生物质与煤混燃
燃煤与生物质气化耦合发电技术方案分析
燃煤与生物质气化耦合发电技术方案分析一、技术原理燃煤与生物质气化耦合发电技术是将燃煤气化和生物质气化技术结合起来,通过在气化反应器中对燃煤和生物质进行气化反应,产生合成气,再利用合成气进行发电。
燃煤气化和生物质气化是两种不同的气化技术,燃煤气化主要产生一氧化碳和氢气,而生物质气化主要产生一氧化碳、氢气、甲烷和二氧化碳。
将这两种气化技术结合起来,能够充分利用燃煤和生物质的资源,提高能源利用效率,减少对大气环境的污染。
二、技术优势1. 资源充足:燃煤是目前世界上使用最为广泛的化石能源之一,储量丰富。
生物质是可再生资源,具有广泛的来源,如木材、秸秆、农作物废弃物等,资源充沛。
2. 清洁高效:通过燃煤与生物质气化耦合发电技术,可以将煤炭转化为清洁的合成气,大大降低了煤炭燃烧产生的污染物排放。
生物质气化产生的气体也比燃煤气化更为清洁,减少了对环境的负面影响。
3. 降低成本:生物质气化技术相对成熟,且生物质气化设备相对燃煤气化设备成本更低,通过耦合发电技术,可以降低发电成本。
4. 提高能源利用效率:通过耦合燃煤与生物质气化技术,可以充分利用两种资源,提高能源利用效率,同时减少对资源的消耗。
三、技术挑战1. 气化反应器设计:燃煤气化和生物质气化的气化反应器设计具有一定的复杂性,需要充分考虑燃煤和生物质气化特性的差异,以及两者之间的相互影响。
2. 气化气清洁:合成气中的污染物含量较高,需要通过一系列的气体净化工艺进行清洁处理,以满足发电机组的要求。
3. 运行稳定性:燃煤与生物质气化耦合发电技术需要保持良好的运行稳定性,确保长期稳定的发电产能。
四、技术应用燃煤与生物质气化耦合发电技术已经在一些实际工程中有所应用,尤其在一些燃煤发电厂进行生物质混燃或者替代部分煤炭,以减少煤炭的使用和环境污染。
在一些生物质能源发电项目中,也可以考虑采用燃煤与生物质气化耦合发电技术,以提高能源利用效率和降低成本。
五、技术展望燃煤与生物质气化耦合发电技术具有明显的优势和发展潜力,但在实际应用中仍面临一些挑战。
生物质锅炉混煤掺烧对锅炉经济性及稳定性的影响
生物质锅炉混煤掺烧对锅炉经济性及稳定性的影响摘要:近几年,生物质直燃发电在中国迅速发展。
然而,高含水量,高耗能和锅炉高温腐蚀等问题导致设备可靠性差,严重影响了生物质发电企业的经济运行,甚至威胁到了生物质发电企业的可持续发展,导致生物量。
直燃发电行业陷入困境。
虽然中国的生物质能源储量丰富,由于燃油锅炉水的限制,低于生物质燃料水分含量38%可以直接烧成炉。
生物质燃料的含水量约为60%。
高湿度导致燃料热值低、燃料消耗高、锅炉排烟温度高、锅炉效率低,影响电厂经济效益。
目前,大多依靠人工自然风干,以降低燃料水分,效率低,成本高,受天气和季节的影响很大。
关键词:生物质;混煤掺烧;锅炉效率;经济性;稳定性1.引言(1)生物质能源发展生物质直燃发电是近年来发展迅速的中国。
然而,有高水分、高燃料和锅炉的高温腐蚀的低热值的一个技术问题,导致设备可靠性差,严重影响了生物质发电企业的经济运行,甚至威胁到了生物质发电企业的可持续发展,导致生物量。
直燃发电行业陷入困境。
虽然我国生物质能源储量丰富,但由于锅炉燃料水的限制,一般不到45%的生物质燃料的含水量可直接燃烧到炉内。
生物质燃料的含水量约为55%。
高湿度导致燃料热值低、燃料消耗高、锅炉排烟温度高、锅炉效率低,影响电厂经济效益。
目前,大多依靠人工自然风干,以降低燃料水分,效率低,成本高,受天气和季节的影响很大。
(2)燃料燃烧硫化物和氮氧化物的产生与排放过程燃烧过程产生的氮氧化物主要包括NO和NO2,以及少量的N2O,在燃烧过程中,NOx的生成与燃烧方式密切相关,特别是燃烧温度和过量空气系数。
根据生成机理,燃烧生成的NOx可分为燃料型、热式和快燃型3种。
燃料型氮氧化物燃料氮氧化物是燃料中的氮元素,燃烧过程中生成的氮氧化物与空气中的氧结合。
热式氮氧化物氮氧化物是指氮气和氧气在高温下生成氮氧化物的反应。
快速氮氧化物主要指碳氢化合物在燃烧空气中燃料浓度高的燃料中生成的碳氢化合物的反应,而CH和HCN等CH和HCN在燃煤锅炉中继续氧化,快速生成的NOx很小。
生物质与煤混合燃烧发电技术研究与应用
景。
网键词 :生物 赞 ;燃煤 锅墟 ;燃 烧 系统 ;汽 水 系统 ;雹氟 系统 逦 ;生 物赁燃 料的加 工 虞理 ;生 物夤燃 烧技 衍 ;生 1 言 .育
秆 等 生物 耍 和煤局燃 料 的火 力骚 鼋廒 ,其 生座 遇程 概 括起 来 就是 :先 将秸 秆等 生物 簧加 T 成逋于 铺熄 燃 烷 形式 ( 状 或堍 状 ) 粉 ,和煤 一 起 送人 躺 墟 内充 分 燃烷 ,使 储存 于生物 耍和 煤燃 料 中 的化翠能耱 燮
成 熟 能 ;铜煊 内的水 吸熟後 彦 生鲍 和蒸 汽 ,鲍 和蒸 汽 在遇 熟 器 内 绩加 热成 遇 热蒸汽 造入 汽输楼 ,疆
【 作者 简 介 】
到婷 婷 ( 93 18 -),女 ,助 理 工 程 绵 ;研 究 方 向 : 雹力 系统 自勤 化及 新 能 源餐 雹 。 是 龅杰 ( 98 17 -),女 , 工程 缔 ;研 究 方 向 :鼋 力 系统 高屡 技 街及 新 能 源餮 雹 。 馀英 (9 9 15 一),男 ,教 授 级 高工 ;研 究 方 向 : 鼋力 系统 自勤 化及 新 能 源餮 雹。
毅借 ,是一獯低成本 、低凰除 、大规模使用生物耍 黉 露 的有 效 技 衍 手 段 ,封 于减 少 常 规 化石 能 源 消 能 源安全 ,减少 璨境 污染 ,提 高城 绑居 民生 活水平 耗 ,减 排 C 2 Ox S 2 O 、N 和 O ,带 勤富地缝 滂骚 展 、 和耍量等 诸多 方面都 有重要 作 用 ,封 于 中圆建毅 钸 增加 富地 晨 民收入 、提供就柴 横 畲等藉 方面都 有重 约 型社合 ,骚展循 璨经滂 ,寅现 社 舍可持 绩 骚展具 要意 羲 。 有重要 意 羲 。 生 物 雷舆 煤 混 合 燃 烧 劈鼋 技 衍 在 歇 洲 和北 美 中国生 物耍 资源堂 富 ,生物 管 骚鼋骚 展前景 庚 地 匾 虑用相 富普遍 。在美 圆 ,有 3 0多家 鬟鼋 廒采 0 网 。圆家 “ 十一 五 ”骚展规 割纲要 中提 出了建毅生 用 生 物 耍 舆 煤 混 合 燃 烷 骠 露 技 衍 , 装 楼 容 量 连 物 耍鼗 鼋 50莴千瓦装横 容量 的 骚展 目檩 。 5 中圆《 可 60 MW 。20 00 0 2年 丹 套哥本 哈根 A E V DOR 鼋 廒 E 再生能源中畏期规割》提出了 2 2 0 0年生物耍骚鼋 15 0 MW 鼗 鼋 毅 借 采 用 多 秆 舆 天然 氟混 合 燃 烧 技 装横 30 蓠千 瓦的 目檩 。随着 圆家 网于生物赁 骚 衍 ,生 物耍掺烷 比例 5 %。 19 奥地利 Z l g 00 0 9 7年 e we t 露 的一 系列政 策 的出壹 , 目前 ,已经有不 少投 资主 B o oo l7 ic c mb MW 雷 廒利 用 生 物 黉 舆煤 混 合燃 烧 3 髓造人 了生物耍骚鼋行柴 , 纷纷封新典的髅林生物 技 衍鼗鼋 ,生物 耍掺 烧 比例 3 %。 0 贸襞 鼋行柴 表示 出 了很 大 的典趣 和参 舆熟情 。在 生 团内一些高校和科研 卑位封生物耍舆煤混合 物 耍 骚 鼋 麈 柴 的 推 勤下 ,傅 统 晨 柴 麈 柴 键将 被 延 燃 烧 骚鼋技 衍及其 毅侑遣 行 了明骚研究 ,取 得 了有 伸 ,形成 新的 廑柴键 ,适而促 连 了晨 柴舆 晨村的 造 僚值成果。歇盟已舆中园科技部鳋 塌藏,在生物 步 。生物耍 鹱 鼋麈柴 的骏展 ,带助 了一 系列麈 柴 的 簧 能 利 用 领域 造 行 合 作 研 究 舆示 篼推 鹰 ,凝在 河 骚展 ,能源植 物 的獯 植 , 晨林生 物 耍燃料 的收 、 、 储
山东日照电厂掺烧生物质情况
山东日照电厂掺烧生物质情况山东日照电厂位于山东省日照市,是一家重要的能源供应商。
近年来,为了减少对化石燃料的依赖,保护环境,该电厂开始掺烧生物质。
掺烧生物质是指将生物质颗粒与煤炭混合燃烧,以替代部分煤炭,从而降低煤炭的使用量。
生物质包括木屑、秸秆、废弃农作物等可再生能源,其燃烧过程产生的二氧化碳可以被植物吸收,形成一个循环。
在山东日照电厂,掺烧生物质已经成为一项重要的能源转型措施。
这不仅减少了对煤炭的需求,也降低了燃烧过程中的二氧化碳排放量。
同时,生物质的使用还能够减少其他有害气体的排放,保护大气环境。
通过掺烧生物质,山东日照电厂不仅实现了绿色能源的利用,也为当地的经济发展做出了贡献。
生物质的供应链包括收集、加工和运输等环节,为当地提供了就业机会。
此外,生物质的使用还能够促进农作物的综合利用,提高农民的收入。
掺烧生物质在山东日照电厂的实施过程中,也面临一些挑战。
首先,生物质的供应需要保持稳定,包括收集和加工的能力。
其次,生物质的品质和燃烧性能需要满足电厂的要求,以确保燃烧效率和环境效益。
最后,生物质的成本也需要考虑,包括采购和运输等费用。
为了解决这些问题,山东日照电厂与相关部门和企业合作,建立了生物质供应链。
他们与农民合作,收集废弃农作物,并通过加工将其转化为可供燃烧的颗粒。
同时,他们还与物流公司合作,确保生物质的运输和供应的稳定性。
山东日照电厂通过掺烧生物质,实现了绿色能源的利用和环境保护。
这不仅减少了对煤炭的依赖,也促进了当地的经济发展和农民的收入增加。
然而,掺烧生物质还面临一些挑战,需要通过合作和创新来解决。
相信在各方的共同努力下,生物质能够在山东日照电厂的能源转型中发挥更大的作用。
生物质与煤混烧燃烧特性研究
能 源方 面看 , 研究 生 物 质 与 煤 混 合 燃 烧 技 术具 有 重
要 意义 .
1 3 实 验 条 件 及 过 程 .
1 实 验 部 分
1 1 实 验 设 备 .
实验 初始温 度 为室 温 , 温为 9 0。 工 作 气氛! 0 n 除特 别说 明 /
玉米秸秆的水分和挥发分高于义马煤因此随着玉米秸秆添加量的增加混合物中水分和挥发分含量逐渐增加固定碳含量逐渐降低导致dtg曲线上水分析出峰玉米秸秆挥发分析出峰和玉米秸秆固定碳燃烧及义马煤挥发分析出峰逐渐增强而义马煤固定碳燃烧失重作用逐渐减弱
第 3 卷 第 1 3 期 21 O 0年 1月
煤 炭 转 化
尽 性 能降低 ; 加 氧 气流 量 , 以显著 改善 燃料 的燃烧 性 能. 增 可 关键 词 煤 , 物 质 , 烧 , 分 析 , 烧 特 性 生 混 热 燃 TQ5 4 3 中图分 类号
0 引 言
生 物质 能 是 仅 次 于煤 、 油 和天 然 气 之后 的第 石 四大 能源 _ , 有来 源广 、 】具 ] 污染 低 、 再 生 和 C 零 可 O。 排放 等优 点. 专家认 为 , 物质 能将 成 为未来 可再 生 生 能源 的 重要 组 成 部 分 , 2 1 到 0 5年 , 球 总 能耗 将 有 全 4 来 自生物 质能 .2 国生 物质 能 资源 十分 丰 富 , 0 [我
燃 煤 产 生 大 量 烟 尘 、 O。和 C 等 污 染 物 , 使 我 S O 致
国大气 环境 呈 典型 的煤 烟 型 污 染 , 由此 带 来 严 重 的 经 济损 失. 生物 质 与煤共 燃 可 以降低 硫氧 化物 、 氧 氮
化 物 及 烟 尘 的 排 放 , 此 从 减 轻 污 染 和 利 用 可 再 生 因
生物质气化发电
一生物质气化合成气与煤混合燃烧发电技术间接混合燃烧是先把生物质气化为清洁的可燃气体,然后与煤粉混燃。
在欧洲,生物质与煤间接混合燃烧技术目前已进入商业化运行,技术上被认为是相当成熟。
例如,位于奥地利Styria的Zeltweg电厂,采用循环流化床技术,以空气为气化剂气化木柴,产生可燃气体输入锅炉的燃烧室和烟煤一起燃烧,超过5000t 的生物质被气化和燃烧,目前系统运行效果良好。
此外,芬兰的Lahti电站与荷兰的Amer电站的9号机组,均是生物质与煤间接混燃技术成功运用的案例。
目前国内已建的生物质电厂主要以生物质直接燃烧发电和并联燃烧发电为主。
气化混燃电厂大多还处在示范工程研究阶段。
在气化混燃电厂中,从气化炉中产出的生物质气是由N2、CO、CO2、CH4、C2H2-6、H2 和H2O 组成的混合气体,其中N2 占到50%。
生物质气的热值决定于给料的水分含量。
与其它混燃技术相比,生物质间接混燃具有生物质燃料适用范围广的优点,同时基于气化的混燃能够避免直燃过程中燃料处理、燃料输送等带来的问题、还可缓解锅炉结渣等问题。
另外,采用这种方法,使得煤灰和生物质灰分开了,煤灰成分不受影响。
生物质与煤间接混燃技术可以应用于现有不同容量的电站燃煤锅炉,并且对现有锅炉的改动很小,运行灵活性较高。
目前,我国的生物质储量巨大,国内许多小型火电厂效率低、污染严重,可以通过增加生物质气化系统实现生物质气与煤混合燃烧,既可以大规模地处理富余的生物质资源,又可以与我国现有的小型燃煤电站的改造结合起来,非常符合我国的国情。
二国内外生物质整体气化联合循环发电2.1国外生物质整体气化联合循环发电示范项目介绍2.1.1 美国Battelle美国在利用生物质能发电方面处于世界领先地位。
美国建立的Battelle生物质气化发电示范工程代表生物质能利用的世界先进水平,生产一种中热值气体,不需要制氧装置,此工艺使用两个实际上分开的反应器:①气化反应器,在其中生物质转化成中热值气体和残炭;②燃烧反应器,燃烧残炭并为气化反应供热。
燃煤耦合生物质发电方案(一)
燃煤耦合生物质发电方案燃煤耦合生物质发电方案是一种将生物质能源与燃煤能源耦合利用的发电方式。
该方案旨在通过改革产业结构,减少对传统煤炭能源的依赖,提高能源利用效率,降低环境污染,并促进可持续发展。
下面将从实施背景、工作原理、实施计划步骤、适用范围、创新要点、预期效果、达到收益、优缺点以及下一步需要改进的地方等方面进行详细总结。
一、实施背景:随着全球能源需求的不断增长,煤炭等传统化石燃料的使用导致了严重的环境污染和资源浪费问题。
同时,生物质能源作为一种可再生能源,具有广泛的资源基础和开发潜力。
因此,将生物质能源与燃煤能源耦合利用,成为了改革产业结构、提高能源利用效率的重要途径。
二、工作原理:燃煤耦合生物质发电方案的工作原理是将生物质燃料与煤炭混合燃烧,通过燃烧产生的高温高压蒸汽驱动汽轮机发电。
具体步骤如下:1. 生物质燃料预处理:将生物质燃料进行干燥、粉碎等预处理工艺,以提高燃烧效率。
2. 燃料混合:将预处理后的生物质燃料与煤炭按一定比例混合,形成混合燃料。
3. 燃烧发电:将混合燃料投入燃烧炉中进行燃烧,产生高温高压蒸汽,驱动汽轮机发电。
4. 烟气净化:对燃烧产生的烟气进行净化处理,减少对环境的污染。
三、实施计划步骤:1. 建设生物质燃料供应链:建立生物质燃料的生产、加工、运输等供应链,确保燃料的稳定供应。
2. 改造燃煤发电厂:对现有的燃煤发电厂进行改造,增加生物质燃料的投入设备和净化设施。
3. 进行试点示范:选择一些适宜的地区进行燃煤耦合生物质发电方案的试点示范,验证其可行性和经济性。
4. 推广应用:在试点示范成功后,逐步推广应用到更多的燃煤发电厂,实现全面的产业结构改革。
四、适用范围:燃煤耦合生物质发电方案适用于已有燃煤发电厂的改造和新建的发电项目。
尤其适用于生物质资源丰富、煤炭资源相对匮乏的地区,如农业发达地区和森林资源丰富地区。
五、创新要点:1. 燃煤耦合生物质发电方案创新地将生物质能源与燃煤能源耦合利用,提高了能源利用效率。
煤与生物质混燃过程中SO_2释放规律研究
徐金苗 , 吕子 安 , 李定 凯
清华 大 学热 能 工程 系, 北京 [ 摘 108 00 4
热 能 基 础 一 研
要] 利 用管 式炉一 TI F R二 氧 化硫 检 测 系统对 神 华煤 与 玉 米杆 和树 皮 在 不 同混 燃 比 下混合
o fSD n c o d na i n i e a ka e A l ng w ih t n r a eofpr p ton ng r to,he c t i uton r — i o r i to sr m r bl . o t hei c e s o ori i a i t on rb i a
c e s d, h a e i ha he s p r c t nti i e u lo oa nd bi ma sha o e r a e t e c us st tt ul hu on e n m x d f e fc la o s ss m wha e uc d, tr d e
用 时间也逐 渐减 少。
[ 关 键
词] 煤 ; 物 质 ; 燃 ; 燃 比 ; O2 放 ; 硫 生 混 混 S 排 脱
TK 4 . 11 51
[ 中图分类 号]
[ 文献 标识码 ] A [ 章 编 号] 1 0 文 0 2—33 4( 0 0) 0—0 2 6 2 1 1 0 0—0 5 [ OI 编 号] 1 . 9 9 j is . 0 2—3 6 . 0 0 1 . 2 D 0 3 6 /.s n 1 0 342 1. 00 0 S TUDY oN o2一RELEASI S NG REGULARI TY N I THE PRoCES S oF M I XDELY BURNI NG CoAL AND BoI AS M S
燃煤耦合生物质掺烧政策
燃煤耦合生物质掺烧政策全文共四篇示例,供读者参考第一篇示例:燃煤耦合生物质掺烧政策是指在传统燃煤锅炉的基础上,加入一定比例的生物质颗粒燃料,实现燃煤与生物质混合燃烧的一种新型环保方式。
随着环保意识的提升和能源结构调整的不断推进,燃煤耦合生物质掺烧政策逐渐受到政府和社会的关注和支持。
在我国,政府出台了多项支持生物质能源利用的政策措施,鼓励企业使用生物质颗粒等生物质燃料,实现燃煤与生物质的混合燃烧。
通过掺烧生物质颗粒,可以有效提高煤炭的燃烧效率,减少燃煤锅炉的燃烧排放,降低温室气体的排放量,达到节能减排的环保效果。
燃煤耦合生物质掺烧政策也促进了我国生物质能源的发展和利用,推动了燃煤行业向清洁高效方向转型。
随着生物质颗粒、秸秆等生物质资源的开发利用,燃煤耦合生物质掺烧技术在我国得到了广泛应用,已经成为一种可持续发展的燃烧模式。
通过合理掺烧比例的选择和优化燃烧工艺,不仅可以提高燃烧效率,还可以减少烟尘和硫氧化物等有害气体的排放,实现绿色环保生产。
燃煤耦合生物质掺烧政策的推广和应用还面临一些挑战和障碍。
生物质颗粒等生物质资源的采购和供应面临着一定的困难,生物质颗粒的生产成本相对较高,需要政府和企业共同扶持,建立完善的生物质能源产业链条。
燃煤耦合生物质掺烧技术的推广需要燃煤企业进行设备改造和技术更新,需要一定的资金投入和技术支持。
燃煤耦合生物质掺烧政策的实施还需要相关监管部门进行监督和管理,确保掺烧比例的准确控制和排放标准的执行,保障燃煤企业的合法合规生产。
为了促进燃煤耦合生物质掺烧政策的落地生根,政府、企业和社会应共同努力,形成合力。
政府应加大政策支持力度,制定更加明确和有力的政策措施,鼓励企业参与燃煤耦合生物质掺烧技术的研究和推广应用。
企业应主动响应政府的号召,积极投入资金和人力资源,开展技术创新和成果转化,实现燃煤与生物质的高效掺烧。
社会应增强环保意识,支持和监督政府和企业的环保行动,共同推动清洁能源的利用和能源结构的升级。
燃煤与生物质气化耦合发电技术方案分析
燃煤与生物质气化耦合发电技术方案分析1. 引言1.1 燃煤与生物质气化耦合发电技术方案分析的意义燃煤与生物质气化耦合发电技术方案的意义在于将传统的煤炭发电和生物质能源利用结合起来,实现资源的综合利用和能源的多元化。
首先,这种技术可以有效减少传统燃煤发电所产生的大量二氧化碳等温室气体的排放,有利于减缓全球气候变化和改善空气质量。
其次,生物质气化可以有效解决生物质资源利用的难题,提升生物质能源的利用效率。
同时,燃煤与生物质气化耦合发电技术可以实现跨界合作,打破传统能源行业领域的壁垒,促进能源产业的协同发展。
此外,该技术还可以为我国能源结构调整和可持续发展提供重要支持,推动清洁能源产业的发展,促进经济转型升级。
综上所述,燃煤与生物质气化耦合发电技术方案的意义重大,具有重要的经济、环境和社会效益。
1.2 研究背景燃煤与生物质气化耦合发电技术方案分析的研究背景主要包括以下几个方面:二、环境污染问题:传统的燃煤发电存在着严重的污染问题,如二氧化硫、氮氧化物等排放量过大,导致大气污染严重。
而燃煤与生物质气化耦合发电技术能够减少污染物排放,保护环境,减少对大气的污染。
研究燃煤与生物质气化耦合发电技术方案分析的背景意义重大,不仅有利于推动能源转型,减少环境污染,还能促进能源可持续发展,具有重要的现实意义和发展前景。
1.3 研究目的本研究的目的在于对燃煤与生物质气化耦合发电技术方案进行深入分析,探讨其在能源发电领域的应用前景。
通过研究燃煤与生物质气化耦合发电技术的原理、优势、关键技术、应用案例以及未来发展趋势,旨在为相关领域的科研工作者、企业决策者和政府部门提供参考和借鉴。
具体而言,本研究旨在:1.分析燃煤与生物质气化耦合发电技术的工作原理,揭示其能源转化过程和效益特点;2.探讨燃煤与生物质气化耦合发电技术的优势所在,比较其与传统发电技术的差异和优势;3.总结燃煤与生物质气化耦合发电技术的关键技术要点,分析其在实际应用中的挑战和解决方案;5.探讨燃煤与生物质气化耦合发电技术的未来发展趋势,分析其在新能源领域的发展空间和潜力。
生物质-煤混合燃烧技术的进展研究
秸秆供应具有周期性, 每年集中在农作物收获的几 个月内。为了保证常年供电需存储大量秸秆, 这样 就需要大量的贮藏空间, 进一步增加了投资和运行 成本, 且存在着天气影响和火灾隐患等问题。因此, 与常规燃煤电厂相比, 生物质能发电存在着投资高、 成本高和效率低等缺点。
第 !" 卷 第 #! 期 ( !**+ 年 #! 月
水利电力机械 ,-./0 12)3/0$-)14 5 /6/1.071 82,/0 9-1:7)/04
$%&’ !"( )%’ #! ;<=’ !**+
(
生 物 质
>煤
混 合燃 烧 技 术 的 进 展 研 究
0<?<@A=B %C =%DEFAFCG %E HF%I@?? @CJ =%@& 田宜水, 赵立欣, 孟海波, 袁艳文 .7-) 4FD?BKF , L:-2 6FDMFC, 9/)N :@FDH%, 4O-) 4@CDP<C
收日期: !**+ > *W > #^
用材林约 ##W^* 万 R, 灌木林约 __^* 万 R, 疏林约 W!* 万 R 以及其他林业废弃物。
[ #, !] 由于农作物秸秆松散, 能量密度低 , 大规模
收集、 运输和贮存的费用较高。以秸秆为燃料的 生 物质发电厂规模受到原料收集半径的限制, 装机容 量通常为兆瓦级, 与煤电相比有较大差距, 因而发电
./ 引言
生物质是指通 过光合作 用而形 成的各 种有 机 体, 包括所有的动植物和微生物。生物质能是太 阳 能以化学能形式贮存在生物质中的能量形式, 直接 或间接地来源于绿色植物的光合作用, 可转化为常 规的固态、 液态和气态燃料, 具有可再生和环境友好 的双重属性。我国是世界上最大的农业国家, 具有 丰富的生物质资源。据估计, 目前我国农作物 秸秆 年产总量约 + 亿 R, 相当于 _ 亿 R 标煤, 预计到 !*#* 年会增至 " 亿 R, 相当于 _’ X ‘ V 亿 R 标煤, 年可提供 林业生物质约 ^ 亿 R, 其中可作能源用途的资源约 _ 亿 R: 林加工剩余物约 !***
生物质与煤混燃技术于现状
============================== ==========生物质与煤混燃技术与现状赵明世1081170426热能08042010-10-24============================= =========生物质与煤混燃1生物质利用意义及现状①意义生物质作为燃料时,由于生物质在生长时消耗的CO:量相当于它燃烧时排放的CO:量,因此CO:排放量近似为零。
生物质的硫含量极低,基本上无硫化物排放。
生物质作为替代能源,对改善环境、降低温室效应都有极大的好处。
我国目前有工业锅炉约50×104台,每年耗煤量约为全国产煤总量的1/3。
推广各种节能技术,提高工业锅炉热效率的工作已取得较大成绩,且是能源工业者继续努力的方向。
但从矿物能源资源有限和因大量使用会造成环境恶化的战略观点出发,结合我国拥有丰富生物质资源的现实,逐步发展工业锅炉生物质燃烧技术,对节约常规能源、优化我国能源结构,将有积极意义。
燃煤锅炉混燃生物质将是我国降低CO:排放、减轻环境污染的有效措施,而且与煤混燃的生物质所含的碱性氧化物有助于脱除煤燃烧产生的SO:。
②现状生物质资源是指以木质素或纤维素及其他有机质为主的陆生植物、水生植物及人畜禽粪便等。
我国有着丰富的生物质资源,据统计,全国秸秆年产量约5.7×108t/a,人畜粪便约3.8×108t/a,薪柴年产量(包括木材砍伐的废弃物)为1.7×108t/a,还有工业排放的大量有机废料、废渣,每年生物质资源总量折合成标准煤约3×108t/a。
我国一直以直接用生物质能为主,但利用效率极低,即使是目前农村已较普遍推广的省柴节煤灶,热效率也仅为20%左右。
近年来,在一些经济发达的城市周边地区,农民大量使用优质高效燃料,用于炊事、取暖,而将秸秆直接放在农田焚烧,不仅浪费了能源,还污染了环境。
我国生物质资源结构疏松,能量密度低,仅是标准煤的1/2,且不易储运。
生物质与煤混合燃烧发电技术研究进展
第4卷㊀第1期2023年8月新能源科技New Energy TechnologyVol.4,No.1August,2023㊀作者简介:闫亚龙(1977 ),男,陕西神木人,经济师,硕士;研究方向:可再生能源开发与利用㊂生物质与煤混合燃烧发电技术研究进展闫亚龙,刘欣玮(国能锦界能源有限责任公司,陕西神木719319)摘要:在碳达峰㊁碳中和的大背景下,生物质作为一种可再生清洁能源,具有巨大的减排潜力㊂文章简单总结了生物质的燃烧特性与处理方式,通过对生物质进行预处理可以提高其储运的可靠性,减少生物质混烧中出现的结渣腐蚀等问题㊂文章重点介绍了生物质混烧技术路线及发展现状,发现直接混合燃烧技术相较于间接混合燃烧和并联混合燃烧具有低成本㊁简单㊁高效的特点㊂关键词:生物质;预处理;直接混燃;间接混燃;并联混燃中图分类号:TQ534;TK6㊀㊀文献标志码:A0㊀引言㊀㊀全球变暖是人类面临的巨大威胁,如果全球气温上升2ħ,将导致一亿人死亡以及数百万种动植物物种灭绝[1]㊂为了减少CO 2的排放,向绿色和清洁可再生能源转型对于社会的可持续发展至关重要㊂在可再生能源中,风能㊁水能和太阳能等新能源具有随机性和间歇性的特点,这对电网的调峰能力提出了挑战[2]㊂而生物质能源具有储量丰富㊁来源全面㊁排放低的特点,是一种具有较高应用潜力的可再生资源㊂生物质的发电技术包括直燃发电㊁混燃发电和气化发电㊂与直燃发电和气化发电相比,混燃发电具有成本较低㊁建设周期短,受原料性质影响较小的优点㊂燃煤机组混燃生物质作为一种经济㊁高效㊁清洁的利用方式,在碳减排方面具有很大的潜力,仅需对现有燃煤机组进行适当改造,不仅可以降低CO 2的排放量,还可以提高锅炉侧燃料的灵活性㊂本文针对生物质的分类㊁燃烧特性㊁预处理方式㊁混合燃烧方式㊁发展现状及遇到的问题等进行了简单的总结㊂1㊀生物质分类及资源现状㊀㊀根据国际能源机构(IEA)的定义,生物质是指通过光合作用形成的各种有机体,包括所有的动植物和微生物以及这些生命体排泄的有机物质㊂生物质能来源于太阳能,是继煤炭㊁石油和天然气之后的第四大能源㊂生物质的种类繁多,包括农业废弃物㊁林业废弃物㊁畜禽粪便㊁生活垃圾㊁污水污泥㊁废弃油脂等㊂目前,我国生物质资源年产生量约为34.94亿t,但利用率不高㊂从图1中可以看出,在各类生物质中,禽畜粪便的资源量最高,其次是秸秆,但能源化利用率除生活垃圾外均不超过20%㊂图1㊀各类生物质2020年产量及利用率2㊀生物质和煤的燃烧特性㊀㊀燃料特性可由工业分析㊁元素分析㊁灰分分析和低位热值表示[3]㊂表1给出了几种典型的生物质及煤的燃烧特性,从表1中可以看出,生物质的挥发分普遍更高一点,当与煤混烧时,有助于提高燃料的反应活性和点火特性[4]㊂与煤相比,生物质的水分较多,灰分和固定碳较少㊂水分含量是影响燃料燃烧的另一个重要因素,当燃料水分过多时,会使得着火困难㊂从表2中可以看出,生物质的C 含量较低,而H㊁O 含量较多,导致其热值较低,这是因为与C =C 键断开时释放的能量相比,生物质中的C-H 键和C-O 键断开时释放的能量较小㊂此外,生物质中的O 含量较多,使其氧化的活化能较低,从而拥有更高的反应活性[5]㊂生物质中的S和N较少,使其燃烧后释放出来的污染物与燃煤相比较少,与煤混烧时,可以减少污染物的排放㊂燃料的烧结性越强,则越容易在锅炉中形成烧结性积灰,而燃料的烧结性主要与燃料中所含的碱性物质有关㊂从表3中可以看出,生物质的碱性物质较煤更多,这使其通常表现出更强的结渣和结垢的倾向㊂表1㊀某些生物质和煤的工业分析表2㊀某些生物质和煤的元素分析表3㊀某些生物质和煤的灰分分析3㊀生物质预处理3.1㊀浸出㊀㊀生物质中碱金属含量较高,容易导致结渣㊁腐蚀等问题,使得混烧生物质时降低电厂可靠性㊁增加维护成本和运营成本㊂硫和氯的存在会加速锅炉的腐蚀,同时增加污染物的排放㊂因此可以通过浸出来减少生物质燃料中这些成分的存在,以减轻燃烧过程中遇到的问题㊂3.2㊀烘焙㊀㊀生物质和煤在化学性质和物理性质上都存在差异,生物质的水分较高,能量密度较低,再加上混合特性差,使得生物质和煤的混烧存在问题㊂而烘焙可以通过热处理使得生物质拥有与煤较为接近的物理性质㊂(1)烘焙可以去除生物质中的水分,提高了生物质的热值并能够使其形成外观类似煤的产物;(2)烘焙可以使生物质具有良好的疏水特性,提高其抗生物降解的能力[7],大大优化了燃料的储存特性,使其能够长时间稳定储存;(3)烘焙可以破坏生物质的木质纤维素结构,改善了生物质的可磨性和流动性,提高燃烧效率,同时有利于煤和生物质的均匀混合㊂3.3㊀生物质成型燃料㊀㊀生物质作为燃料与传统化石燃料相比最大的问题是能量密度低,给生物质的收集㊁运输㊁储存㊁预处理和给送等带来困难,限制了生物质的大规模应用㊂而生物质成型可以很好地解决这一问题,生物质成型工艺包括干燥㊁研磨和压缩㊂经过生物质成型后可以大大提高燃料的能量密度㊂单位能量所需体积减小可以大大降低运输和存储的成本,且成型后的生物质含水量下降,具有较高的低位发热量㊂4 生物质混燃发电4.1㊀混合燃烧方式4.1.1㊀直接混合燃烧生物质与煤直接混合燃烧是最常用的技术,就是把预处理过的生物质和煤直接混合送入锅炉进行燃烧,与其他燃烧方式相比,直接混合的投资成本最低㊂直接混合燃烧根据耦合位置可以分为4种类型,如图2所示㊂(1)制粉处混合:生物质和煤混合后送入磨煤机,磨制完成后分配到燃烧器㊂(2)给料混合:生物质由单独的磨机粉碎,通过输送管道与煤粉混合后送入燃烧器㊂(3)燃烧器内混合:生物质燃料也是由单独的磨机粉碎,但与煤粉在燃烧器中混合㊂(4)炉内混合:生物质由单独的磨机粉碎后送入专门的燃烧器燃烧,生物质的磨制与燃烧是独立的㊂图2㊀直接混合燃烧4.1.2㊀间接混合燃烧间接混合燃烧是先将生物质气化,再将产生的生物质燃气输送到锅炉[8],把燃气作为一种再燃燃料,可以减少氮氧化物的排放[9]㊂气化产物主要包括CO㊁CO2㊁CH4㊁H2O㊁H2㊁N2和一些轻烃㊂气化产物的热值与燃料的含水量有关,水分较高时会降低气化产物中可燃气的比例㊂4.1.3㊀并联混合燃烧并联混合燃烧采用了完全分离的生物质燃烧系统,生物质和碳分别在独立的锅炉中燃烧,再将产生的蒸汽输送到发电机组耦合发电㊂并联混合燃烧设计了一个独立燃烧生物质的锅炉,优化了燃烧过程,使结渣和腐蚀等问题大大减轻,为大比例掺烧生物质提供了更多的可能性,降低了操作风险,可靠性更高,但资金投入也大大增加㊂4.2㊀混合燃烧技术㊀㊀大多数生物质混燃项目都是利用现有的燃煤电厂改造以适应生物质燃料与煤的混合燃烧㊂由图3可知,燃烧技术一般分为固定床㊁流化床和悬浮燃烧㊂不同燃烧技术的特点如表4所示㊂煤粉锅炉采用悬浮燃烧技术,对燃料的要求较高㊂因为颗粒尺寸小,燃料气化和固定碳燃烧同时发图3㊀燃烧技术分类生,因此,可以实现负载快速变化和高效控制㊂通过适当的分阶段配风可以实现低过量空气系数和低NO X排放量㊂同时,与流化床或炉排炉相比,煤粉锅炉受结渣㊁结垢和腐蚀的影响较小㊂流化床燃烧技术可分为鼓泡流化床和循环流化床㊂由于混合良好,流化床能灵活处理不同的混合燃料,实现了燃料多样化,增加了现有发电厂的燃料范围,但对燃料颗粒尺寸有一定要求㊂炉排炉属于固定床的一种,适用于含水量高㊁灰分含量高和燃料尺寸变化大的生物质㊂由于过量空气系数高,炉排炉的热效率较低,限制了该燃烧技术的广泛应用㊂目前,炉排炉较多地应用于间接混合燃烧和并联混合燃烧中㊂表4㊀炉排炉、流化床和煤粉锅炉燃烧特点5㊀生物质混合燃烧发展现状㊀㊀目前,商用的生物质混合燃烧技术以直接混合燃烧和间接混合燃烧为主㊂生物质混合燃烧发电在欧美国家应用较广,约2/3的大型生物质混烧电厂坐落于欧洲,尤其是北欧和西欧㊂在欧洲,英国大部分燃煤电厂均采用了生物质混合燃烧,总装机容量达到25366MW㊂英国燃煤电厂中采用了多种生物质原料,包括农业剩余物㊁能源作物和林业剩余物㊂英国部分燃煤电厂如表5所示,其中部分已停产㊂最典型的是英国最大的燃煤电厂Drax,该电厂装有6台660MW 燃煤机组㊂表5㊀英国生物质混烧电厂㊀㊀德国最常用的燃料是污水污泥,50%的混燃电厂都使用污水污泥,以3%混燃比混烧,可以不对电厂做出大的改造㊂相较于其他生物质资源,污水污泥全年可得且通常为负成本,同时,秸秆和废木屑也是主要的生物质燃料㊂表6列举了德国一些混燃污水污泥的电厂㊂从表6中可以看出,德国生物质混烧电厂以煤粉炉为主,少数使用流化床㊂表6㊀德国生物质混烧电厂㊀㊀在北美,美国和加拿大是生物质混烧发电的主要应用国家㊂对于美国和加拿大而言,大规模进行生物质混合燃烧的问题在于充足的生物质来源㊁生物质的运输和储存㊂截至2010年,美国560家燃煤电厂中有40家正在使用生物质混烧技术,并在持续增加中[10]㊂所有的生物质混烧电厂都采用直接混合燃烧的方式,大多数为煤粉锅炉㊂美国近50%的生物质混烧工厂采用的原料是木制品,如木屑和木材废料㊂表7列举了美国部分生物质混烧电厂㊂表7㊀美国生物质混烧电厂㊀㊀在亚洲,中国㊁日本和韩国等国家也开始采用生物质混燃技术㊂在这些地方,生物质混烧的主要原料是木质颗粒㊂2013年,日本有24台燃煤机组开始混烧生物质试验或已投入运行,到2017年,约有29个大型燃煤煤机组混烧生物质㊂国内的生物质混合燃烧发电技术起步较晚,也是以间接混燃和直接混燃为主㊂国内生物质混烧电厂,如表8所示㊂2005年,国内首个生物质混烧电厂华电十里泉发电厂建成,引进丹麦BWE公司的秸秆发电技术,生物质发电容量26.0MW[12]㊂2010年国电宝鸡第二发电有限责任公司在300MW燃煤机组上进行生物质预处理成型与煤小比例混燃的试验,但由于运行期间亏损严重,目前已停运[13]㊂2012年,国电长源荆门电厂采用生物质间接混烧技术将640MW煤电机组改造为燃煤耦合生物质发电项目,是间接混燃技术在我国大型燃煤电厂的首次成功应用[12]㊂大唐长山热电厂是目前国内投运的容量最大的生物质混燃发电机组,采用CFB微正压空气气化后送入660 MW超临界锅炉燃烧[14]㊂华电襄阳发电厂6号机组是国内首个以秸秆为主要原料的生物质间接混燃发电机组,于2018年投产㊂表8㊀国内生物质混烧电厂[11]6㊀生物质混合燃烧存在的问题及解决方法6.1㊀结渣、腐蚀和积灰㊀㊀生物质中灰分的形成过程与煤粉燃烧相似[15],在生物质颗粒燃烧和焦炭颗粒形成过程中,挥发性有机金属化合物首先析出,再进行脱挥发分,最后部分碱金属和碱土金属以及挥发性微量元素扩散出来㊂随着气体温度的降低,挥发性组分成核并冷凝形成亚微米颗粒㊂高浓度K和Na通过成核㊁冷凝和反应会导致各种严重的灰相关问题,如碱诱导结渣㊁硅酸盐熔体诱导结渣和团聚㊂KCl被认为是整个燃烧过程中最稳定的气相含碱金属物质,也是影响生物质结渣的主要物质[16]㊂在燃烧过程中,烟气中的Cl2㊁HCl㊁NaCl㊁KCl等物质在高温下会破坏金属的氧化层加速金属的氧化而导致直接腐蚀,或者形成熔融状碱盐对过热器造成腐蚀,而在低温下当受热面的壁温低于酸露点时,会凝结成酸液对金属发生腐蚀作用㊂可以采用优质合金或者抗腐蚀涂层来减少腐蚀㊂对于生物质混烧过程中的结渣㊁腐蚀和积灰等问题,存在多种对策,包括使用添加剂和浸出等方法㊂浸出直接从来源中去除K,使用添加剂旨在改变灰分成分,并进一步减少挥发性碱物质的存在㊂石灰㊁方解石㊁高岭土和长石等矿物被用作添加剂,有望改善生物质燃烧过程中与灰有关的问题㊂当与燃料混合或添加到燃烧系统中时,这些添加剂可以:(1)通过改变或稀释灰中的耐火元素来提高灰的熔化温度;(2)与低熔点化合物结合并将其转化为高熔点化合物;(3)通过物理吸附降低燃烧系统中有问题的灰种浓度[17]㊂浸出是一种有效的预处理手段,可以去除生物质中的无机物质,特别是碱金属㊁硫和氯减少结渣积灰等问题㊂浸出可分为水浸出㊁醋酸浸出和酸浸出㊂约100%的Cl和90%的碱金属可溶于水,因此,人们对水浸出的研究非常关注㊂6.2㊀污染物排放6.2.1㊀SO X排放混燃生物质可以降低SO X排放量主要是因为生物质中的S含量较低,如农林废弃物的平均含硫量仅为0.38%,低于煤的平均含硫量1%[20]㊂此外,生物质中碱金属含量较高,与烟气中SO2反应生成硫酸盐起到固硫作用,也会减少SO X的排放量㊂目前,电厂中应用最广泛的脱硫技术是石灰石/石膏湿法脱硫(FGD),但当生物质中的氯含量较高时,产生的HCl 可能会影响FGD的脱硫效率㊂6.2.2㊀NO X排放生物质混烧可以降低电厂中NO X的排放量㊂首先,生物质中N含量较低,使得燃料型NO X减少㊂其次,生物质的热值较煤炭低,混烧生物质时炉膛温度降低,可以减少热力型NO X的生成量㊂最后,生物质燃烧的中间产物是NH3,其向NO X的转化率较低[18]㊂通过燃料分级㊁烟气再循环和炉内空气分级等可以有效控制NO X的排放㊂在此基础上,使用选择性催化还原脱硝技术(SCR)可以进一步降低排放量,实现超低排放㊂但在使用SCR时,过低的烟温以及生物质灰中的无机挥发物可能会导致催化剂失活[19]㊂使用碱金属含量较低的生物质以及选择合适的共燃比可减少这一问题㊂6.2.3㊀烟尘排放烟尘排放主要来源于燃料中的灰分,生物质中的灰分含量较低,所以混烧生物质时通常会降低烟尘的排放,但生物质高挥发分和碱金属含量的特点使烟气中存在大量亚微米级悬浮颗粒㊂采用静电除尘器难以将其完全去除,需加装袋式除尘器,但要防止微细气溶胶堵塞布袋㊂同时,由于生物质热值较低,混烧后产生的烟气量较大,选择除尘技术时要考虑到这一点㊂7 结语㊀㊀在 双碳 压力下我国面临着能源转型,燃煤电厂混烧生物质发电技术可有效减少CO2排放量,是实现低碳发展最为经济有效的方法,在世界各地得到了广泛应用㊂(1)通过对生物质和煤燃烧特性的分析可发现,生物质的挥发分较高,C㊁N㊁S含量较少,燃煤电厂混烧生物质可以提高燃料的反应活性,不仅实现大幅度CO2减排,还减少了SO X㊁NO X和烟尘等污染物的排放㊂(2)通过浸出㊁烘焙㊁生物质成型燃料等与处理方式可以提高生物质燃料的能量密度,解决生物质燃料在储存㊁运输方面存在的问题㊂(3)通过对国内外生物质混烧发展现状的总结可以发现,直接混合燃烧仅需对目前的火电厂进行改造,投资成本较低,是目前的主流技术路线,且生物质混烧电厂向大容量机组发展㊂我国的生物质混烧技术与欧美国家存在差距,电厂发电机组容量较小,生物质混烧项目的建设和运营还需要国家政策补贴㊂(4)对于生物质混烧中出现的结渣㊁腐蚀和积灰等问题可以通过生物质预处理及使用添加剂来解决㊂[参考文献][1]RICHARDSON Y,BLIN J,JULBE A.A short overview on purification and conditioning of syngas produced by biomass gasification:catalytic strategies,process intensification and new concepts[J].Progress in Energy and Combustion Science,2012(6):765-781. [2]XUHUI Z,XINGSEN Y,GANG X I N.Experimental study on deep peaking operation of coal-fired thermal power unit[J].Clean Coal Technology,2011(4):144 -150.[3]SAMI M,ANNAMALAI K,WOOLDRIDGE M.Co-firing of coal and biomass fuel blends[J].Progress in Energy and Combustion Science,2001(2):171-214.[4]GANI A,MORISHITA K,NISHIKAWA K,et al. Characteristics of co-combustion of low-rank coal with biomass[J].Energy&Fuels,2005(4):1652-1659.[5]AL-MANSOUR F,ZUWALA J.An evaluation of biomass co-firing in Europe[J].Biomass and Bioenergy, 2010(5):620-629.[6]DEMIRBAS A.Sustainable cofiring of biomass with coal[J].Energy Conversion and Management,2003(9): 1465-1479.[7]TRIFONOVA R,BABINI V,POSTMA J,et al. Colonization of torrefied grass fibers by plant-beneficial microorganisms[J].Applied Soil Ecology,2009(1):98 -106.[8]PANG S.Advances in thermochemical conversion of woody biomass to energy,fuels and chemicals[J]. Biotechnology Advances,2019(4):589-597. [9]PIOTR H,JANUSZ L,KATARZYNA M.Biomass gasification and Polish coal-fired boilers for process of reburning in small boilers[J].Journal of Central South University,2013(6):1623-1630.[10]MULLINS K A,VENKATESH A,NAGENGAST A L,et al.Regional allocation of biomass to US energy demands under a portfolio of policy scenarios[J]. Environmental Science&Technology,2014(5):2561 -2568.[11]井新经,陈运,张海龙,等.生物质耦合发电技术及发电量计算方法[J].热力发电,2019(12):31-37.[12]杨希刚,王双童.大容量燃煤机组生物质能利用技术探析[J].神华科技,2018(6):87-90.[13]王学斌,谭厚章,陈二强,等.300MW燃煤机组混燃秸秆成型燃料的试验研究[J].中国电机工程学报, 2010(14):1-6.[14]马务,盛昌栋.基于循环流化床气化的间接耦合生物质发电技术应用现状[J].热力发电,2019(4):1 -7.[15]JIA Y,LIGHTY J A S.Ash particulate formation from pulverized coal under oxy-fuel combustion conditions[J].Environmental Science&Technology, 2012(9):5214-5221.[16]GARBA M U,INGHAM D B,MA L,et al. Prediction of potassium chloride sulfation and its effect on deposition in biomass-fired boilers[J].Energy& Fuels,2012(11):6501-6508.[17]REBBLING A,SUNDBERG P,FAGERSTRO㊆M J, et al.Demonstrating fuel design to reduce particulate emissions and control slagging in industrial-scale grate combustion of woody biomass[J].Energy&Fuels,2020 (2):2574-2583.[18]TILLMAN D A.Biomass cofiring:the technology,the experience,the combustion consequences[J].Biomass and Bioenergy,2000(6):365-384.[19]STREGE J R,ZYGARLICKE C J,FOLKEDAHL B C,et al.SCR deactivation in a full-scale cofired utility boiler[J].Fuel,2008(7):1341-1347.[20]于春燕,孟军.基于AHP和模糊评判的生物质秸秆发电的效益评价[J].中国农学通报,2010(4):323 -327.(编辑㊀姚鑫)Research progress of biomass and coal co-combustionpower generation technologyYan Yalong,Liu Xinwei(Guoneng Jinjie Energy Co.,Ltd.,Shenmu719319,China)Abstract:Under the background of carbon peak and carbon neutralization,biomass,as a renewable clean energy,has great potential for emission reduction.In this paper,the combustion characteristics and treatment methods of biomass are briefly summarized.Pretreatment of biomass can improve the reliability of its storage and transportation,and reduce the slagging and corrosion problems in biomass co-combustion.The technical route and development status of biomass co-combustion are mainly introduced.It is found that direct co-combustion technology has the characteristics of low cost,simplicity and high efficiency compared with indirect co-combustion and parallel co-combustion.Key words:biomass;pretreatment;direct mixed combustion;indirect mixed combustion;parallel mixed combustion。
燃煤耦合生物质发电方案(四)
燃煤耦合生物质发电方案燃煤耦合生物质发电方案是一种通过将生物质与燃煤混烧的方式,利用生物质的可再生特性,减少煤炭的使用量,降低碳排放的发电方案。
本文将从产业结构改革的角度,详细介绍该方案的实施背景、工作原理、实施计划步骤、适用范围、创新要点、预期效果、达到收益、优缺点以及下一步需要改进的地方。
一、实施背景随着全球气候变化问题的日益突出,减少碳排放已成为各国努力的方向。
而燃煤发电作为传统的能源发电方式,其碳排放量较高,已经成为环境保护的重要难题。
因此,燃煤耦合生物质发电方案应运而生。
该方案通过将生物质作为可再生能源与燃煤混烧,既能减少煤炭的使用量,又能降低碳排放,实现了绿色发电的目标。
二、工作原理燃煤耦合生物质发电方案的工作原理是将生物质与燃煤混合后,一起投入到发电锅炉中进行燃烧。
生物质的燃烧过程中释放的热量能够提供蒸汽,驱动汽轮机发电。
而燃煤的燃烧过程中释放的热量则能够提高锅炉的燃烧效率,减少煤炭的使用量。
通过合理的混烧比例控制,可以实现燃煤与生物质的协同发电,达到节能减排的目的。
三、实施计划步骤1. 确定生物质供应链:选择可持续供应的生物质来源,建立稳定的供应链。
2. 进行燃烧试验:通过实验确定生物质与燃煤的最佳混烧比例,以及最适宜的燃烧温度和压力。
3. 设计改造方案:根据试验结果,对现有的燃煤发电设备进行改造,以适应生物质的混烧。
4. 实施改造:按照设计方案进行设备改造,确保生物质与燃煤的混烧能够顺利进行。
5. 运行监测与优化:对改造后的设备进行运行监测,及时发现问题并进行优化调整。
四、适用范围燃煤耦合生物质发电方案适用于燃煤发电厂,特别是那些有稳定的生物质供应链的地区。
同时,该方案还适用于一些已经建成的燃煤发电厂,通过改造设备,实现燃煤与生物质的混烧。
五、创新要点1. 生物质供应链的建立:通过建立可持续供应的生物质来源,确保生物质的稳定供应。
2. 混烧比例的优化:通过试验确定最佳的混烧比例,以实现燃煤与生物质的协同发电。
生物质结渣的原理和控制方法与煤混烧
生物质结渣的原理和控制方法与煤混烧1.原理介绍:生物质燃烧产生的结渣主要成分是高温下生物质中的灰分和未燃尽的有机物质,与煤混烧时也会受到煤灰的影响。
控制生物质结渣的方法主要包括物料选择、燃烧方式优化和燃烧条件调控等。
2.物料选择:生物质的结渣主要受到原料质量和成分影响,因此选择低灰分、低含硫、低磷的生物质原料可以有效降低结渣问题。
此外,合理控制原料的含水率也很重要,过高的含水率会导致燃烧不完全,形成较多的结渣。
3.燃烧方式优化:为了降低生物质结渣,可以采用优化的燃烧方式。
例如,控制燃烧温度和燃料供应速率,使燃烧过程稳定,避免出现过高的燃烧温度和过多的未燃物质。
同时,在供气系统中添加混合气体,如蒸汽或燃烧气体,可以提高燃烧温度和延长停留时间,有利于结渣物的燃烧和转化。
4.燃烧条件调控:在生物质燃烧过程中,通过调控燃烧条件也可以减少结渣。
首先是氧气浓度的控制,适当增加氧气浓度可以提高燃烧效率,减少未燃物质的生成。
其次是风速和空气分配的调节,适当增加风速和均匀分配空气可以改善燃烧区域的气流状况,加快结渣物的氧化和燃烧。
此外,合理控制燃烧室的温度分布,避免温度过低区域的结渣,也是一个重要的控制手段。
5.煤混烧方式:煤混烧是指在燃烧过程中掺入一定比例的煤作为辅助燃料。
煤的燃烧特性不同于生物质,将煤与生物质混烧可以通过改善燃烧特性来控制结渣问题。
煤与生物质混烧时可以降低生物质结渣的温度,煤的灰分可以与生物质灰分发生反应,形成低熔点的物质,减少结渣的生成。
此外,煤还可以提供更多的热量,促进生物质的燃烧,减少未燃物质的生成。
总之,生物质结渣的问题可以通过优化物料选择、燃烧方式、燃烧条件和与煤混烧等控制方法来解决。
这些方法可以降低结渣物的生成,改善燃烧效率,减少环境污染,并提高能源利用效率。
生物质与煤混燃过程中的腐蚀及其防治措施
质掺 混 比例 较 高 时 , 腐蚀 主要 由 KC 引起 , 可 穿透 金 属表 面 的保 护 性 氧化 膜 , 速 腐 1 氯 加
蚀 。通 过 对 生物质 与煤 混燃 腐蚀 机 理 的综 合 分析 , 出 了相 应 的 防治措 施 : 1 加 入 添 提 ()
son m e h nim s sm ia O t tof bu ni g c a , he c r s o s m a nl a s d by s lurz ton a i c a s i i l r t ha r n o l t or o i n i i y c u e u f ia i nd
WI TH CoAL AND PREVENTI VE EAS M URES TH EREoF
YU E a z n, A NG M o he W Yon z ng, A N uf n TI N l LU g he BI S a g, A Su e, Che n
Co lg fEn ry a d P we gn ei g, h n o g U nv r i Jn n 2 0 6 S n o g Pr vn e PRC le eo eg n o rEn ie rn S a d n ie st ia 5 0 1, ha d n o ic , y,
ox d ton i a e o r ori a i o s s hi r, he c r oso s m anl a e y KCl a i a i n c s f p op ton r to ofbi ma s i ghe t o r i n i i y c us d b , nd t h orne m a n t a e t e ox de p ot c i im , O a c l r t he s i o r son he c l i y pe e r t h i r e tve fl t c ee a e t a d c r o i .Thr g o p e ou h c m r —
燃煤与生物质气化耦合发电技术方案分析
燃煤与生物质气化耦合发电技术方案分析燃煤与生物质气化耦合发电技术是一种将燃煤和生物质气化两种能源结合起来发电的技术方案。
燃煤发电是目前世界主要的发电方式之一,其优点是资源丰富、成本较低。
燃煤发电也存在环境问题,如大气污染和温室气体排放等。
而生物质是一种可再生能源,可以在生物质燃烧过程中减少二氧化碳的排放,对环境友好。
将燃煤与生物质气化耦合发电技术方案应运而生,被广泛应用于能源转换领域。
燃煤与生物质气化耦合发电技术的核心是将煤和生物质进行气化反应,产生气化气体,再利用该气体进行燃烧发电。
具体步骤如下:煤和生物质经过粉碎处理后,通过气化炉进行气化反应。
气化炉是一个高温环境,使煤和生物质中的有机物质发生热解反应,生成气化气体。
气化气体中主要包含一氧化碳、氢气、甲烷等可燃物质,以及一些杂质物质。
气化反应需要在高温和适当的气氛条件下进行,因此气化炉内的温度和气氛控制非常重要。
然后,将产生的气化气体送入锅炉进行燃烧发电。
气化气体经过处理后,除去其中的杂质,使其达到燃烧要求。
然后,将气化气体与空气充分混合,形成燃烧混合气体。
该混合气体进入锅炉燃烧室,在高温和高压下燃烧,产生高温、高压的蒸汽。
蒸汽进一步驱动汽轮机发电。
燃烧后的气体经过烟气净化,除去其中的颗粒物、硫化物、氮氧化物等有害物质,保证排放达到环保要求。
然后,该气体经过余热回收装置,将烟气中的热量回收利用,提高能源利用效率。
1. 综合利用能源资源:将煤和生物质结合使用,充分利用两者的优点。
煤是一种能源丰富的化石燃料,生物质是可再生能源,二者耦合可以提高能源利用效率。
2. 环境友好:通过生物质气化,可以减少燃煤发电过程中的二氧化碳排放,减轻对大气环境的污染。
生物质气化过程中所产生的气体可以作为燃烧炉的燃料,减少了煤的使用量,进一步减少了温室气体的排放。
3. 能源转化效率高:燃煤与生物质气化耦合发电技术可以提高能源转化效率。
在气化过程中,煤和生物质中的有机物质可以完全利用,减少了能源的浪费。
煤与生物质混烧锅炉大致炉膛温度
煤与生物质混烧锅炉大致炉膛温度下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!引言:煤与生物质混烧锅炉是一种利用煤和生物质作为燃料混合燃烧的锅炉,具有高效节能的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水电0902 许鑫学号:1091420231
1 生物质混燃的定义
生物质混燃技术是指用生物质燃料和化石燃料(多数是煤)共同作为锅炉燃
料的应用技术。
最初,生物质混燃技术主要应用于有大量生物质副产品的企业,如造纸厂、木材加工厂、糖厂等,使用生物质替代部分化石燃料,其产生的热量和电量可以自用,也可以输出到电网,经济性较好。
随着技术的日渐成熟,生物质混燃技术已经越来越多地用于大型高效的电厂锅炉。
生物质混燃的方式有:
燃前混台法事先把生物质与煤按比例进行混合,再投入锅炉燃烧。
直接混燃法不经过与煤混合,生物质与煤通过各自的入口直接进入锅炉,在锅炉内与煤混燃。
问接混燃法先把生物质气化为清洁的可燃气体,再通入燃煤炉。
用这种方法可燃用难于粉碎的或杂质含量高的生物质,大大扩大了混燃的范围。
并行燃烧生物质直燃锅炉和化石燃料锅炉同时使用。
2 生物质混燃发电的发展现状
很多国家已经有了生物质混燃技术的开发经验。
根据国际能源机构2006年发布的研究报告,全球有154个生物质混燃发电项目,生物质混燃应用领先的国家有美国、德国、荷兰、英国、瑞典、澳大利亚和荷兰等。
大部分混燃案例采用的是直接混燃技术,也有一些间接混燃、并行燃烧的案例。
国际经验显示,多数电厂开始时仅安装一些非常基础的设施,大部分配套设施采用临时装置以进行试验性的混燃发电。
只有在确信政府对生物质混燃发电的支持以及保证了混燃生物质原料的稳定供应和项目的经济性后,电厂才可能对运输、储存及处理等配套设施进行长期的投资。
2006年以来,我国的生物质发电项目取得了巨大进展,但多数项目是生物
质直燃项目。
生物质混燃项目非常少,目前仅有山东枣庄的华电国际十里泉电厂、以及上海协鑫(集团)控股有限公司下属的7个热电厂实施了生物质混燃发电。
国际和国内的经验均表明,生物质混燃发电在技术上是可性的,与生物质直燃发电相比,发电具有投资小、建设周期对原料价格控制能力强、技单等优势。
当生物质燃料的小于20%时,只须增加生燃料处理和上料系统,无须对锅炉系统做大的调整,简单易行。
生物质混燃发电技术难度大于直燃发电,国内完全有能力自主研发。
通过对现有小型燃厂改造的方式进行生物质还可以盘活部分固定资产、减少失业人数、稳定社会,其社益不可低估。
3 生物质混燃项目设计时要注意的问题
生物质混燃的原料来源广泛,包括木材(木屑,木材等),能源作物,林业和农业废弃物以及其他废弃物(如棕榈壳和橄榄块)。
在我国,农作物秸秆的产量大、资源稳定,是未来用于生物质混燃发电的主要来源,包括稻谷、小麦、玉米、豆类、薯类、棉花及油料等作物的秸秆。
林业废弃物主要是修枝、间伐、采伐和木材加工过程中的剩余物,来源渠道多样,但都与采伐有关,要充分考虑到森林的生长和保护的需要,否则会带来严重的生问题。
这些生物质能资源的特性不尽相同,与煤的特性也有较大的差异。
在设计生物质能混燃发电项目时要注意以下几个方面的特性:
可粉碎性在传统的燃煤电厂,燃料通常先粉碎成粉状,以便于其快速、稳定、完全燃烧,因此需要保证混燃生物质的可粉碎性。
热值不同生物质原料的热值不同,生物质的热值低于煤。
含水量与热值相似,不同生物质原料自然状态下的含水量也不同,生物质的含水量均高于煤。
密度总体上说,生物质的密度约为煤密度的1/5,体积的增加量对燃烧控制和燃料储存提出了挑战。
挥发分木质生物质中挥发分的含量远远高于煤。
生物质的挥发分为60%-70%,动力煤为20%-35%。
灰分生物质的灰分为2%-5%,煤为10%-20%。
灰熔点生物质的灰熔点为800-1000℃;煤为1100-1400℃。
钾含量生物质的钾含量远高于煤,生物质为0.6%-2.0%,煤为0.05%-0.1%。
一致性不同生物质的性质差异很大,重要的是使性质相近的生物质一同燃烧。
这也是欧洲进口用于混燃的生物质燃料的主要原因:为了获得大量相似性质的燃料。
4 现有的激励政策
4.1 国际经验
在多数国家,生物质混燃项目与生物质直燃项目一样享有政府对生物质能利用的激励政策,这些激励政策包括财税优惠政策、固定电价制度、绿色证书制度等等,同时也可以通过自愿性碳市场进行融资。
多数国家通过一系列的报表、检测和监督体系,核实、核准生物质混燃发电项目中生物质能产生的能量,并对该部分能量实施优惠政策。
清洁发展机制是目前提升可再生能源项目经济性的重要手段,已有大批的风电、小水电和生物质直燃发电项目通过清洁发展机制获得了额外的收益。
但是,目前尚未开发出针对生物质混燃发电项目的方法学,也就没有生物质混燃发电项目通过清洁发展机制理事会的审批。
但是从理论上说,清洁发展机制支持生物质混燃项目的实施,生物质混燃发电清洁发展机制项目的实施只是一个时间问题。
4.2 我国现有的政策
目前,在可再生能源中,我国只对生物质能直燃发电实施了固定补贴电价的激励政策,在当地燃煤标杆电价的基础上国家给予0.25元/kWh的补贴。
固定补贴电价政策的实施对促进生物质能发电起到了积极的促进作用,2006年和2007年全国掀起了生物质能发电项目的建设高潮,从2006年12月我国第一个生物质直燃发电项目投产,到2007年11月,由各级发展和改革委员会核准的项目达81处,建成并投产的农林剩余物发电项目达到17处,总装机容量达40万kW。
但是,按照现行的政策要求,生物质混燃项目尚无法享受此项激励政策。
按照《可再生能源发电价格和费用分摊管理试行办法》的规定,“发电消耗热量中常规能源超过20%的混燃发电项目,视同常规能源发电项目,执行当地燃煤电厂的标杆电价,不享受补贴电价。
”也就是说,生物质在燃料中的比例必须大干80%,才可认定为生物质发电项目,并享受生物质发电项目固定电价补贴的优惠政策。
而生物质混燃项目中生物质的比例通常为20%以下,就无法享受电价补贴的政策。
虽然在2007年初发布的“发改价格[200]44号”文件《可再生能源电价附加收入调配暂行办法》中规定“对掺烧其他燃料的生物质能发电企业,省级电同企业按国务院价格主管部门核准的上网电价和上网电量与电网企业结算电费。
”但是核准的标准和程序没有同时发布,所以目前尚未有生物质混燃企业获得电价补贴。
5 意见和建议
5.1 做好生物质利用项目的规划
生物质原料的利用途径有很多,还田、饲料、造纸、生物质直燃发电、生物质混燃发电等等,为了避免重复建设、盲目建设和各种利用方式对原料无序竞争的现象产生,应对生物质资源的利用作出规划,统筹考虑生物质资源的利用,使生物质资源的价值最大化。
5.2 确保对生物质混燃的财政支持以增强其经济性
研究显示,如果生物质混燃发电得到与生物质直燃发电相同的优惠电价(当地燃煤标杆电价+0.25元/kwh),生物质混燃发电可以在市场条件下运作,企业
可以获得一定的利润,在经济上是可行的。
如果生物质混燃发电能够得到国家税收方面的优惠,将有效地提升项目的抗风险能力。
但目前生物质原料价格的变化较大,一旦有大幅度的上涨,企业的经济效益很容易
受到影响。
5.3 开发检测和核实体系,对生物质混燃发电中来自生物质的电量进行准确的测定
缺乏各方可以信赖的生物质混燃项目生物质发电量的检测和核实体系,是政府没有出台生物质混燃激励政策的主要原因,也是CDM项目方法学中要解决的关键问题之一。
尽快研究开发检测和核实体系,保证享受优惠电价的生物质电量的准确性,是促进生物质混燃发电技术在我国应用的最迫切的工作。
5.4 建立健全生物质原料供应链,以确保生物质的持续供应
运行良好的生物质原料供应链是生物质直燃发电项目和生物质混燃发电项
目的基础和保障。
各级政府和生物质发电项目开发商应支持建立当地的生物质原料供应链,承担生物质原料的收集、存储和运输,在保证生物质原料的持续供应的同时,也为当地政府和农户创造一定的就业机会和收入。
5.5 项目建设前要做好资源调查工作
生物质资源的收集半径和收集价格对生物质发电的成本有很大的影响,因此,生物质发电项目投资商在电厂投资建设前,必须对周边的生物质资源可获得性进行详细调研,以保证在一定收集范围内有充足的生物质资源,否则原料的价格将难以得到保证。
6 结论
(1)国际和国内的经验均表明,生物质混燃发电在技术上是可行的,与生物质直燃发电相比,混燃发电具有投资小、建设周期短、对原料价格控制能力强等优势。
(2)我国有丰富的生物质资源,生物质混燃发电的发展潜力大。
(3)生物质混燃发电项目的开发尚处于发展初期,在生物质资源供应、技术和经济性等方面都存在着一定的风险和障碍,亟需国家出台针对生物质混燃发电项目的稳定明确的激励政策和措施,推动生物质混燃项目的发展。
(4)应尽快研究开发混燃发电的生物质电量的检测和核实体系,完善监管机制。