(2)-+-=(29)2323()()()()x y x y y x y x -⋅-⋅-⋅- (30)23()()()a b c b c a c a b --⋅+-⋅-+(31)2344()()2()()x x x x x x -⋅-+⋅---⋅; (32)122333m m m x xx x x x ---⋅+⋅-⋅⋅。
同底数幂的乘法专项练习50题(有答案)
+
(44)已知 2m=4,2n=16.求 2m n 的值.
+
(45).若 x a 10, x b 8 ,求 x a b
(46)已知 am=2,an=3,求 a3m+2n 的值.
(47)试确定 32011 的个位数字.
(48)x5·x3-x4·x4+x7·x+x2·x6
(49)y2·ym-2+y·ym-1-y3·ym-3
② p p p ( p 0, p 1) 。
x 6 2x
(35)计算 (
1 2 3 4 5 5 x y )2 x y 。 2
n 1
(36)若 5 x ( x
3) 5 x n 9 ,求 x 的值.
(37)(-b)2· (-b)3+b· (-b)4
(38)a·a6+a2·a5+a3·a4
4 2 4 10
(27)10 ; (30)-(a-b-c)6
(28). 2
1999
(31)2x5 (33) ① 3 3 3 3 ,
②5 5 5 5
4 3 6
13
(34)
①x+3=2x+1,x=2
②x+6=2x,x=6 (36)15x=-9,x=-
(35)-8x y (37)0
(50)已知:x=255,y=344,z=433,试判断 x、y、z 的大小关系,并说明理由 .
(51)xm·xm+1+xm+3·xm-2+(-x)2·(-x)2m-1
答案:
一、知识点: (1)底数,指数 (2) c
3
(3)4 个-2 相乘,4 个 2 相乘的积的相反数
同底数幂的乘法练习题及答案
同底数幂的乘法-练习之南宫帮珍创作一、填空题1.同底数幂相乘,底数, 指数 。
2.A( )·a 4=a 20.(在括号内填数)3.若102·10m =102003,则m=. 4.23·83=2n ,则n=.5.-a 3·(-a )5=; x ·x 2·x 3y=. 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n =.7.(a-b )3·(a-b )5=; (x+y )·(x+y )4=. 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,则m=________;若416a x x x =,则a=__________; 12. 若2,5m n a a ==,则m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;10×211=_________;a ·a m ·_________=a5m +115.(1)a ·a 3·a 5=(2)(3a)·(3a)=(3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2=(5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9二、选择题1. 下面计算正确的是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m =2. 81×27可记为( )A.39 B.73 C.63 D.1233. 若x y ≠,则下面多项式不成立的是( )A.22()()y x x y -=-B.33()x x -=-C.22()y y -=D.222()x y x y +=+4.下列各式正确的是( )A .3a 2·5a 3=15a 64·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 85.设a m =8,a n =16,则a n m +=( )A .24 B.32 C6.若x 2·x 4·( )=x 16,则括号内应填x 的代数式为( )A .x 10B. x 8C. x 4D. x 27.若a m=2,a n=3,则a m+n=( ).A.5 B.6 C8.下列计算题正确的是( )m·a2=a2m3·x2·x=x5 C.x4·x4=2x4a+1·y a-1=y2a9.在等式a3·a2( )=a11中,括号里面的代数式应当是( )78 C.a6510.x3m+3m+13m+x3 C.x3·x m+13m·x311:①(-a)3·(-a)2·(-a)=a6;②(-a)2·(-a)·(-a)4=a7;③(-a)2·(-a)3·(-a2)=-a7;④(-a2)·(-a3)·(-a)3=-a8.其中正确的算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一块长方形草坪的长是x a+1米,宽是x b-1米a-ba+ba+b-1a-b+2 13.计算a-2·a4的结果是( )A.a-2B.a2 C.a-8D.a8 14.若x≠y,则下面各式不克不及成立的是( )A.(x-y)2=(y-x)2B.(x-y)3=-(y-x)3C.(x+y)(x-y)=(x+y)(y-x)D.(x+y)2=(-x-y)2 15.a16可以写成()A.a8+a8B.a8·a2 C.a8·a8D.a4·a416.下列计算中正确的是( )A.a2+a2=a4 B.x·x2=x3C.t3+t3=2t6D.x3·x·x4=x717.下列题中不克不及用同底数幂的乘法法则化简的是( )A.(x+y)(x+y)2 B.(x-y)(x+y)2C.-(x-y)(y-x)2 D.(x-y)2·(x-y)3·(x-y)18. 计算200920082 B、 2 C、1-等于( ) A、200822D、20092-19.用科学记数法暗示(4×102)×(15×105)的计算结果应是( )A.60×107×107 C×108×1010三.判断下面的计算是否正确(正确打“√”,错误打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p2·(-p)4·(-p)3=(-p)9( )3.t m·(-t2n)=t m-2n( ) 4.p4·p4=p16( )5.m3·m3=2m3( ) 6.m2+m2=m4( )7.a2·a3=a6() 8.x2·x3=x5( )9.(-m)4·m3=-m7( )(1)(-2)3·23·(-2) (2)81×3n(3)x 2n+1·x n-1·x4-3n(4)4×2n+2-2×2n+12、计算题(1) 23x x x ⋅⋅ (2)23()()()a b a b a b -⋅-⋅-(3) 23324()2()x x x x x x -⋅+⋅--⋅ (4)122333m m m x x x x x x ---⋅+⋅-⋅⋅。
(完整版)同底数幂的乘法练习题与答案
同底數冪の乘法-練習一、填空題1.同底數冪相乘,底數 , 指數 。
2.A ( )·a 4=a 20.(在括號內填數) 3.若102·10m =102003,則m= . 4.23·83=2n ,則n= .5.-a 3·(-a )5= ; x ·x 2·x 3y= . 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b )3·(a-b )5= ; (x+y )·(x+y )4= . 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,則m=________;若416a x x x =,則a=__________; 12. 若2,5m n a a ==,則m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;0.510×211=_________;a ·a m ·_________=a 5m +115.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9 二、選擇題1. 下面計算正確の是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m =2. 81×27可記為( )A.39 B.73 C.63 D.1233. 若x y ≠,則下面多項式不成立の是( )A.22()()y x x y -=-B.33()x x -=-C.22()y y -=D.222()x y x y +=+ 4.下列各式正確の是( )A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 8 5.設a m =8,a n =16,則a n m +=( )A .24 B.32 C.64 D.128 6.若x 2·x 4·( )=x 16,則括號內應填x の代數式為( )A .x 10B. x 8C. x 4D. x 2 7.若a m =2,a n =3,則a m+n =( ).A.5 B.6 C.8 D.9 8.下列計算題正確の是( )A.a m ·a 2=a 2m B.x 3·x 2·x =x 5 C.x 4·x 4=2x 4 D.y a+1·y a-1=y 2a 9.在等式a 3·a 2( )=a 11中,括號裏面の代數式應當是( )A.a 7B.a 8 C.a 6D.a 5 10.x 3m+3可寫成( ).A.3x m+1 B.x 3m +x 3 C.x 3·x m+1 D.x 3m ·x 311:①(-a)3·(-a)2·(-a)=a 6;②(-a)2·(-a)·(-a)4=a 7;③(-a)2·(-a)3·(-a 2)=-a 7;④(-a 2)·(-a 3)·(-a)3=-a 8.其中正確の算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一塊長方形草坪の長是x a+1米,寬是x b-1米(a 、b 為大於1の正整數),則此長方形草坪の面積是( )平方米.A.x a-b B.x a+b C.x a+b-1 D.x a-b+2 13.計算a -2·a 4の結果是( )A .a -2B .a 2C .a -8D .a 814.若x ≠y ,則下面各式不能成立の是( ) A .(x -y )2=(y -x )2B .(x -y )3=-(y -x )3C .(x +y )(x -y )=(x +y )(y -x )D .(x +y )2=(-x -y )215.a 16可以寫成( )A .a 8+a 8 B .a 8·a 2 C .a 8·a 8D .a 4·a 416.下列計算中正確の是( )A .a 2+a 2=a 4B .x ·x 2=x 3C .t 3+t 3=2t 6D .x 3·x ·x 4=x 717.下列題中不能用同底數冪の乘法法則化簡の是( ) A .(x +y )(x +y )2B .(x -y )(x +y )2C .-(x -y )(y -x )2D .(x -y )2·(x -y )3·(x -y )18. 計算2009200822-等於( ) A 、20082 B 、 2 C 、1 D 、20092- 19.用科學記數法表示(4×102)×(15×105)の計算結果應是( ) A .60×107 B .6.0×107 C .6.0×108 D .6.0×1010 三.判斷下面の計算是否正確(正確打“√”,錯誤打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p 2·(-p)4·(-p)3=(-p)9( ) 3.t m ·(-t 2n )=t m-2n ( ) 4.p 4·p 4=p 16( ) 5.m 3·m 3=2m 3( ) 6.m 2+m 2=m 4( ) 7.a 2·a 3=a 6( ) 8.x 2·x 3=x 5( ) 9.(-m )4·m 3=-m 7( ) 四、解答題1.計算(1)(-2)3·23·(-2) (2)81×3n (3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+1 2、計算題(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅- (3) 23324()2()x x x x x x -⋅+⋅--⋅ (4) 122333m m m x x x x x x ---⋅+⋅-⋅⋅。
同底数幂的乘法测试(含答案)
1.1同底数幂的乘法测试题参考答案一.选择题1.计算x•x4的结果是()A.x4B.x5C.2x4D.2x5【分析】根据同底数幂的乘法法则计算即可.【解答】解:x•x4=x1+4=x5.故选:B.2.已知:2m=1,2n=3,则2m+n=()A.2B.3C.4D.6【分析】根据同底数幂的乘法法则解答即可.【解答】解:∵2m=1,2n=3,∴2m+n=2m•2n=1×3=3.故选:B.3.下列各式中计算结果为x5的是()A.x3+x2B.x3•x2C.x•x3D.x7﹣x2【分析】根据同底数幂的乘法和合并同类项即可求解.【解答】解:A.不是同类项不能合并,所以A选项不符合题意;B.x3•x2=x5.符合题意;C.x•x3=x4,不符合题意;D.不是同类项不能会并,不符合题意.故选:B.4.若x n=3,x m=6,则x m+n=()A.9B.18C.3D.6【分析】根据同底数幂相乘,底数不变,指数相加,据此计算即可.【解答】解:∵x n=3,x m=6,∴x m+n=x m•x n=6×3=18.故选:B.5.若3×32m×33m=311,则m的值为()A.2B.3C.4D.5【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加可得1+2m+3m =11,再解即可.【解答】解:∵3×32m×33m=311,∴31+2m+3m=311,∴1+2m+3m=11,m=2,故选:A.6.下列计算正确的是()A.x3•x3=2x3B.x•x3=x3C.x3•x2=x6D.x3•x4=x7【分析】同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.据此解答即可.【解答】解:A.x3•x3=x6,故A错误;Bx•x3=x4,故B错误;C.x3•x2=x5,故C错误;D.x3•x4=x7,故D正确;故选:D.7.(a+b)3(a+b)4的值为()A.a7+a7B.(a﹣b)7C.(a+b)7D.(a+b)12【分析】根据同底数幂的乘法法则计算即可.【解答】解:(a+b)3(a+b)4=(a+b)3+4=(a+b)7故选:C.8.若整数n满足2n•2n•2n=8,则n的值为()A.1B.2C.3D.6【分析】根据同底数幂的法则有:2n•2n•2n=2n+n+n=23n=8,即可求解;【解答】解:2n•2n•2n=2n+n+n=23n=8,∴3n=3,∴n=1;故选:A.9.计算(﹣a)3•a3的正确结果是()A.a5B.a6C.﹣a5D.﹣a6【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:(﹣a)3•a3=﹣a6.故选:D.10.若2x+5y﹣3=0,则4x•32y的值为()A.8B.﹣8C.D.﹣【分析】根据同底数幂的乘法法则进行计算即可.【解答】解:4x•32y=22x•25y=22x+5y=23=8,故选:A.二.填空题11.已知3x=5,3y=2,则3x+y的值是10.【分析】原式逆用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵3x=5,3y=2,∴原式=3x•3y=10,故答案为:1012.计算:﹣x2•(﹣x)3=x5.【分析】根据同底数幂的乘法法则计算即可.【解答】解:﹣x2•(﹣x)3=﹣x2•(﹣x3)=x2+3=x5.故答案为:x513.若3x+2=36,则=2.【分析】根据同底数幂的乘法的性质等式左边可以转化为3x×32=36,即可求得3x的值,然后把3x的值代入所求代数式求解即可.【解答】解:原等式可转化为:3x×32=36,解得3x=4,把3x=4代入得,原式=2.故答案为:2.14.若a m=3,a m+n=9,则a n=3.【分析】根据同底数幂的除法法则,用a m+n除以a m,求出a n的值是多少即可.【解答】解:a n=a m+n÷a m=9÷3=3.故答案为:3.15.已知2x+3y﹣5=0,则9x•27y的值为243.【分析】先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【解答】解:∵2x+3y﹣5=0,∴2x+3y=5,∴9x•27y=32x•33y=32x+3y=35=243.故答案为:243.三.解答题16.计算:(1)()5×()7;(2)﹣b2•b5;(3)34×36×3【分析】(1)根据同底数幂的乘法解答即可;(2)根据同底数幂的乘法解答即可;(3)根据同底数幂的乘法解答即可.【解答】解:(1);(2)﹣b2•b5=﹣b7;(3)34×36×3=311.17.计算:(1)a3•a2•a4+(﹣a)2;【分析】(1)根据同底数幂的乘法的法则计算即可;【解答】解:a3•a2•a4+(﹣a)2=a9+a2;18.y1119. 1520. 已知a m=2,a n=8,求a m+n.【分析】同底数幂相乘,指数相加.【解答】解:a m+n=a m•a n=2×8=16.故a m+n的值是16.21.已知2a=5,2b=1,求2a+b+3的值.【分析】根据同底数幂的乘法法则计算即可.【解答】解:∵2a=5,2b=1,∴2a+b+3=2a×2b×23=5×1×8=40.22.计算:(x﹣y)2(y﹣x)3解:(x﹣y)2(y﹣x)3=(x﹣y)5上面的解答过程正确吗?若不正确,请说明理由,并给出正确的解题过程.【分析】先变成同底数的幂的乘法,再根据同底数的幂的乘法法则求出即可.【解答】解:不正确,理由是:(x﹣y)2(y﹣x)3=(x﹣y)2[﹣(x﹣y)3]=﹣(x﹣y)5.。
同底数幂的乘法练习题及答案
同底数幂的乘法练习(一)一、填空题1.同底数幂相乘,底数,指数。
2.A( )·a=a.(在括号内填数)3.若10·10=10,则m=.4.2·8=2,则n=.5.a·(a)=; x·x·x y=.6.a·a+a·a–a·a+a·a=.7.(ab)·(ab)=;(x+y)·(x+y)=.8. =__ _____,= __.9. =_ =_ _.10. =__ __.11. 若,则m=________;若,则a=__________;12. 若,则=________.13.32×33=_________;(a)2=_________;(x)2·(x)3=_________;(a+b)·(a+b)4=_________;0.510×211=_________;a·am·_________=a5m+115.(1)a·a3·a5=(2)(3a)·(3a)=(3)(4)(x+5)3·(x+5)2=(5)3a2·a4+5a·a5=(6)4(m+n)2·(m+n)37(m+n)(m+n)4+5(m+n)5=14.a4·_________=a3·_________=a9二、选择题1. 下面计算正确的是( )A.; B.; C.; D.2. 81×27可记为( )A. B. C. D.3. 若,则下面多项式不成立的是( )A. B. C. D.4.下列各式正确的是()A.3a·5a=15a B.3x·(2x)=6x C.3x·2x=6x D.(b)·(b)=b5.设a=8,a=16,则a=()A.24 B.32 C.64 D.1286.若x·x·()=x,则括号内应填x的代数式为()A.x B. x C. x D. x7.若am=2,an=3,则am+n=( ).A.5 B.6 C.8 D.98.下列计算题正确的是( )A.am·a2=a2m B.x3·x2·x=x5 C.x4·x4=2x4 D.ya+1·ya1=y2a9.在等式a3·a2( )=a11中,括号里面的代数式应当是( )A.a7B.a8 C.a6D.a510.x3m+3可写成( ).A.3xm+1B.x3m+x3 C.x3·xm+1D.x3m·x311:①(a)3·(a)2·(a)=a6;②(a)2·(a)·(a)4=a7;③(a)2·(a)3·(a2)=a7;④(a2)·(a3)·(a)3=a8.其中正确的算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一块长方形草坪的长是xa+1米,宽是xb1米(a、b为大于1的正整数),则此长方形草坪的面积是( )平方米.A.xab B.xa+b C.xa+b1 D.xab+213.计算a2·a4的结果是( )A.a2B.a2 C.a8D.a814.若x≠y,则下面各式不能成立的是( )A.(xy)2=(yx)2B.(xy)3=(yx)3C.(x+y)(xy)=(x+y)(yx)D.(x+y)2=(xy)215.a16可以写成( )A.a8+a8B.a8·a2 C.a8·a8D.a4·a416.下列计算中正确的是( )A.a2+a2=a4 B.x·x2=x3 C.t3+t3=2t6D.x3·x·x4=x717.下列题中不能用同底数幂的乘法法则化简的是( )A.(x+y)(x+y)2 B.(xy)(x+y)2 C.(xy)(yx)2 D.(xy)2·(xy)3·(xy)18. 计算等于( ) A、 B、 2 C、 D、19.用科学记数法表示(4×102)×(15×105)的计算结果应是( )A.60×107 B.6.0×107 C.6.0×108 D.6.0×1010三.判断下面的计算是否正确(正确打“√”,错误打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.p2·(p)4·(p)3=(p)9( )3.tm·(t2n)=tm2n( ) 4.p4·p4=p16( )5.m3·m3=2m3( ) 6.m2+m2=m4( )7.a2·a3=a6( ) 8.x2·x3=x5( )9.(m)4·m3=m7( )四、解答题1.计算(1)(2)3·23·(2) (2)81×3n(3)x2n+1·xn1·x43n (4)4×2n+22×2n+12、计算题(1) (2)(3) (4) 。
同底数幂的乘法(含标准答案
同底数幂的乘法(含答案)A卷:基础题一、选择题1.下列各式中,计算过程正确的是()A.x3+x3=x3+3=x6 B.x3•x3=X2x3C.x•x3•x5=x0+3+5=x8D.x2•(-x)3=-x2+3=-x52.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010 3.当a<0,n为正整数时,(-a)5•(-a)2n的值为()A.正数B.负数C.非正数D.非负数4.一个长方体的长为4×103厘米,宽为2×102厘米,高为2.5×103厘米,则它的体积为()立方厘米.(结果用科学记数法表示)A.2×109B.20×108C.20×1018 D.8.5×108二、填空题5.计算:(-2)3•(-2)2=______.6.计算:a7•(-a)6=_____.7.计算:(x+y)2•(-x-y)3=______.8.计算:(3×108)×(4×104)=_______.(结果用科学记数法表示)三、计算题9.计算:x m•x m+x2•x2m-2.四、解答题10.一个长方形农场,它的长为3×107m,宽为5×104m,试求该农场的面积.(结果用科学记数法表示)B卷:提高题一、七彩题1.(一题多解题)计算:(a-b)2m-1•(b-a)2m•(a-b)2m+1,其中m为正整数.2.(一题多变题)已知x m=3,x n=5,求xm+n.(1)一变:已知xm=3,xn=5,求x2m+n;(2)二变:已知x m=3,x n=15,求x n.二、知识交叉题3.(科内交叉题)已知(x-y)•(x-y)3•(x-y)m=(x-y)12,求(4m2+2m+1)-2(2m2-m-5)的值.4.(科外交叉题)据生物学统计,一个健康的成年女子体内的血量一般不低于4×103毫升,每毫升血中红细胞的数量约为4.2×106个,•问一个健康的成年女子体内的红细胞一般不低于多少个?(结果用科。
(完整版)同底数幂的乘法(含答案
同底数幂的乘法(含答案)A卷:基础题一、选择题1.下列各式中,计算过程正确的是()A.x3+x 3=x3+3=x6B.x3•x3=X2x3C.x•x3•x5= x0+3+5=x8D.x2•(-x)3=-x2+3=-x5 2.计算(-2)2009+(-2)2010的结果是()A.22019B.22009C.-2 D.-22010 3.当a<0,n为正整数时,(-a)5•(-a)2n的值为()A.正数B.负数C.非正数D.非负数4.一个长方体的长为4×103厘米,宽为2×102厘米,高为2.5×103厘米,则它的体积为()立方厘米.(结果用科学记数法表示)A.2×109B.20×108C.20×1018 D.8.5×108二、填空题5.计算:(-2)3•(-2)2=______.6.计算:a7•(-a)6=_____.7.计算:(x+y)2•(-x-y)3=______.8.计算:(3 ×108)×(4×104)=_______.(结果用科学记数法表示)三、计算题9.计算:x m•x m+x2•x2m-2.四、解答题10.一个长方形农场,它的长为3×107m,宽为5×104m,试求该农场的面积.(结果用科学记数法表示)B卷:提高题一、七彩题1.(一题多解题)计算:(a-b)2m-1•(b-a)2m•(a-b)2m+1,其中m为正整数.2.(一题多变题)已知x m=3,x n=5,求x m+n.(1)一变:已知x m=3,x n=5,求x2m+n;(2)二变:已知x m=3,x n=15,求x n.二、知识交叉题3.(科内交叉题)已知(x-y)•(x-y)3•(x-y)m=(x-y)12,求(4m2+2m+1)-2(2m2-m-5)的值.4.(科外交叉题)据生物学统计,一个健康的成年女子体内的血量一般不低于4×103毫升,每毫升血中红细胞的数量约为4.2×106个, 问一个健康的成年女子体内的红细胞一般不低于多少个?(结果用科学记数法表示)三、实际应用题5.我国自行设计制造的“神舟六号”飞船进入圆形轨道后的飞行速度为7.9 ×103米/秒,它绕地球一周需5.4×103秒,问该圆形轨道的一周有多少米?(结果用科学记数法表示)四、经典中考题6.计算:-m2•m3的结果是()A.-m6B.m5C.m6D.-m57.计算:a•a2=______.C卷:课标新型题1.(规律探究题)a3表示3个a相乘,(a3)4表示4个_____相乘, 因此(a3)4 = ____=____,由此推得(a m)n=______,其中m,n都是正整数,并利用你发现的规律计算:(1)(a4)5;(2)[(a+b)4] 5.2.(条件开放题)若a m•a n=a11,其中m,n都是正整数,请写出三组符合条件的m,n的值.参考答案A卷1.D 点拨:x3+x3=2x3,所以A错误;x3•X3=x3+3=x6,所以B错误;x•x3•x5=x1+3+5=x9,所以C错误;2.B 点拨:(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B,注意逆用同底数幂的乘法法则.3.A 点拨:(-a)5•(-a)2n=(-a)2n+5,因为a<0,所以-a>0,所以(-a)2n+5>0,故选A.4.A 点拨:长主体的体积为4×103×2×102×2.5×103=20×108=2×109(立方厘米),因为用a×10n表示一个大于10的数时,1≤a<10,n是正整数,故选A.二、5.-32 点拨:(-2)3•(-2)2=(-2)5=-25=-32.6.a 点拨:a7•(-a)6=a7•a6=a 7+6=a13.7.-(x+y)5点拨:(x+y)2•(-x-y)3=(x+y)2•[-(x+y)] 3=(x+y)2•[-(x+y)3]=-[(x+y)2• (x+y)3]=-(x+y)5.8.1.2×1013点拨:(3×108)×(4×104)=3×108×4×104=12×1012=1.2×1013.三、9.解:x m•x m+x2•x2m-2=x m+m+x2+2m-2=x2m+x2m=2x2m.10.解:3×107×5×104=15×1011=1.5×1012(m2).答:该农场的面积是1.5×1012m2.B卷一、1.解法一:因为m为正整数,所以2m为正偶数,则(b-a)2m=(a-b)2m,(a-b)2m-1•(b-a)2m•(a-b)2m+1 =(a-b)2m-1•(a-b)2m•(a-b)2m+1=(a-b)2m-1+2m+2m+1=(a-b)6m.解法二:因为m为正整数,所以2m-1,2m+1都是正奇数,则(a-b)2m-1=-(b-a)2m-1,(a-b)2m+1=-(b-a)2m+1,(a-b)2m-1•(b-a)2m•(a-b)2m+1=[-(b-a)2m-1] •(b-a)2m•[-(b-a)2m+1]=(b-a)2m-1+2m+2m+1=(b-a)2m.点拨:在转化为同底数幂的过程中,要根据指数的奇偶性讨论符号问题.2.解:因为x m=3,x n=5,所以x m+n=x m•x n=3×5=15.(1)因为x m=3,x n=5,所以x2m+n=x2m•x n=x m•x m•x n=3×3×5=45.(2)因为x m+n=x m•x n=15,把x m=3代入得3•X n=15,所以x n=5.二、3.解:由(x-y)•(x-y)3•(x-y)m=(x-y)1+3+ m= (x-y)4+m=(x-y)12,得4+m=12,m=8.(4m2+2m+1)-2(2m2-m-5)=4m2+2m+1-4m2+2m+10=4m+11,当m=8时,原式=4×8+11=32+11=43.点拨:先根据同底数幂的乘法法则求出m的值,再化简多项式,最后代入求值.4.解:4×103×4.2×106=16.8×109=1.68×1010(个).答:一个健康的成年女子体内的红细胞一般不低于1.68×1010个.三、5.解:7.9×103×5.4×103=42.66×106=4.266×107(米).答:该圆形轨道的一周有4.266×107米.四、6.D .7.a 点拨:a•a2=a1+2=a3,注意a的指数为1,不要遗漏.C卷1.解:a3;a3•a3•a3•a3;a12;a mn(1)(a4)5=a 4×5=a20,(2)[(a+b)4] 5=(a+b)4×5=(a+b)20.2.解:m=1,n=10;m =2,n=9;m=3,n=8.点拨:本题答案不唯一,只要写出三组符合条件的m,n的值即可.。
同底数幂的乘法练习题及答案
同底数幕的乘法-练习一、填空题1. _________________________ 同底数幕相乘,底数, 指数。
2. A)• a4=a20.(在括号内填数)3. 若102• 1O m=1O 2003,则m=_.4. 23• 83=2n,则n= ____ .5. __________________ -a3• (-a) 5= _________ ; x • x2• x3y= .6. _____________________________________ a5• a n+a3• a n 2- a • a n 4+a2• a n 3= _______________________________________ .7. _________________________ (a-b) 3• (a-b) 5= __________ ; (x+y) • (x+y) 4 = .8m 1 n 1 4 5.10 10 = ______________ ,6 ( 6) = __. _9. x2x3xx4=_ (x y)2(x y)5 = ____ . \.10. 103100 10 100 100 100 10000 10 10= ____________ .11. 若a m a3a4,贝U m= ______ 若x4x a x16,贝U a= __________ ;12. __________________________ 若a m2,a n5,则a m n= .13. -32X 33= __________ ;-(- a)2 = ________ ; (-x)2• (-x)3= ________ ; (a+ b)「(a + b)4 - •_________ ?x 211 = ________ ;a a m _______= a5m+1/3 515. (1)a • a • a = (2)(3a) • (3a)= ⑶X m x m1x m1______________(4)(x+5) 3• (x+5) 2= (5)3a 2• a4+5a • a5= ___(6)4(m+n) 2• (m+n)3-7(m+n)(m+n) 4+5(m+n)5 = _____14. a4 - = a3 - = a9二、选择题3. 若x y ,则下面多项式不成立的是4. 下列各式正确的是(C ^m+1 3m x 3 11:①(-a)3 (-a)2 (-a)=a 6;②(-a)2 (-a) (-a)4=a 7;③(-a)2 (-a)3 (-a 2)=-a 7;④(-a 2) (-a 3) (-a)3=-a 8.其中正确的算式是()A.①和②B.②和③C.①和④D.③和④12 一块长方形草坪的长是x a+1米,宽是x b-1米(a 、b 为大于1的正整数),则此长方形草坪 的面积是()平方米.+b +b-1+213.计算a -2 • a 4的结果是()A . a -21.下面计算正确的是()A . b 3b 2b6;B3 3 6 4.x x x ; C . a a6; D5mm2. 81 X 27 可记为()A.93 B. 37 C. 36D.312A. (y x)2 (x y)2B. ( x)3 x 3C. (y)2 y 2D. (x y)2A . 3a 2 • 5a 3=15a 6 4 • (-2x 2) =-6x 6 C . 3x 3 • 2x 4=6x 12D. (-b ) -(-b ) 5=b 85. 设 a m =8, a n =16,则 a m n = ( ) A . 24 .326.若x 2 • x 4 • ( ) =x 16,则括号内应填x 的代数式为( x 10B. x 8C. X 4D. x 27. 若 a = 2,a = 3,贝卩 a =( )..6 C8. F 列计算题正确的是()a 2= a 2mx 2x =5C x 4= 2x 4 +1y a-1 =y 2a9. 在等式a 3 a 2( )= a 11中, 括号里面的代数式应当是()8 C 3m 可写成( ).+1 3m +3 a 2C . a -8D . a 814. 若X M y ,则下面各式不能成立的是A . (x- y)2 = (y- x)2(x-y)3=- (y- x)3 C . (x + y)(x-y) = (x + y)(y-x)D . (x + y)2= (-x-y)2 15. a 16 可以写成()A . a 8 + a 8 B . a 8 •a 2 C . a 8 • a 8D . a 4 • a 416. F 列计算中正确的是()A . a 2+ a 2= a 4B . x • x 2 = x 3C . t 3+13= 2t 6D . x 3 • x • x 4= x 73、计算并把结果写成一个底数幕的形式 (1) 349 81 = _________________ (2) _______17. F 列题中不能用同底数幕的乘法法则化简的是 ()A . (x + y)(x + y)2B . (x-y)(x + y)2C . -(x-y)(y-x)2D . (x-y)2 (x-y)3 (x-y)18. 计算 22009 22008 等于()A 、22008B 、 2C 、1D 、^2009219. 用科学记数法表示(4X 102) X (15 x 105)的计算结果应是( A . 60X 107B . x 107C .x 108三•判断下面的计算是否正确(正确打“"”1. (3x+2y) 3- (3x+2y) 2= (3x+2y) 5( D . x 10103. t m - (-t2n) = t m-2n ()45. m 3-m 3= 2m 3()7. a 2 - a 3 = a 6()9. (- m)4 - m 3= - m 7( )四、解答题 1.计算(1)(-2)3 23 (-2)(3)x 2n+1 x n-1 x 4-3n2、 计算题(1) x x 2 x 3(2)⑶ 2 3(x) x2x 3 ( x)2 x x 4⑷(5)(丄) 4 -(丄)3 ;10 10(7) a m1 - a 3-2a m - a 4-3a 2 - a m2.,错误打“X” ))2. -p 2. (-P ) 4 - (-p) 3= (-P ) 9()4416.P - P = P () 6 . m 2+ m 2= m 4() 8 . x 2 - x 3= x 5()(2)81 X (4)4 雷2-? x n+1(a b)(a b)2 (a b)3m 12m2c3m 3/x x x x 3 x x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同底數冪の乘法-練習 一、填空題1.同底數冪相乘,底數, 指數 。
2.A ()·a 4=a 20.(在括號內填數)3.若102·10m=102003,則m=.4.23·83=2n,則n=.5.-a 3·(-a )5=;x ·x 2·x 3y=.6.a 5·a n+a 3·a n2–a ·a n4+a 2·a n3=.7.(a-b )3·(a-b )5=;(x+y )·(x+y )4=.8. 10m110n1=_______,64(6)5=__.9. x 2x 3xx 4=_(xy)2(xy)5=__.10.10310010100100100 10000 10 10 =__ __.11. 若a ma 3a 4, 則若x 4x ax16 , 則 a=__________;m=________;12. 若a m 2,a n5,則a mn=________.13.-32×33=_________;-(- )2=_________;(-x ) 2·(- x )3=_________;( +)·( +aab a b)4=_________;0.510×211=_________;a ·a m·=a5m +115.(1)a ·a 3·a 5= (2)(3a)·(3a)=(3)X m X m1Xm1 (4)(x+5)3·(x+5)2=(5)3a2·a 4+5a ·a 5=(6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5=14.a 4· =a 3· =a 9二、選擇題1.下面計算正確の是()A .b 3b 2b 6;B .x 3x 3x 6;C .a 4 a 2a 6;D .mm 5m 62.81×27可記為()A.93B.37C.36D. 3123.若xy,則下面多項式不成立の是()A.(y x)2(x y)2B. ( x)3x3C. ( y)2y2D. (x y)2x2y24.下列各式正確の是()A.3a2·5a3=15a6 B.-3x 4·(-2x2)=-6x6C.3x3·2x4=6x12 D.(-b)3·(-b)5=b8 5.設a m=8,a n=16,則a mn=()A.24 B.32 C.64 D.1286.若x2·x4·()=x16,則括號內應填xの代數式為()A.x10B.x8C.x4D.x2 7.若a m=2,a n=3,則a m+n=( ).A.5 B.6 C.8 D.98.下列計算題正確の是( )A.a m·2=a2m B.x3·2·=x 5C.x4·4=2x4D.y a+1·a-1=y2aa xx x y9.在等式a3·2( )=a11中,括號裏面の代數式應當是( )A.a 7B.a8C.a6D.a5a10.x3m+3可寫成( ).A.3x m+1 B.x3m+x3 C.x 3·m+1 D.x3m·3x x11 :①(-a)3·(-a)2·(-a)=a6;②(-a)2·(-a)·(-a)4=a7;③(-a)2·(-a)3·(-a2)=-a7;④(-a2)·(-a3)·(-a)3=-a8.其中正確の算式是( )A. ①和②B.②和③C.①和④D.③和④12一塊長方形草坪の長是x a+1米,寬是x b-1米(a、b為大於1の正整數),則此長方形草坪の面積是()平方米.A.x a-b B.x a+bC.x a+b-1D.x a-b+213.計算a-2·a4の結果是()A.a-2B.a2 C .a-8D.a814.若x≠y,則下面各式不能成立の是( )A.(x-y)2=(y-x)2B.(x-y)3=-(y-x)3C.(x+y)(x-y)=(x+y)(y-x) D.(x+y)2=(-x-y)215.a16可以寫成( )A.a8+a8B.a8·a2 C .a8·a8D.a4·a416.下列計算中正確の是( )A.a2+a2=a4B.x·x2=x3C.t3+t3=2t6D.x3·x·x4=x717.下列題中不能用同底數冪の乘法法則化簡の是( )A.(x+y)(x+y)2B.(x-y)(x+y)2C.-(x-y)(y-x)2D.(x-y)2·(x-y)3·(x-y)18.計算2200922008等於( )A 、22008B、2 C 、1 D 、2200919.用科學記數法表示(4×102)×(15×105)の計算結果應是( )A.60×107B.6.0×107C.6.0×108D.6.0×1010三.判斷下面の計算是否正確(正確打“√”,錯誤打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5()2 .-p2·(-p)4·(-p) 3=(-p)9() 3.t m·(-t2n)=t m-2n() 4 .p4·p4=p16()3 3 3) 6 2 2 4)5.m·m=2m( .m+m=m(7.a2·a3=a6( ) 8 .x2·x3=x5()4 3 79.(-m)·m=-m()四、解答題1.計算(1)(-2) 3·3·(2)81 ×n2 (-2) 3(3)x2n+1·n-1 ·4-3n (4)4 ×2n+2-2×2n+1x x2、計算題(1) xx2x3(2) (ab)(a b)2(a b)3(3) (x)2x32x3(x)2xx4(4) x x m1 x2x m2 3 x3x m3。
(5)(1)4·(1)3;(6)(2x-y)3·(2x-y)·(2x-y)4;10 10(7)a m1·a3-2a m·a4-3a2·a m2.3、計算並把結果寫成一個底數冪の形式:(1) 349 81= (2) 625 125 56=4.已知a x3a2x1(a 0,a1),求x 7.已知2m=4,2n=16. 求2m+nの值.5、p x p6p2x(p0,p1) ,求x 8.若x a10,x b8,求x a b6.已知x n-3·x n+3=x10,求nの值.9.一臺電子計算機每秒可運行4×109次運算,它工作5×102秒可作多少次運算?10.水星和太陽の平均距離約為 5.79×107km,冥王星和太陽の平均距離約是水星和太陽の平均距離の102倍,那麼冥王星和太陽の平均距離約為多少km?五、1.已知a m=2,a n=3,求a3m+2nの值.2.試確定32011の個位數字.3.計算下列各式(1)x5·x3-x4·x4+x7·x+x2·x6(2)y2·y m-2+y·y m-1-y3·y m-34.已知:x=255,y=344,z=433,試判斷x、y、zの大小關系,並說明理由.5.x m·x m+1+x m+3·x m-2+(-x)2·(-x)2m-1一次函數同步練習選擇題1.已知,ab0,bcy a x a)0,則直線 b c經過の象限為((A)一、二、三.(B)一、二、四.(C)二、三、四.(D)一、二、四.2.點A(x1,y1)和點B(x2,y2)在同一直線ykx b上,且k0.若x1x2,則y1,y2の關系是()(A)y1y2.(B)y1y2.(C)y1y2.(D)無法確定.3.對於直線y kxb,若b減小一個單位,則直線將()(A)向左平移一個單位.(B)向右平移一個單位.(C)向上平移一個單位.(D)向下平移一個單位.4.若兩個一次函數y3x2與y2x 3の函數值同為正數,則xの取值範圍是()x 2x2x3x3 3.3.2.(A)(B)(C)2.(D)5.若直線y3x b與兩坐標軸圍成の三角形の面積為6,則bの值為()(A)6.(B)6.(C)3.(D)6.6.無論m為何實數,直線yx2m與y x4の交點不可能在()(A)第一象限.(B)第二象限.(C)第三象限.(D)第四象限.7.函數y x,y 2x4,y 3x 1の共同性質是()(A)它們の圖象不過第二象限.(B)都不經過原點.(C)y隨xの增大而增大.(D)y隨xの減小而增大.8.無論m取何值,函數ymx2m 2の圖象經過の一個確定の點の坐標為()(A)(0,2).(B)(1,3).(C)(2,4).(D)(2,4)二、填空題9.一次函數y 1x 13 の圖象與x軸の交點坐標是________,與y軸の交點坐標是---10.如果點(x,3)在連結點(0,8)和點(4,0)の線段上,那麼xの值為________.11.某一次函數の圖象經過點(1,3),且函數y隨xの增大而減小,請你寫出一個符合條件の函數解析式______________________.12.直線y2xb與x軸、y軸の正半軸分別交於A、B兩點,若OA+OB=12,則此直線の解析式為________________.13.一次函數y kx3,當x減少2時,yの值增加6,則函數の解析式為___________.14.一個長為120m,寬為100mの長方形場地要擴建成一個正方形場地,設長增加x(m),寬增加y(m),則y與x 之間の函數解析式為_______________.y6A3BCO3x15.一次函數y kxbの圖象經過A、B兩點,則△AOCの面積為___________.16.已知yy1y2,y1、y2與x都成正比例,且當x 1時,(第15題)y3,則y與x之間の函數關系為______________.三、解答題17.已知,直線y kxb經過點A(3,8)和B(6,4).求:(1)k和bの值;(2)當x3時,yの值.18.已知,函數y13kx2k1,試回答:3(1)k為何值時,圖象交x軸於點(4,0)?(2)k為何值時,y隨x增大而增大?(3)k為何值時,圖象過點(2,13).19.一次函數ykxbの圖象過點(y 1x3 2,5),並且與y軸相交於點P,直線 2與y軸相交於點Q,點Q與點P關於x軸對稱,求這個一次函數の解析式.20.如圖所示,是某校一電熱淋浴器水箱の水量y(升)與供水時間x(分)の函數關系.y(升)150(1)求y與xの函數關系式;(2)在(1)の條件下,求在30分鐘時水箱有多少升水?21.某地長途汽車客運公司規定旅客可以隨身攜帶一定重量の行李,如果超出規定,則需購買行李票,行李票費用y(元)是行李重量x(千克)の一次函數,如圖所示.求:(1)y與x之間の函數解析式;y(元)(2)旅客最多可免費攜帶行李多少千克?106O 6080x(千克)22.已知,點A(4,1),B(6,2),C(4,n)在同一條直線上.(1)試求直線ynxの解析式;(2)在x軸上找一點P,使PA+PB最短,求出滿足條件の點Pの坐標.23.如圖所示,是汽車行駛の路程s(千米)與時間t(分)函數關系圖.觀察圖中所提s(千米)供の信息,解答下列問題:40(1)汽車在前9分鐘內の平均速度是多少?12O 9 16 30 t(分)(2)汽車在中途停了多長時間?(3)當16t30時,求s與tの函數解析式.24.如圖,正方形ABCDの邊長是4,將此正方形置於平面直角坐標系xOy中,使AB落在x軸の正半軸上,C、D落在第一象限,經過點y 4x8交x軸於點E.Cの直線 3 3(1)求四邊形AECDの面積;(2)在坐標平面內,經過點Eの直線能否將正方形ABCD分成面積相等の兩部分?若能,求出這條直線の解析式,若不能,說明理由.yD CO A E B x25.某企業有甲、乙兩個長方體の蓄水池,將甲池中の水以每小時6立方米の速度注入乙池,甲、乙兩個蓄水池中水の深度y(米)與注水時間x(時)之間の函數圖象如圖所示,結合圖象回答下列問題:(1)分別求出甲、乙兩個蓄水池中水の深度y與注水時間x之間の函數關系式;y(米)(2)求注水多長時間甲、乙兩個蓄水池水の深4度相同;(3)求注水多長時間甲、乙兩個蓄水池の蓄水量相同.21O 3x(时)26.如圖,三人在相距10千米の兩地練習騎自行車,折線OPQ、線段MN和TS分別表示甲、乙和丙距某地の路程y與時間x之間の函數關系.已知,甲以18千米/時の速度走完y(千米)T Q N6千米後改變速度勻速前進,20分鐘到達終點.解答下列問題:10(1)求線段PQの函數解析式; 6P(2)求乙和丙從甲出發多少分鐘相遇,相遇點MO 1距甲出發地多少千米.6答案一、選擇題1.C2.B3.D4.A5.D6.C7.D8.D二、填空題9.(3,0),(0,1)10.2.511.y3x12.y2x813.y15.916.y3x三、解答題4k1 17.(1)3,4.(2)0.18.(1)k k1.(2)3.(3)Sx(时)3x 3 14.yx2054.19.y4xy 5x25 y 1x6.(2)6.22.(1)y3x.(2)3.20.(1) 2 .(2)100.21.(1) 514 420.24.(1)10.(2)y2x4.(3,0)23.(1)3.(2)7分鐘.(3)s2ty 223 25 x,乙:yx1.(2)5.(3)1.26.(1)y12x2.(2)54,25.(1)甲: 3 409.WORD 格式专业资料整理 单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善 教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。