CAE技术在橡胶悬置静刚度设计中的应用

CAE技术在橡胶悬置静刚度设计中的应用
CAE技术在橡胶悬置静刚度设计中的应用

CAE技术在橡胶悬置静刚度设计中的应用

橡胶悬置是指动力总成(包括发动机,离合器及变速器)与车架/底盘之间的弹性连接件,不仅可以减少发动机向车架传递的振动,降低整车振动和噪声,改善乘坐舒适性,而且可以喊小路面激励对动力总成的振动破坏,保证动力总成工作安全性,延长其使用寿命。

CAE技术在汽车零部件产品开发中的应用非常广泛,与传统的橡胶悬置设计方法相比,CAE设计不仅可以减少试制开模的次数,缩短产品开发周期,而且可以节约开发成本。

1 产品设计要求

图1所示为要求设计的橡胶悬置原模型结构,橡胶主体的内外表面分别与铸铁内管、外管共硫化。橡胶主体的主要尺寸包括高度、内径和外径。产品静刚度(K)性能主要对轴向(K X)和Y向(K Y)有要求,对Z向不作要求,具体数值见表1。

点击图片查看大图

图1 原悬置模型

表1 橡胶悬置静刚度要求

点击图片查看大图

2 原模型静刚度的有限元计算

2.1 橡胶主体的网格划分

利用HyperMesh中的spin功能将橡胶主体部分划分成六面体单元,如图2所示。将划分好的网格导出inp格式文件,提交ABAQUS作进一步分析。

点击图片查看大图

图2 原悬置橡胶主体的有限元模型

2.2 静刚度有限元计算

在ABAQUS中对有限元模型使用M-R模型描述其超弹性属性,采用邵尔A型硬度为70度的橡胶。

橡胶体内表面与铸铁内管硫化在一起,因此把该表面上所有的节点与所建立的一个参考点(一般取内表面的中心点)通过刚性连接耦合在一起,并以该参考点作为加载点,在加载点施加X方向的位移,通过计算可获得该点的反力。

外表面与铸铁外管硫化在一起,且该外管固定在一个安装孔内,因此,在进行边界条件定义时,可令外表面上所有的节点位移为零。

有限元计算完成后,可以得出X方向的位移及其对应的反力,得到的刚度曲线如图3所示。经计算K X 为559.3N·mm-1,小于产品该方向的静刚度要求。

点击图片查看大图

图3 有限元计算原悬置结构X方向刚度曲线

同理,计算出K Y为2111.2N·mm-1,大于产品该方向的静刚度要求。

有限元计算结果表明,原悬置结构静刚度不能满足产品性能要求,需要进行重新设计。

3 产品设计思路

选择综合物理性能较好的邵尔A型硬度为60度的橡胶。通过对原悬置模型的有限元计算结果分析可知,要满足产品的静刚度要求,需要提高K X、降低K Y。

3.1 悬置内管设计

提高悬置轴向刚度的方案有2个;一是使悬置内管中间部分外凸,如图4(a)所示;二是在悬置内管外围中间焊接一个环形铜板,如图图4(b)所示。

点击图片查看大图

图4 悬置内管改进设计方案

3.2 橡腔主体的优化设计

运用Hyperworks中的Optistruct模块,在节省材料的前提下,对橡胶主体进行优化设计,基于变密度法的连续体结构拓扑优化方法对其进行优化。单元相对密度范围为0.01~1。拓扑优化时,必须先确定设计区间和非设计区间。设计区间即需要拓扑优化的区域,本设计将橡胶主体作为设计区间。

由于目前Optistruct模块尚不支持超弹性材料,因此将橡胶材料的弹性模量(E)设置得比较小,使之可以产生较大的变形来近似模拟橡胶材料的特性。设置橡胶材料的E为1000MPa,泊松比为0.2。在橡胶主体的参考点施加的载荷为6000N,橡胶主体的拓扑优化有限元模型如图5所示。

点击图片查看大图

图5 拓扑优化有限元模型

利用Optisiruct模块求解器计算后,得出的拓扑优化结果如图6所示。

点击图片查看大图

图6 拓扑优化结果

将拓扑优化结果通过Optistruct模块提供的OSSmooth工具进行提取,它可将拓扑优化结果以iges格式直接输出,输出后的几何模型如图7所示。

点击图片查看大图

图7 经OSSmooth提取的几何模型

根据橡胶主体的拓扑优化结果,结合内管的设计方案,在NX中对原模型进行修改,得到初步改进设计模型,如图8所示。

点击图片查看大图

图8 初步改进设计模型

通过有限元计算,初步改进设计模型的K Y,偏低。继续对模型进行若干轮的修改和有限元计算验证后,最后根据内管设计方案的不同确定a和b两个模型,分别如图9和10所示,其静刚度有限元计算结果均满足产品要求。

点击图片查看大图

图9 最终改进模型a

点击图片查看大图

图10 最终改进模型b

4 验证试验

考虑到内管加工的难易程度及成本因素,最终决定选用模型b进行试制,试样在MTS831型弹性体试验机上进行静刚度测试。

试样静刚度实测值与仿真值的时比如表2所示。从表2可以看出,该橡胶悬置静刚度的仿真值与实测值相对误差均小于10%,静刚度有限元计算结果满足工程精度要求。

表2 橡胶悬置静刚度的实测值与仿真值对比

点击图片查看大图

5 结语

在橡胶悬置设计过程中,运用Hyperworks中的Optistruct模块对橡胶主体部分进行拓扑优化设计和静刚度仿真,在节省材料的前提下改进产品静刚度性能。改进产品静刚度实测值与仿真值较接近,满足产品的设计要求,对橡胶悬置的设计生产有一定的指导意义

结构的刚度计算

建筑力学行动导向教学案例教案提纲

模块六:静定结构的位移计算及刚度校核 6.1.1 杆系结构的位移 杆系结构在荷载或其它因素作用下,会发生变形。由于变形,结构上各点的位置将会移动,杆件的横载面会转动,这些移动和转动称为结构的位移。 图6-1 刚架的绝对位移图6-2刚架的相对位移 我们将以上线位移、角位移及相对位移统称为广义位移。 除荷载外,温度改变、支座移动、材料收缩、制造误差等因素,也将会引起位移,如图11.3(a) 和图11.3(b)所示。 图6-3其他因素引起的位移 6.1.2 计算位移的目的 在工程设计和施工过程中,结构的位移计算是很重要的,概括地说,计算位移的目的有以下三个方面: 1、验算结构刚度。即验算结构的位移是否超过允许的位移限制值。 2、为超静定结构的计算打基础。在计算超静定结构内力时,除利用静力平衡条件外,还 需要考虑变形协调条件,因此需计算结构的位移。 3、在结构的制作、架设、养护过程中,有时需要预先知道结构的变形情况,以便采取一 定的施工措施,因而也需要进行位移计算。 建筑力学中计算位移的一般方法是以虚功原理为基础的。本章先介绍虚功原理,然后讨论在荷载等外界因素的影响下静定结构的位移计算方法。 6.2.构件的变形与刚度校核 6.2.1轴心拉压变形 一、纵向变形 1、拉压杆的位移:等直杆在轴向外力作用下,发生变形,会引起杆上某点处在空间位 置的改变,即产生了位移△l。 2、计算公式

N N F F l l dx dx dx E EA EA σ ε?====??? 图6-4轴心受拉变形 EA l F l N =?—— EA 称为杆的拉压刚度 (4-2) 上式只适用于在杆长为l 长度N 、E 、A 均为常值的情况下, 即在杆为l 长度内变形是均匀的情况 [例6.2-1]某变截面方形柱受荷情况如图6-5所示,F=40KN 上柱高3m 边长为240mm,下柱高4m 边长为370mm ,E=0.03×105 Mpa 。试求:该柱顶面A 的位移。 解:1.绘内力图 图6-5 二、横向变形 1、横向变形 (公式6-1) 2.横向变形因数或泊松比 (公式6-2) 【例6.2-2】 一矩形截面钢杆,其截面尺寸b ×h =3mm ×80mm ,材料的E =200GPa 。经拉伸试验测得:在纵向100mm 的长度内,杆伸长了0.05mm ,在横向60mm 的高度内杆的尺寸缩小了0.0093mm ,试求:⑴ 该钢材的泊松比;⑵ 杆件所受的轴向拉力F P 。 解:(1)求泊松比。 求杆的纵向线应比ε 求杆的横向线应变ε′ 求泊松比μ (2)计算杆受到的轴向拉力 由虎克定律σ=ε·E 计算图示杆件在F P 作用下任一横截面上的正应力 σ=ε·E =5×10-4×200×103=100MPa 333 3 52522.4010310120104100.03102400.03103701.86BC BC AB AB AB BC AB BC N l N l l l l EA EA ?=?+?=+-???-???=+ ????=-求变形: a a d -1=?a a ?-= 'εε εν' =νεε-='4105100 05 .0-?==?= l l ε4 '1055.160 0093.0-?-=-=?=a a ε31.010 51055.14 4 '=??-==--εεμA F N = σ

动刚度与静刚度

动刚度与静刚度 静载荷下抵抗变形的能力称为静刚度,动载荷下抵抗变形的能力称为动刚度,即引起单位振幅所需要的动态力。 静刚度一般用结构的在静载荷作用下的变形多少来衡量,动刚度则是用结构振动的频率来衡量; 如果动作用力变化很慢,即动作用力的频率远小于结构的固有频率时,可以认为动刚度和静刚度基本相同。否则,动作用力的频率远大于结构的固有频率时,结构变形比较小,动刚度则比较大。 但动作用力的频率与结构的固有频率相近时,有可能出现共振现象,此时动刚度最小,变形最大。金属件的动刚度与静刚度基本一样,而橡胶件则基本上是不一样的,橡胶件的静刚度一般来说是非线性的,也就是在不同载荷下的静刚度值是不一样的;而金属件是线性的,也就是说基本上是各个载荷下静刚度值都是一样的; 橡胶件的动刚度是随频率变化的,基本上是频率越高动刚度越大,在低频时变化较大,到高频是曲线趋于平坦,另外动刚度与振动的幅值也有关系,同一频率下,振动幅值越大,动刚度越小 刚度 刚度 受外力作用的材料、构件或结构抵抗变形的能力。材料的刚度由使其产生单位变形所需的外力值来量度。各向同性材料的刚度取决于它的弹性模量E和剪切模量G(见胡克定律)。结构的刚度除取决于组成材料的弹性模量外,还同其几何形状、边界条件

等因素以及外力的作用形式有关。分析材料和结构的刚度是工程设计中的一项重要工作。对于一些须严格限制变形的结构(如机翼、高精度的装配件等),须通过刚度分析来控制变形。许多结构(如建筑物、机械等)也要通过控制刚度以防止发生振动、颤振或失稳。另外,如弹簧秤、环式测力计等,须通过控制其刚度为某一合理值以确保其特定功能。在结构力学的位移法分析中,为确定结构的变形和应力,通常也要分析其各部分的刚度。 刚度是指零件在载荷作用下抵抗弹性变形的能力。零件的刚度(或称刚性)常用单位变形所需的力或力矩来表示,刚度的大小取决于零件的几何形状和材料种类(即材料的弹性模量)。刚度要求对于某些弹性变形量超过一定数值后,会影响机器工作质量的零件尤为重要,如机床的主轴、导轨、丝杠等。 工艺系统的刚度 1 .基本概念 刚度的一般概念是指物体或系统抵抗变形的能力。用加到物体的作用力与沿此作用力方向上产生的变形量的比值表示,即(10-5 ) 式中——静刚度( N) ; ——作用力(N/mm ); ——沿作用力方向的变形量(mm )。 越大,物体或系统抵抗变形能力越强,加工精度就越高。

材料的抗弯刚度计算

内支撑的支锚刚度如何计算? 答:桩计算时采用的刚度为分配到每个桩上的刚度。软件计算中自动用交互的“支锚刚度”先除以交互的“水平间距”再乘以“桩间距”(如是地下连续墙乘1),换算成作用在每根桩或者单位宽度墙上的刚度,进行支护构件计算。 在单元计算中需要用户按照如下方法输入,在整体计算中软件可以自动计算。 ①方法一:可以输入按《基坑支护技术规程附录C》方法计算的刚度,此时在“水平间距”栏需输入“桩间距”(如果是地下连续墙输入1)。 《基坑支护技术规程附录C》对水平刚度系数kT计算公式为: 附件: 您所在的用户组无法下载或查看附件 式中: kT ——支撑结构水平刚度系数; ——与支撑松弛有关的系数,取0.8~1.0; E ——支撑构件材料的弹性模量(N/mm2); A ——支撑构件断面面积(m2); L ——支撑构件的受压计算长度(m); s ——支撑的水平间距(m); sa ——计算宽度(m),排桩用桩间距,地下连续墙用1。 ②方法二:可在“支锚的水平间距”和“桩间距”都输入实际的间距,此时交互的支锚刚度就应是整根支撑的刚度;即采用公式的前半部分, 这两个方法算出来的结果好像不一样吧,望楼主再发帖前先自己试验一下,不然会误导我们 E是混凝土的弹性模量,数值大小与混凝土强度等级有关,具体可以查混凝土结构设计规范相关条文。I值为构件截面惯性矩,L为构件计算长度,则EI/L则为构件线刚度。这也是结构力学中弯矩分配主要依据 材料的抗弯刚度计算,实际上就是对材料制成的构件进行变形(即挠度)控制的依据,计算方法的由来,应该是从材料的性能特征中得到的: 第一个特性决定材料的抗压强度和抗拉强度,当材料的抗拉强度决定构件的承载力时,因其延伸率很大,而表现出延性破坏特征,反之即为脆性破坏。如抗弯适筋梁和超筋梁,大小偏心受压。而抗剪构件,在桁架受力模型中,不存在强度正比关系(抗弯尽管也不是严格意义上的正比关系,但基本接近正比),而只是双线性关系,所以,其适筋时的延性也不如抗弯适筋梁,只就是概念设计中的强剪弱弯的由来;

乘用车副车架静刚度分析规范

精选文档 Q/JLY J711 -2009 乘用车副车架静刚度CAE分析规范 编制: 校对: 审核: 审定: 标准化: 批准: 浙江吉利汽车研究院有限公司 二〇〇九年三月

精选文档 前言 为了给新车型开发提供设计依据,指导新车设计,评估新车结构性能,结合本企业实际情况,制定本规范。 本规范是对Q/JLY J711160-2008《乘用车副车架刚度CAE分析规范》的修订。与Q/JLY J711160-2008相比,主要差异如下: ——对原有章节进行重新编排; ——对分析模型的处理进行重新定义; ——对数据处理进行详细表述; ——对评价标准进行补充; ——对分析报告内容进行修改。 本规范由浙江吉利汽车研究院有限公司提出。 本规范由浙江吉利汽车研究院有限公司工程分析部负责起草。 本规范主要起草人:李慧梅。 本规范于2009年4月15日发布并实施。标准号为Q/JLY J711160-2008的规范于2008年7月28日第一次发布,本次修订为第一次。

1 范围 本规范规定了乘用车副车架静刚度CAE分析的软硬件设施、输入条件、输出物、分析方法、分析数据处理及分析报告。 本标准适用于乘用车副车架静刚度CAE分析。 2 软硬件设施 a)软件设施:主要用于求解的软件,采用MSC/NASTRAN; b)硬件设施:高性能计算机。 3 输入条件 乘用车副车架静刚度分析的输入条件主要指副车架有限元模型,一个完整的副车架有限元模型含内容如下: a)副车架各个零件的网格数据; b)副车架焊点数据; c)各个零件的材料数据; d)各个零件的厚度数据。 4 输出物 乘用车副车架静刚度分析的输出物为PDF文档格式的分析报告,针对不同的车型统一命名为《车型副车架静刚度分析报告》(“车型”代表车型代号,如:车型为GC-1,则分析报告命名为《GC-1副车架静刚度分析报告》)。 5 分析方法 5.1 分析模型 分析模型包括副车架的有限元模型,钣金件均采用壳单元模拟,点焊采用CWELD模拟,线焊采用RBE2或壳单元模拟。 5.2 分析模型的建立 建立有限元模型,应符合下列要求: a)副车架各个零件的网格质量应符合求解器的要求; b)副车架各个零件的材料,须与明细表规定的材料相对应; c)副车架各个零件的厚度,须与明细表规定的厚度相对应;

橡胶减震垫刚度计算

橡胶减震垫的刚度计算 播雨 摘要:橡胶减震器的刚度是非常重要的技术参数,它可以通过实验或检测的方法得到。橡胶减震器的刚度与弹性模量、硬度和尺寸形状等因素有关,可以通过计算方法得到,计算了不同尺寸的橡胶减震垫的刚度。 1前言 在噪声治理与隔振工程上经常选用橡胶型减震器和橡胶减震垫进行设备隔振,其最大优点是稳定性好于金属弹簧减震器,且适于高频隔振。橡胶型减震器结构紧凑,能有效利用空间,安装拆卸方便等特点。因此橡胶型减震器在减震降噪工程中得到广泛应用,并取得良好效果[1,2,3,4,8]。橡胶减震器的种类和形式很多,在资料中可以查到通用形状的橡胶减震器(垫)的刚度和计算方法,对于特殊形式的也可以通过实验或检测的方法得到[6,7,8]。本文主要针对wj型橡胶减震器(垫),进行刚度计算,以供参考。 2 橡胶减震器的刚度计算 橡胶减震器的动态刚度如下式计算: Ki= E d A L m x/H (1) E d=dλt m i E s (2) 式中,E d、E s-分别为橡胶减震器的动、静态弹性模量,kg/m2;d-动态系数,与橡胶的邵氏硬度有关,对于天然橡胶邵氏硬度H s=40-60°时,d=1.2-1.5;对于丁晴橡胶H s=55-70°时,d=1.5-2.5. m i-为i方向形状系数,与橡胶减震器的具体结构有关。λt-温度影响系数。 3 wj型橡胶减震器的刚度计算 wj型橡胶减震器是由wj型橡胶减震垫组合而成,是减震工程中常用的一种结构。 单层wj型橡胶减震器也称减震垫,它是在10mm厚橡胶基板的双面均匀分布着橡胶小园柱体,园柱体直径分别为Ф5×5(高)mm和Ф6×4(高)mm两种,相间分布。 这种减震器在载荷作用下,小园柱体受压变形,而基板几乎不变形,因此只考察小园柱体的形状系数即可。 轴向形状系数m x用下式计算[6]: m x=1+1.65n2(3) n= A L/ A f(4) 式中, A L=πD2/4,A f=πDH。 计算图2所示的橡胶减震器刚度,橡胶垫尺寸为75×80mm,每面各有不同直径的橡胶圆柱体56个,因此单面刚度应是K1x=56K x1,K x1为每个橡胶圆柱的刚度。我们只计算轴向的刚度,且为了简化取平均直径和高度为Ф5.5×4.5 mm 计算。 由于三层橡胶垫有6个单面串联,因此总刚度为: K x=56K x1/2N(5) 式中,N为减震器层数,这里N=3 将已知数据代入(3)式得m x=1.154;查机械设计

乘用车悬架安装点静刚度分析规范

Q/JLY J711 -2008 乘用车悬架安装点静刚度CAE分析规范 编制: 校对: 审核: 审定: 标准化: 批准: 浙江吉利汽车研究院有限公司

二〇〇八年九月

前言 为了给新车型开发提供设计依据,指导新车设计,评估新车结构性能,结合本企业实际情况,制定本标准。 本规范由浙江吉利汽车研究院有限公司提出。 本规范由浙江吉利汽车研究院有限公司综合技术部负责起草。 本规范主要起草人:汤志鸿。 本规范于2008年9月15日发布并实施。

1 范围 本标准规定了乘用车悬架安装点静刚度CAE分析的软硬件设施、输入条件、输出物、分析方法、分析数据处理及分析报告。 本标准适用于乘用车悬架安装点静刚度CAE分析。 2 软硬件设施 乘用车悬架安装点静刚度CAE分析,主要包括以下设施: a)软件设施:主要用于求解的软件,采用MSC/NASTRAN; b)硬件设施:高性能计算机。 3 输入条件 3.1 白车身3D几何模型 乘用车悬架安装点静刚度CAE分析的白车身3D几何模型,数据要求如下: a)白车身各个零件的厚度或厚度线; b)白车身几何焊点数据; c)3D CAD数据中无明显的穿透或干涉; d)白车身各个零件的明细表。 3.2 白车身有限元模型 乘用车悬架安装点静刚度分析的输入条件主要指白车身的有限元模型,一个完整的白车身有限元模型中含内容如下: a)白车身各个零件的网格数据; b)白车身焊点数据; c)各个零件的材料数据; d)各个零件的厚度数据。 4 输出物 乘用车悬架安装点静刚度分析的输出物为PDF文档格式的分析报告,针对不同的车型统一命名为《车型悬架安装点静刚度分析报告》(“车型”用具体车型代号替代如:车型为GC-1,则分析报告命名为《GC-1悬架安装点静刚度分析报告》),报告内容的按7规定的内容编制。

刚度校核

刚度校核 l.轴的弯曲刚度校核计算 2.轴的扭转刚度校校计算 l.轴的弯曲刚度校核计算 常见的轴大多可视为简文梁。若是光轴,可直接用材料力学中的公式计算其挠度或偏转角;若是阶梯轴,如果对计算精容要求不高,则可用当量直径法作近似计算。把阶梯轴看成是当量直径为dv的光轴,然后再按材料力学中的公式计算。当量直径为 式中:l i——阶梯轴第i段的长度,mm; d i——阶梯轴第i段的直径,mm; L——阶梯轴的计算长度;m。; Z——阶梯轴计算长度内的轴段数。 当载荷作用干两支承之间时,L=l(l为支承跨距);当载荷作用于悬臂端时,L=l+K(K为轴的悬臂长度)。 轴的弯曲刚度条件为: 挠度 偏转角 式中:[y]——轴的允许挠度,mm,见表15-5; [θ]——轴的允许偏转角,rad,见表15-5。

表15-5 轴的允许挠度及允许偏转角 2.轴的扭转刚度校校计算 轴的扭转变形用每米长的扭转角p来表示。圆轴扭转角P的计算公式为: 光轴 阶梯轴 式中:T——轴所受的扭矩,N·mm; G——轴的材料的剪切弹性模量,MPa,对于钢材,G=8.1*104MPa; I p——轴截面的极惯性矩,mm4,对于圆轴,I p= d4/32 L——阶梯轴受扭矩作用的长度,mm; T i、l i、I pi——分别代表阶梯轴第i段上所受的扭矩、长度和极惯性矩,单位同前; z——阶梯轴受扭矩作用的轴段数。 轴的扭转刚度条件为

?≤[?] ( °)/m 式中[?] 为轴每米长的允许扭转角,与轴的使用场合有关。对于一般传动轴,可取[?]=0.5-1( °)/m;对于精密传动轴,可取[?]=0.25-0.5( °)/m;对于精度要求不高的轴,[?]可大于1( °)/m。 表15-4 抗弯,抗扭截面系数计算公式 注:近似计算时,单,双键槽一般可忽略,花键轴截面可视为直径等于平均直径的圆截面。

机床的刚度与振动

机床的静刚度与零部件的结构设计和制造装配质量都有关系,它不仅影响加工精度,也影响机床的动刚度。 所谓刚度,是指造成弹性体单位变形量时所需要的作用力,即刚度=作用力/变形量,有时也用他的反义词柔度来表示,柔度=变形量/作用力。刚度又可分为静刚度与动刚度两种形式。如果引起弹性变形的作用力是静力,则由此力和变形关系所决定的刚度,称为静刚度;如果引起弹性变形的作用力是交变力,则此时由该作用力和变形关系所确定的刚度,称为动刚度。若机床的刚度(包括静刚度与动刚度)不足,那么机床在重力.切削力.夹紧力和摩擦力的作用下,就会产生变形.振动或爬行,从而影响到机床的使用性能。所以在机床设计中必须考虑机床应具有一定的刚度。 机床的静刚度,有时也简称为刚度。静刚度主要分为结构钢度(本身刚度).接触刚度和综合刚度三个方面。静刚度差,机床变形大,则加工精度低,输入信号与加工出来的零件之间有较大的误差。 一般来说,机床的结构刚度取决于构件本身的材料性质.几何形状和尺寸,所以有时也称为本身刚度。不同的材料,其强度不一样,不同的几何截面形状及尺寸,就有不同的截面惯性矩,它们抵抗变形的能力也就不一样。总的来看,空心截面比实心截面的惯性矩要大,所以加大尺寸,减小壁厚,可增加刚度;方形截面比圆形截面的抗弯惯性矩要大;封闭的截面比不封闭截面的刚度要大。另外合理地布置筋板,也是增加刚度有效办法。 接触刚度的影响因素较多。它不但与接触材料.接触的几何形状(平面.圆柱面.球面)和硬度有关,两个平面接触,由于两个面都不是理想平面,而是存在一定宏观不平度,因而实际接触面积只是名义接触面积的一部分,即两个面真正接触的只是一些突起的高点。实际接触的高点越多,接触刚度也就越大。当零件表面粗糙度低时,接触面积就大,其接触刚度相应增大。当接触面之间有较大的预紧力时,接触点也会产生弹塑性变形,增大实际接触面积,增大接触刚度。例如,接触面的刮研质量不同,可使其接触刚度相差三倍之多,导轨平面性误差为10~15微米时,导轨的接触刚度要下降50~60%。有资料介绍,机床零部件接触面之间的接触变形有时竟达机床总变形量的85~90%,可见接触刚度在机床综合刚度中的重要地位。 由于机床不是一个完全刚体,在外力作用下存在弹塑性变形,当外力为交变力时,可使机床产生振荡位移。其位移幅值A可由下式计算:

橡胶与各指标的关系

浅谈橡胶的各种物性与密度的关系 前言: 在橡胶制品过程中,一般必须测试的物性实验不外乎有: 拉伸强度 2、撕裂强度 3、定伸应力与硬度 4、耐磨性 5、疲劳与疲劳破坏 6、弹性 7、扯断伸长率。 各种橡胶制品都有它特定的使用性能和工艺配方要求。为了满足它的物性要求需选择最适合的聚 合物和配合剂进行合理的配方设计。首先要了解配方设计与硫化橡胶物理性能的关系。硫化橡胶 的物理性能与配方的设计有密切关系,配方中所选用的材料品种、用量不同都会产生性能上的差异。 1、拉伸强度:是制品能够抵抗拉伸破坏的根限能力。 它是橡胶制品一个重要指标之一。许多橡胶制品的寿命都直接与拉伸强度有关。如输送带的盖胶、橡胶减震器的持久性都是随着拉伸强度的增加而提高的。 A:拉伸强度与橡胶的结构有关: 分了量较小时,分子间相互作用的次价健就较小。所以在外力大于分子间作用时、就会产生分子 间的滑动而使材料破坏。反之分子量大、分子间的作用力增大,胶料的内聚力提高,拉伸时链段 不易滑动,那么材料的破坏程度就小。凡影响分子间作用力的其它因素均对拉伸强度有影响。如NR/CR/CSM这些橡胶主链上有结晶性取代基,分子间的价力大大提高,拉伸强度也随着提高。也 就是这些橡胶自补强性能好的主要原因之一。一般橡胶随着结晶度提高,拉伸强度增大。 B:拉伸强度还跟温度有关: 高温下拉伸强度远远低于室温下的拉伸强度。 C:拉伸强度跟交联密度有关: 随着交联密度的增加,拉伸强度增加,出现最大值后继续增加交联密度,拉伸强度会大幅下降。 硫化橡胶的拉伸强度随着交联键能增加而减小。能产生拉伸结晶的天然橡胶,弱键早期断裂,有 利于主健的取向结晶,因此会出现较高的拉伸强度。通过硫化体系,采用硫黄硫化,选择并用促 进剂,DM/M/D也可以提高拉伸强度,(碳黑补强除外,因为碳黑生热作用)。 D:拉伸强度与填充剂的关系:

模板刚度计算

采用10mm厚竹胶板50×100mm木方配制成梁侧和梁底模板,梁底模板底楞下层、上层为50×100mm木方,间距200mm。加固梁侧采用双钢管对拉螺栓(φ14),对拉螺栓设置数量按照以下原则执行:对拉螺栓纵向间距不大于450mm。对拉螺栓采用φ14PVC套管,以便周转。 搭设平台架子,立杆间距不大于900mm,立杆4m,2m对接,梁底加固用3m、2m钢管平台、梁底加固钢管对接处加设保险扣件。立梁用一排对拉螺栓间距600mm,次梁侧面钢管与平台水平管子支撑,板、梁木方子中到中间距200mm。 ⑵梁模板设计 本工程转换层梁最大截面1125mm×1400mm,取此梁进行验算,跨度7.20m。梁底模板采用δ=14厚多层板,模板下铺单层木龙骨50×100木方,间距200mm。梁底用钢管做水平管,梁底加固采用钢管、扣件病及保险扣件。梁侧模板为δ=14厚多层板,设立楞为50×100木方,间距200mm,中间加两道φ12对拉螺杆,固定Φ48×3.5双根钢管横向背楞两道,拉杆间距500mm,计算梁底模木方、支撑。 模板支设见前设计图 木方材质为红松,设计强度和弹性模量如下: fc=10N/mm2;fv=1.4N/mm2;fm=13N/mm2;E=9KN/mm2; 松木的重力密度为:5KN/mm3; 底模木方验算: 荷载组合: 模板体系自重:{(0.015×(1.5+0.5)×0.3+(0.1×0.05×5+0.1×0.1×2)×5)}×1.2=0.486KN/m; 混凝土自重:24×0.9×0.5×1.2=12.96KN/m 钢筋自重: 1.5×0.9×0.5×1.2=0.81KN/m; 混凝土振捣荷载:2.0×0.5×1.4=1.4KN/m; 合计:15.656KN/m 乘以折减系数0.9,q=0.9×14.09=12.68KN/m; 木方支座反力: R=(4-b/L)qb3/8L3=(4-0.25/0.6)×12.68×0.253/(8×0.63) = 0.41KN; 跨中最大弯距: Mmax= KqL2 =0.07×12.68×0.62=0.32KNm; 内力计算: σ=M/W=0.32×106/(100×1002/6) =1.92N/mm2<fm =13 N/mm2; 强度满足要求。 挠度计算: 模板体系自重:(0.015×(1.5+0.5)×0.3+(0.1×0.05×5+0.1×0.1×2)×5)=0.405KN/m; 混凝土自重:24×0.9×0.5=10.8KN/m; 钢筋自重: 1.5×0.9×0.5=0.675KN/m; 混凝土振捣荷载:2.0×0.5=1KN/m; 合计:12.88KN/m 乘以折减系数0.9,q=0.9×12.88=11.59KN/m; f=KfqL4/100EI =0.0521×11.59×6004/100×9000×(100×1002/6) =0.522mm<[f]=L/400=600/400=1.5mm 挠度满足要求。

刚度

刚度 刚度是指受外力作用的材料、构件或结构抵抗变形的能力。材料的刚度由使其产生单位变形所需的外力值来度量。刚度与物体的材料性质、几何形状、边界支持情况以及外力作用形式有关。材料的弹性模量和剪切模量越大,则刚度越大。在宏观弹性范围内,刚度是零件荷载与位移成正比的比例系数,即引起单位位移所需的力。它的倒数称为柔度,即单位力引起的位移。刚度可分为静刚度和动刚度。 在自然界,动物和植物都需要有足够的刚度以维持其外形。在工程上,有些机械、桥梁、建筑物、飞行器和舰船就因为结构刚度不够而出现失稳,或在流场中发生颤振等灾难性事故。因此在设计中,必须按规范要求确保结构有足够的刚度。研究刚度的重要意义还在于,通过分析物体各部分的刚度,可以确定物体内部的应力和应变分布,这也是固体力学的基本研究方法之一。 静载荷下抵抗变形的能力称为静刚度,即引起单位位移所需要的力。动载荷下抵抗变形的能力称为动刚度,即引起单位振幅所需的动态力。如果干扰力变化很慢,即干扰力的频率远小于结构的固有频率,动刚度与静刚度基本相同。干扰力变化极快,即干扰力的频率远大于结构的固有频率时,结构变形比较小,即动刚度比较大。当干扰力的频率与结构的固有频率相近时,有共振现象,此时动刚度最小,即最易变形,其动变形可达静载变形的几倍乃至十几倍。静刚度一般用结构的在静载荷作用下的变形多少来衡量,动刚度则是用结构的固有频率来衡量。因此,动刚度是衡量结构抵抗预定动态激扰能力的特性。 静载荷 静载荷即构件所承受的外力不随时间而变化,而构件本身各点的状态也不随时间而改变,就是构件各质点没有加速度。如果整个构件或整个构件的某些部分在外力作用下速度有了明显改变,即发生了较大的加速度,研究这时的应力和变形问题就是动载荷问题。 静载荷包括不随时间变化的恒载(如自重)和加载变化缓慢以至可以略去惯性力作用的准静载(如锅炉压力)。 动载荷 动载荷包括短时间快速作用的冲击载荷(如空气锤)、随时间作周期性变化的周期载荷(如空气压缩机曲轴)和非周期变化的如(汽车发动机曲轴)。 静载荷和动载荷对于构件的作用是不同的。例如起重机中以加速度提升的绳索。当物体静止不动或以等速上升时,绳索所受拉力等于物体的重量,物体的重量对绳索为静载荷作用。但是如果绳索吊着物体以加速度上升,绳索就要受到较大的拉力。这时物体的重力便引起了动载荷作用。 在工程中,构件受动载荷作用的例子很多。例如,内燃机的连杆、机器的飞轮等,在工作时它们的每一微小部分都有相当大的加速度,因此是动载荷问题。当发生碰撞时,载荷在极短的时间内作用在构件上,在构件中所引起的应力可能很大,而材料的强度性质也与静载荷作

橡胶衬套刚度对悬架特性的影响_高晋

第40卷 第2期吉林大学学报(工学版)  Vol .40 No .22010年3月 Journal o f Jilin Unive rsity (Engineering and Technolo gy Edition )  M ar .2010 收稿日期:2009-04-13. 基金项目:吉林省科技发展计划重点项目(20040332-2). 作者简介:高晋(1982-),男,博士研究生.研究方向:汽车系统动力学.E -mail :w rdbbnr @https://www.360docs.net/doc/303133985.html, 通信作者:宋传学(1959-),男,教授,博士生导师.研究方向:汽车系统动力学.E -mail :so ng chx @https://www.360docs.net/doc/303133985.html, 橡胶衬套刚度对悬架特性的影响 高 晋,宋传学 (吉林大学汽车工程学院,长春130022) 摘 要:对ADAMS /Car 中衬套刚度的计算进行了说明,在此基础上建立了一个双横臂悬架的刚弹耦合模型。通过ADAM S /Insight 对各个衬套的刚度进行灵敏度分析,分析了衬套刚度的变化对车轮定位参数和悬架刚度的影响,得出车轮定位参数随橡胶衬套刚度变化的规律。 选取刚度变化对车轮定位参数影响较大的衬套力比例因子作为设计变量,选取车轮外倾角、前束、主销内倾角、轮距为优化目标,对不同的衬套取不同的比例因子,通过ADAM S /Insight 自动完成设计的空间组合,并进行仿真计算。根据目标函数对设计空间过滤,最终达到对车轮定位参数的优化设计。关键词:车辆工程;汽车悬架;橡胶衬套;灵敏度分析;衬套刚度 中图分类号:U463.33 文献标志码:A 文章编号:1671-5497(2010)02-0324-06 Influence of rubber bushing stiffness on suspension performance GAO Jin ,SONG Chuan -x ue (College of Automotive Engineering ,J ilin University ,Changchun 130022,China ) A bstract :The calculation o f bushing stiffness w as introduced in the softw are ADAMS /Car ,and based on it a rigid -flex co upling model w as built for the automo tive do uble wishbo ne suspension sy stem .The sensitivity analy ses of the siffness of different rubber bushings were do ne by the softw are ADAM S /Insig ht ,and the influences o f the rubber bushing stiffne ss on the w heel alig nment pa rameters and the suspensio n stiffness w ere analy zed ,and the chang e patte rns of the w heel alig nment paramete rs versus the rubber bushing stiffness we re o btained .Taking the scale factors of the bushing forces that affects significantly on the w heel alignment parameters as the desig n variables ,the camber angle ,the toe ang le ,the kingpin inclinatio n ang le and the w heel track as the optimization targ ets ,fo r the different scale facto rs of different bushings ,the w o rkspaces we re achieved automatically by ADAM S /Insight ,and the sim ulating calculatio n w as performed .The w heel alig nment parameters w ere o ptimized by filtering the w orkspaces acco rding to the targ et functions . Key words :vehicle engineering ;auto motive suspensio n ;rubber bushing ;sensitivity analysis ;bushing stiffness 为了衰减汽车高速行驶引起的振动和冲击,现代汽车悬架系统越来越多地采用橡胶衬套 [1] , 主要利用橡胶的弹性变形减缓机构中难以避免的运动干涉。悬架的弹性运动产生于橡胶衬套的变

机床静刚度测定实验指导书

机床静刚度实验 一、实验目的: 通过实验,使学生进一步了解由机床(包括夹具)一工件一刀具所组成的工艺系统是一弹性系统,在此系统中因切削力、零件自重及惯性力等的作用,工艺系统各组成环节会产生弹性变形及系统中各元件之间若有接触间隙,在外力的作用下会产生位移,并且熟悉机床静刚度的测量方法和计算方法,从而更深的理解机械制造工艺中的工艺设备及其对零件加工质量的影响,提高学生分析和处理问题的能力。 二、实验装置 机床一台 静刚度测定装置一套 图1 机床静刚度测定装置图 三、实验方法与步骤 1、如上图所示,在机床的两顶尖间装夹一根刚度很大的光轴1 (光轴受力后变形可忽略 不计)。 2、将加力器5固定在刀架上,在加力器与光轴间装一测力环4。 3、在测力环内孔中固定安装一个千分表,当对如图1所示安装的测力环施加外力时, 其中的千分表指针就会变动,其变动量与外载荷之间对应关系可在材料试验机上预先测出,千分表2、3、6的指针也会因与之接触部位的位移而变动。 4、实验时用扳手扭转带有方头的螺杆7,以施加外载荷(Fy)。然后读出靠近在车头, 尾座和刀架安放的千分表(2)、(3)、(6)的读数,并记录下来填入表1中。

2 根据以上数据,计算出床头、刀架和尾座的受力F 头、F 刀和F 尾。 为了说明尾座套筒伸出长度对刚度的影响,实验时可将套筒分别伸出5mm 和105mm 。并分别测出千分表读数和计算出刚度的数值,填入表2中。 表2 机床静刚度计算 四、静刚度的计算 为了计算方便,实验时可将测力环抵在刚性轴的中点处。故机床、床头、刀架它们之间的刚度关系可以用下式表示: )j 1 j 1(41j 11尾头刀机++=j 式中:头 头头Y F j =;刀刀刀Y F j =;尾尾尾Y F j =

原点动刚度

一、动刚度的概念 对于线性系统,用施加在系统上的力除以位移,即得到了刚度。刚度是系统固有的特征,与外界施加的力和响应没有关系,即“静止”状态就存在的,所以称之为静刚度。在静止状态下,在系统上施加力并测量位移,就可以得到静刚度。 在外力的作用下,系统运动起来,其刚度特性随着输入的频率而发生变化。对于含阻尼 的单自由度系统而言,其微分方程为:f kx x c x m =++ ,位移响应为:)(0?ω-=t j e X x 将位移响应、速度响应、加速度响应的表达式代入微分方程中可得系统的刚度为:ωωjc m k x f k d +-==)(2,其幅值为:2 22)()(c m k k d ωω+-=此时的刚度是激励频率的函数,称为动刚度。动刚度取决于系统的质量、阻尼和静刚度。下图为一个单自由度系统的动刚度曲线,当激励频率为0时,动刚度等于静刚度,当激励频率为系统共振频率时,动刚度最低,主要受阻尼影响,当激励频率在共振频率以上,则主要受到频率和质量的影响,并且随频率的平方成正比。 一般的测试条件下加速度更容易测量,因此常用加速度来表征系统的振动响应 d A f x f Z 221 ωω-=-=,其幅值为 2222)()(1ωωωc m k +-,Z A 为加速度阻抗,又称为 原点动刚度,由于函数含有21ω的成分,加速度动刚度曲线呈现随着频率增加而衰减的趋势。 二、IPI 与原点动刚度 长期以来,在测试或分析噪声和振动频响曲线时,人们习惯了共振峰值朝上,即“朝上”的峰值有问题,而朝下的峰值没有问题。动刚度峰值的趋势与我们的习惯相反,看起来有些别扭。于是,为了倒立的、有问题的峰值从“朝下”顺倒“朝上”,就引入了一个新的表述方法,即IPI。 IPI 是Input Point Inertance 的简写。Inertance 这个单词表述的意思是惯性,用机械术语来描述,就是导纳。IPI 就是指系统的加速度导纳,即表示加速度响应与输入力的

橡胶刚度和刚度的关系

Q:在做隔振设计的时候,计算出所需要的橡胶刚度值,但是厂家提供的只有邵式硬度值,请问如何对应这两者? A:橡胶硬度和刚度 橡胶硬度和刚度没有对应关系,硬度是橡胶经配合、炼胶、硫化后胶料自身的特性,刚度是橡胶产品的特性,但结构尺寸一定,刚度随硬度增加而增大。 厂家应该会提供力量-变形的信息.如果没有,可结合硬度+几何形状(如果规则的话)进行估算. 除了估算,估计还得要实测,如静载荷下的压缩量,来判断是否能起作用 刚度只能计算静刚度,厂家需要做应力应变测试,通过abaqus可以计算静刚度,误差一般小于10% Ps:胶料的硬度随着硫磺含量的增加而增加。对天然橡胶胶料,硫磺用量若增加1~3份,硬度就会提高5度;对天然/丁笨/顺丁并用胶,硫磺用量增加1.5~4份,提高硬度5度。 起初随着硫量的增加,交联程度也增加,其硬度加大,硫添加到一定量后出现过硫,对任何橡胶来说,硫化时不只是产生交联,还由于热及其它因素的作用产生产联链和分子链的断裂。这一现象贯穿整个硫化过程。在过硫阶段,如果交联仍占优势,橡胶就发硬,定伸强度继续上升,反之,橡胶发软,即出现返原。 力/位移=橡胶的静刚度。 硬度、定伸强度等都和静刚度大小有关系。 硬度越大静刚度越大,至于定伸强度数据倒是有就是没有分析,这个你自己可以统计一下数据,进行一下分析,就可以得出结论。 静刚度是橡胶的刚度指标,一般通过硬度控制,它和硬度、定伸是成正比关系的 Q:静刚度4kg/mm应该对应橡胶邵氏硬度多少度? A:静刚度是对产品成品的整体弹性特新来说的,每压缩1毫米需要4公斤力,和产品截面和高度都相关联,而邵氏硬度是描述橡胶材料本身软硬程度的一个测量表述值,如果产品结构确定了,那么可以调整橡胶硬度来满足4Kg/mm,反之如果确定了使用什么硬度的材料,那么可以调整产品的结构尺寸来达到静刚度规定值,显然,把这个试验调试交给橡胶生产厂来做更方便,设计使用方只需要静刚度结果进行验收。一般设计时用邵氏A60度值时的弹性模量来做设计计算,出现不大的偏差由生产来调整。可以向橡胶生产厂索要直径10毫米高10毫米的试粒样品来自行测定该硬度橡胶的弹性模量 Q:刚度、强度、硬度如何区别

动静刚度计算方法

2.2空气弹簧的支撑、弹性作用取决于空气弹簧内的压缩气体。容积比、气体压缩系数基本上决定了理想空气弹簧的性能。理想气体状态方程为 绝对压力(Pa) 除以气体密度(kg/m3)等于气体常数(N?m/(kg?K) 乘以绝对温度(K) 或者绝对压力(Pa) 乘以体积 = 气体质量 x 气体常数(N?m/(kg?K)) x绝对温度(K) 不同的气体R值不同,空气的R=287N?m/(kg?K) 当气体质量m为常数时: 绝对压力(Pa)x体积的n次方=const(const为常数) 式中,n----多变常数;当变速过程缓慢时,可将其视为等温过程,则n=1;当变速过程较快时,可视为绝热过程,不同的气体n值不同,空气n=1.4。 理想气体的微分方程为: 绝热过程:体积的n次方x 绝对压力的导数 + n x 绝对压力 x 体积的(n-1)次方的导数=0 等温过程难n=1时: 体积x绝对压力的导数+绝对压力x体积的导数=0 即绝对压力的导数除以绝对压力 = ―体积的导数除以体积 空气弹簧的承载能力: F=变化压力x承载面积变化压力=绝对压力-原来的压力 空气弹簧的理论刚度:空气弹簧的刚度是F对空气弹簧变形量(行程)

s的导数,即 k=承载能力对行程求导=初始压力x承载面积对s的导数+初始承载面积Ae0 x 压力对行程的导数 由以上可知,空气弹簧刚度取决于两部分:式中右边第一项为弹簧的几何变化(有效承载面积的变化);第二项为空气弹簧内部压力的变化,而且刚度随弹簧的变形速度而变化。 注意到 Ae=体积对行程的导数 当振动频率f﹥0.2 Hz时,可取n=K,此时其刚度可认为是动刚度,即 Kd=初始压力x 有效面积对行程的导数+绝对温度x(初始压力+承载压力)x(有效承载面积的平方 除以 体积) 当振动频率f﹤0.2 Hz时,可取n=1,此时的其刚度可认为是静刚度,即 Kd=初始压力x 有效面积对行程的导数+(初始压力+承载压力)x(有效承载面积的平方 除以 体积) 通过对空气弹簧力学公式的分析可知指数n的选取对空气弹簧刚度有重要影响。n值与空气弹簧的变形速度或振动频率有关。振动频率越高,n值越大。对于等温过程,取n=1;对于绝热过程,取n=1.4。对于汽车常遇到的振动频率范围,空气弹簧的气体变化过程介于等温过程与绝热过程之间。准确的n值通过试验确定。若空气弹簧底座有节流孔与气囊相通。

实验一车床三向力静刚度测定

实验一车床三向力静刚度测定 一、实验目的与要求: 1.熟悉车床静刚度的测定方法。 2.比较车床各部件刚度的大小,分析影响车床刚度的各种因素。 3.巩固和验证《机械制造工艺及夹具设计》中有关系统刚度和误差复映规律的概念。 二、实验设备和仪器: 1.CA6140车床。 2.三向力静刚度测定仪。 3.千分表。 三、实验方法: 1. 图 1 将紧锁套9(见图1)装在车床尾座套筒上。由于在该套上有两个相互垂直的平面,所以可将磁性表座安放在小拖板上,用百分表在套9的水平面上拉表,或将角尺放在床身上,依套9的垂直平面找正,当找正后,即将两个夹紧螺钉12固定,这时,套9上的刻线即位于车床前后顶尖轴线所处的水平平面内,随后将弓形体1装在车床两顶尖之间,摇动尾座手把将顶尖压在弓形体1右顶尖孔中,再将销8插入套9的孔中,将手把2扭入弓形体所选定的螺纹孔中(如图1所示为30o). 2.模拟车刀的安装: 第一种情况: α=0o,β由0o转到90o时(见图3),可将模拟车刀刀杆装在车床刀架左边的压刀槽内,这时,先将找正顶尖6装入弓形体孔内,将刀杆13安装在与车床两顶尖中心连线相垂直,并在刀杆底部垫适当厚度的垫铁,使顶尖6的尖端与模拟刀头14的中心孔均匀接触,这时模拟车刀上的刚球中心便与车床中心等高。若弓形体转动不同的?角,可将模拟车刀刀头转适应的角度,转角大小以刀头与测力圈不相撞为准。 第二种情况: α=30o,β由0o转到90o时。仍将模拟车刀刀杆装在车床刀架左边的压力槽内(见图2a),车刀高度方向(即Z方向)位置的确定仍与第一种情况相同,但由于α≠0o,所以模拟车刀必须在X-Y平面内转相应的角度,转角大小的确定,是以模拟车刀受力后使刀架所产生得力距,与一般车削时受力架产生的力矩尽量相接近,由于刀架的转动,刀头上的刚球中

轴承座动刚度检测方法

轴承座动刚度检测方法 为了采用正向推理诊断振动故障,在激振力和支撑动刚度两类故障中,首先应肯定或排除其中一个。大量现场实践证明,检测轴承座动刚度是一种简单而有效的方法,通过进一步观察发现并由公式(2-2)可见,轴承座动刚度除与静刚度和共振放大因素有关外,还与动态下其连接刚度直接有关,下面具体介绍影响动刚度的三个因素的检测和诊断方法。 一、连接刚度 转子的支撑系统一般有轴承盖、轴承座、基础台板、基础横梁等部件组合而成,这些部件连接的紧密程度,直接影响这部件刚度。部件之间连接紧密程度对刚度的影响,称连接刚度。 检查部件连接紧密程度传统的方法由检查连接螺丝预紧力、连接部件之间的间隙等方法,但这些检测方法不仅手续麻烦,而且不能检测动态下连接的紧密程度。 通过总结大量现场振动测试结果得到,采用检测连接部件之间差别振动,是检查连接部件动态下连接紧密程度简单而有效的方法。所谓差别振动,是指两个相邻的连接部件振幅的差值。差别振动值本身已说明两个相邻的连接部件之间在动态下产生了相对位移量,这种微小的位移将显著地降低部件的动刚度,但在静态下连接部件之间并无间隙存在,而且连接螺丝预紧力往往也正常。 对于一般的轴承座来说,在同一轴向位置(如图2-1所示),测点上下标高差在100mm以内的两个连接部件,在连接紧围固的情况下,其差别振动应小于2μm;滑动面之间正常的差别振动应小于5μm;对于发电机后轴承座与台板之间有绝缘垫者,其差别振动应小于7μm。当两个相邻部件差别振动明显大于这些数值时,即可判定轴承座连接刚度不足。差别振动愈大,故障愈为严重。在测量轴承各点振动时,除测量垂直振幅和相位外,必要时对该点水平和轴向振动也应测量;在测量时若发现差别振动异常,必须复测一遍;只有两次测量结果基本一致,才能认为数据可靠。 造成转子支承系统连接部件之间差别振动过大的主要原因有: 1. 连接螺丝松动 由于检修或安装时疏忽,轴承盖、轴承座、基础台板等连接螺丝部分没有拧紧或预紧力不够。由连接部件之间差别振动值,直接可以看出是哪一个连接螺丝没有拧紧。 2. 轴承座与台板接触不良 由于轴承座或台板的变形及修刮不良,发电机后轴承座与台板之间的绝缘垫过多或太厚、不平整等原因,即使在各个连接螺丝都拧紧的情况下,仍不能达到要求的连接刚度,在动态下仍存在显著的差别振动。3. 基础台板与基础接触不良 造成基础台板与基础接触不良的原因有: 1) 二次灌浆质量不高。其中包括未充实和水泥标号较低。 2) 基础台板垫铁走动。这种现象主要是由于二次灌浆质量不好、台板垫铁间距过大、吃力不均、垫铁之间及与台板之间未焊牢,在过大轴承振动作用下,使垫铁发生走动。 3) 基础垫铁过高。这种现象对轴承座垂直方向动刚度影响不大,但显著地降低了轴承座水平和轴向动刚度,而且往往在较大轴向振动作用下,使轴承座台板二次灌浆松裂。其动刚度进一步降低,形成恶性循环。为此在安装时台板垫铁高度不要超过80mm。 4) 轴承座漏油。由于汽轮机油浸入二次灌浆,使其强度显著降低,在振动作用下不紧使二次灌浆松裂,而且使二次灌浆与台板分离,振动进一步扩大。 5) 轴承座振动过大。不论是垂直、水平和轴向振动过大,都可以使基础二次灌浆松裂,使轴承座振动扩大,二次灌浆松裂加剧。 6) 基础台板垫铁氧化。造成台板和垫铁氧化的主要原因,是由于在严寒的冬季施工时,为了防冻,在二次灌浆中加入过量的食盐,机组运行后二次灌浆中的氯化钠与铁氧化,首先生成Fe3O4 ,体积增大,使台板和基础分离,而后进一步氧化成Fe2O3,在振动作用下形成红色粉末,造成台板与基础腾空,台板与基础之间的连接刚度显著降低。 二、共振

相关文档
最新文档