高考三视图题汇编精选

合集下载

高考三视图(含解析)理试题(卷)汇总

高考三视图(含解析)理试题(卷)汇总

专题21三视图SUBA. 2 n B • 3 n C【答案】B【解析】综合三视圄可知』几何体是一个半轻炸1的半个球体.且表面积是底面积与半球面积的和丿其表面枳3=丄敦4“+疋2=31t-故选B.2点睛:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.2.已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧1 •某几何体的三视图如图所示,则其表面积为(【解析】由正视图和俯视图还原几何体如图所示,由正视图和俯视图对应线段可得AB BD AD 2,当BC 平面ABD时,BC=2,ABD的边AB上的高为、3,只有B选项符合,当BC不垂直平面ABD时,没有符合条件的选项,故选 B.点睛:1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2•三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据3.某个长方体被一个平面所截,得到几何体的三视图如图所示,则这个几何体的体积为()B【答案】BA. 4 B . 2.2 C . 20 D . 83【答案】D【解析】由三视图可知,该几何体如图所示,其底面为正方形』正方形的边长为2. 口D=3,BF=1,将相同的两个几何体拼在V』构成一个高为斗的长方饥所臥该几何体的体积為煜x仁仪4.如图,正三棱柱ABC ABG的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为()【答案】D【解析】依题意知,此正三棱拄底面定边长为4的正三角形,接柱高为也其侧视囹为矩形,其一边长为2語,一启一边长訶4,故其面积2斗><2曲=8曲;故选D点睛:三视图问题的常见类型及解题策略⑴由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图•先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式•当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.原几何体为组合体;上面是长方体,下面是圆柱的一半(如图所示),A. 16 B 2 3 C . 4 3 D . 8,35.某几何体的三视图如图所示,则该几何体的体积为( )8 8 (C) 16 16 (D) 8 16将三视图还原为原来的几何体,再利用体积公式求解.其体积为V 4 2 2122 4 16 8 .故选A; 26•如图5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的几条棱中,最长的棱的长度为( )(A) 6,2 (B) 4、2 (C) 6 (D)4【答案】C原几何体为三機锥D-A^C, M 中Aff^BC=i r AC=^D^ = DC=2^ ?QN二旳*叭庁)+4 = 6,故最长的棱的长度为= 选C点睛:对于小方格中的三视图,可以放到长方体,或者正方体里面去找到原图,这样比较好找;7.某几何体的三视图如图所示,则该几何体的表面积为()24 2【解析】如图所示A【解析】由已知三视图得到几何体是一个正方怀割去半轻为2的丄个球」所以表面积为S3 12试4&一亦於+ —><4亦囚・24巧故选:A4S&已知某空间几何体的三视图如图所示,则该几何体的表面积是()iEttffl 博视图A. 12十2&+2后B . 12+ 也+2 后C . 12 + 2辽十曲D . |12 +V2 + .J【答案】A【解析】由三视图知:几何体为四棱锥,且四棱锥的一条侧棱与底面垂直,1=-5< 2*2 = 221 =-X2M4=421S ABCD =~X(2+4)X2=69.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体如图,P A丄平面ABCD , 朋=2 , AD = 4,医=2 ,经计算,PD = 2石,P匚=«亍,Dt = 2調,•••可••.,故选A.3D. 35 2.2【答案】A 【解析】试題分析;扌艮据三视图可知几何体是组合体;左边罡直三棱柱、右边是半个圆柱,直三棱柱的底面是等腰 亶角三角形,直角边是1,侧犧长是茶圆柱的底面半径是1,母线长是2,二该几何体的体积V =ixlxlx2十丄芝二臥十1・故选;乩2 2考点:由三视图求体积.10•如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积【答案】C 【解析】A.1 B2C. 2 1的体积是(为(3D. 41 2 体积为—2 2 2 1 4 —3 3试题分析:相当于一个圆锥和一个长方体,故考点:三视图.11. 一个几何体的三视图如图所示,则该几何体的体积为(【解析】试题分析:该几何休的直观團如园所示,连接妙,则该几何体由直三棱柱血D-和四棱锥一吨组合而成,其和易22 +扌心后专詈故应选扎12. 一个几何体的三视图如图所示 ,则该几何体的体积为A.14~316~3D. 6【答案】A考点:三视图.1【答案】-3【解析】本题考查三视图、四棱锥的体积计算等知识,难度中等•由三视图可知该几何体是底1 1面为长和高均为1的平行四边形,高为1的四棱锥,故其体积为V - 1 1 1 - •3 3。

三视图习题50道(含答案)

三视图习题50道(含答案)

三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是()(A)2(B)1(C)23(D)132、一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360 (C)292 (D)2803、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(A)3523cm3(B)3203cm3 (C)2243cm3(D)1603cm34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为:()5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )AB.2 C..66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为 。

8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+B. 4π+C. 2π+D. 4π11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .B .C .D .9π10π11π12π第7题侧(左)视图正(主)视图俯视图俯视图正(主)视图侧(左)视图12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ()(A )(B )(C )(D )13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。

会考高考通用技术三视图真题汇总

会考高考通用技术三视图真题汇总

会考高考三视图真题汇总班级姓名学号一、选择题1、根据如图所示的组合体,在下列选项中选出正确的左视图(2008会考第16题)()2、如图所示为某款台灯的主视图和俯视图及部分尺寸标注。

该台灯圆形底座的直径为(2008年10月高考第7题)()A.φ80B.φ148C.φ120D.φ343、技术图样的尺寸标注要求正确、完整、清晰、合理,以下尺寸标注示例中,符合国家标准要求的是(2009年3月高考第8题)()4、如图所示为圆柱体被一平面所截后的正面投影(主视图)和立体图,则对应的水平投影(俯视图)为(2009年9月高考第8题)()5、如图所示为某零件的轴测图,其正确的俯视图是(2010年3月高考第8题)()A.B.C.D.主视左视6、如图所示的尺寸标注中错误的是(2010年9月高考第8题)()A.20的标注B.60的标注C.4×R10的标注D.3×Φ10的标注7、如图所示为某零件的轴测图,其正确的主视图是(2010年9月高考第9题)()二、作图题1、根据立体图,请在答卷Ⅱ的题图中补全俯视图和左视图所缺的线条。

(2008会考第21题)2、王凯同学在学了“常见的技术图样”后,画出了自家桌子的技术图样(如图所示)。

请根据图样,在有“▲”处填上相应的内容。

(2009会考第36题)(1)王凯同学所画的技术图样属于▲(请选择一个选项,填写序号)A.二视图B.三视图C.剖视图D.轴测图(2) 桌面为形,其尺寸为;支撑柱为体,高度为。

3、王凯同学设计的小型木质书架(如图甲所示)采用了图乙所示的燕尾形榫接结构。

请完成下列各题。

(2010会考第36题)(1)下图为图乙A板的三视图,请用铅笔在答卷II的题图中,补全三视图所缺的线条。

(2)如果要制作此书架(不考虑加工余量),至少需要木板的大小是▲(请在下列选项中选择一项,填写序号)A.240×300 B.300×300 C. 360×300 D.600×2404、根据立体图,补全俯视图和左视图中所缺漏的图线。

三视图高考试题集锦

三视图高考试题集锦

三视图高考试题集锦work Information Technology Company.2020YEAR2立体几何——三视图高考试题集锦1.(14福建卷)某空间几何体的正视图是三角形,则该几何体不可能是 ( A )A .圆柱 B.圆锥 C.四面体 D.三棱柱2.(10年海南卷)正视图是一个三角形的几何体可以是_______(写出三种) 3(11山东卷)右图是长和宽分别相等的两个矩形,给定下列三个命题: ①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图。

其中真命题的个数是 (A) 3 (B) 2 (C) 1 (D) 04.(14辽宁)7.某几何体三视图如图所示,则该几何体的体积 为( )A .82π- B .8π- C .82π-D .84π-5.(12海南卷)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 186.(14天津卷)已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为____3m .244242俯视图侧视图正视图俯视图正(主)视图(第4题)(第5题)(第6题)7.(13海南卷)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()(A) (B) (C) (D)8.(14湖北卷)在如图所示的空间直角坐标系xyzO 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C. ④和③D.④和②9.(2014•浙江)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm23410.(07海南文理)已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .334000cmB .338000cm C .20003cm D .40003cm(第9题) (第10题)11.(07山东文理)下列几何体各自的三视图中,有且仅有两个视图相同的是 ( )A .①②B .①③C .①④D .②④12.(08海南理)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 的b 的线段,则b a 的最大值为( ) A .22 B .32 C .4 D .52201010202020正视图侧视图俯视图513.(09海南文理)一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为( )A .21248+ B.22448+ C .21236+D .22436+14.(09山东文理)一空间几何体的三视图如图所示,则该几何体的体积为( )A .223π+B .423π+C .232π+D .234π+(第13题) (第14题)15.(11海南文理)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )15.(10安徽文理)一个几个何体的三视图如图,该几何体的表面积为( )A.280 B.292 C.360 D.37216.(11湖南文理)如图是某几何体的三视图,则该几何体的体积为()A.912 2π+B.9182π+ C.942π+ D.3618π+(第15题)(第16题)20.(09辽宁文理)设某几何体的三视图如下(尺寸的长度单位为m)。

三视图高考题选答案版

三视图高考题选答案版

三视图高考题选一、知识点1、三视图的名称几何体的三视图包括:主视图、左视图、俯视图.2、三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的主视图、左视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.【题型一】空间几何体的三视图1、若某几何体的三视图如图7-1-4所示,则这个几何体的直观图可以是( )图7-1-4【解析】根据主视图与俯视图可排除A、C,根据左视图可排除D.故选B.2、(2012·陕西高考)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的左视图为( )图7-1-73、[2014·福建卷]某空间几何体的正视图是三角形,则该几何体不可能是( )A.圆柱B.圆锥C.四面体D.三棱柱[解析]A由空间几何体的三视图可知,圆柱的正视图、侧视图、俯视图都不可能是三角形.4、[2014·江西卷]一几何体的直观图如图1-1所示,下列给出的四个俯视图中正确的是( )图1-1A B C D图1-2[解析]B易知该几何体的俯视图为选项B中的图形.【题型二】三视图与面积1、(2013·湖南高考)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧(左)视图是一个面积为的矩形,则该正方体的正(主)视图的面积等于( )A. B.1 C. D.【解析】由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为的矩形,因此该几何体的主视图是一个长为,宽为1的矩形,其面积为.【答案】D2、[2014·安徽卷]一个多面体的三视图如图1-2所示,则该多面体的表面积为( )A.21+B.8+C.21D.18图1-2[解析]A如图,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其表面积S=6×4-×6+2×××=21+.3、[2014·浙江卷]几何体的三视图(单位:cm)如图1-1所示,则此几何体的表面积是( )图1-1A.90 cm2B.129 cm2 C.132 cm2D.138 cm2[解析].D此几何体是由长方体与三棱柱组合而成的,其直观图如图,所以该几何体的表面积为2(4×3+6×3+6×4)+2××3×4+4×3+3×5-3×3=138(cm2),故选D.4、[2014·重庆卷]某几何体的三视图如图1-2所示,则该几何体的表面积为( )图1-2A.54B.60 C.66D.72[解析]B由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥所得,三棱柱的底面是一个两直角边长分别为3和4的直角三角形,高为5,截去的锥体的底面是两直角边的边长分别为3和4的直角三角形,高为3,所以表面积为S=×3×4++×4+×5+3×5=60.【题型三】三视图与体积1、(2013·广东高考)某三棱锥的三视图如图7-1-8所示,则该三棱锥的体积是( )图7-1-8A. B.C. D.1【解析】如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,故其体积V=××1×1×2=,故选B.【答案】B2、[2014·辽宁卷]某几何体三视图如图1-1所示,则该几何体的体积为( )A.8-2πB.8-πC.8-D.8-图1-1[解析]B根据三视图可知,该几何体是正方体减去两个体积相等的圆柱的一部分后余下的部分,故该几何体体积为2×2×2-2××π×2=8-π.3、[2014·天津卷]一个儿何体的三视图如图1-3所示(单位:m),则该几何体的体积为________m3.图1-3[解析]由三视图可得,该几何体为圆柱与圆锥的组合体,其体积V=π×12×4+π×22×2=.4、(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为()A .168π+B .88π+C .1616π+D .816π+ 【答案】A 5、(2013年广东(理))某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163D .6 【答案】B 正视俯视侧视第5题。

高中三视图练习(含答案

高中三视图练习(含答案

俯侧24主(正)三视图专题练习:1.一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的表面积为___________.2.一个几何体的三视图如下图所示, 则该几何体的表面积为______.3.如右图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为( ) A . π3 B . π2 C . π23 D . π44.右图是一个几何体的三视图,则该几何体 的体积为 ( )正视图侧视图俯视图1223112231第3题图主视图俯视图左视图A .6B .8C .16D .245.一空间几何体的三视图如图所示,则该几何体的体积为( ). A.223π+ B. 423π+ C. 323π+ D. 2343π+6.一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为(A )2 (B )2 (C )2 (D )27.若某几何体的三视图(单位:cm )如图所示,3cm .则此几何体的体积是2 2 2 正(主)视图 22侧(左)视图俯视图8.设某几何体的三视图如下(尺寸的长度单位为m)。

则该几何体的体积为3m 9.如图是一个几何体的三视图,若它的体积是33,则a_______10.如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12。

则该集合体的俯视图可以是11.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 (A)9π (B )10π (C)11π (D)12π答案:1. 243+ 2. 2412π+ 3.A. 4.B 5.C. 6.A. 7.18. 8.4. 9. 3 10.C 11.D(11)一个体积为16的三棱锥的三视图如图所示,其俯视图是一个等腰直角三角形,则这个三棱锥左视图的面积为 .4.某几何体的三视图如图所示,则该几何体的体积为( ) (A )2 (B )43(C )4 (D )5(12)一个空间几何体的三视图如图所示,则这个几何体的体积为 ; 表面积为 .左视图主视图 俯视图2正(主)视图俯视图侧(左)视图2 3 12511 正视图11(7) 某三棱锥的三视图如图所示,该三棱锥的体积是(A) (B) (C) (D)6.正三棱柱的左视图如右图所示,则柱的侧面积为( )11、某几何体的三视图如图所示,则这个几何体的体积是 .A .4B .12C .3D .24主视图侧视图俯视图(12)如右图是一几何体的三视图,则该几何体的体积为 .(5) 某几何体的三视图如图所示,则该几何体的体积是(A )12 (B )36 (C )24 (D )7213.一个空间几何体的三视图如图所示,该几何体的表面积为俯视图正视图侧视图左视图俯视图左视图 俯视图主视图侧视图2俯视图侧视图正视图12.由两个四棱锥组合而成的空间几何体的三视图如图所示,其体积是;表面积是.。

三视图高考题(4)学生专用

三视图高考题(4)学生专用

三视图高考题(4)一、选择题1. (2013·新课标全国Ⅱ高考文科·T9)与(2013·新课标全国Ⅱ高考理科·T7)相同一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为 ( )2. (2013·山东高考文科·T4)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,该四棱锥侧面积和体积分别是( )A. B.83C.81),3D. 8,83.(2013·广东高考文科·T6)某三棱锥的三视图如图所示,则该三棱锥的体积是( )A .16B .13C .23D .14. (2013·广东高考理科·T5)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143 C .163D .6 5. (2013·辽宁高考文科·T10)与(2013·辽宁高考理科·T10)相同已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若13,4,,12,AB AC AB AC AA ==⊥=,则球O 的半径为( )13....2A B C D6. (2013·重庆高考理科·T5)某几何体的三视图如图所示,则该几何体的体积为( )A.3560 B. 3580C. 200D. 240 7. (2013·湖南高考理科·T7)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于( )A .1B ..D .8. (2013·重庆高考文科·T8)某几何体的三视图如图所示,则该几何体的表面积为( )A.180B.200C.220D.2409. (2013·新课标Ⅰ高考理科·T6)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A.33500cm π B. 33866cm π C. 331372cm π D. 332048cm π10.(2013·浙江高考文科·T5)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是 ( )A.108cm 3B.100cm 3C.92cm 3D.84cm 311. (2013·湖南高考文科·T7)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为图的面积等于( )A .2 B.1 C.12D.12.(2013·四川高考理科·T3)一个几何体的三视图如图所示,则该几何体的直观图可以是( )13.(2013·四川高考文科·T2)一个几何体的三视图如图所示,则该几何体可以是( )A 棱柱B 棱台C 圆柱D 圆台14. (2013·湖北高考理科·T8)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V 1, V 2, V 3,V 4,若上面两个几何体均为旋转体,下面两个简单几何体均为多面体,则有( ) A. V 1 <V 2<V 4 <V 3 B. V 1 <V 3<V 2<V 4C. V 2<V 1<V 3<V 4D. V 2<V 3 <V 1<V 415.(2013·江西高考文科·T8)一几何体的三视图如右所示,则该几何体的体积为()A.200+9πB. 200+18πC. 140+9πD. 140+18π16.(2013·新课标Ⅰ高考文科·T11)与(2013·新课标Ⅰ高考理科·T8)相同某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π二、填空题17.(2013·辽宁高考文科·T13)与(2013·辽宁高考理科·T13)相同某几何体的三视图如图所示,则该几何体的体积是_______.18.(2013·新课标Ⅰ高考文科·T15)已知H 是球O 的直径AB 上一点,AH:HB=1:2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为_______.19. (2013·大纲版全国卷高考文科·T16)与(2013·大纲版全国卷高考理科·T16)相同已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =,且圆与圆所在的平面所成角为,则球O 的表面积等于 . 20. (2013·天津高考文科·T10)已知一个正方体的所有顶点在一个球面上. 若球的体积为92π, 则正方体的棱长为 .21.(2013·浙江高考理科·T12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于 cm 3.22.(2013·上海高考理科·T13)在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________23.(2013·上海高考文科·T10)已知圆柱Ω的母线长为l ,底面半径为r,O 是上底面圆心,A 、B 是下底面圆周上的两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为6π,则rl = .24.(2013·江苏高考数学科·T8)如图,在三棱柱A 1B 1C 1ABC 中,D,E,F 分别是AB,AC,AA 1的中点,设三棱锥F ADE 的体积为V 1,三棱柱A 1B 1C 1ABC 的体积为V 2,则V 1∶V 2= .25. (2013·福建高考理科·T12)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是 .26.(2013·北京高考理科·T14)如图,在棱长为2的正方体ABCD-A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为.27. (2013·新课标全国Ⅱ高考文科·T15)已知正四棱锥O ABCD 的体积为,底面边长为则以O 为球心,OA 为半径的球的表面积为________。

三视图高考试题集锦

三视图高考试题集锦

立体几何——三视图高考试题集锦1.(14福建卷)某空间几何体的正视图是三角形,则该几何体不可能是 ( A ) A .圆柱 B.圆锥 C.四面体 D.三棱柱2.(10年海南卷)正视图是一个三角形的几何体可以是_______(写出三种) 3(11山东卷)右图是长和宽分别相等的两个矩形,给定下列三个命题: ①存在三棱柱,其正(主)视图、俯视图如右图; ②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图。

其中真命题的个数是 (A) 3 (B) 2 (C) 1 (D) 0 4.(14辽宁)7.某几何体三视图如图所示,则该几何体的体积 为( )A .82π- B .8π- C .82π-D .84π-5.(12海南卷)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 186.(14天津卷)已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为____3m .(第4题) (第5题) (第6题)7.(13海南卷)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分 别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四 面体三视图中的正视图时,以zOx 平面为投影面,则得到正视 图可以为( )244242俯视图侧视图正视图俯视图正(主)视图(A) (B)(C)(D)8.(14湖北卷)在如图所示的空间直角坐标系xyz O 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C. ④和③D.④和②9.(2014•浙江)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( ) A . 90cm 2 B . 129cm 2 C . 132cm 2 D . 138cm 2 10.(07海南文理)已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .334000cmB .338000cm C .20003cm D .40003cm(第9题) (第10题)201010202020正视图侧视图俯视图11.(07山东文理)下列几何体各自的三视图中,有且仅有两个视图相同的是 ( )A .①②B .①③C .①④D .②④12.(08海南理)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 的b 的线段,则b a +的最大值为( )A .22B .32C .4D .5213.(09海南文理)一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为( )A .21248+ B .22448+ C .21236+ D .22436+14.(09山东文理)一空间几何体的三视图如图所示,则该几何体的体积为( ) A .223π+ B .423π+ C .2323π+ D .2343π+(第13题) (第14题)15.(11海南文理)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )15.(10安徽文理)一个几个何体的三视图如图,该几何体的表面积为( )A .280B .292C .360D .372 16.(11湖南文理)如图是某几何体的三视图,则该几何体的体积为( )A .9122π+B .9182π+ C .942π+ D .3618π+(第15题) (第16题)20.(09辽宁文理)设某几何体的三视图如下(尺寸的长度单位为m )。

全国高考题试题三视图精编

全国高考题试题三视图精编

全国高考数学(理)三视图整精编一、选择题1、(新课标全国Ι)某几何体的三视图如图所示,则该几何体的体积为()2、(广东5)某四棱台的三视图如图所示,则该四棱台的体积是为()3、(湖北8)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1、V2、V3、V4,上面两个简单几何体均为旋转体,下面两个简单几何体均,多面体,则有( )4、(2013重庆卷5)某几何体的三视图如图所示,则该几何体的体积为()5、(2013四川卷3)一个几何体的三视图如图所示,则该几何体的直观图可以是()二、填空题6、(2013浙江卷12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于cm2.(第6题)7、(2013福建卷12)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2 的正方形,则该球的表面积是8、(2013陕西卷12)某几何体的三视图如图所示,则其体积为(第7题)第8题9、(2013辽宁卷13)某几何体的全视图如图所示,则该几何体的体积是三视图10.文理(15)设某几何体的三视图如下(尺寸的长度单位为m)。

m则该几何体的体积为311.文理(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.2,它的三视12.文理7一个正三棱柱的侧棱长和底面边长相等,体积为3图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是A.42B.3C.2D.313理13.一个几何体的三视图如图1-3所示.则该几何体的表面积为________.图1-314文13.一个几何体的三视图如图所示,则该几何体的体积为__________.15.文理13)某几何体的三视图如图所示,则该几何体的体积是.16.若某空间几何体的三视图如图所示,则该几何体的体积是( )A .2B .1C .2/3D .1/3一、 三视图考点⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧画图邻关系判断几何体各个面的相个数,判断几何体给出某一视图和几何体判断几何体个数体形状给出三视图,判断几何图给出几何体,判断三视例题1:如图所示的几何体的俯视图是( ).A .B .C .D .例题2:下图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )第1题图BCA例题3:一个物体的三视图如图所示,该物体是( ) A .圆柱 B .圆锥 C .棱锥 D .棱柱例题4:如图是一个包装纸盒的三视图(单位:cm ),则制作一个纸盒所需纸板的面积是A .75(1+3)cm 2B .75(1+23)cm 2C .75(2+3)cm 2D .75(2+23)cm 2例题5:下图是由几个相同的小正方体搭成的几何体的三视图, 则搭成这个几何体的小正方体的个数是A .5B .6C .7D .8例题6:如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为.左视图俯视图例题7:在如图所示的正方体的三个面上,分别画了填充不同的圆,下面的4个图中,是这个正方体展开图的有( ).例题8:如图是正方体的展开图,则原正方体相对两个面上的数字和最小的是( ).A. 4B. 6C. 7D.8例题9:骰子是一种特别的数字立方体,它符合规则:相对两面的点数之和总是7.下面四幅图中可以折成符合规则的骰子的是例题101 42 5 36第8题图从正面看从左面看主视图左视图俯视图例题11:由一些大小相同的小正方体组成的几何体的主视图和俯视图(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方形的块数n,请你写出n的所有可能值。

专题17:三视图高考真题集锦(解析版)

专题17:三视图高考真题集锦(解析版)

专题17:三视图高考真题集锦(解析版)1.2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59C .1027D .13【答案】A 【详解】因为加工前的零件半径为3,高为6,所以体积154V π=,又因为加工后的零件,左半部为小圆柱,半径为2,高4,右半部为大圆柱,半径为3,高为2,所以体积2161834V πππ=+=,所以削掉部分的体积与原体积之比为5434105427πππ-=,故选A.考点:本小题主要考查立体几何中的三视图,考查同学们的空间想象能力.2.2018年全国卷Ⅲ文数高考试题中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .【答案】A【详解】详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题.3.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是A.B.C.D.【答案】A【解析】对于B,易知AB∥MQ,则直线AB∥平面MNQ;对于C,易知AB∥MQ,则直线AB∥平面MNQ;对于D,易知AB∥NQ,则直线AB∥平面MNQ.故排除B,C,D,选A.点睛:本题主要考查线面平行的判定定理以及空间想象能力,属容易题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.4.2017年全国普通高等学校招生统一考试文科数学(新课标2卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π【答案】B 【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B.点睛:(1)解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.(2)三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.5.2014年全国普通高等学校招生统一考试理科数学如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A .63B .6C .2D .4【答案】B 【详解】由正视图、侧视图、俯视图形状,可判断该几何体为四面体,且四面体的长、宽、高均为4个单位,故可考虑置于棱长为4个单位的正方体中研究, 如图所示,该四面体为D ABC -,且4AB BC ==,42AC =,25DB DC ==,2(42)46DA =+=,故最长的棱长为6,选B .6.2016年全国普通高等学校招生统一考试理科数学(全国2卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π【答案】C 【解析】试题分析:由三视图分析可知,该几何体的表面积为圆锥的表面积与圆柱的侧面积之和.,,所以几何体的表面积为.考点:三视图与表面积.7.2016年全国普通高等学校招生统一考试文科数学(新课标3卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.B.C.90D.81【答案】B【解析】【详解】试题分析:解:由已知中的三视图可得:该几何体是一个以俯视图为底面的斜四棱柱,其底面面积为:3×6=18,前后侧面的面积为:3×6×2=36,左右侧面的面积为:,故棱柱的表面积为:.故选:B.点睛:本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键,由三视图判断空间几何体(包括多面体、旋转体和组合体)的结构特征是高考中的热点问题.8.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图+,则r=( )中的正视图和俯视图如图所示,若该几何体的表面积为1620πA .1B .2C .4D .8 【答案】B【解析】试题分析:由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+="16" + 20π,解得r=2,故选B. 考点:简单几何体的三视图;球的表面积公式;圆柱的测面积公式9.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A .18B .17C .16D .15【答案】D 【详解】试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的16,剩余部分体积是正方体体积的56,所以截去部分体积与剩余部分体积的比值为,故选D. 考点:本题主要考查三视图及几何体体积的计算.10.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱【答案】B 【解析】试题分析:由三视图中的正视图可知,由一个面为直角三角形,左视图和俯视图可知其它的面为长方形.综合可判断为三棱柱. 考点:由三视图还原几何体.11.2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A .2717 B .95 C .2710 D .31【答案】C 【解析】试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图.12.2020年全国统一高考数学试卷(理科)(新课标Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H【答案】A 【分析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点. 【详解】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E . 故选:A 【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题. 13.2020年全国统一高考数学试卷(理科)(新课标Ⅲ) 下图为某几何体的三视图,则该几何体的表面积是( )A .2B .2C .3D .3【答案】C 【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△ 根据勾股定理可得:22AB AD DB ===∴ADB △是边长为22的等边三角形根据三角形面积公式可得:2113sin 60(22)23222ADB S AB AD =⋅⋅︒=⋅=△ ∴该几何体的表面积是:2362332=⨯++.故选:C. 【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.14.2017年全国普通高等学校招生统一考试理科数学(新课标1卷)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【答案】B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.点睛:三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.15.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【答案】D【解析】试题分析:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为111111326⨯⨯⨯⨯=,∴剩余部分体积为15166-=,∴截去部分体积与剩余部分体积的比值为15.故选D.考点:由三视图求体积16.2016年全国普通高等学校招生统一考试理科数学(新课标1卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是A.17πB.18πC.20πD.28π【答案】A【解析】试题分析:由三视图知,该几何体的直观图如图所示:是一个球被切掉左上角的,即该几何体是个球,设球的半径为,则,解得,所以它的表面积是的球面面积和三个扇形面积之和,即,故选A.【考点】三视图及球的表面积与体积【名师点睛】由于三视图能有效地考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般与几何体的表面积与体积相结合.由三视图还原出原几何体是解决此类问题的关键.17.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.B.C.D.【答案】C【解析】试题分析:由三视图分析可知,该几何体的表面积为圆锥的表面积与圆柱的侧面积之和。

2019-2021全国高考数学真题汇编:三视图(教师版)

2019-2021全国高考数学真题汇编:三视图(教师版)

2019-2021全国高考数学真题汇编:三视图一.选择题(共6小题)1.(2020•北京)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+B.6+2C.12+D.12+22.(2020•新课标Ⅲ)如图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+23.(2021•北京)某四面体的三视图如图所示,该四面体的表面积为()A.+B.3+C.+D.3+4.(2019•浙江)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm)3)是()A.158B.162C.182D.3245.(2020•浙江)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.B.C.3D.66.(2021•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.B.3C.D.3二.填空题(共1小题)7.(2019•北京)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为.2019-2021全国高考数学真题汇编:三视图参考答案与试题解析一.选择题(共6小题)1.(2020•北京)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+B.6+2C.12+D.12+2【分析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.【解答】解:几何体的直观图如图:是三棱柱,底面边长与侧棱长都是2,几何体的表面积为:3×3×2+2××2=12+5.故选:D.【点评】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键,是基本知识的考查.2.(2020•新课标Ⅲ)如图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+2【分析】先由三视图画出几何体的直观图,利用三视图的数据,利用三棱锥的表面积公式计算即可.【解答】解:由三视图可知,几何体的直观图是正方体的一个角P A=AB=AC=2,P A、AC两两垂直,故PB=BC=PC=2,几何体的表面积为:3×=6+7,故选:C.【点评】本题考查多面体的表面积的求法,几何体的三视图与直观图的应用,考查空间想象能力,计算能力.3.(2021•北京)某四面体的三视图如图所示,该四面体的表面积为()A.+B.3+C.+D.3+【分析】由三视图还原原几何体,其中P A⊥底面ABC,AB⊥AC,P A=AB=AC=2,再由三角形面积公式求解.【解答】解:由三视图还原原几何体如图,P A⊥底面ABC,AB⊥AC,则△PBC是边长为的等边三角形,则该四面体的表面积为S=.故选:A.【点评】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.4.(2019•浙江)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm)3)是()A.158B.162C.182D.324【分析】由三视图还原原几何体,可知该几何体为直五棱柱,由两个梯形面积求得底面积,代入体积公式得答案.【解答】解:由三视图还原原几何体如图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解,即=27,高为6,则该柱体的体积是V=27×8=162.故选:B.【点评】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.5.(2020•浙江)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.B.C.3D.6【分析】画出几何体的直观图,利用三视图的数据求解几何体的体积即可.【解答】解:由题意可知几何体的直观图如图,下部是直三棱柱,棱锥的高为2,一个侧面与底面等腰直角三角形垂直,所以几何体的体积为:=.故选:A.【点评】本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键.6.(2021•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.B.3C.D.3【分析】由三视图还原原几何体,可知该几何体为直四棱柱,底面四边形ABCD为等腰梯形,由已知三视图求得对应的量,再由棱柱体积公式求解.【解答】解:由三视图还原原几何体如图,该几何体为直四棱柱,底面四边形ABCD为等腰梯形,其中AB∥CD,由三视图可知,且AD⊥BC,且AB=,CD=1=1,等腰梯形的高为=,则该几何体的体积V==.故选:A.【点评】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.二.填空题(共1小题)7.(2019•北京)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为40.【分析】由三视图还原原几何体,然后利用一个长方体与一个棱柱的体积作和求解.【解答】解:由三视图还原原几何体如图,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积V=.故答案为:40.【点评】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.。

高考数学三视图汇编.doc

高考数学三视图汇编.doc

高考立体几何三视图1( 2017 全国卷二理数)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90B.63C.42D.36【答案】 B【解析】该几何体可视为一个完整的圆柱减去一个高为 6 的圆柱的一半.2( 2017 北京文数)某三棱锥的三视图如图所示,则该三棱锥的体积为A 60B 30C 20D 10【答案】 D【解析】该几何体是如图所示的三棱锥P-ABC ,由图中数据可得该几何体的体积为V 115 3 4 10 3 23( 2017 北京理数)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A 3 2B 2 3C 2 2D 2【答案】 B【解析】如下图所示,在四棱锥P ABCD 中,最长的棱为PA,所以 PA= PC2AC 222(2 2) 2 2 3 ,故选B.4( 2017 山东理数)由一个长方体和两个何体的三视图如图,则该几何体的体积为1圆柱构成的几4。

【答案】2+ 【解析】由三视图可知,长方体的长、宽、2高分别是2、 1、 1,圆柱的高为1,底面半径为1,所以V 2 1 1 2 121=2+4 25( 2017 全国卷一理数)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C.14 D .16【答案】 B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为2(2 4) 2 112 ,故选 B. 26( 2017 浙江文数)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A. π+1 πB. +32 2C. 3 3π+1 D. +3 2 2【答案】 A 【解析】由三视图可知该几何体由一个三棱锥和半个圆锥组合而成,圆锥的体积为 V1 1 1 12 3 π,三棱锥的体积为 V2 112 13 1 ,2 3 2 3 2 2所以它的体积为V V1 V2π 1 2 27.( 2016 全国卷 1 文数)如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π,则它的表面积3是().A .17πB.18πC.20π D .28π【答案】 B 【解析】由三视图可知该几何体是7个球(如图所示),设球的半径为 R ,则8V 7 4π 3 28πS表7 2 3 28R 得 R=2 ,所以它的表面积是84π 2 +42 173 38.( 2016 全国卷 2 文数)右图是圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为().A.20πB.24C.28D.32【答案】 C【解析】由题意可知,圆柱的侧面积为S12π 2 4 16圆锥的侧面积为S212π 2 48 2圆柱的底面积为S3π 22 4该几何体的表面积为S S1+S2 +S3289.( 2016 全国卷 3 文数)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为() .A. 18 36 5B. 54 18 5C. 90D. 81【答案】 B 【解析】(1)由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S=3×6×2+3×3×2+ 3× 45×2= 54+ 18 5. 10.( 2016 北京文数)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3【解析】由已知中的三视图可知,该几何体是一个以俯视图为底面的四棱柱,2棱柱的底面积为 S 1(1+2) 1 3 棱柱的高为1,故体积为3 2 2 211.(2016 山东文数)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为() .A . 1 2 πB . 1 2 π3 3 3 3C. 1 2 πD.1 2 π3 6 6 11 1正(主)视图侧(左)视图俯视图【答案】 C【解析】由题意可知,该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥底面棱长为1,可得2R 22,故 R2半球的体积为,2 23 2(g )=326棱锥的面积为1,高为 1,故体积为1故几何体的体积为1 +23 3 612.( 2016 天津文数3)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为() .【答案】 B【解析】由正视图和俯视图可知该几何体的直观图如图所示,故该几何体的侧视图为选项 B.13( 2016 四川文数)已知某三棱锥的三视图如图所示,则该三棱锥的体积等于. 【答案】 C【解析】由题意可知,该几何体为三棱锥,底面为俯视图所示的三角形,底面积 S 13 1 3 ,高为 h1 1 32 1 棱锥的体积为VSh g 3g1=3 2 3 314.( 2016 浙江文数)某几何体的三视图如图所示(单位:cm),则该几何体的表2 3面积是 ______cm ,体积是 ______cm .【答案】 C 【解析】由题意可知,该几何体为长方体上面放置一个小的正方体,其表面积为 S 6 22 2 42 4 2 4 2 22 80其体积为 V 23 4 4 2 40。

(完整word版)高考三视图强化训练30题

(完整word版)高考三视图强化训练30题

高考三视图强化训练30题三视图之间的关系。

正视图的是几何体的高,长;侧视图的是几何体的高,宽。

俯视图的是几何体的长,宽;1.(2014新课标全国卷Ⅰ,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 2 B.4 2 C.6 D.42.(2014安徽,5分)一个多面体的三视图如图所示,则该多面体的体积为()A.233 . B476 C. 6 D.73.(2014重庆,5分)某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18 C.24 D.304.【2015高考新课标2,理6】一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )D.51A.81B.71C.615.(2014重庆,5分)某几何体的三视图如图所示,则该几何体的表面积为( )A .54B .60C .66D .726.(2014辽宁,5分)某几何体三视图如图所示,则该几何体的体积为( )A .8-π4B .8-π2C .8-πD .8-2π7.(2014四川,5分)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是 ( )A .3B .2 C. 3 D .18.(2014浙江,5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A .90 cm 2B .129 cm 2C .132 cm 2D .138 cm 29.(2013浙江,5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .108 cm 3B .100 cm 3C .92 cm 3D .84 cm 310.(2013新课标全国Ⅰ,5分)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π11.【2015高考新课标1,文理11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r=( )(A)1(B)2(C)4(D)812.【2015高考新课标2,理9】已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36π B.64π C.144π D.256π13.(2015•北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .2+B.4+C.2+2D.5 14.(2015•重庆)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.15.(2015•北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.216.(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.217.(2015•重庆)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.18.(2015•泉州模拟)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm319.(2015•衢州一模)如图是某几何体的三视图,则该几何体的体积为()A.1 B.C.D.20.(2015•西宁校级模拟)某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是()A.2 B.C.D.321.(2015•金华一模)某三棱锥的三视图如图所示,该三棱锥的体积为()A .80 B.40 C.D.22.(201 1(2016文理).某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.23.(2016年北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.124.(2016年山东高考)有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为(A)π32+31(B)π32+31(C)π62+31(D)π62+125.(2016年四川高考)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是__________.26.(2016年天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为_______m3.27.(2016年全国II 高考)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π28..(2016年全国III 高考)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )185+(B )545+(C )90 (D )8129.[2014·湖北卷] 在如图1-1所示的空间直角坐标系O ­ xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为( )1A .①和②B .①和③C .③和②D .④和②30.沿一个正方体三个面的对角线截得的几何体如图所示, 则该几何体的左视图为( )(A ) (B ) (C ) (D )单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考三视图题汇编一、选择题1 .(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为 ( )A .35003cmπ B .38663cmπ C .313723cm πD .320483cm π2 .(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )( )A .168π+B .88π+C .1616π+D .816π+3 .(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A .1243V V V V <<< B.1324V V V V <<<C.2134V V V V <<< D .2314V V V V <<<4 .(2013年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于 ( )A .1B .2C .2-12D .2+125 .(2013年普通高等学校招生统一考试广东省数学(理)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163D .66.(2013年普通高等学校招生统一考试重庆数学(理)某几何体的三视图如题()5图所示,则该几何体的体积为 ( )A .5603B .5803C .200D .2407.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)一个四面体的顶点在空间直角坐标系O xyz-中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A .B .C .D .8.(2013年高考四川卷(理))一个几何体的三视图如图所示,则该几何体的直观图可以是9.(2013年高考陕西卷(理))某几何体的三视图如图所示, 则其体积为________.112110.(2013年普通高等学校招生统一考试浙江数学(理)若某几何体的三视图(单位:cm)如下面左图所示,则此几何体的体积等于________2cm .11.(2013年普通高等学校招生统一考试辽宁数学(理)某几何体的三视图如上面右图所示,则该几何体的体积是____________.12.(2013年普通高等学校招生统一考试福建数学(理)已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________2012年高考真题理科数学解析汇编:立体几何13 .(2012年高考(新课标理))如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.1814.(2012年高考(湖南理))某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是15.(2012年高考(湖北理))已知某几何体的三视图如图所示,则该几何体的体积为A.8π3B.3πC.10π3D.6π正视图侧视图16.(2012年高考(广东理))(立体几何)某几何体的三视图如图1所示,它的体积为( )A .12πB .45πC .57πD .81π13.(2012年高考(福建理))一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( ) A .球B .三棱柱C .正方形D .圆柱14.(2012年高考(北京理))某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .2865+B .3065+ 56125+D .60125+15.(2012年高考(天津理))―个几何体的三视图如图所示(单位:m ),则该几何体的体积为______3m .16.(2012年高考(辽宁理))一个几何体的三视图如图所示,则该几何体的表面积为______________.17.(2012年高考(安徽理))某几何体的三视图如图所示,该几何体的表面积是_____.31363223侧视图俯视图正视图2011年高考三视图18.(陕西理5)某几何体的三视图如图所示,则它的体积是A.283π-B.83π-C.82π-D.23π19.(浙江理3)若某几何体的三视图如图所示,则这个几何体的直观图可以是20.(山东理11)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是A.3 B.2 C.1 D.021.(全国新课标理6).在一个几何体的三视图中,正视图与俯视图如下图所示,则相应的侧视图可以为22.(湖南理3)设图1是某几何体的三视图,则该几何体的体积为A.9122π+B.9182π+C.942π+D.3618π+23.(广东理7)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为63B .93 C.123D.183A.24.(北京理7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A.8 B.62C.10 D.8225.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为(A)4817(B)32+817(C)48+8(D)802,它的三视图26.(辽宁理15)一个正三棱柱的侧棱长和底面边长相等,体积为3中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是 ( )27.(天津理10)一个几何体的三视图如右图所示(单位:m),则该几何体的体积为__________3m28.某长方体的三视图如右图,长度为10的体对角线在正视图中的长度为6,在侧视图中的长度为5,则该长方体的全面积为________________.29.如图所示,一个三棱锥的三视图是三个直角三角形 (单位:cm),则该三棱锥的外接球的表面积为 ____________cm 2.65234俯视图左视图主视图30.某几何体的三视图如图所示,则此几何体对应直观图中△PAB的面积是()A.7B.2C.3D.531.已知正四面体的俯视图如图所示,其中四边形ABCD是边长为2的正方形,则这个四面体的主视图的面积为_________32.如图所示是一个几何体的三视图(单位:cm),则这个几何体的表面积 cm2.第15题图DBCA网上摘编三视图题1、(2012•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为 m3【解析】由三视图可知几何体是组合体,下部是长方体,底面边长为3和4,高为2,上部是放倒的四棱柱,底面为直角梯形,底面直角边长为2和1,高为1,棱柱的高为4,所以几何体看作是放倒的棱柱,底面是5边形,几何体的体积为:(2×3+)×4=30(m3).故答案为:30.2、一个几何体的三视图如图所示,则该几何体的体积为______.由三视图可知,几何体为一个三棱柱剪去一个三角锥,三棱柱的体积V1为:123223 2=剪去的三棱锥体积V2为:113231323⨯=,所以几何体的体积为:352333=3、一个几何体的三视图如图所示,则该几何体的体积为.试题分析:根据题意可知该几何体是底面为圆柱体,上面是三棱锥的组合体,且可知高度为3,底面的边长为2,那么根据几何体的三视图可知圆柱的高为1,三棱锥的底面是直角三角形,边长为2,那么可以利用锥体的体积和圆柱体的体积公式得到为33π+,答案为33π+点评:本题考查由几何体的三视图求几何体的体积,是基础题,解题时要认真审题,仔细解答.4、一个几何体的三视图如图所示,则这个几何体的体积为______.由俯视图可知该几何体的底面为直角梯形,则正视图和俯视图可知该几何体的高为1,结合三个试图可知该几何体是底面为直角梯形的直四棱柱,所以该几何题的体积为1 2⨯(1+2)×2×1=3;故答案为3.5、一个几何体的三视图如右图所示(单位:),则该几何体的体积为__________.试题分析:易知该三视图对应的几何体是一个四棱锥,且有一侧棱垂直底面,故体积点评:本题考查了由三视图还原直观图,考查了三视图的概念的应用,属基础题.6、(2013•河东区二模)已知一个几何体的三视图如图所示(单位:m),则该几何体的体积为______m3.根据三视图可知几何体上部是一个高为3圆锥,下部是一个高为3圆柱,底面半径都是2,∴几何体的体积是1 3×22×π×3+22×π×3=16π.故答案为:16π.7、已知一个几何体的三视图如图所示(单位:m),则该几何体的体积为_______.试题分析:由三视图可知该几何体是组合体,其中下半部分是底面半径为1,高为4的圆柱,上半部分是底面半径为2,高为2的圆锥,其体积为().8、一个几何体的三视图如图所示(单位:cm),则该几何体的体积是______三视图复原的几何体上部是四棱锥,下部是半球半球的体积:33 216233cmπ⨯=四棱锥的体积:3 1822233cm⨯⨯=所以几何体的体积:3 168168 333cmπ++=9、一个几何体的三视图如图所示,则该几何体的体积为()3.3A π+ 3.23A π+ .23C π+ .3C π+由三视图可知,实物图为组合体:其上部为三棱锥,底面为斜边长为 的等腰直角三角形,其面积为,其高为,所以此三棱锥的体积为 ;其下部为底面半径为 ,高为 的圆柱,其体积为. 所以所求的体积为正确答案为A。

相关文档
最新文档