机械振动_第四章(习题)
大物习题集答案解析第4章机械振动
第4章 机械振动4.1基本要求1.掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系2.掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义4.理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点4.2基本概念1.简谐振动 离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。
简谐振动的运动方程 cos()x A t ωϕ=+2.振幅A 作简谐振动的物体的最大位置坐标的绝对值。
3.周期T 作简谐振动的物体完成一次全振动所需的时间。
4.频率ν 单位时间内完成的振动次数,周期与频率互为倒数,即1T ν=5.圆频率ω 作简谐振动的物体在2π秒内完成振动的次数,它与频率的关系为22Tπωπν==6.相位和初相位 简谐振动的运动方程中t ωϕ+项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位ϕ7.简谐振动的能量 作简谐振动的系统具有动能和势能。
弹性势能222p 11cos ()22E kx kA t ωϕ==+ 动能[]22222k 111sin()sin ()222E m m A t m A t ωωϕωωϕ==-+=+v弹簧振子系统的机械能为222k p 1122E E E m A kA ω=+==8.阻尼振动 振动系统因受阻尼力作用,振幅不断减小。
9.受迫振动 系统在周期性外力作用下的振动。
周期性外力称为驱动力。
10.共振 驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。
4.3基本规律1.一个孤立的简谐振动系统的能量是守恒的物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。
第4章_振动与波动 (1)
第4章 振动与波动题目无答案一、选择题1. 已知四个质点在x 轴上运动, 某时刻质点位移x 与其所受合外力F 的关系分别由下列四式表示(式中a 、b 为正常数).其中不能使质点作简谐振动的力是[ ] (A) abx F = (B) abx F -=(C) b ax F +-= (D) a bx F /-=2. 在下列所述的各种物体运动中, 可视为简谐振动的是[ ] (A) 将木块投入水中, 完全浸没并潜入一定深度, 然后释放(B) 将弹簧振子置于光滑斜面上, 让其振动(C) 从光滑的半圆弧槽的边缘释放一个小滑块(D) 拍皮球时球的运动3. 欲使弹簧振子系统的振动是简谐振动, 下列条件中不满足简谐振动条件的是[ ] (A) 摩擦阻力及其它阻力略去不计(B) 弹簧本身的质量略去不计(C) 振子的质量略去不计(D) 弹簧的形变在弹性限度内4. 当用正弦函数或余弦函数形式表示同一个简谐振动时, 振动方程中不同的量是[ ] (A) 振幅 (B) 角频率(C) 初相位 (D) 振幅、圆频率和初相位5. 如T4-1-5图所示,一弹簧振子周期为T .现将弹簧截去一半,仍挂上原来的物体, 则新的弹簧振子周期为[ ] (A) T (B) 2T(C) 3T (D) 0.7T6. 三只相同的弹簧(质量忽略不计)都一端固定, 另一端连接质量为m 的物体, 但放置情况不同.如T4-1-6图所示,其中一个平放, 一个斜放, 另一个竖直放.如果让它们振动起来, 则三者的[ ] (A) 周期和平衡位置都不相同(B) 周期和平衡位置都相同(C) 周期相同, 平衡位置不同 (D) 周期不同, 平衡位置相同7. 如T4-1-7图所示,升降机中有一个做谐振动的单摆, 当升降机静止时, 其振动周期为2秒; 当升降机以加速度上升时, 升降机中的观察者观察到其单摆的振动周期与原来的振动周期相比,将[ ] (A) 增大 (B ) 不变(C) 减小 (D) 不能确定T 4-1-6图T 4-1-7图 T 4-1-5图8. 在简谐振动的运动方程中,振动相位)(ϕω+t 的物理意义是[ ] (A) 表征了简谐振子t 时刻所在的位置(B) 表征了简谐振子t 时刻的振动状态(C) 给出了简谐振子t 时刻加速度的方向(D) 给出了简谐振子t 时刻所受回复力的方向9. 如T4-1-9图所示,把单摆从平衡位置拉开, 使摆线与竖直方向成 θ 角, 然后放手任其作微小的摆动.若以放手时刻为开始观察的时刻,用余弦函数表示这一振动, 则其振动的初位相为 [ ] (A) θ (B) 2π 或π23 (C) 0 (D) π 10. 两质点在同一方向上作同振幅、同频率的简谐振动.在振动过程中, 每当它们经过振幅一半的地方时, 其运动方向都相反.则这两个振动的位相差为[ ] (A) π (B) π32 (C) π34 (D) π54 11. 在简谐振动的速度和加速度表达式中,都有一个负号, 这是意味着[ ] (A) 速度和加速度总是负值(B) 速度的相位比位移的相位超前π21, 加速度的位相与位移的相位相差π (C) 速度和加速度的方向总是相同(D) 速度和加速度的方向总是相反12. 一质点作简谐振动, 振动方程为)cos(ϕω+=t A x . 则在2T t =(T 为振动周期) 时, 质点的速度为[ ] (A) ϕωsin A - (B) ϕωsin A(C) ϕωcos A - (D) ϕωcos A13. 一物体作简谐振动, 其振动方程为)4πcos(+=t A x ω.则在2T t = (T 为周期)时, 质点的加速度为(A) 222ωA - (B) 222ωA (C) 223ωA - (D) 223ωA 14. 一质点以周期T 作简谐振动, 则质点由平衡位置正向运动到最大位移一半处的最短时间为[ ] (A) 6T (B) 8T (C) 12T (D) T 127 15. 某物体按余弦函数规律作简谐振动, 它的初相位为2π3, 则该物体振动的初始状态为[ ] (A) x 0 = 0 , v 0 > 0 (B) x 0 = 0 , v 0<0(C) x 0 = 0 , v 0 = 0 (D) x 0 = -A , v 0 = 0T 4-1-9图16. 一作简谐运动质点的振动方程为π)21π2cos(5+=t x , 它从计时开始, 在运动一个周期后[ ] (A) 相位为零 (B) 速度为零(C) 加速度为零 (D) 振动能量为零17. 沿x 轴振动的质点的振动方程为)1π3cos(1032-⨯=-t x (SI 制), 则[ ] (A) 初相位为1° (B) 振动周期为T =3 s(C) 振幅A = 3 m (D) 振动频率 23=νHz 18. 有一谐振子沿x 轴运动, 平衡位置在x = 0处, 周期为T , 振幅为A ,t = 0时刻振子过2A x =处向x 轴正方向运动, 则其运动方程可表示为 [ ] (A) )21cos(t A x ω= (B) )cos(2t A x ω= (C) )3π2sin(--=T t A x ω (D) )3π2cos(-=T t A x ω 19. 一质点作简谐振动, 其速度随时间变化的规律为t A v ωωcos -=, 则质点的振动方程为[ ] (A) t A x ωsin = (B) t A x ωcos =(C) π)sin(+=t A x ω (D) π)cos(+=t A x ω20. 当一质点作简谐振动时, 它的动能和势能随时间作周期变化.如果f 是质点振动的频率, 则其动能变化的频率为[ ] (A) 4f (B) 2f (C) f (D) f /221. 已知一简谐振动系统的振幅为A , 该简谐振动动能为其最大值之半的位置是[ ] (A) 12A (B) 22A (C) 32A (D) A 22. 一弹簧振子作简谐振动, 其振动方程为: π)21cos(+=t A x ω.则该物体在t = 0时刻的动能与t = T /8 (T 为周期)时刻的动能之比为[ ] (A) 1:4 (B) 2:1 (C) 1:1 (D) 1:223. 一作简谐振动的质点某时刻位移为x , 系统的振动势能恰为振动动能的n 倍, 则该振动的振幅为[ ] (A) A n x =+⎛⎝ ⎫⎭⎪11 (B) A n x =-⎛⎝ ⎫⎭⎪11 (C) A n x =-11 (D) A n x =+1124. 一弹簧振子作简谐振动, 当其偏离平衡位置的位移大小为振幅的1/4时, 其动能为振动总能量的[ ] (A) 167 (B) 1615 (C) 169 (D) 1613 25. 一长为l 、质量为m 的单摆, 与一劲度系数为k 、质量为m 的弹簧振子周期相等.则k 、l 、m 、g 之间的关系为[ ] (A) lmg k = (B) g ml k = (C) gl m k = (D) 不能确定 26. 一轻质弹簧, 上端固定, 下端挂有质量为m 的重物, 其自由端振动的周期为T . 已知振子离开平衡位置为x 时其振动速度为v , 加速度为a , 且其动能与势能相等.试判断下列计算该振子劲度系数的表达式中哪个是错误的?[ ] (A) a mg k = (B) 22xm k v = (C) x ma k = (D) 22π4T m k = 27. 简谐振动的振幅由哪些因素决定?[ ] (A) 谐振子所受的合外力 (B) 谐振子的初始加速度(C) 谐振子的能量和力常数 (D) 谐振子的放置位置28. 设卫星绕地球作匀速圆周运动.若卫星中有一单摆, 下述哪个说法是对的?[ ] (A) 它仍作简谐振动, 周期比在地面时大(B) 它仍作简谐振动, 周期比在地面时小(C) 它不会再作简谐振动(D) 要视卫星运动速度决定其周期的大小29. 已知一单摆装置, 摆球质量为m ,摆的周期为T .对它的摆动过程, 下述说法中错误的是[ ] (A) 按谐振动规律, 摆线中的最大张力只与振幅有关, 而与m 无关(B) T 与m 无关(C) 按谐振动规律, T 与振幅无关(D) 摆的机械能与m 和振幅都有关30. 弹簧振子在光滑水平面上作谐振动时, 弹性力在半个周期内所作的功为[ ] (A) 2kA (B)221kA (C) 241kA (D) 0 T 4-1-26图31. 如果两个同方向同频率简谐振动的振动方程分别为π)433cos(73.11+=t x cm 和 π)413cos(2+=t x cm, 则它们的合振动方程为 [ ] (A) π)433cos(73.0+=t x cm (B) π)413cos(73.0+=t x cm (C) π)1273cos(2+=t x cm (D) π)1253cos(2+=t x cm32. 拍现象是由怎样的两个简谐振动合成的?[ ] (A) 同方向、同频率的两个简谐振动(B) 同方向、频率很大但相差甚小的两个简谐振动(C) 振动方向互相垂直、同频率的两个简谐振动(D) 振动方向互相垂直、频率成整数倍的两个简谐振动合成33. 两个同方向、同频率、等振幅的谐振动合成, 如果其合成振动的振幅仍不变, 则此二分振动的相位差为[ ] (A) 2π (B) 3π2 (C) 4π (D) π 34. 二同频率相互垂直的振动方程分别为)cos(11αω+=t A x 和)cos(22αω+=t A y .其合振动的轨迹[ ] (A) 不会是一条直线(B) 不会为一个圆(C) 不能是一封闭曲线(D) 曲线形状要由相位差和两振动振幅而定35. 下面的结论哪一个可以成立?[ ] (A) 一个简谐振动不可以看成是两个同频率相互垂直谐振动的合振动(B) 一个简谐振动只可以看成是两个同频率同方向谐振动的合振动(C) 一个简谐振动可以是两个同频率相互垂直谐振动的合振动(D) 一个简谐振动只可以是两个以上同频率谐振动的合振动36. 一质点同时参与两个相互垂直的简谐振动, 如果两振动的振动方程分别为π)π2cos(+=t x 和)π2sin(t y =, 则该质点的运动轨迹是[ ] (A) 直线 (B) 椭圆 (C) 抛物线 (D) 圆37. 将一个弹簧振子分别拉离平衡位置1厘米和2厘米后, 由静止释放(弹簧形变在弹性范围内), 则它们作谐振动的[ ] (A) 周期相同 (B) 振幅相同(C) 最大速度相同 (D) 最大加速度相同38. 谐振子作简谐振动时, 速度和加速度的方向[ ] (A) 始终相同(B) 始终相反(C) 在某两个1/4周期内相同, 另外两个1/4周期内相反(D) 在某两个1/2周期内相同, 另外两个1/2周期内相反39. 下列说法正确的是[ ] (A) 谐振子从平衡位置运动到最远点所需的时间为T 81(B) 谐振子从平衡位置运动到最远点的一半距离所需时间为8T (C) 谐振子从平衡位置出发经历T 121,运动的位移是A 31 (D) 谐振子从平衡位置运动到最远点所需的时间为T 4140. 关于振动和波, 下面几句叙述中正确的是[ ] (A) 有机械振动就一定有机械波(B) 机械波的频率与波源的振动频率相同(C) 机械波的波速与波源的振动速度相同(D) 机械波的波速与波源的振动速度总是不相等的41. 关于波,下面叙述中正确的是[ ] (A) 波动方程中的坐标原点一定要放在波源位置(B) 机械振动一定能产生机械波(C) 质点振动的周期与波的周期数值相等(D) 振动的速度与波的传播速度大小相等42. 按照定义,振动状态在一个周期内传播的距离就是波长.下列计算波长的方法中错误的是[ ] (A) 用波速除以波的频率(B) 用振动状态传播过的距离除以这段距离内的波数(C) 测量相邻两个波峰的距离(D) 测量波线上相邻两个静止质点的距离43. 一正弦波在海面上沿一定方向传播, 波长为λ, 振幅为A , 波的传播速率为u . 假设海面上漂浮的一块木块随水波上下运动, 则木块上下运动的周期是[ ] (A) u π2λ (B) uλ (C) λπ2u (D) λu 1 44. 当x 为某一定值时, 波动方程)π(2cos λx T t A x -=所反映的物理意义是 [ ] (A) 表示出某时刻的波形 (B) 说明能量的传播(C) 表示出x 处质点的振动规律 (D) 表示出各质点振动状态的分布45. 下列方程和文字所描述的运动中,哪一种运动是简谐振动?[ ] (A) x A t =1cos ω(B) x A t A t =+123cos cos ωω(C) d d 2222xt x =-ω(D) 两个同方向、频率相近的谐振动的合成46. 下列方程和文字所描述的运动中,哪一种运动是简谐波?[ ] (A) t xA y ωλcos π2cos =(B) )sin(2x cx bt A y ++=(C) 波形图始终是正弦或余弦曲线的平面波(D) 波源是谐振动但振幅始终衰减的平面波47. 下列函数f ( x , t )可以用来表示弹性介质的一维波动, 其中a 和b 是正常数.则下列函数中, 表示沿x 轴负方向传播的行波是[ ] (A) )sin(),(bt ax A t x f += (B) )sin(),(bt ax A t x f -=(C) )cos()cos(),(bt ax A t x f = (D) )sin()sin(),(bt ax A t x f =48. 已知一波源位于x = 5m 处, 其振动方程为: )cos(ϕω+=t A y m .当这波源产生的平面简谐波以波速u 沿x 轴正向传播时, 其波动方程为[ ] (A) )(cos u x t A y -=ω (B) ])(cos[ϕω+-=ux t A y (C) ])5(cos[ϕω++-=u x t A y (D) ])5(cos[ϕω+--=u x t A y 49. 一平面简谐波的波动方程为)2π(sin 5.0x t y --=m, 则此波动的频率、波速及各质点的振幅依次为[ ] (A)21、21、05.0- (B) 21、1、05.0- (C) 21、21、0.05 (D)2、2、0.0550. 已知一列机械波的波速为u , 频率为ν, 沿着x 轴负方向传播.在x 轴的正坐标上有两个点x 1和x 2.如果x 1<x 2 , 则x 1和x 2的相位差为[ ] (A) 0 (B) )(π221x x u -ν (C) π (D) )(π212x x u-ν51. 已知一平面余弦波的波动方程为)01.05.2π(cos 2x t y -=, 式中 x 、y 均以厘米计.则在同一波线上, 离x = 5cm 最近、且与 x = 5cm 处质元振动相位相反的点的坐标为[ ] (A) 7.5 cm (B) 55 cm (C) 105 cm (D) 205 cm52. 两端固定的一根弦线, 长为2m, 受外力作用后开始振动.已知此弦产生了一个波腹的波, 若该振动的频率为340 Hz, 则此振动传播的速度是____m ⋅s -1.[ ] (A) 0 (B) 170 (C) 680 (D) 136053. 一波源在XOY 坐标系中(3, 0)处, 其振动方程是)π120cos(t y = cm, 其中 t 以秒计, 波速为50 cm.s -1 .设介质无吸收, 则此波在x <3 cm 的区域内的波动方程为[ ] (A) )50π(120cos x t y +=cm (B) π]2.7)50π(120cos[-+=x t y cm (C) )50π(120cos x t y -=cm (D) π]2.1)50π(120cos[-+=x t y cm54. 若一平面简谐波的波动方程为)cos(cx bt A y -=, 式中A 、b 、c 为正值恒量.则[ ] (A) 波速为c (B) 周期为b 1 (C) 波长为c π2 (4) 角频率为bπ2 55. 一平面简谐横波沿着OX 轴传播.若在OX 轴上的两点相距8λ(其中λ为波长), 则在波的传播过程中, 这两点振动速度的[ ] (A) 方向总是相同 (B) 方向有时相同有时相反(C) 方向总是相反 (D) 大小总是不相等56. 一简谐波沿Ox 轴正方向传播,t =0时刻波形曲线如左下图所示,其周期为2 s .则P 点处质点的振动速度v 与时间t 的关系曲线为:[ ]57. 当波动方程为)01.05.2π(cos 20x t y +=cm 的平面波传到x =100cm 处时, 该处质点的振动速度为[ ] (A) )π5.2sin(50t cm.s -1 (B) )π5.2sin(50t -cm.s -1(C) )π5.2sin(π50t cm.s -1 (D) )π5.2sin(π50t -cm.s -1Aω)D ω)ω-ω-))58. 平面简谐机械波在弹性媒质中传播时, 在传播方向上某媒质元在负的最大位移处, 则它的能量是[ ] (A) 动能为零, 势能最大 (B) 动能为零, 势能为零(C) 动能最大, 势能最大 (D) 动能最大, 势能为零59. 一平面简谐波在弹性媒质中传播, 在媒质元从最大位移处回到平衡位置的过程中[ ] (A) 它的势能转换成动能(B) 它的动能转换成势能(C) 它从相邻的一段媒质元中获得能量, 其能量逐渐增大(D) 它把自己的能量传给相邻的一媒质元, 其能量逐渐减小60. 已知在某一媒质中两列相干的平面简谐波的强度之比是421=I I ,则这两列波的振幅之比21A A 是 [ ] (A) 4 (B) 2 (C) 16 (D) 861. 一点波源发出的波在无吸收媒质中传播, 波前为半球面, 该波强度I 与离波源距离r 之间的关系是[ ] (A) r I 1∝ (B) 31r I ∝ (C) r I 1∝ (D) 21r I ∝ 62. 当机械波在媒质中传播时, 某一媒质元的最大形变发生在(其中A 是振幅)[ ] (A) 媒质质元离开其平衡位置的最大位移处(B) 媒质质元离开平衡位置2/2A 处(C) 媒质元在其平衡位置处(D) 媒质元离开平衡位置2/A 处63. 假定汽笛发出的声音频率由 400 Hz 增加到1200 Hz, 而波幅保持不变, 则1200 Hz 声波对400 Hz 声波的强度比为[ ] (A) 1:3 (B) 3:1 (C) 1:9 (D) 9:164. 为了测定某个音叉C 的频率, 另选取二个频率已知而且和C 音叉频率相近的音叉A 和B, 音叉A 的频率为400 Hz, B的频率为397 Hz, 并进行下列实验: 使A 和C 同时振动每秒听到声音加强二次; 再使B 和C 同时振动, 每秒钟听到声音加强一次, 由此可知音叉C 的振动频率为[ ] (A) 401 Hz (B) 402 Hz (C) 398 Hz (D) 399 Hz65. 人耳能分辨同时传来的不同声音, 这是由于[ ] (A) 波的反射和折射 (B) 波的干涉(C) 波的独立传播特性 (D) 波的强度不同66. 两列波在空间P 点相遇, 若在某一时刻观察到P 点合振动的振幅等于两波的振幅之和, 则这两列波[ ] (A) 一定是相干波 (B) 不一定是相干波(C) 一定不是相干波 (D) 一定是初相位相同的相干波67. 有两列波在空间某点P 相遇, 某时刻观察到P 点的合振幅等于两列波的振幅之和, 由此可以判定这两列波[ ] (A) 是相干波 (B) 相干后能形成驻波(C) 是非相干波 (D) 以上三种情况都有可能68. 已知两相干波源所发出的波的相位差为π, 到达某相遇点P 的波程差为半波长的两倍, 则P 点的合成情况是[ ] (A) 始终加强(B) 始终减弱(C) 时而加强, 时而减弱, 呈周期性变化(D) 时而加强, 时而减弱, 没有一定的规律69. 两个相干波源连线的中垂线上各点[ ] (A) 合振动一定最强(B) 合振动一定最弱(C) 合振动在最强和最弱之间周期变化(D) 只能是在最强和最弱之间的某一个值70. 两初相位相同的相干波源, 在其叠加区内振幅最小的各点到两波源的波程差等于[ ] (A) 波长的偶数倍 (B) 波长的奇数倍(C) 半波长的偶数倍 (D) 半波长的奇数倍71. 在驻波中, 两个相邻波节间各质点的振动是[ ] (A) 振幅相同, 相位相同 (B) 振幅不同, 相位相同(C) 振幅相同, 相位不同 (D) 振幅不同, 相位不同72. 两列完全相同的余弦波左右相向而行, 叠加后形成驻波.下列叙述中, 不是驻波特性的是[ ] (A) 叠加后, 有些质点始终静止不动(B) 叠加后, 波形既不左行也不右行(C) 两静止而相邻的质点之间的各质点的相位相同(D) 振动质点的动能与势能之和不守恒73. 平面正弦波)π3π5sin(4y t x +=与下面哪一列波相叠加后能形成驻波?[ ] (A) )2325π(2sin 4x t y += (B) )2325π(2sin 4x t y -=(C) )2325π(2sin 4y t x += (D) )2325π(2sin 4y t x -= 74. 方程为)π100cos(01.01x t y -=m 和)π100cos(01.02x t y +=m 的两列波叠加后, 相邻两波节之间的距离为[ ] (A) 0.5 m (B) 1 m (C) π m (D) 2π m75. 1S 和2S 是波长均为λ的两个相干波的波源,相距3λ/4,1S 的相位比2S 超前2π.若两波单独传播时,在过1S 和2S 的直线上各点的强度相同,不随距离变化,且两波的强度都是0I ,则在1S 、2S 连线上1S 外侧和2S 外侧各点,合成波的强度分别是[ ] (A) 04I ,04I ; (B) 0,0;(C) 0,04I ; (D) 04I ,0.76. 在弦线上有一简谐波,其表达式为⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+⨯=-3π420π100cos 100.221x t y (SI)为了在此弦线上形成驻波,并且在x =0处为一波腹,此弦线上还应有一简谐波,其表达式为:[ ] (A) ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⨯=-3π20π100cos 100.222x t y (SI) (B) ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⨯=-3π420π100cos 100.222x t y (SI) (C) ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯=-3π20π100cos 100.222x t y (SI)(D) ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯=-3π420π100cos 100.222x t y (SI) 二、填空题1. 一质点沿x 轴作简谐振动,平衡位置为x 轴原点,周期为T ,振幅为A , (1) 若t = 0 时质点过x = 0处且向x 轴正方向运动,则振动方程为x = . (2) 若t = 0时质点在x = A /2处且向x 轴负方向运动,则质点方程为x = .2. 据报道,1976年唐山大地震时,当地居民曾被猛地向上抛起2m 高.设此地震横波为简谐波,且频率为1Hz ,波速为3km ⋅s -1, 它的波长是 ,振幅是 .3. 一质点沿x 轴作简谐振动, 其振动方程为: π)31π2cos(4-=t x cm .从t =0时刻起, 直到质点到达 2-=x cm 处、且向 x 轴正方向运动的最短时间间隔为 .4. 一个作简谐振动的质点,其谐振动方程为π)23cos(π1052+⨯=-t x (SI 制).它从计时开始到第一次通过负最大位移所用的时间为 .5. 一单摆的悬线长l =1.3m, 在顶端固定点的铅直下方0.45m 处有一小钉,如T4-2-5图所示.设两方摆动均较小,则单摆的左右两方角振幅之比21θθ的近似值为 . 6. 一质点作简谐振动, 频率为2Hz .如果开始时质点处于平衡位置, 并以π m.s -1的速率向x 轴的负方向运动, 则该质点的振动方程为 .7. 一谐振动系统周期为0.6s, 振子质量为200g .若振子经过平衡位置时速度为12cm.s -1, 则再经0.2s 后该振子的动能为 .8.劲度系数为100N ⋅m -1的轻质弹簧和质量为10g 的小球组成一弹簧振子. 第一次将小球拉离平衡位置4cm, 由静止释放任其振动; 第二次将小球拉离平衡位置2cm 并给以2m.s -1的初速度任其振动.这两次振动的能量之比为 .9. 将一个质量为20g 的硬币放在一个劲度系数为40N.m -1的竖直放置的弹簧上, 然后向下压硬币使弹簧压缩 1.0cm, 突然释放后, 这个硬币将飞离原来位置的高度为 .10. 质量为0.01 kg 的质点作简谐振动, 振幅为0.1m, 最大动能为0.02 J .如果开始时质点处于负的最大位移处, 则质点的振动方程为 .11. 一物体放在水平木板上,这木板以Hz 2=ν的频率沿水平直线作简谐运动,物体和水平木板之间的静摩擦系数50.0=s μ,物体在木板上不滑动的最大振幅max A = .12. 如果两个同方向同频率简谐振动的振动方程分别为π)3110sin(31+=t x cm 和)π6110sin(42-=t x cm, 则它们的合振动振幅为 [ ] (A) 1 cm (B) 5 cm (C) 7 cm (D) 3 cm13. 已知由两个同方向同频率的简谐振动合成的振动, 其振动的振幅为20cm, 与第一个简谐振动的相位差为6π.若第一个简谐振动的振幅为cm 3.17310=, 则第二个简小钉m45.0l1lT 4-2-5图T 4-1-32图谐振动的振幅为 cm ,两个简谐振动的相位差为 .14. 已知一平面简谐波的方程为: )π(2cos λνxt A y -=, 在ν1=t 时刻λ411=x 与 λ432=x 两点处介质质点的速度之比是 . 15. 一观察者静止于铁轨旁, 测量运行中的火车汽笛的频率.若测得火车开来时的频率为2010 Hz, 离去时的频率为1990 Hz, 已知空气中的声速为330m.s -1, 则汽笛实际频率ν是 .16. 已知一入射波的波动方程为)4π4πcos(5xt y +=(SI 制), 在坐标原点x = 0处发生反射, 反射端为一自由端.则对于x = 0和x = 1米的两振动点来说, 它们的相位关系是相位差为 .17. 有一哨子, 其空气柱两端是打开的, 基频为5000 Hz, 由此可知,此哨子的长度最接近 厘米.18. 一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为)4π/cos(05.01+=t x ω (SI) )12π/19cos(05.02+=t x ω(SI)其合成运动的运动方程为=x .(SI)19. 已知一平面简谐波沿x 轴正向传播,振动周期T = 0.5 s ,波长λ = 10m , 振幅A = 0.1m .当t = 0时波源振动的位移恰好为正的最大值.若波源处为原点,则沿波传播方向距离波源为2/λ处的振动方程为 .当 t = T / 2时,4/λ=x 处质点的振动速度为 .20. T4-2-20图表示一平面简谐波在 t = 2s 时刻的波形图,波的振幅为 0.2m ,周期为4s .则图中P 点处质点的振动方程为 .21. 一简谐波沿BP 方向传播,它在B 点引起的振动方程为t A y π2cos 11=.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为()ππ2cos 22+=t A y .P 点与B 点相AT4-2-20图 T4-2-21图PB1r 2r ...C距0.40m ,与C 点相距0.50m(如T4-2-21图).波速均为u =0.20m ⋅s -1.则两波在P 的相位差为 .22. 如T4-2-22图所示,一平面简谐波沿Ox 轴正方向传播,波长为λ,若1P 点处质点的振动方程为()ϕ+=vt A y π2cos 1,则2P 点处质点的振动方程为 ,与1P 点处质点振动状态相同的那些点的位置是 .23. 一个点波源位于O 点,以O 为圆心作两个同心球面,它们的半径分别为1R 和2R .在两个球面上分别取相等的面积1S ∆和2S ∆,则通过它们的平均能流之比21/P P =_______.24. 一列平面简谐波在截面积为S 的圆管中传播, 其波的表达为)π2(cos λωxt A y -=,管中波的平均能量密度是w , 则通过截面积S 的平均能流是 .25. 两相干波源1S 和2S 的振动方程分别是t A y ωcos 1=和π)21(cos 2+=t A y ω.1S 距P 点3个波长,2S 距P 点421个波长.两波在P 点引起的两个振动的相位差的绝对值是 .26. 如T4-2-26图所示,1S 和2S 为同相位的两相干波源,相距为L ,P 点距1S 为r ;波源1S 在P 点引起的振动振幅为1A ,波源2S 在P 点引起的振动振幅为2A ,两波波长都是λ,则P 点的振幅A = .27. 21S S 、为振动频率、振动方向均相同的两个点波源,振动方向垂直纸面,两者相距λ23为波长)(λ如图.已知1S 的初相位为π21. (1) 若使射线C S 2上各点由两列波引起的振动均干涉相消,则2S 的初位相应为:_______________________.(2) 若使21S S 连线的中垂线M N 上各点由两列波引起的振动均干涉相消,则2S 的初位相应为:________________________________________.12T4-2-26图•••MN1S 2S CT4-2-27图x12T4-2-22图三、计算题1. 如T 4-3-1图所示,将一个盘子挂在劲度系数为k 的弹簧下端,有一个质量为m 的物体从离盘高为h 处自由下落至盘中后不再跳离盘子,由此盘子和物体一起开始运动(设盘子与弹簧的质量可忽略,如图取平衡位置为坐标原点,选物体落到盘中的瞬间为计时零点).求盘子和物体一起运动运动时的运动方程.2. 一质量为10g 的物体在x 方向作简谐振动,振幅为24cm ,周期为4s .当t =0时该物体位于x = 24cm 处.求:(1) 当t =0.5s 时物体的位置及作用在物体上力的大小.(2) 物体从初位置到x =-12cm 处所需的最短时间,此时物体的速度.3. 作简谐振动的小球,速度的最大值为-1m ax s cm 3⋅=v ,振幅为2cm =A .若令速度具有正最大值的某时刻为计时器点,求该小球运动的运动方程和最大加速度.4如T4-3-4图所示,定滑轮半径为R ,转动惯量为J ,轻弹簧劲度系数为k ,物体质量为m ,将物体从平衡位置拉下一极小距离后放手,不计一切摩擦和空气阻力,试证明该系统将作谐振动并求其振动周期.5. 如T 4-3-5图所示,有一水平弹簧振子,弹簧的劲度系数k =241-m N ⋅,重物的质量m =6kg .最初重物静止在平衡位置上,一水平恒力F =10N 向左作用于物体,(不计摩擦),使之由水平位置向左运动了0.05m ,此时撤去力F .当重物运动到左方最远位置时开始计时,求该弹簧振子的运动方程.6. 已知某质点振动的初始位置为20Ax =,初始速度00>v (或说质点正向x 正向运动),求质点的振动初相位.7. 如T4-3-7图所示,一半径为R 的匀质圆盘绕边缘上一点作微角摆动, 如果其周期与同样质量单摆的周期相同, 求单摆的摆线长度.8. 某人欲了解一精密摆钟的摆长, 他将摆锤上移了1 mm, 测出此钟每分钟快0.1s .这钟的摆长是多少?T 4-3-5图T 4-3-1图T 4-3-7图T 4-3-4图9. 已知一简谐振子的振动曲线如T3-4-9图所示,求其运动方程.10. 如T4-3-10图所示,一劲度系数为k 的轻弹簧,一端固定在墙上,另一端连结一质量为m 1的物体,放在光滑的水平面上.将一质量为m 2的物体跨过一质量为M ,半径为R 的定滑轮与m 相连,求此系统的振动圆频率.11. 一个质量为m 的小球在一个光滑的半径为R 的球形碗底作微小振动,如T4-3-11图所示.设0=t 时,0=θ,小球的速度为0v ,向右运动.试求在振幅很小情况下,小球的振动方程.12. 如T4-3-12图所示,一质点作简谐振动,在一个周期内相继通过距离为12cm 的两点A 、B ,历时2s ,并且在A 、B 两点处具有相同的速度;再经过2s 后,质点又从另一方向通过B 点.试求质点运动的周期和振幅.13. 如T4-3-13图所示,在一轻质刚性杆AB 的两端,各附有一质量相同的小球,可绕通过AB 上并且垂直于杆长的水平轴O 作振幅很小的振动.设OA = a , OB = b , 且b > a ,试求振动周期.14. 有两个振动方向相同的简谐振动,其振动方程分别为(cm)2ππ2cos 3(cm)π)π2cos(421⎪⎭⎫⎝⎛+=+=t x t x (1) 求它们的合振动方程;(2) 另有一同方向的简谐振动cm )π2cos(233ϕ+=t x ,问当3ϕ为何值时,31x x +的振幅为最大值?当3ϕ为何值时,31x x +的振幅为最小值?T4-3-9 T4-3-10图RT4-3-11图OθT4-3-12图AT4-3-13图OθBba15. 一质量为M 的全息台放置在横截面均匀的密封气柱上(见T4-3-15题图).平衡时气柱高度为h .今地基作上、下振动,规律为t A x G ωcos =,其中A 为振幅,ω为振动圆频率.忽略大气压强和阻尼,试求全息台振动的振幅.16. 假设地球的密度是均匀的,如果能沿着地球直径挖通一穿过地球的隧道,试证明落入隧道的一个质点的运动是简谐运动,并求出其振动周期.17. 已知波线上两点A 、B 相距1m, B 点的振动比A 点的振动滞后121s, 相位落后30, 求此波的波速.18. 一简谐波,振动周期21=T s ,波长λ =10m ,振幅A = 0.1m. 当t = 0时刻,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿Ox 轴正方向传播,求:(1) 此波的表达式;(2) 4/1T t =时刻,4/1λ=x 处质点的位移;(3) 2/2T t =时刻,4/1λ=x 处质点振动速度.19. 一列平面简谐波在介质中以波速u = 5m ⋅s -1沿x 轴正向传播,原点O 处质元的振动曲线如图所示.(1) 画出x =25m 处质元的振动曲线. (2) 画出t =3s 时的波形曲线.20. 如T4-3-20图所示为一平面简谐波在t =0时刻的波形图,设此简谐波的频率为250Hz ,且此时质点P 的运动方向向下,求(1) 该波的波动方程.(2) 在距原点O 为100m 处质点的振动方程与振动速度表达式.21. 已知一平面简谐波的方程为 (SI))24(πcos x t A y +=(1) 求该波的波长λ,频率ν和波速度u 的值;(2) 写出t = 4.2s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置;(3) 求t = 4.2s 时离坐标原点最近的那个波峰通过坐标原点的时刻t .T4-3-19图20()cm y 42)s (t m1002/2A ()m y O A-P()m xT4-3-20图T4-3-15图h。
大物习题答案第4章机械振动
第4章 机械振动4.1基本要求1.掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系2.掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义4.理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点4.2基本概念1.简谐振动 离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。
简谐振动的运动方程 cos()x A t ωϕ=+2.振幅A 作简谐振动的物体的最大位置坐标的绝对值。
3.周期T 作简谐振动的物体完成一次全振动所需的时间。
4.频率ν 单位时间内完成的振动次数,周期与频率互为倒数,即1T ν=5.圆频率ω 作简谐振动的物体在2π秒内完成振动的次数,它与频率的关系为22Tπωπν== 6.相位和初相位 简谐振动的运动方程中t ωϕ+项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位ϕ7.简谐振动的能量 作简谐振动的系统具有动能和势能。
弹性势能222p 11cos ()22E kx kA t ωϕ==+ 动能[]22222k 111sin()sin ()222E m m A t m A t ωωϕωωϕ==-+=+v弹簧振子系统的机械能为222k p 1122E E E m A kA ω=+== 8.阻尼振动 振动系统因受阻尼力作用,振幅不断减小。
9.受迫振动 系统在周期性外力作用下的振动。
周期性外力称为驱动力。
10.共振 驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。
4.3基本规律1.一个孤立的简谐振动系统的能量是守恒的物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。
机械振动运动学第四章 多自由度系统振动(改)
或简写成
上式还可以简写成:
(4.21)
(4.20)
上式表明,在动力作用下系统产生的位移等于系统的柔 度矩阵与作用力的乘积。它也可写成:
(4.22) 柔度矩阵与刚度矩阵之间转换关系为:
(4.23)
上式说明,对于同一个机械振动系统,若选取相同的广 义坐标,则机械振动系统的刚度矩阵和柔度矩阵互为逆矩矩 阵。
可用矩阵形式表达为:
(4.48)
(4.49)
(4.50) (4.51) 将式(4.50)和式(4.51)代入式(4.48)和式(4.49) 中,得到机械系统的动能T和势能V的表达式分别为:
(4.52)
故得
(4.53) (4.54)
(4.55)
单自由度无阻尼系统在作自由振动时,其动能T和势能V (4.57) (4.58)
现在选取以下三组不同的广义坐标来分别写出振动系统 的运动作用力方程。
①取C点的垂直位移 yc和刚杆绕C点的转角c为广义坐标。 如图4.6(b)所示。
图4.6(b) 刚体振动系统广义坐标示意图 应用达朗伯原理,得出振动系统的运动方程式:
(4.62)
将上式写成矩阵形式:
(4.63)
上式中,刚度矩阵是非对角线矩阵,反映在方程组中,即 为两个方程通过弹性力项互相耦合,故称为弹性耦合。
为使系统的第 j坐标产生单位位移,而其它坐标的位移 为零时,在第i 坐标上所需加的作用力大小。
现以图4.1所示的三自由度系统为例,说明确定影响系数和 系数矩阵的方法。
1、确定 及[k] 设 x₁ 1, x₂ 0,x₃ 0 则得到系统的刚度矩阵
2、确定 及[C] 设 设 设
得 C₁₁ C₁ C₂, C₂₁ C₂, C₃₁ ; 得 C₂₂ C₂ C₃;C₁₂ C₂;C₃₂ C₃ 得C₃₃ = C₃; C₂₃ = C₃; C₁₃ = 0
物理学简明教程第四章课后习题答案高等教出版社
物理学简明教程第四章课后习题答案高等教出版社第四章 机械振动与机械波4-1 一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )题4-1图分析与解(B )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向Ox 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(B ).4-2 一简谐运动曲线如图(a )所示,则运动周期是( )(A) 2.62 s (B) 2.40 s (C) 2.20 s (D )2.00 s题4-2图分析与解 由振动曲线可知,初始时刻质点的位移为A /2,且向x 轴正方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为-.振动曲线上给出质点从A /2 处运动到x =0处所需时间为1 s ,由对应旋转矢量图可知相应的相位差65232πππϕ=+=∆,则角频率1s rad 65Δ/Δ-⋅==πϕωt ,周期s 40.22==ωπT .故选(B ).4-3 两个同周期简谐运动曲线如图(a )所示, x 1的相位比x 2的相位( )3/π2(A )落后2π(B )超前2π(C )落后π(D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b )即可得到答案为(B ).题4 -3图4-4 两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为( )(A )60 (B )90 (C )120 (D )180分析与解 由旋转矢量图可知两个简谐运动1和2的相位差为120 时,合成后的简谐运动3的振幅仍为A .正确答案为(C ).题4-4图4-5 若简谐运动方程为⎪⎭⎫ ⎝⎛+=4ππ20cos 10.0t x ,式中x 的单位为m ,t 的单位为s.求:(1)振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1)将()()m π25.0π20cos 10.0+=t x 与()ϕω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1s rad π20-⋅=ω,初相ϕ=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v .(2)s 2=t 时的位移、速度、加速度分别为()m 1007.7π25.0π40cos 10.02-⨯=+=t x()-1s m 44.4π25.0π40sin π2d /d ⋅-=+-==t x v()-22222s m 1079.2π25.0π40cos π40d /d ⋅⨯-=+-==t x a4-6 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s.当t =0 时,(1)物体在正方向端点;(2)物体在平衡位置、向负方向运动;(3)物体在x =-1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅A 和周期T 已知的条件下,确定初相φ是求解简谐运动方程的关键.初相的确定通常有两种方法.(1)解析法:由振动方程出发,根据初始条件,即t =0 时,x =x 0和v =v 0来确定φ值.(2)旋转矢量法:如图(a )所示,将质点P 在Ox 轴上振动的初始位置x 0和速度v 0的方向与旋转矢量图相对应来确定φ.旋转矢量法比较直观、方便,在分析中常采用.题4-6图解 由题给条件知A =2.0 ×10-2 m ,1s π4/2-==T ω,而初相φ可采用分析中的两种不同方法来求.解析法:根据简谐运动方程()ϕω+=t A x cos ,当0t =时有()ϕω+=t A x cos 0,sin 0ϕωA -=v .当(1)A x =0时,1cos 1=ϕ,则01=ϕ;(2)00=x 时,0cos 2=ϕ,2π2±=ϕ,因00<v ,取2π2=ϕ;(3)m 100120-⨯=.x 时,50cos 3.=ϕ,3π3±=ϕ,由00<v ,取3π3=ϕ; (4)m 100120-⨯-=.x 时,50cos 4.-=ϕ,3ππ4±=ϕ,由00>v ,取3π44=ϕ. 旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初相分别为01=ϕ,2π2=ϕ,3π3=ϕ,3π44=ϕ. 振幅A 、角频率ω、初相φ均确定后,则各相应状态下的运动方程为(1)()m t πcos4100.22-⨯=x(2)()()m /2πt π4cos 100.22+⨯=-x(3)()()m /3πt π4cos 100.22+⨯=-x(4)()()m /3π4t π4cos 100.22+⨯=-x 4-7 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m .若使物体上、下振动,且规定向下为正方向.(1)当t =0 时,物体在平衡位置上方8.0 ×10-2m处,由静止开始向下运动,求运动方程.(2)当t =0时,物体在平衡位置并以0.6m·s -1的速度向上运动,求运动方程.分析 求运动方程,也就是要确定振动的三个特征物理量A 、ω和φ.其中振动的角频率是由弹簧振子系统的固有性质(振子质量m 及弹簧劲度系数k )决定的,即ω=k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相φ需要根据初始条件确定.题4-7图解 物体受力平衡时,弹性力F 与重力P 的大小相等,即F =mg .而此时弹簧的伸长量Δl =9.8 ×10-2m .则弹簧的劲度系数k =F /Δl =mg /Δl .系统作简谐运动的角频率为1s 10-=∆==l g m k //ω(1)设系统平衡时,物体所在处为坐标原点,向下为x 轴正向.由初始条件t =0 时,x 10=8.0 ×10-2 m 、v 10=0 可得振幅()m 10082210210-⨯=+=./ωv x A ;应用旋转矢量法可确定初相π1=ϕ[图(a )].则运动方程为()()m π10t cos 100.821+⨯=-x(2)t =0时,x 20=0、v 20=0.6 m·s -1,同理可得()m 100622202202-⨯=+=./ωv x A ;2/π2=ϕ[图(b )].则运动方程为 ()()m π5.010t cos 100.622+⨯=-x4-8 某振动质点的x -t 曲线如图(a )所示,试求:(1)运动方程;(2)点P 对应的相位;(3)到达点P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过x -t 图线确定振动的三个特征量A 、ω和0ϕ,从而写出运动方程.曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便.解 (1)质点振动振幅A =0.10 m.而由振动曲线可画出t 0=0 和t 1=4 s时旋转矢量,如图(b )所示.由图可见初相3/π0-=ϕ(或3/π50=ϕ),而由()3201//ππω+=-t t 得1s 24/π5-=ω,则运动方程为()m 3/π24π5cos 10.0⎪⎭⎫ ⎝⎛-=t x题4-8图(2)图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c )所示.当初相取3/π0-=ϕ时,点P 的相位为()000=-+=p p t ωϕϕ(如果初相取成3/π50=ϕ,则点P 相应的相位应表示为()π200=-+=p p t ωϕϕ.(3)由旋转矢量图可得()3/π0=-p t ω,则s 61.=p t .4-9 质量为10 g 的物体沿x 的轴作简谐运动,振幅A =10 cm ,周期T =4.0 s ,t =0 时物体的位移为,cm 0.50-=x 且物体朝x 轴负方向运动,求(1)t =1.0 s时物体的位移;(2)t =1.0 s 时物体受的力;(3)t =0之后何时物体第一次到达x =5.0 cm 处;(4)第二次和第一次经过x =5.0 cm 处的时间间隔.分析:根据题给条件可以先写出物体简谐运动方程)cos(ϕω+=t A x .其中振幅A ,角频率Tπ2=ω均已知,而初相ϕ可由题给初始条件利用旋转矢量法方便求出. 有了运动方程,t 时刻位移x 和t 时刻物体受力x m ma F 2ω-==也就可以求出. 对于(3)、(4)两问均可通过作旋转矢量图并根据公式t ∆=∆ωϕ很方便求解.解由题给条件画出t =0时该简谐运动的旋转矢量图如图(a )所示,可知初相3π2=ϕ.而A =0.10 m ,1s 2ππ2-==T ω.则简谐运动方程为 m )3π22πcos(10.0+=t x (1)t =1.0 s 时物体的位移m 1066.8m )3π22π0.1cos(10.02-⨯-=+⨯=x(2)t =1.0 s 时物体受力N1014.2N )1066.8()2π(101032232---⨯=⨯-⨯⨯⨯-=-=x m F ω (3)设t =0时刻后,物体第一次到达x =5.0 cm 处的时刻为t 1,画出t =0和t =t 1时刻的旋转矢量图,如图(b )所示,由图可知,A 1与A 的相位差为π,由t ∆=∆ωϕ得s 2s 2/ππ1==∆=ωϕt (4)设t =0时刻后,物体第二次到达x =5.0 cm 处的时刻为t 2,画出t =t 1和t = t 2时刻的旋转矢量图,如图(c )所示,由图可知,A 2与A 1的相位差为3π2,故有 s 34s 2/π3/π212==∆=-=∆ωϕt t t题 4-9 图4-10 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为2cm ,求(1)振动周期;(2)加速度的最大值;(3)运动方程.分析 根据v -t 图可知速度的最大值v max ,由v max =A ω可求出角频率ω,进而可求出周期T 和加速度的最大值a max =A ω2.在要求的简谐运动方程x =A cos(ωt +φ)中,因为A 和ω已得出,故只要求初相位φ即可.由v -t 曲线图可以知道,当t =0 时,质点运动速度v 0=v max /2 =A ω/2,之后速度越来越大,因此可以判断出质点沿x 轴正向向着平衡点运动.利用v 0=-A ωsin φ就可求出φ.解 (1)由ωA v =max 得1s 51-=.ω,则s 2.4/π2==ωT(2)222max s m 1054--⋅⨯==.ωA a(3)从分析中已知2/sin 0ωA ωA =-=v ,即21sin /-=ϕ6/π5,6/π--=ϕ因为质点沿x 轴正向向平衡位置运动,则取6/π5-=,其旋转矢量图如图(b )所示.则运动方程为()cm 6π55.1cos 2⎪⎭⎫ ⎝⎛-=t x题4-10图4-11 有一单摆,长为1.0m ,最大摆角为5°,如图所示.(1)求摆的角频率和周期;(2)设开始时摆角最大,试写出此单摆的运动方程;(3)摆角为3°时的角速度和摆球的线速度各为多少?题4-11图分析 单摆在摆角较小时(θ<5°)的摆动,其角量θ与时间的关系可表示为简谐运动方程()ϕωθθ+=t cos max ,其中角频率ω仍由该系统的性质(重力加速度g 和绳长l )决定,即l g /=ω.初相φ与摆角θ,质点的角速度与旋转矢量的角速度(角频率)均是不同的物理概念,必须注意区分.解 (1)单摆角频率及周期分别为s 01.2/π2;s 13.3/1====-ωT l g ω(2)由0=t 时o max 5==θθ可得振动初相0=ϕ,则以角量表示的简谐运动方程为t θ13.3cos 36π= (3)摆角为3°时,有()60cos max ./==+θθϕωt ,则这时质点的角速度为()()1max 2max max s 2180800cos 1sin /d d --=-=+--=+-=..ωθϕωωθϕωωθθt t t线速度的大小为1s m 218.0/d d -⋅-==t l v θ讨论 质点的线速度和角速度也可通过机械能守恒定律求解,但结果会有极微小的差别.这是因为在导出简谐运动方程时曾取θθ≈sin ,所以,单摆的简谐运动方程仅在θ较小时成立.4-12 如图(a )所示,质量为1.0 ×10-2kg 的子弹,以500m ·s -1的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为4.99 kg ,弹簧的劲度系数为8.0 ×103 N ·m -1,若以弹簧原长时物体所在处为坐标原点,向左为x 轴正向,求简谐运动方程.题4-12图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度v 0,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量m 1+m 2和弹簧的劲度系数k 确定,振幅和初相可根据初始条件(初速度v 0和初位移x 0)求得.初相位仍可用旋转矢量法求.解 振动系统的角频率为 ()121s 40-=+=m m k /ω 由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度v 0为12110s m 0.1-⋅=+=m m v m v 又因初始位移x 0=0,则振动系统的振幅为 ()m 105.2//202020-⨯==+=ωωx A v v 图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位2/π0=ϕ,则简谐运动方程为()()m π0.540cos 105.22+⨯=-t x4-13 如图(a )所示,一劲度系数为k 的轻弹簧,其下挂有一质量为m 1的空盘.现有一质量为m 2的物体从盘上方高为h 处自由落入盘中,并和盘粘在一起振动.问:(1)此时的振动周期与空盘作振动的周期有何不同?(2)此时的振幅为多大?题4-13图分析 原有空盘振动系统由于下落物体的加入,振子质量由m 1变为m 1 + m 2,因此新系统的角频率(或周期)要改变.由于()2020/ωx A v +=,因此,确定初始速度v 0和初始位移x 0是求解振幅A 的关键.物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度v 0,这也是该振动系统的初始速度.在确定初始时刻的位移x 0时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置.因此,本题中初始位移x 0,也就是空盘时的平衡位置相对新系统的平衡位置的位移.解 (1)空盘时和物体落入盘中后的振动周期分别为k m ωT /π2/π21== ()k m m ωT /π2/π221+='='可见T ′>T ,即振动周期变大了.(2)如图(b )所示,取新系统的平衡位置为坐标原点O .则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即g km g k m m k g m l l x 2211210-=+-=-= 式中k g m l 11=为空盘静止时弹簧的伸长量,l 2=g km m 21+为物体粘在盘上后,静止时弹簧的伸长量.由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度gh m m m m m m 22122120+=+=v v 式中gh 2=v 是物体由h 高下落至盘时的速度.故系统振动的振幅为 ()gm m kh k g m x A )(21/2122020++='+=ωv 本题也可用机械能守恒定律求振幅A .4-14 质量为0.10kg 的物体,以振幅1.0×10-2 m 作简谐运动,其最大加速度为4.0 m·s -1求:(1)振动的周期;(2)物体通过平衡位置时的总能量与动能;(3)物体在何处其动能和势能相等?(4)当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度2max ωA a =,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题.解 (1)由分析可得振动周期s 314.0/π2/π2max ===a A ωT(2)当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即J 100221213max 22k -⨯====.m Aa m A E E ω (3)设振子在位移x 0处动能与势能相等,则有42220//kA kx = 得m 100772230-⨯±=±=./A x(4)物体位移的大小为振幅的一半(即2x A =/)时的势能为4221212P /E A k kx E =⎪⎭⎫ ⎝⎛== 则动能为43P K /E E E E =-=4-15 已知两同方向、同频率的简谐运动的运动方程分别为()()m π75.010cos 05.01+=t x ;()()m π25.010cos 06.02+=t x .求:(1)合振动的振幅及初相;(2)若有另一同方向、同频率的简谐运动()()m 10cos 07033ϕ+=t x .,则3ϕ为多少时,x 1+x 3的振幅最大?又3ϕ为多少时,x 2+x 3的振幅最小?题4-15图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动的合成仍为一简谐运动,其角频率不变;合振动的振幅()12212221cos 2ϕϕ-++=A A A A A ,其大小与两个分振动的初相差12ϕϕ-相关.而合振动的初相位()()[]22112211cos cos sin sin arctanϕϕϕϕϕA A A A ++=/ 解 (1)作两个简谐运动合成的旋转矢量图(如图).因为2/πΔ12-=-=ϕϕϕ,故合振动振幅为 ()m 1087cos 2212212221-⨯=-++=.ϕϕA A A A A合振动初相位()()[]rad 1.48arctan11cos cos sin sin arctan22112211==++=ϕϕϕϕϕA A A A /(2)要使x 1+x 3振幅最大,即两振动同相,则由π2Δk =ϕ得,...2,1,0,π75.0π2π213±±=+=+=k k k ϕϕ要使x 1+x 3的振幅最小,即两振动反相,则由()π12Δ+=k ϕ得(),...2,1,0,π25.1π2π1223±±=+=++=k k k ϕϕ4-16 两个同频率的简谐运动1 和2 的振动曲线如图(a )所示,求(1)两简谐运动的运动方程x 1和x 2;(2)在同一图中画出两简谐运动的旋转矢量,并比较两振动的相位关系;(3)若两简谐运动叠加,求合振动的运动方程.分析 振动图已给出了两个简谐运动的振幅和周期,因此只要利用图中所给初始条件,由旋转矢量法或解析法求出初相位,便可得两个简谐运动的方程.解 (1)由振动曲线可知,A =0.1 m,T =2s,则ω=2π/T =πs-1.曲线1表示质点初始时刻在x =0 处且向x 轴正向运动,因此φ1=-π/2;曲线2 表示质点初始时刻在x =A /2 处且向x 轴负向运动,因此φ2=π/3.它们的旋转矢量图如图(b )所示.则两振动的运动方程分别为()()m 2/ππcos 1.01-=t x 和(2)由图(b )可知振动2超前振动1 的相位为5π/6.(3)()ϕω+'=+=t A x x x cos 21其中()m 0520cos 212212221.=-++='ϕϕA A A A A ()12π0.268arctan cos cos sin sin arctan 22112211-=-=++=ϕϕϕϕϕA A A A 则合振动的运动方程为 ()()m π/12πc o s 052.0-=t x题4-16 图4-17 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )()()m 3/ππcos 1.02+=t x题4-17 图(A)均为零 (B)均为2π (C)均为2π- (D)2π与2π-(E)2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ).4-18一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻()(A )A 点相位为π(B )B 点静止不动(C )C 点相位为2π3(D )D 点向上运动 分析与解由波形曲线可知,波沿x 轴负向传播,B 、D 处质点均向y 轴负方向运动,且B 处质点在运动速度最快的位置. 因此答案(B )和(D )不对. A 处质点位于正最大位移处,C 处质点位于平衡位置且向y 轴正方向运动,它们的旋转矢量图如图(b )所示.A 、C 点的相位分别为0和2π3.故答案为(C )题 4-18 图4-19 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1振动的初相是φ1,点S 1到点P 的距离是r 1.波在点S 2的初相是φ2,点S 2到点P 的距离是r 2,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()π2/π2A π2/π2A π2A πA 211212121212k r r k r r k k r r =-+-=-+-=-=-λϕϕλϕϕϕϕ 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λϕϕϕ/π2Δ1212r r ---=,故选项(D )正确.题4-19图4-20 一横波在沿绳子传播时的波动方程为()x y ππ5.2cos 20.0-=,式中y 的单位为m ,t 的单位为s .(1)求波的振幅、波速、频率及波长;(2)求绳上质点振动时的最大速度;(3)分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x =1.0 m处质点的振动曲线并讨论其与波形图的不同. 分析 (1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率υ、振幅A 及波长λ等),通常采用比较法.将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中u x 前“-”、“+”的选取分别对应波沿x 轴正向和负向传播).比较法思路清晰、求解简便,是一种常用的解题方法.(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别.例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即v =d y /d t ;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定.介质不变,波速保持恒定.(3)将不同时刻的t 值代入已知波动方程,便可以得到不同时刻的波形方程y =y (x ),从而作出波形图.而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程y =y (t ),从而作出振动图.解 (1)将已知波动方程表示为()[]()m 5.2/π5.2cos 20.0x t y -=与一般表达式()[]0cos ϕω+-=u x t A y /比较,可得0s m 52m 20001=⋅==-ϕ,.,.u A则m 0.2/,Hz 25.1π2/====v u λωv(2)绳上质点的振动速度()[]()1s m 5.2/π5.2sin π5.0d /d -⋅--==x t t y v则1max s m 57.1-⋅=v(3)t =1s和t =2s时的波形方程分别为 ()()()()m ππ5cos 20.0m ππ5.2cos 20.021x y x y -=-=波形图如图(a )所示. x =1.0m 处质点的运动方程为()()m π5.2cos 20.0t y -=振动图线如图(b )所示.波形图与振动图虽在图形上相似,但却有着本质的区别.前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的一个质点,其位移随时间变化的情况.题4-20图4-21 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1的速度沿一直线传播.(1)求波的周期及波长;(2)写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅A 、角频率ω及初相φ0,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν=2π/T 和λ=uT 即可求解.解 (1)由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有s 1033.8/π23-⨯==ωT波长为λ=uT =0.25 m(2)将已知的波源运动方程与简谐运动方程的一般形式比较后可得A =4.0 ×10-3m ,1s π240-=ω,φ0=0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=-4-22 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1)该波的波动方程;(2)在距原点O 为7.5 m 处质点的运动方程与t =0 时该点的振动速度.分析 (1)从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径.具体步骤为:1. 从波形图得出波长λ、振幅A 和波速u =λυ;2. 根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转矢量法确定其初相φ0.(2)在波动方程确定后,即可得到波线上距原点O 为x 处的运动方程y =y (t ),及该质点的振动速度υ=d y /d t .解 (1)从图中得知,波的振幅A =0.10 m ,波长λ=20.0m ,则波速u =λυ=5.0 ×103m·s-1.根据t =0 时点P 向上运动,可知波沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动.利用旋转矢量法可得其初相φ0=π/3.故波动方程为()[]()[]()m 3/π5000/π500cos 10.0/cos 0++=++=x t u x t A y ϕω()ϕω+=t cos A y(2)距原点O 为x =7.5m处质点的运动方程为()()m 12π13π5000.10cosy /t +=t =0 时该点的振动速度为 ()-10s m 40.6/12π13sin π50/d d ⋅=-===t t y v题4-22图4-23 平面简谐波的波动方程为()x t y π2π4cos 08.0-=,式中y 和x 的单位为m ,t 的单位为s,求:(1) t =2.1 s 时波源及距波源0.10m 两处的相位;(2)离波源0.80 m 及0.30 m 两处的相位差.解 (1)将t =2.1 s 和x =0 代入题给波动方程,可得波源处的相位π4.81=ϕ将t =2.1 s 和x ′=0.10 m 代入题给波动方程,得0.10 m 处的相位为π2.82=ϕ(2)从波动方程可知波长λ=1.0 m .这样,x 1=0.80 m 与x 2=0.30 m 两点间的相位差πΔπ2Δ=⋅=λϕx4-24 两相干波波源位于同一介质中的A 、B 两点,如图(a )所示.其振幅相等、频率皆为100 Hz ,B 比A 的相位超前π.若A 、B 相距30.0m ,波速为u =400 m ·s -1,试求AB 连线上因干涉而静止的各点的位置.题4-24图分析 两列相干波相遇时的相位差λϕϕϕr Δπ2Δ12--=.因此,两列振幅相同的相干波因干涉而静止的点的位置,可根据相消条件()π12Δ+=k ϕ获得.解 以A 、B 两点的中点O 为原点,取坐标如图(b )所示.两波的波长均为λ=u /υ=4.0 m .在A 、B 连线上可分三个部分进行讨论.1. 位于点A 左侧部分()π14π2ΔA B A B -=---=r r ϕϕϕ因该范围内两列波相位差恒为2π的整数倍,故干涉后质点振动处处加强,没有静止的点.2. 位于点B 右侧部分()π16π2ΔA B A B =---=r r ϕϕϕ显然该范围内质点振动也都是加强,无干涉静止的点.3. 在A 、B 两点的连线间,设任意一点P 距原点为x .因x r -=15B ,x r +=15A ,则两列波在点P 的相位差为()()π1/π2ΔA B A B +=---=x r r λϕϕϕ根据分析中所述,干涉静止的点应满足方程()()π152π1+=+k x x得()2,...1,0,k m 2±±==k x因x ≤15 m ,故k ≤7.即在A 、B 之间的连线上共有15 个静止点.4-25图(a )是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A 时,分成两路而在点B 相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr =r 2-r 1至少应为多少?(设声波速度为340 m ·s -1)题4-25图分析 一列声波被分成两束后再相遇,将形成波的干涉现象.由干涉相消条件,可确定所需的波程差,即两管的长度差Δr .解 由分析可知,声波从点A 分开到点B 相遇,两列波的波程差Δr =r 2 - r 1,故它们的相位差为()λλϕ/Δπ2/π2Δ12r r r =-=由相消静止条件Δφ=(2k +1)π,(k =0,±1,±2,…)得 Δr =(2k +1)λ/2根据题中要求令k =0 得Δr 至少应为m 57022.//===∆v u r λ讨论 在实际应用中,由于噪声是由多种频率的声波混合而成,因而常将具有不同Δr 的消声单元串接起来以增加消除噪声的能力.图(b )为安装在摩托车排气系统中的干涉消声器的结构原理图.4-26 一警车以25 m ·s -1的速度在静止的空气中行驶,假设车上警笛的频率为v =800 Hz .求:(1)静止站在路边的人听到警车驶近和离去时的警笛声波频率;(2)如果警车追赶一辆速度为15m ·s -1的客车,则客车上人听到的警笛声波的频率是多少?(设空气中的声速u =330m ·s -1)分析 由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果.在处理这类问题时,不仅要分清观察者相对介质(空气)是静止还是运动,同时也要分清声源的运动状态.解 (1)根据多普勒频率公式,当声源(警车)以速度υs =25 m ·s -1运动时,静止于路边的观察者所接收到的频率为su u v v υ =' 警车驶近观察者时,式中υs 前取“-”号,故有Hz 6.8651=-='su u v v υ 警车驶离观察者时,式中υs 前取“+”号,故有Hz 7.7432=+='su u v v υ (2)客车的速度为0υ=15m ·s -1,声源(警车)与客车上的观察者作同向运动时,观察者收到的频率为Hz 2.82603=--='su u v v υυ 4-27 蝙蝠在洞穴中飞来飞去,能非常有效地用超声波脉冲导航.假如蝙蝠发出的超声波频率为39 kHz ,当它以声速的401的速度朝着表面平直的岩壁飞去时,试求它听到的从岩壁反射回来的超声波频率为多少?分析:由题意可知,蝙蝠既是波的发出者,又是波的接收者.设超声波的传播速度为u .首先,蝙蝠是声源,发出信号频率为v ,运动速度为40s u =υ,岩壁是接收者,利用多普勒频率公式,即可求得岩壁接收到的信号频率v '.经岩壁反射后频率不变,即岩壁发射信号频率为v ',这时蝙蝠是波的接收者,其运动速度为400u =υ,再次利用多普勒频率公式,可求得蝙蝠接收到的信号频率v ''. 解:将蝙蝠看成波源,则由分析可知,岩壁接收到的信号频率为sυ-='u uv v ,在蝙蝠接收岩壁反射信号时,又将它看成接收者.则蝙蝠接收到的信号频率为 kHz 41kHz 3940/1140/11/1/1s 0s 00=⨯-+=-+=-+='+=''v u u v u u v u u v υυυυυ。
机械振动基本要求要点
50 第四章 机 械 振 动基 本 要 求一、掌握简谐振动的基本特征,会判断其是否为简谐振动。
二、掌握描述简谐振动的各物理量的物理意义及相互关系。
三、掌握用初始条件计算振幅和初位相,根据系统的固有性质计算圆频率的方法;能写出简谐振动的运动方程。
四、掌握旋转矢量法,能够借助其确定振动方程的初位相和绘制振动曲线,能够由已知的振动曲线写出振动方程。
五、理解同方向、同频率的两个简谐振动的合成规律以及合振动振幅极大条件和极小条件。
内 容 提 要一、振动振动 任一物理量(如位移、电流等)在某一数值附近反复变化。
振动是一种重要的运动形式。
机械振动 位移 x 随时间t 的往复变化;二、简谐振动运动学定义:物体沿一直线运动时,如果离开平衡位置的位移按余弦(或正弦)规律随t 反复变化,这样的振动称作简谐振动。
简谐振动的运动学方程:x (t )=A cos(ωt + ϕ)动力学定义:物体在线性恢复力(力和位移成正比而反向,具有F =−kx 的形式)作用下所作的运动,称作简谐振动。
简谐振动的动力学方程:0222=+-x dtx d ω51三、简谐振动的特征量振幅A :最大位移的绝对值。
周期T :振动一次所需时间。
频率ν:单位时间内的振动次数。
/T 1=ν(单位:Hz )。
圆频率(角频率):2π秒内的振动次数。
ω = 2πν =2π/T (单位:rad/s 或1/s)。
固有圆频率:简谐振动的圆频率决定于振动系统的自身的性质,称为固有圆频率。
弹簧振子:m k =ω ; 单摆:l g =ω。
相位:t 时刻的相位为(ωt +ϕ ),它是反映t 时刻的振动状态(x 、v 、a )的物理量。
初相:t = 0时刻的相位(t =0称时间零点,是开始计时的时刻,不一定是开始运动的时刻),它反映t = 0时刻的振动状态(x 0 , v 0 )。
相位差:两相位之差。
∆ϕ = (ωt +ϕ2) - (ωt +ϕ1)。
对两个同频率的简谐振动,相位差等于初相差。
大物习题答案第4章 机械振动
第4章 机械振动基本要求1.掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系2.掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义4.理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点基本概念1.简谐振动 离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。
简谐振动的运动方程 cos()x A t ωϕ=+2.振幅A 作简谐振动的物体的最大位置坐标的绝对值。
3.周期T 作简谐振动的物体完成一次全振动所需的时间。
4.频率ν 单位时间内完成的振动次数,周期与频率互为倒数,即1T ν=5.圆频率ω 作简谐振动的物体在2π秒内完成振动的次数,它与频率的关系为22Tπωπν== 6.相位和初相位 简谐振动的运动方程中t ωϕ+项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位ϕ7.简谐振动的能量 作简谐振动的系统具有动能和势能。
弹性势能222p 11cos ()22E kx kA t ωϕ==+ 动能[]22222k 111sin()sin ()222E m m A t m A t ωωϕωωϕ==-+=+v弹簧振子系统的机械能为222k p 1122E E E m A kA ω=+== 8.阻尼振动 振动系统因受阻尼力作用,振幅不断减小。
9.受迫振动 系统在周期性外力作用下的振动。
周期性外力称为驱动力。
10.共振 驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。
基本规律1.一个孤立的简谐振动系统的能量是守恒的物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。
(完整版)大学机械振动课后习题和答案(1~4章总汇)
1.1 试举出振动设计、系统识别和环境预测的实例。
1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k Px k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。
两个串联的轴的扭转刚度分别为1t k ,2t k 。
解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。
解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为:1122P c x P c x =⎧⎨=⎩&& 由力的平衡有:1212()P P P c c x =+=+&故等效刚度为:12eq P c c c x ==+& 2)对系统施加力P ,则两个减振器的速度为: 1122P x c P x c ⎧=⎪⎪⎨⎪=⎪⎩&&,系统的总速度为:121211()x x x P c c =+=+&&& 故等效刚度为:1211eq P c x c c ==+&1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。
大学物理课后习题答案第四章
第四章机械振动4.1一物体沿x 轴做简谐振动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x = 0.06m ,且向x 轴正向运动.求:(1)此简谐振动的表达式;(2)t = T /4时物体的位置、速度和加速度;(3)物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间. [解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m ,角频率ω = 2π/T = π.当t = 0时,x = 0.06m ,所以cos φ = 0.5,因此φ = ±π/3. 物体的速度为v = d x /d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sin φ,由于v > 0,所以sin φ< 0,因此:φ = -π/3.简谐振动的表达式为:x = 0.12cos(πt – π/3).(2)当t = T /4时物体的位置为;x = 0.12cos(π/2 – π/3) = 0.12cosπ/6 = 0.104(m). 速度为;v = -πA sin(π/2 – π/3) = -0.12πsinπ/6 = -0.188(m·s -1).加速度为:a = d v /d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s -2). (3)方法一:求时间差.当x = -0.06m 时,可得cos(πt 1 - π/3) = -0.5, 因此πt 1 - π/3 = ±2π/3.由于物体向x 轴负方向运动,即v < 0,所以sin(πt 1 - π/3) > 0,因此πt 1 - π/3 = 2π/3,得t 1 = 1s .当物体从x = -0.06m 处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt 2 - π/3) = 0, 可得 πt 2 - π/3 = -π/2或3π/2等.由于t 2> 0,所以πt 2 - π/3 = 3π/2, 可得t 2 = 11/6 = 1.83(s).所需要的时间为:Δt = t 2 - t 1 = 0.83(s).方法二:反向运动.物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m ,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得 πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x 0/A ),(-π<φ<= π), 初位相的取值由速度决定.由于v = d x /d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sin φ,当v > 0时,sin φ< 0,因此 φ = -arccos(x 0/A );当v < 0时,sin φ> 0,因此φ = arccos(x 0/A )π/3.可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x 0 = A 时,φ = 0;当初位置x 0 = -A 时,φ = π.4.2已知一简谐振子的振动曲线如图所示,试由图求:(1)a ,b ,c ,d ,e 各点的位相,及到达这些状态的时刻t 各是多少?已知周期为T ; (2)振动表达式; (3)画出旋转矢量图. [解答]方法一:由位相求时间.(1)设曲线方程为x = A cos Φ,其中A 表示振幅,Φ = ωt + φ表示相位. 由于x a = A ,所以cos Φa = 1,因此Φa = 0.由于x b = A /2,所以cos Φb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t 增加,b 点位相就应该大于a 点的位相,因此Φb = π/3.由于x c = 0,所以cos Φc = 0,又由于c 点位相大于b 位相,因此Φc = π/2.同理可得其他两点位相为:Φd = 2π/3,Φe = π.c 点和a 点的相位之差为π/2,时间之差为T /4,而b 点和a 点的相位之差为π/3,时间之差应该为T /6.因为b 点的位移值与O 时刻的位移值相同,所以到达a 点的时刻为t a = T /6. 到达b 点的时刻为t b = 2t a = T /3.图4.2到达c 点的时刻为t c = t a + T /4 = 5T /12. 到达d 点的时刻为t d = t c + T /12 = T /2. 到达e 点的时刻为t e = t a + T /2 = 2T /3.(2)设振动表达式为:x = A cos(ωt + φ),当t = 0时,x = A /2时,所以cos φ = 0.5,因此φ =±π/3; 由于零时刻的位相小于a 点的位相,所以φ = -π/3, 因此振动表达式为. 另外,在O 时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t 轴 相交于f 点,由于x f = 0,根据运动方程,可得所以:.显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为:t a = T /4 + t f = T /6, 其位相为:. 由图可以确定其他点的时刻,同理可得各点的位相.4.3 有一弹簧,当其下端挂一质量为M 的物体时,伸长量为9.8×10-2m .若使物体上下振动,且规定向下为正方向.(1)t = 0时,物体在平衡位置上方8.0×10-2m 处,由静止开始向下运动,求运动方程;(2)t = 0时,物体在平衡位置并以0.60m·s -1速度向上运动,求运动方程. [解答]当物体平衡时,有:Mg – kx 0 = 0, 所以弹簧的倔强系数为:k = Mg/x 0, 物体振动的圆频率为:s -1). 设物体的运动方程为:x = A cos(ωt + φ).(1)当t = 0时,x 0 = -8.0×10-2m ,v 0 = 0,因此振幅为:=8.0×10-2(m);由于初位移为x 0 = -A ,所以cos φ = -1,初位相为:φ = π. 运动方程为:x = 8.0×10-2cos(10t + π).(2)当t = 0时,x 0 = 0,v 0 = -0.60(m·s -1),因此振幅为:v 0/ω|=6.0×10-2(m);由于cos φ = 0,所以φ = π/2;运动方程为:x = 6.0×10-2cos(10t +π/2).4.4 质量为10×10-3kg 的小球与轻弹簧组成的系统,按的规律作振动,式中t 以秒(s)计,x 以米(m)计.求: (1)振动的圆频率、周期、振幅、初位相; (2)振动的速度、加速度的最大值;(3)最大回复力、振动能量、平均动能和平均势能;cos(2)3t x A T ππ=-cos(2)03t T ππ-=232f t Tπππ-=±203a a t T πΦπ=-=ω==0||A x ==A =20.1cos(8)3x t ππ=+(4)画出这振动的旋转矢量图,并在图上指明t 为1,2,10s 等各时刻的矢量位置. [解答](1)比较简谐振动的标准方程:x = A cos(ωt + φ),可知圆频率为:ω =8π,周期T = 2π/ω = 1/4 = 0.25(s),振幅A = 0.1(m),初位相φ = 2π/3.(2)速度的最大值为:v m = ωA = 0.8π = 2.51(m·s -1); 加速度的最大值为:a m = ω2A = 6.4π2 = 63.2(m·s -2). (3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A = 0.632(N); 振动能量为:E = kA 2/2 = mω2A 2/2 = 3.16×10-2(J), 平均动能和平均势能为:= kA 2/4 = mω2A 2/4 = 1.58×10-2(J). (4)如图所示,当t 为1,2,10s 等时刻时,旋转矢量的位置是相同的.4.5 两个质点平行于同一直线并排作同频率、同振幅的简谐振动.在振动过程中,每当它们经过振幅一半的地方时相遇,而运动方向相反.求它们的位相差,并作旋转矢量图表示.[解答]设它们的振动方程为:x = A cos(ωt + φ), 当x = A /2时,可得位相为:ωt + φ = ±π/3.由于它们在相遇时反相,可取Φ1 = (ωt + φ)1 = -π/3,Φ2 = (ωt + φ)2 = π/3,它们的相差为:ΔΦ = Φ2 – Φ1 = 2π/3,或者:ΔΦ` = 2π –ΔΦ = 4π/3.矢量图如图所示.4.6一氢原子在分子中的振动可视为简谐振动.已知氢原子质量m = 1.68×10-27kg ,振动频率v = 1.0×1014Hz ,振幅A = 1.0×10-11m .试计算:(1)此氢原子的最大速度; (2)与此振动相联系的能量.[解答](1)氢原子的圆频率为:ω = 2πv = 6.28×1014(rad·s -1), 最大速度为:v m = ωA = 6.28×103(m·s -1).(2)氢原子的能量为:= 3.32×10-20(J).4.7 如图所示,在一平板下装有弹簧,平板上放一质量为1.0kg 的重物,若使平板在竖直方向上作上下简谐振动,周期为0.50s ,振幅为2.0×10-2m ,求:(1)平板到最低点时,重物对平板的作用力;(2)若频率不变,则平板以多大的振幅振动时,重物跳离平板? (3)若振幅不变,则平板以多大的频率振动时,重物跳离平板? [解答](1)重物的圆频率为:ω = 2π/T = 4π,其最大加速度为:a m = ω2A ,合力为:F = ma m ,方向向上.重物受到板的向上支持力N 和向下的重力G ,所以F = N – G . 重物对平板的作用力方向向下,大小等于板的支持力: N = G + F = m (g +a m ) = m (g +ω2A ) = 12.96(N).(2)当物体的最大加速度向下时,板的支持为:N = m (g - ω2A ). 当重物跳离平板时,N = 0,频率不变时,振幅为:A = g/ω2 = 3.2×10-2(m).(3)振幅不变时,频率为:3.52(Hz).4.8 两轻弹簧与小球串连在一直线上,将两弹簧拉长后系在固定点A 和B 之间,整个系统放在光滑水平面上.设两弹簧的原长分别为l 1和l 2,倔强系统分别为k 1和k 2,A和B 间距为L ,小球的质量为m .(1)试确定小球的平衡位置;k pE E =212m E mv=2ωνπ==(2)使小球沿弹簧长度方向作一微小位移后放手,小球将作振动,这一振动是否为简谐振动?振动周期为多少?[解答](1)这里不计小球的大小,不妨设L > l 1 + l 2,当小球平衡时,两弹簧分别拉长x 1和x 2,因此得方程:L = l 1 + x 1 + l 2 + x 2;小球受左右两边的弹簧的弹力分别向左和向右,大小相等,即k 1x 1 = k 2x 2. 将x 2 = x 1k 1/k 2代入第一个公式解得:.小球离A 点的距离为:.(2)以平衡位置为原点,取向右的方向为x 轴正方向,当小球向右移动一个微小距离x 时,左边弹簧拉长为x 1 + x ,弹力大小为:f 1 = k 1(x 1 + x ), 方向向左;右边弹簧拉长为x 1 - x ,弹力大小为:f 2 = k 2(x 2 - x ), 方向向右.根据牛顿第二定律得:k 2(x 2 - x ) - k 1(x 1 + x ) = ma ,利用平衡条件得:,即小球做简谐振动.小球振动的圆频率为:.4.9如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k = 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅;(2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即:mv = (m + M)v 0.解得子弹射入后的速度为:v 0 = mv/(m + M) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得:(m + M ) v02/2 = kA 2/2, 所以振幅为:10-2(m). (2)振动的圆频率为:= 40(rad·s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为:x = A cos(ωt + φ).当t = 0时,x = 0,可得:φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为:x = 5×10-2cos(40t - π/2).4.10如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为:物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为,这也是它们振动的初速度.设振动方程为:x = A cos(ωt + φ),211212()k x L l l k k =--+211111212()k L l x l L l l k k =+=+--+2122d ()0d xm kk x t++=ω=22T πω==A v =ω=v =0m v v m M ==+图4.9 图4.10其中圆频率为:物体没有落下之前,托盘平衡时弹簧伸长为x 1,则:x 1 = Mg/k .物体与托盘磁盘之后,在新的平衡位置,弹簧伸长为x 2,则:x 2= (M + m )g/k . 取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k .因此振幅为:初位相为:4.11 装置如图所示,轻弹簧一端固定,另一端与物体m 间用细绳相连,细绳跨于桌边定滑轮M 上,m 悬于细绳下端.已知弹簧的倔强系数为k = 50N·m -1,滑轮的转动惯量J = 0.02kg·m 2,半径R = 0.2m ,物体质量为m = 1.5kg ,取g = 10m·s -2.(1)试求这一系统静止时弹簧的伸长量和绳的张力;(2)将物体m 用手托起0.15m ,再突然放手,任物体m 下落而整个系统进入振动状态.设绳子长度一定,绳子与滑轮间不打滑,滑轮轴承无摩擦,试证物体m 是做简谐振动; (3)确定物体m 的振动周期;(4)取物体m 的平衡位置为原点,OX 轴竖直向下,设振物体m 相对于平衡位置的位移为x ,写出振动方程.[解答](1)在平衡时,绳子的张力等于物体的重力T = G = mg = 15(N).这也是对弹簧的拉力,所以弹簧的伸长为:x 0 = mg/k = 0.3(m).(2)以物体平衡位置为原点,取向下的方向为正,当物体下落x 时,弹簧拉长为x 0 + x ,因此水平绳子的张力为:T 1 = k (x 0+ x ).设竖直绳子的张力为T 2,对定滑轮可列转动方程:T 2R – T 1R = Jβ, 其中β是角加速度,与线加速度的关系是:β = a/R .对于物体也可列方程:mg - T 2 = ma . 转动方程化为:T 2 – k (x 0 + x ) = aJ/R 2,与物体平动方程相加并利用平衡条件得:a (m + J/R 2) = –kx ,可得微分方程:,故物体做简谐振动. (3)简谐振动的圆频率为:s -1). 周期为:T 2 = 2π/ω = 1.26(s).(4)设物体振动方程为:x = A cos(ωt + φ),其中振幅为:A = 0.15(m). 当t = 0时,x = -0.15m ,v 0 = 0,可得:cos φ = -1,因此φ = π或-π, 所以振动方程为:x = 0.15cos(5t + π),或x = 0.15cos(5t - π).4.12一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]通过质心垂直环面有一个轴,环绕此轴的转动惯量为:I c = mR 2.根据平行轴定理,环绕过O 点的平行轴的转动惯量为I = I c + mR 2 = 2mR 2.当环偏离平衡位置时,重力的力矩为:M = mgR sin θ, 方向与角度θ增加的方向相反.ω=A ==00arctan v x ϕω-==222d 0d /x kx t m J R +=+ω=根据转动定理得:Iβ = -M ,即,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程:. 摆动的圆频率为:周期为:4.13 重量为P 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)前面已经证明:当两根弹簧串联时,总倔强系数为k = k1k 2/(k 1 + k 2),因此固有频率为(2)前面还证明:当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为.4.14质量为0.25kg 的物体,在弹性力作用下作简谐振动,倔强系数k = 25N·m -1,如果开始振动时具有势能0.6J ,和动能0.2J ,求:(1)振幅;(2)位移多大时,动能恰等于势能?(3)经过平衡位置时的速度.[解答]物体的总能量为:E = E k + E p = 0.8(J).(1)根据能量公式E = kA2/2,得振幅为:.(2)当动能等于势能时,即E k = E p ,由于E = E k + E p ,可得:E = 2E p ,即,解得:= ±0.179(m). (3)再根据能量公式E = mv m2/2,得物体经过平衡位置的速度为: 2.53(m·s -1).4.15 两个频率和振幅都相同的简谐振动的x-t 曲线如图所示,求: (1)两个简谐振动的位相差;(2)两个简谐振动的合成振动的振动方程. [解答](1)两个简谐振动的振幅为:A = 5(cm), 周期为:T = 4(s),圆频率为:ω =2π/T = π/2,它们的振动方程分别为:x 1 = A cos ωt =5cosπt /2, x 2 = A sin ωt =5sinπt /2 =5cos(π/2 - πt /2)即x 2=5cos(πt /2 - π/2).位相差为:Δφ = φ2 - φ1 = -π/2. (2)由于x = x 1 + x 2 = 5cosπt /2 +5sinπt /2 = 5(cosπt /2·cosπ/4 +5sinπt /2·sinπ/4)/sinπ/4 合振动方程为:(cm).22d sin 0d I mgR tθθ+=22d 0d mgRt Iθθ+=ω=222T πω===2ωνπ===2ωνπ===A =2211222kA kx =⨯/2x =m v =cos()24x t ππ=- (b)图4.134.16 已知两个同方向简谐振动如下:,.(1)求它们的合成振动的振幅和初位相; (2)另有一同方向简谐振动x 3 = 0.07cos(10t +φ),问φ为何值时,x 1 + x 3的振幅为最大?φ为何值时,x 2 + x 3的振幅为最小?(3)用旋转矢量图示法表示(1)和(2)两种情况下的结果.x 以米计,t 以秒计.[解答](1)根据公式,合振动的振幅为:=8.92×10-2(m). 初位相为:= 68.22°.(2)要使x 1 + x 3的振幅最大,则:cos(φ– φ1) = 1,因此φ– φ1 = 0,所以:φ = φ1 = 0.6π. 要使x 2 + x 3的振幅最小,则 cos(φ– φ2) = -1,因此φ– φ2 = π,所以φ = π + φ2 = 1.2π.(3)如图所示.4.17质量为0.4kg 的质点同时参与互相垂直的两个振动:, .式中x 和y 以米(m)计,t 以秒(s)计.(1)求运动的轨道方程;(2)画出合成振动的轨迹;(3)求质点在任一位置所受的力.[解答](1)根据公式:,其中位相差为:Δφ = φ2 – φ1 = -π/2,130.05cos(10)5x t π=+210.06cos(10)5x t π=+A =11221122sin sin arctancos cos A A A A ϕϕϕϕϕ+=+0.08cos()36x t ππ=+0.06cos()33y t ππ=-2222212122cos sin x y xyA A A A ϕϕ+-∆=∆所以质点运动的轨道方程为:. (2)合振动的轨迹是椭圆.(3)两个振动的圆频率是相同的ω = π/3,质点在x 方向所受的力为,即F x = 0.035cos(πt /3 + π/6)(N).在y 方向所受的力为,即F y = 0.026cos(πt /3 - π/3)(N).用矢量表示就是,其大小为,与x 轴的夹角为θ = arctan(F y /F x ).4.18 将频率为384Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz ,在待测音叉的一端加上一小块物体,则拍频将减小,求待测音叉的固有频率.[解答]标准音叉的频率为v 0 = 384(Hz), 拍频为Δv = 3.0(Hz), 待测音叉的固有频率可能是v 1 = v 0 - Δv = 381(Hz), 也可能是v 2 = v 0 + Δv = 387(Hz).在待测音叉上加一小块物体时,相当于弹簧振子增加了质量,由于ω2 = k/m ,可知其频率将减小.如果待测音叉的固有频率v 1,加一小块物体后,其频率v`1将更低,与标准音叉的拍频将增加;实际上拍频是减小的,所以待测音叉的固有频率v 2,即387Hz .4.19示波器的电子束受到两个互相垂直的电场作用.电子在两个方向上的位移分别为x = A cos ωt 和y = A cos(ωt +φ).求在φ = 0,φ = 30º,及φ = 90º这三种情况下,电子在荧光屏上的轨迹方程.[解答]根据公式,其中Δφ = φ2 – φ1 = -π/2,而φ1 = 0,φ2 = φ.(1)当Δφ = φ = 0时,可得,质点运动的轨道方程为y = x ,轨迹是一条直线.(2)当Δφ = φ = 30º时,可得质点的轨道方程, 即,轨迹是倾斜的椭圆.(3)当Δφ = φ = 90º时,可得, 即x 2 + y 2 = A 2,质点运动的轨迹为圆.4.20三个同方向、同频率的简谐振动为,,.222210.080.06x y +=22d d x x x F ma m t==20.08cos()6m t πωω=-+22d d y y y F ma m t==20.06cos()3m t ωω=--πi+j x y F F F =F =2222212122cos sin x y xyA A A A ϕϕ+-∆=∆2222220x y xyA A A+-=222214x y A+=222/4x y A +=22221x y A A +=10.08cos(314)6x t π=+20.08cos(314)2x t π=+350.08cos(314)6x t π=+求:(1)合振动的圆频率、振幅、初相及振动表达式; (2)合振动由初始位置运动到所需最短时间(A 为合振动振幅). [解答]合振动的圆频率为:ω = 314 = 100π(rad·s -1). 设A 0 = 0.08,根据公式得:A x = A 1cos φ1 + A 2cos φ2 + A 3cos φ3 = 0,A y = A 1sin φ1 + A 2sin φ2 + A 3sin φ3 = 2A 0 = 0.16(m), 振幅为:,初位相为:φ = arctan(A y /A x ) = π/2.合振动的方程为:x = 0.16cos(100πt + π/2).(2)当时,可得:,解得:100πt + π/2 = π/4或7π/4.由于t > 0,所以只能取第二个解,可得所需最短时间为t = 0.0125s .x A =A =/2x =cos(100/2)2t ππ+。
C机械振动lz
3、振动的描述 (3)频率(描述振动快慢) 单位时间内完成全振动的次数叫 做频率,用符号f表示。频率的单 位是Hz(读做赫兹)。 振动的频率f与周期T的关系是 f=1/T。
• 如图所示,将一弹簧振子从平衡位置拉开1cm后释放,振 子做简谐振动。若第一次到达平衡位置的时间为0.1s,则 弹簧振子的振幅为_______,周期为_______,频率为 _______。
位移
• 如图所示,O点为振子的平衡位置,即为坐标原点, 选定向右为正方向,某时刻振子经过平衡位置右 方某一点P,此时位移矢量的大小x=OP,方向由O 指向P;位移为正,另时刻振子经过平衡位置左方 某一点Q,则振子的位移为负,很明显振子位移的 大小也是弹簧形变的大小。
O Q O P x
回复力
• 振子在振动过程中,受到重力和杆的支持力作用, 这二力相互平衡。振子振动的回复力是弹簧发生 形变时的弹力F。F的大小由形变大小来确定,即 由振子位移大小确定。方向指向平衡位置,与振 子的位移x方向相反,由胡克定律: F = -kx 可知, 弹簧振子的回复力的大小与位移成正比,k是比例 常数,也就是弹簧的劲度系数。
第四章 C机械振动
振动的最主要特征是什么?
1、机械振动 *物体在某一中心位置附近所做的
往复运动叫做机械振动,简称为 振动。
*中心位置有时又叫做平衡位置.
* 产生机械振动的条件是存在指向
平衡位置的回复力。(阻力足够小)
**回复力
• 使振动物体回到平衡位置的力叫做回复力。
– 不论振动物体处于平衡位置的哪一侧,回复力的方向总 是指向平衡位置,因而回复力是变力。
加速度
• 用m代表振子的质量,根据牛顿第二定律,加速度 a与F成正比,且方向与F一致,所以a = F/m = kx/m。即振子的加速度大小与位移大小成正比, 加速度方向与位移方向相反。 • 振子在平衡位置处受力为零(x=0),加速度也 为零;在两端最大位移处加速度最大。
第4章习题解答
第四章 机械振动和机械波4.1什么是简谐振动?分别从运动学和动力学两方面作出解释。
并说明下列运动是不是简谐振动;(1)小球在地面上做完全弹性的上下跳动;(2)小球在半径很大的光滑凹球面底部做小幅度的摆动; (3)曲柄连杆机构使活塞做往复运动。
4.2 若弹簧振子中弹簧本身的质量不可忽略,其振动周期是增加还是减小? 这相当于增加了系统的惯性,振动周期将增加。
4.3 将单摆拉到与竖直方向成ϕ角后,放手任其摆动,则ϕ是否就是其初相位?为什么?单摆的角速度是否是谐振动的圆频率?4.4判断以下说法是否正确?说明理由。
“质点作简谐振动时,从平衡位置运动到最远点需要1/4周期,因此走过该段距离的一半需时1/8周期。
”4.5两个相同的弹簧挂着质量不同的物体,当它们以相同的振幅做简谐运动时,问振动的能量是否相同?4.6什么是波动?振动与波动有什么区别和联系? 4.7试判断下列几种关于波长的说法是否正确. (1)在波传播方向上相邻两个位移相同点的距离; (2)在波传播方向上相邻两个运动速度相同点的距离; (3)在波传播方向上相邻两个振动相位相同点的距离。
4.8当波从一种媒质透入另一种媒质时,下面那些量会改变,哪些量不会改变:波长、频率、波速、振幅。
4.9有人认为频率不同、振动方向不同、相位差不恒定的两列波不能叠加,所以它们不是相干波,这种看法对不对?说明理由。
4.10 波的能量与振幅的平方成正比,两个振幅相同的相干波在空间叠加时,干涉加强的点的合振幅为原来的两倍,能量为原来的四倍,这是否违背能量守恒定律?4.11 一质点作简谐振动)7.0100cos(6ππ+=t x cm 。
某时刻它在23=x cm 处,且向X 轴负向运动,它要重新回到该位置至少需要经历的时间为( ) A 、s 1001 B 、s 2003 C 、s 501 D 、 s 503答案:(B)4.12 一个单摆,如果摆球的质量增加为原来的四倍,摆球经过平衡位置时的速度减为原来的一半,则单摆( )A 、频率不变,振幅不变;B 、频率不变,振幅改变;C 、频率改变,振幅不变;D 、频率改变,振幅改变; B4.13 以频率ν作简谐振动的系统,其动能和势能随时间变化的频率为( ) A 、2/ν B 、ν C 、ν2 D 、ν4 答案:(C)4.14 劲度系数为m N /100的轻弹簧和质量为10g 的小球组成的弹簧振子,第一次将小球拉离平衡位置4cm ,由静止释放任其运动;第二次将小球拉离平衡位置2cm 并给以2cm/s 的初速度任其振动。
4大学物理机械振动习题解答
4-1符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动:
(1)拍皮球时球的运动;
(2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).
题4-1图
解:要使一个系统作谐振动,必须同时满足以下三个条件:一,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用.或者说,若一个系统的运动微分方程能用
(1) ;
(2)过平衡位置向正向运动;
(3)过 处向负向运动;
(4)过 处向正向运动.
试求出相应的初位相,并写出振动方程.
解:因为
将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有
4-6一质量为 的物体作谐振动,振幅为 ,周期为 ,当 时位移为 .求:
(1) 时,物体所在的位置及此时所受力的大小和方向;
(1) (2)
解:(1)∵
∴合振幅
(2)∵
∴合振幅
4-13一质点同时参与两个在同一直线上的简谐振动,振动方程为
试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
解:∵
∴
∴
其振动方程为
(作图法略)
*4-14如题4-14图所示,两个相互垂直的谐振动的合振动图形为一椭圆,已知 方向的振动方程为 ,求 方向的振动方程.
(2)图(b)中可等效为并联弹簧,同上理,应有 ,即 ,设并联弹簧的倔强系数为 ,则有
故
同上理,其振动周期为
4-3如题4-3图所示,物体的质量为 ,放在光滑斜面上,斜面与水平面的夹角为 ,弹簧的倔强系数为 ,滑轮的转动惯量为 ,半径为 .先把物体托住,使弹簧维持原长,然后由静止释放,试证明物体作简谐振动,并求振动周期.
机械振动第4章连续系统2-1.ppt
T i T
L2
(i 1, 2, )
第4章 连续系统 4.3 杆的纵向振动 振动微分方程 从连续系统直接导出
设长度为L 、两端固定的杆上受均布轴向力 f (x, t) ,杆上x处的轴向刚度与单位长度质量分 别为E A (x) 和m (x) 。
取杆的微段dx,隔离体受力分析图
根据材料力学,任一瞬时作用在杆微段两端 的轴向内力与轴的应变成正比
x x
x2
t2
或
T
(x)
y
(x, t)
f
(x, t)
(x)
2
y
(x, t)
x
x
t2
0 x L
0 x
第4章 连续系统 4.2 弦振动 自由振动 特征值问题
方程
T
(x)
y
(x,
t)
(x)
2y
(x,
t)
x
x
t2
0 x L
边界条件 y ( 0, t ) y ( L, t ) 0
i
(t )
w
2
i
i
(t)
0
(i 1, 2 ,)
解为 i (t) C i cos ( w i t i ) (i 1, 2 ,)
常数C i 和 i 由初始条件得到。
自由振动
第4章 连续系统 4.2 弦振动
例 4.1 图示均匀弦两端固定,弦中的张力为 常数,求解系统的特征值问题,画出系统前 四个特征函数,并验证正交性。
连续系统与离散系统的关系
连续系统与离散系统是同一物理系统的两个数学模型。
简化、离散化
连续系统
离散系统
自由度n 趋向于无穷
连续系统与离散系统的区别
第10次课第四章机械振动
第四章 机械振动
4.1 简谐振动 4.2 谐振动的能量 4.3 谐振动的旋转矢量投影表示法 4.4 谐振动的合成
4.5 阻尼振动 受迫振动 共振
谐振动
d x dt
2 2
f kx
x 0
2
复
习
1
2 2
k m
T
2
x A cos( t )
4.4 谐振动的合成
一.同频率同方向谐振动的合成 1.解析法: x1 A1 cos( t 1 )
x2 A2 cos( t 2 )
x x1 x2 Acos( t )
A A1 A2 2 A1 A2 cos( 2 1 )
2 2
tg
a A cos( t )
2
A
O
x
相位差
同频率、同方向的两谐振动的相位差 就是它们的初相差,即: 2 1
超前与落后,一般以 为界
例3.如图,已知轻弹簧的劲度系 数为k,定滑轮可看作质量为M、 半径为R的均质圆盘,物体的质 量为m,试求: 1.系统的振动周期; 2.将m托至弹簧原长并释放,求 m的运动方程(以向下为正方向) #.用能量守恒求解?
则: 2 d x dx m 2 kx dt dt
d x dt
2 2
设一质点m,受弹性力: F kxi dx 阻尼力: f v i 称为阻力系数 dt
O
2
fm F X dxFra bibliotekm dt
k m
x0
d x dt
2
2
dx dt
清华大学《大学物理》习题库试题及答案__04_机械振动习题
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ C ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A)(B)(C) (D) [ B ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) (C) (D) ω /2 [ B ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为(A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6(E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为和。
则有(A) 且 (B) 且(C) 且 (D) 且 [ ]6.5178:一质点沿x 轴作简谐振动,振动方程为(SI)。
从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) (B) (C) (D) (E) [ ]7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。
当重物通过平衡位置且向规定的正方向运动时,开始计时。
则其振动方程为:(A) (B)(C) (D)(E)[ ]8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点。
机械振动考题
第一章1.21.If energy is lost in any way during vibration, the system can be considered to be damped. (T)2.Superposition principle is valid for both linear and nonlinear systems(F)3.The frequency with which an initially disturbed system vibrates on its own is known as natural frequency(T)4.Any periodic function can be expanded into Fourier series(T)5.Harmonic motion is a periodic motion(T)6.The equivalent mass of several masses at different locations can be found using the equivalence of kinetic energy(T)7.The generalized coordinates are not necessarily Cartesian coordinates. (T)8.Discrete systems are same as lumped parameter systems(T)9.Consider the sum of harmonic motions,, withand The amplitude A is given by 30.8088(T)10.Consider the sum of harmonic motions, , withand The phase angle α is given by 1.57 rad. (F)第二章2.21.The amplitude of an undamped system will not change with time.(T)2.A system vibrating in air can be considered as a damped system(T)3.The equation of motion of a single degree of freedom system will be the same whether the mass moves in a horizontal plane or an inclined plane.(T)4.When a mass vibrates in a vertical direction, its weight can always be ignored in deriving the equation of motion(F)5.The principle of conservation of energy can be used to derive the equation of motion of both damped and undamped systems(F)6.The damped frequency can be larger that the undamped natural frequency of the system in some cases(F)7.The damped frequency can be zero in some cases. (T)8.The natural frequency of vibration of torsional system is given by where k and m denote the torsional spring constant and the polar mass moment of inertia, respectively(T)9.Rayleigh’s method is based on the principle of conservation of energy(T)10.The final position of the mass is always the equilibrium position in the case of Coulomb damping. (F)11.The undamped natural frequency of a system is given by , where is the static deflection of the mass(T)12.For an undamped system, the velocity leads the displacement by . (T)13.For an undamped system, the velocity leads the acceleration by (F)14.Coulomb damping can be called constant damping(T)15.The loss coefficient denotes the energy dissipated per radian per unit strain energy.(T)16.The motion diminishes to zero in both underdamped and overdamped cases. (T)17.The logarithmic decrement can be used to find the damping ratio(T)18.The hysteresis loop of the stress – strain curve of a material causes damping(T)19.The complex stiffness can be used to find the damping force in a system with hysteresis damping(T)20.The motion can be considered to be harmonic in the cases of hysteresis damping(T)第三章3.21.The magnification factor is the ratio of maximum amplitude and static deflection(T)2.The response will be harmonic if excitation is harmonic(T)3.The phase angle of the response depends on the system parameter m, c, k, and ω(T)4.The phase angle of the response depends on the amplitude of the forcing function.(F)5.During beating, the amplitude of the response builds up and then diminishes in a regular pattern (T)6.The Q-factor can be used to estimate the damping in a system (T)7.The half power points denote the values of frequency ratio where the amplification factor falls towhere Q is the Q-factor. (T)8.The amplitude ratio attains its maximum value at resonance in the case of hysteresis damping(F)9.The response is always in phase with the harmonic forcing function in the case of hysteresis damping(T)10.Damping reduces the amplitude ratio for all values of the forcing frequency. (T)11.The unbalance in a rotating machine causes vibration(T)12.The steady state solution can be assumed to be harmonic for small values of dry friction force(T)13.In a system with rotational unbalance, the effect of damping becomes negligibly small at higher speeds. A set is a collection of objects(T)第四章4.21.The change in momentum is called impulse (T)2.The response of a system under arbitrary force can be found by summing the responses due toseveral elementary impulses (T)3.The response spectrum corresponding to base excitation is useful in the design of machinery subject to earthquakes (T)4.Some periodic functions can not be replaced by a sum of harmonic functions (F)5.The amplitudes of higher harmonics will be smaller in the response of a system. (T)6.The Laplace transform method takes the initial conditions into account automatically (T)7.The equation of motion can be integrated numerically even when the exciting force is nonperiodic (T)8.The response spectrum gives the maximum response of all possible single degree of freedom systems (T_9.For a harmonic oscillator, the acceleration and displacement spectra can be obtained from the velocity spectrum. (T)第五章5.21.The normal modes can also be called principal modes (T)2.The generalized coordinates are linearly dependent (F)3.Principal coordinates can be considered as generalized coordinates (T)4.The vibration of a system depends on the coordinate system (F)5.The nature of coupling depends in the coordinate system (T)6.The principal coordinates avoid both static and dynamic coupling.(T)7.The use of principal coordinates helps in finding the response of the system (T)8.The mass, stiffness, and damping matrices of a two degree of freedom system are symmetric (T)9.The characteristics of a two degree of freedom system are used in the design of dynamic vibration absorber (T)10.Semi-definite systems are also known as degenerate systems (T)11.A semi-definite system can not have non-zero natural frequencies (F)12.The generalized coordinates are always measured form the equilibrium position of the body (F)13.During free vibration, different degrees of freedom oscillate with different phase angles (F)14.During free vibration, different degrees of freedom oscillate at different frequencies (F)15.During free vibration, different degrees of freedom oscillate with different amplitudes (T)16.The relative amplitude of different degrees of freedom in a two degree of freedom system depend on the natural frequency (T)17.The modal vectors of a system denote the normal modes of vibration (T)第六章6.21.For a multidegree of freedom system, one equation of motion can be written for each degree of freedom (T)grange’s equation cannot be used to derive the equations of motion of a multidegree of freedom system (F)3.The mass, stiffness, and damping matrices of a multidegree of freedom are always symmetric (T)4.The product of stiffness and flexibility matrices of a system is always an identity matrix (T)5.The modal analysis of a n-degree of freedom system can be conducted using r modes with r < n (T)6.For a damped multidegree of freedom system, all the eigenvalues can be complex (T)7.The modal damping ratio denotes damping in a particular normal mode (T)8.A multidegree of freedom system can have six of the natural frequencies equal to zero (T)9.The generalized coordinates will always have the unit of length (F)10.The generalized coordinates are independent of the conditions of constraint of the system (T)11.The generalized mass matrix of a multidegree of freedom system is always diagonal (F)12.The potential and kinetic energies of a multidegree of freedom system are always quadratic functions (T)13.The mass matrix of a system is always symmetric and positive definite (T)14.The stiffness matrix of a system is always symmetric and positive definite (F)15.The rigid body mode is also called the zero mode. (T)16.An unrestrained system is also known as a semi-definite system. (T)17.Newton’s second law of motion can always be used to derive the equations of motion of a vibrating system (T)第七章7.21.T he fundamental frequency given by Durkerley’s formula will always be larger than the exact value (F)2.The fundamental frequency given by Rayleigh’s method will always be larger than the exact value (T)3.is a standard eigenvalue problem (F)4.is a standard eigenvalue problem (T)5.Jacobi method can find the eigenvalues of only symmetric matrices. (T)6.Jacobi method uses rotation matrices. (T)7.The matrix iteration method requires the natural frequencies to be distinct and well separated (T)8.In matrix iteration method, any computational error will not yield incorrect results (T)9.The matrix iteration method will never fail to converge to higher frequencies. (F)10.When Rayleigh’s method is used for a shaft carrying several rotors, the static deflection curve can be used as the appropriate mode shape. (T)11.Rayleigh’s method can be considered to be same as the conservation of energy for a vibrating system (T)第八章8.21.Continuous systems are same as distributed systems. (T)2.Continuous systems can be considered to have infinite number of degrees of freedom. (T)3.The governing equation of a continuous system is an ordinary differential equation. (F)4.The free vibration equations corresponding to the transverse motion of a string, the longitudinal motion of a bar and the torsional motion of a shaft have the same form. (T)5.The normal modes of a continuous system are orthogonal. (T)6.A membrane has zero bending resistance. (T)7.Rayleigh’s method can be considered as a method of conservation of energy.(T)8.Rayleigh-Ritz method assumes the solution as a series of functions that satisfy the boundary conditions of the problem. (T)9.For a discrete system, the boundary conditions are to be applied explicitly. (T)10.The Euler-Bernoulli beam theory is more accurate than the Timoshenko theory. (F)第九章9.21.Vibration can cause structural and mechanical failures. (T)2.The response of a system can be reduced by the use of isolators and absorbers (T)3.Vibration control means the elimination or reduction of vibration (T)4.The vibration caused by a rotating unbalanced disc can be eliminated by adding a suitable mass to the disc (T)5.Any unbalanced mass can be replaced by two equivalent unbalanced masses in the end planes of the rotor (T)6.The oil whip in the bearings can cause instability in a rotor system (T)7.The natural frequency of a system can be changed by varying its damping (F)8.The stiffness of a rotating shaft can be altered by changing the location of its bearings (T)9.All practical systems have damping. (T)10.High loss factor of a material implies less damping (F)11.Passive isolation systems require external power to function (F)12.The transmissibility is also called the transmission ratio. (T)13.The force transmitted to the foundation of an isolator with rigid foundation can never be infinity (F)14.Internal and external friction can cause instability in a rotating shaft at speeds above the first critical speed (T)。
机械振动第四章
第四章两自由度系统的振动当振动系统需要两个独立坐标描述其运动时,称为两自由度振动系统。
两自由度系统是最简单的多自由度系统,因此研究两自由度系统是分析和掌握多自由度系统的基础。
两自由度系统具有两个固有频率,两自由度系统以固有频率进行的振动与单自由度系统不同,它以固有频率进行的振动是指整个系统在运动过程中莫一位移形状,称为固有振型,因此两自由度具有两个与固有频率对应的两个固有振型。
在任意初始条件下的自由振动响应一般由两个固有振型的叠加得到。
受迫简谐振动的频率与激励频率相同。
两自由度系统的振动微分方程一般由两个联立的微分方程组成。
如果恰当地选取坐标,可使两个微分方程解除耦合,这种坐标称为主坐标或固有坐标。
用固有坐标建立的系统振动微分方程为两个独立的单自由度系统的微分方程。
4.1系统的自由振动如图所示的无阻尼两质量-弹簧系统,可沿光滑水平面滑动的两个质量与分别用弹簧与连至定点,并用弹簧相互连接。
三个弹簧的轴线沿同一水平线,质量与只限于沿着该直线进行往复运动。
这样与的任一瞬时的位置只需用坐标与就可以完全确定,因此该系统具有两个自由度。
图两自由度系统的振动取与的静平衡位置为坐标原点。
在振动过程中任一瞬时t,与的位置分别为与,作用于与的重力于光滑水平面的法向反力相平衡,在质量的水平方向作用有弹性恢复力和,质量的水平方向则受到和作用,方向如图所示。
取加速度和力的正方向与坐标正方向一致,根据牛顿运动定律有移项得方程()就是图所示的两自由度系统自由振动的微分方程,为二阶常系数线性齐次常微分方程组。
方程()可以使用矩阵形式来表示,写成由系数矩阵组成的常数矩阵m和k分别称为质量矩阵和刚度矩阵,向量x 称为位移向量。
因此设分别为刚度矩阵k中的元素,因而方程()可以写成方程()为系统自由振动的微分方程。
方程()是齐次的,如果和位方程()的一个解,那么与其相差一个因子的和也将是一个解。
通常感兴趣的是一种特殊形式的解,也就是和同步运动的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 I2 0
0 0 I 3
4.3 求如图T—4.3所示三自由度弹簧质量系统的固有频率和
振型。质量只能沿铅垂方向运动。
图 T—4.3
1、求质量矩阵和刚度矩阵:
[M]=
m 0 0 0 m 0 0 0 m
[K]=
3k k k
k 3k k
第四章 多自由度系统 习题
4.1 按定义求如图T—4.1所示三自由度弹簧 质量系统的[K]=
k1 k 2 k 2 0
k2 k 2 k3 k5 k6 k3
k3 k3 k 4 0
2、能量法:
3k 0 2k 0 k k 2k k 7k
[M]=
[K]=
图 T—4.5
图 T—4.6
图 T—4.7
4.2 按定义求如图T—4.2所示三自由度扭转系统的刚度矩阵和 质量矩阵。
图 T—4.2
1、刚度矩阵:
k t1 k t 2 k t2 0 kt 2 kt 2 kt 3 kt 3 0 kt 3 k t3
[K]=
2、质量矩阵
[M] =
I1 0 0
k k 3k
2、求固有频率2:
将[M]、[K]代入 3、求振型{u}:
kij 2 mij 0,可求出12、22、32
4.4 求如图T—4.4所示三自由度弹簧质量系统的固有频率和 振型。质量只能沿铅垂方向运动。
图 T—4.4
1、求质量矩阵和刚度矩阵:
2m 0 0 0 m 0 0 0 4m