最新初中数学中考测试题库(标准答案)

合集下载

初中数学(初升高)中考全国真题题库3(含解析)

初中数学(初升高)中考全国真题题库3(含解析)

初中数学初升高(中考)全国真题题库3(含解析)一、选择题1.(2023·大庆)端午节是我国传统节日,端午节前夕,某商家出售粽子的标价比成本高25%,当粽子降价出售时,为了不亏本,降价幅度最多为( )A.20%B.25%C.75%D.80% 2.(2023·大庆)下列说法正确的是( )A.一个函数是一次函数就一定是正比例函数B.有一组对角相等的四边形一定是平行四边形C.两条直角边对应相等的两个直角三角形一定全等D.一组数据的方差一定大于标准差3.(2023·大庆)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )A.B.C.D.4.(2021·河池)如图是由几个小正方体组成的几何体,它的左视图是( )A.B.C.D.5.(2021·河池)下列各式中,与 2a2b 为同类项的是( )A.−2a2b B.−2ab C.2a b2D.2a2 6.(2021·河池)二次函数 y=a x2+bx+c(a≠0) 的图象如图所示,下列说法中,错误的是( )A.对称轴是直线 x=12B.当−1<x<2 时, y<0C.a+c=b D.a+b>−c7.(2021·河池)下列图形中,既是轴对称图形又是中心对称图形的是( ) A.B.C.D.8.(2020·攀枝花)下列式子中正确的是( ).A.a2−a3=a5B.(−a)−1=a C.(−3a)2=3a2D.a3+2a3=3a3 9.(2020·攀枝花)中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒名为2019−nCoV .该病毒的直径在0.00000008米-0.000000012米,将0.000000012用科学记数法表示为 a×10n 的形式,则 n 为( ).A.-8B.-7C.7D.8 10.(2020·徐州)3的相反数是( ).A.-3B.3C.−13D.1311.(2020·攀枝花)若关于 x 的方程 x2−x−m=0 没有实数根,则m的值可以为( ).A.-1B.−14C.0D.112.(2020·攀枝花)下列说法中正确的是( ).A.0.09的平方根是0.3B.√16=±4C.0的立方根是0D.1的立方根是 ±1 13.(2020·攀枝花)实数a、b在数轴上的位置如图所示,化简 √(a+1)2+√(b−1)2−√(a−b)2 的结果是( ).A.-2B.0C.-2a D.2b 14.(2020·攀枝花)如图,直径 AB=6 的半圆,绕B点顺时针旋转 30° ,此时点A到了点 A′ ,则图中阴影部分的面积是( ).A.π2B.3π4C.πD.3π二、填空题15.(2023·大庆)1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,¿展开的多项式中各项系数之和为 .16.(2023·大庆)一个圆锥的底面半径为5,高为12,则它的体积为 .17.(2023·大庆)若关于x的不等式组{3(x−1)>x−68−2x+2a≥0有三个整数解,则实数a的取值范围为 .18.(2023·大庆)在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.有一张矩形纸片ABCD如图所示,点N在边AD上,现将矩形折叠,折痕为BN,点A对应的点记为点M,若点M恰好落在边DC上,则图中与△NDM一定相似的三角形是 .19.(2023·大庆)已知(x−2)x+1=1,则x的值为 .20.(2021·河池)分式方程3x−2=1 的解是 x=¿ .21.(2021·河池)在平面直角坐标系中,一次函数 y=2x 与反比例函数 y=kx(k≠0) 的图象交于A(x1,y1) , B(x2,y2) 两点,则 y1+y2 的值是 .22.(2020·攀枝花)因式分解:a-ab2= .23.(2020·攀枝花)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有 人进公园,买40张门反而合算.三、计算题24.(2021·河池)先化简,再求值:(x+1)2−x(x+1) ,其中 x=2021.四、解答题25.(2023·大庆)为营造良好体育运动氛围,某学校用800元购买了一批足球,又用1560元加购了第二批足球,且所购数量是第一批购买数量的2倍,但单价降了2元,请问该学校两批共购买了多少个足球五、综合题26.(2023·大庆)如图,二次函数y=a x2+bx+c的图象与x轴交于A,B两点,且自变量x的部分取值与对应函数值y如下表:x⋯−101234⋯y⋯0−3−4−305⋯(1)求二次函数y=a x2+bx+c的表达式;(2)若将线段AB向下平移,得到的线段与二次函数y=a x2+bx+c的图象交于P,Q两点(P在Q 左边),R为二次函数y=a x2+bx+c的图象上的一点,当点Q的横坐标为m,点R的横坐标为m+√2时,求tan∠RPQ的值;(3)若将线段AB先向上平移3个单位长度,再向右平移1个单位长度,得到的线段与二次函数y=1t(a x2+bx+c)的图象只有一个交点,其中t为常数,请直接写出t的取值范围.27.(2021·河池)如图,在 Rt△ABC 中, ∠A=90° , AB=4 , AC=3 ,D,E分别是AB,BC边上的动点,以BD为直径的 ⊙O交BC于点F.(1)当 AD=DF 时,求证:△CAD≅△CFD;(2)当 △CED 是等腰三角形且△DEB 是直角三角形时,求AD的长.28.(2021·河池)为了解本校九年级学生的体质健康情况,李老师随机抽取35名学生进行了一次体质健康测试,根据测试成绩制成统计图表.组别分数段人数A x<602B60≤x<755C75≤x<90aD x≥9012请根据上述信息解答下列问题:(1)本次调查属于 调查,样本容量是 ;(2)表中的 a=¿ ,样本数据的中位数位于 组;(3)补全条形统计图;(4)该校九年级学生有980人,估计该校九年级学生体质健康测试成绩在D组的有多少人?29.(2021·河池)如图, ∠CAD 是 △ABC 的外角.(1)尺规作图:作 ∠CAD 的平分线AE(不写作法,保留作图痕迹,用黑色墨水笔将痕迹加黑);(2)若 AE/¿BC ,求证:AB=AC.30.(2020·攀枝花)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线 MN 的距离皆为 100cm .王诗嬑观测到高度 90cm矮圆柱的影子落在地面上,其长为 72cm;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线 MN互相垂直,并视太阳光为平行光,测得斜坡坡度 i=1:0.75 ,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为 150cm ,且此刻她的影子完全落在地面上,则影子长为多少cm?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否符合题意?(3)若同一时间量得高圆柱落在坡面上的影子长为 100cm ,则高圆柱的高度为多少cm?答案解析部分1.【答案】A【解析】【解答】解:设粽子的降价幅度为x,成本价为a元,则标价为(1+25%)m元,根据题意得(1+25%)m(1-x)≥m,解之:x≥20%,∴当粽子降价出售时,为了不亏本,降价幅度最多为20%.故答案为:A.【分析】设粽子的降价幅度为x,成本价为a元,根据当粽子降价出售时,为了不亏本,可得到关于x的不等式,然后求出不等式的最小值即可.2.【答案】C【解析】【解答】解:A、一个函数是正比例函数就一定是一次函数,故A不符合题意;B、有一组对角相等的四边形不是平行四边形,故B不符合题意;C、两条直角边对应相等的两个直角三角形一定全等,故C符合题意;D、一组数据的方差不一定大于标准差,故D不符合题意;故答案为:C.【分析】利用一次函数不一定是正比例函数,可对A作出判断;利用平行四边形的判定定理可对B 作出判断;利用SAS可对C作出判断;利用一组数据的方差不一定大于标准差,可对D作出判断. 3.【答案】A【解析】【解答】解:从上往下看是一个矩形.故答案为:A.【分析】俯视图就是从几何体的上面往下看,所看到的平面图形,根据几何体可得到是俯视图的选项.4.【答案】A【解析】【解答】解:主视图是由前向后看得到的物体的视图,由前向后看共3列,中间一列有3个小正方形,左右两列各一个小正方形.故从坐左边看只有1列,三行,每一行都只有一个小正方形,故答案为:A.【分析】左视图是由视线从左向右看在侧面所得的视图,从左边看只有1列,三行,每一行都只有一个小正方形,则可解答.5.【答案】A【解析】【解答】与 2a2b 是同类项的特点为含有字母a,b ,且对应 a 的指数为2, b 的指数为1,只有A选项符合;故答案为:A.【分析】字母相同,并且相同字母的指数也相同的两个式子叫同类项. 同类项的条件有两个:1、所含的字母相同;2、相同字母的指数也分别相同. 根据条件分别判断即可.6.【答案】D【解析】【解答】解:A、对称轴为:直线 x=−1+22=12 ,故答案为:A正确,不符合题意;B、由函数图象知,当-1<x<2时,函数图象在x轴的下方,∴当-1<x<2时,y<0,故答案为:B正确,不符合题意;C、由图可知:当x=-1时,y=a-b+c=0,∴a +c=b,故答案为:C正确,不符合题意;D、由图可知:当x=1时,y=a+b+c<0∴a+b<-c,故答案为:D错误,不符合题意;故答案为:D.【分析】根据抛物线与x轴的交点坐标求对称轴方程判断A;在图象中找出x下方部分x的范围判断B;根据x=-1时,y=a-b+c=0,变形可判断C;根据当x=1时,y=a+b+c<0,变形可判断D.7.【答案】B【解析】【解答】解:A、是轴对称图形,不是中心对称图形,故A不符合题意;B、既是轴对称图形,又是中心对称图形,故B符合题意;C、是中心对称图形,不是轴对称图形,故C不符合题意;D、是轴对称图形,不是中心对称图形,故A不符合题意;故答案为:B.【分析】根据轴对称和中心对称图形特点分别分析判断,轴对称图形沿一条轴折叠180°,被折叠两部分能完全重合,中心对称图形绕其中心点旋转180°后图形仍和原来图形重合。

2023年江西省中考数学真题卷(含答案与解析)

2023年江西省中考数学真题卷(含答案与解析)

江西省2023年初中学业水平考试数学试题卷说明:1.全卷满分120分,考试时间120分钟。

2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效。

一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 下列各数中,正整数是( )A. 3B. 2.1C. 0D. 2-2. 下列图形中,是中心对称图形的是( )A. B. C.D.3.有意义,则a 的值可以是( )A 1- B. 0 C. 2 D. 64. 计算()322m的结果为( ) A. 68m B. 66mC. 62mD. 52m 5. 如图,平面镜MN 放置在水平地面CD 上,墙面PD CD ⊥于点D ,一束光线AO 照射到镜面MN 上,反射光线为OB ,点B 在PD 上,若35AOC ∠=︒,则OBD ∠的度数为( ).A. 35︒B. 45︒C. 55︒D. 65︒6. 如图,点A ,B ,C ,D 均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为( )A. 3个B. 4个C. 5个D. 6个二、填空题(本大题共6小题,每小题3分,共18分)7. 单项式5ab -的系数为______.8. 我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为_______.9. 计算:(a+1)2﹣a 2=_____.10. 将含30︒角的直角三角板和直尺按如图所示的方式放置,已60α∠=︒,点B ,C 表示的刻度分别为1cm,3cm ,则线段AB 的长为_______cm .11. 《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,ABC ∠和AQP ∠均为直角,AP 与BC 相交于点D .测得40cm 20cm 12m AB BD AQ ===,,,则树高PQ =______m .12. 如图,在ABCD Y 中,602B BC AB ∠=︒=,,将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP ,连接PC ,PD .当PCD 为直角三角形时,旋转角α度数为_______.三、解答题(本大题共5小题,每小题6分,共30分)13. (10tan 453+︒-(2)如图,AB AD =,AC 平分BAD ∠.求证:ABC ADC △△≌.14. 如图是44⨯的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角ABC ,使点C 在格点上;(2)在图2中的线段AB 上作点Q ,使PQ 最短.15. 化简2111x x x x x x -⎛⎫+⋅ ⎪+-⎝⎭.下面是甲、乙两同学的部分运算过程:的解:原式()()()()()()21111111x x x x x x x x x x ⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦……解:原式221111x x x x x x x x--=⋅+⋅+- ……(1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.16. 为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.17. 如图,已知直线y x b =+与反比例函数(0)k y x x =>的图象交于点(2,3)A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数(0)k y x x=>的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC 的面积.四、解答题(本大题共3小题,每小题8分,共24分)18. 今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?19. 如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点B ,A ,D ,E 均在同一直线上,AB AC AD ==,测得55 1.8m 2m B BC DE ∠=︒==,,.(结果保小数点后一位)(1)连接CD ,求证:DC BC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:sin 550.82cos550.57tan 55 1.43︒≈︒≈︒≈,,)20. 如图,在ABC 中,464AB C =∠=︒,,以AB 为直径的O 与AC 相交于点D ,E 为 ABD 上一点,且40ADE ∠=︒.(1)求 BE的长; (2)若76EAD ∠=︒,求证:CB 为O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21. 为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表 视力 人数 百分比 0.6及以下8 4% 0.7 16 8%0.828 14% 0.9 3417% 1.0 m34% 1.1及以上 46n 合计 200 100%高中学生视力情况统计图(1)m =_______,n =_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由:②约定:视力未达到1.0为视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.22. 课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完的成证明过程.己知:在ABCD Y 中,对角线BD AC ⊥,垂足为O .求证:ABCD Y 是菱形.(2)知识应用:如图2,在ABCD Y 中,对角线AC 和BD 相交于点O ,586AD AC BD ===,,.①求证:ABCD Y 菱形;②延长BC 至点E ,连接OE 交CD 于点F ,若12E ACD ∠=∠,求OF EF的值. 六、解答题(本大题共12分)23 综合与实践 问题提出:某兴趣小组开展综合实践活动:在Rt ABC △中,90C ∠=︒,D 为AC上一点,CD =,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF 设点P 的运动时间为s t ,正方形DPEF 的而积为S ,探究S 与t 的关系是.(1)初步感知:如图1,当点P 由点C 运动到点B 时,①当1t =时,S =_______.②S 关于t 的函数解析式为_______.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.(3)延伸探究:若存在3个时刻123,,t t t (123t t t <<)对应的正方形DPEF 的面积均相等.①12t t +=_______;②当314t t =时,求正方形DPEF 的面积.参考答案一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 下列各数中,正整数是( )A. 3B. 2.1C. 0D. 2-【答案】A【解析】【分析】根据有理数的分类即可求解.【详解】解:3是正整数,2.1是小数,不是整数,0不是正数,2-不是正数,故选:A .【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.2. 下列图形中,是中心对称图形的是( )A. B. C.D.【答案】B【解析】【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】解:选项A 、C 、D 均不能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以不是中心对称图形;选项B 能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以是中心对称图形; 故选:B .【点睛】本题主要考查了中心对称图形,关键是找出对称中心.3. 有意义,则a 的值可以是( )A. 1-B. 0C. 2D. 6 【答案】D【解析】【分析】根据二次根式有意义的条件即可求解.有意义,∴40a -≥,解得:4a ≥,则a 的值可以是6故选:D .【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.4. 计算()322m 的结果为( ) A. 68mB. 66mC. 62mD. 52m 【答案】A【解析】【分析】根据积的乘方计算法则求解即可.【详解】解:()32628m m =,故选A . 【点睛】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键.5. 如图,平面镜MN 放置在水平地面CD 上,墙面PD CD ⊥于点D ,一束光线AO 照射到镜面MN 上,反射光线为OB ,点B 在PD 上,若35AOC ∠=︒,则OBD ∠的度数为( )A. 35︒B. 45︒C. 55︒D. 65︒【答案】C【解析】 【分析】根据题意可得AOC BOD ∠=∠,进而根据直角三角形的两个锐角互余即可求解.【详解】解:依题意,AOC BOD ∠=∠,35AOC ∠=︒∴35BOD ∠=︒,∵PD CD ⊥,∴9055OBD BOD ∠=︒-∠=︒,故选:C .【点睛】本题考查了直角三角形中两个锐角互余,入射角等于反射角,熟练掌握以上知识是解题的关键. 6. 如图,点A ,B ,C ,D 均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为( )A. 3个B. 4个C. 5个D. 6个【答案】D【解析】 【分析】根据不共线三点确定一个圆可得,直线上任意2个点加上点P 可以画出一个圆,据此列举所有可能即可求解.【详解】解:依题意,,A B ;,A C ;,A D ;,B C ;,B D ,,C D 加上点P 可以画出一个圆,∴共有6个,故选:D .【点睛】本题考查了确定圆的条件,熟练掌握不共线三点确定一个圆是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7. 单项式5ab -的系数为______.【答案】5-【解析】【分析】根据单项式系数的定义:单项式中的数字因数,得出结果即可.【详解】解:单项式5ab -的系数是5-.故答案是:5-.【点睛】本题考查单项式的系数,解题的关键是掌握单项式系数的定义.8. 我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为_______.【答案】71.810⨯【解析】【分析】根据科学记数法的表示形式进行解答即可.【详解】解:718000000=1.810⨯,故答案为:71.810⨯.【点睛】本题考查科学记数法,熟练掌握科学记数法的表示形式为10n a ⨯(110a ≤<,a 为整数)的形式,n 的绝对值与小数点移动的位数相同是解题的关键.9. 计算:(a+1)2﹣a 2=_____.【答案】2a+1【解析】详解】【分析】原式利用完全平方公式展开,然后合并同类项即可得到结果. 【详解】(a+1)2﹣a 2=a 2+2a+1﹣a 2 【=2a+1,故答案为2a+1.【点睛】本题考查了整式的混合运算,熟练掌握完全平方公式以及合并同类项的法则是解题的关键.10. 将含30︒角的直角三角板和直尺按如图所示的方式放置,已60α∠=︒,点B ,C 表示的刻度分别为1cm,3cm ,则线段AB 的长为_______cm .【答案】2【解析】【分析】根据平行线的性质得出60ACB ∠=︒,进而可得ABC 是等边三角形,根据等边三角形的性质即可求解.【详解】解:∵直尺的两边平行,∴60ACB α∠=∠=︒,又60A ∠=︒,∴ABC 是等边三角形,∵点B ,C 表示的刻度分别为1cm,3cm ,∴2cm BC =,∴2cm AB BC ==∴线段AB 的长为2cm ,故答案为:2.【点睛】本题考查了平行线的性质,等边三角形的性质与判定,得出60ACB ∠=︒是解题的关键. 11. 《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,ABC ∠和AQP ∠均为直角,AP 与BC 相交于点D .测得40cm 20cm 12m AB BD AQ ===,,,则树高PQ =______m .【答案】6【解析】【分析】根据题意可得ABD AQP ∽,然后相似三角形的性质,即可求解.【详解】解:∵ABC ∠和AQP ∠均为直角∴BD PQ ∥,∴ABD AQP ∽, ∴BD AB PQ AQ= ∵40cm 20cm 12m AB BD AQ ===,,, ∴2m 120640AQ BD PQ AB ⨯⨯===, 故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.12. 如图,在ABCD Y 中,602B BC AB ∠=︒=,,将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP ,连接PC ,PD .当PCD 为直角三角形时,旋转角α的度数为_______.【答案】90︒或270︒或180︒【解析】【分析】连接AC ,根据已知条件可得90BAC ∠=︒,进而分类讨论即可求解.【详解】解:连接AC ,取BC 的中点E ,连接AE ,如图所示,∵在ABCD Y 中,602B BC AB ∠=︒=,, ∴12BE CE BC AB ===, ∴ABE 是等边三角形,∴60BAE AEB ∠=∠=︒,AE BE =,∴AE EC = ∴1302EAC ECA AEB ∠=∠=∠=︒, ∴90BAC ∠=︒∴AC CD ⊥,如图所示,当点P 在AC 上时,此时90BAP BAC ∠=∠=︒,则旋转角α的度数为90︒,当点P 在CA 的延长线上时,如图所示,则36090270α=︒-︒=︒当P 在BA 延长线上时,则旋转角α的度数为180︒,如图所示,∵PA PB CD ==,PB CD ∥,∴四边形PACD 是平行四边形,∵AC AB ⊥∴四边形PACD 是矩形,∴90PDC ∠=︒的即PDC △直角三角形,综上所述,旋转角α的度数为90︒或270︒或180︒故答案为:90︒或270︒或180︒.【点睛】本题考查了平行四边形的性质与判定,等边三角形的性质与判定,矩形的性质与判定,旋转的性质,熟练掌握旋转的性质是解题的关键.三、解答题(本大题共5小题,每小题6分,共30分)13. (10tan 453+︒-(2)如图,AB AD =,AC 平分BAD ∠.求证:ABC ADC △△≌.【答案】(1)2;(2)证明见解析【解析】【分析】(1)先计算立方根,特殊角三角函数值和零指数幂,再计算加减法即可;(2)先由角平分线的定义得到BAC DAC ∠=∠,再利用SAS 证明ABC ADC △△≌即可.【详解】解:(1)原式211=+-2=;(2)∵AC 平分BAD ∠,∴BAC DAC ∠=∠,在ABC 和ADC △中,AB AD BAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC ADC △△≌.是【点睛】本题主要考查了实数的运算,零指数幂,特殊角三角函数值,全等三角形的判定,角平分线的定义等等,灵活运用所学知识是解题的关键.14. 如图是44⨯的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角ABC ,使点C 在格点上;(2)在图2中的线段AB 上作点Q ,使PQ 最短.【答案】(1)作图见解析(2)作图见解析【解析】【分析】(1)如图,取格点K ,使90AKB ∠=︒,在K 的左上方的格点C 满足条件,再画三角形即可; (2)利用小正方形的性质取格点M ,连接PM 交AB 于Q ,从而可得答案.【小问1详解】解:如图,ABC 即为所求作的三角形;【小问2详解】如图,Q 即为所求作的点;【点睛】本题考查的是复杂作图,同时考查了三角形的外角的性质,正方形的性质,垂线段最短,熟记基本几何图形的性质再灵活应用是解本题的关键.15. 化简2111x x xx x x-⎛⎫+⋅⎪+-⎝⎭.下面是甲、乙两同学的部分运算过程:解:原式()()()()()()21111111x x x x xx x x x x⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦……解:原式2211 11x x x xx x x x--=⋅+⋅+-……(1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)①等式基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.【答案】(1)②,③(2)见解析【解析】【分析】(1)根据所给的解题过程即可得到答案;(2)甲同学的解法:先根据分式的基本性质把小括号内的分式先同分,然后根据分式的加法计算法则求解,最后根据分式的乘法计算法则求解即可;乙同学的解法:根据乘法分配律去括号,然后计算分式的乘法,最后合并同类项即可.【小问1详解】解:根据解题过程可知,甲同学解法的依据是分式的基本性质,乙同学解法的依据是乘法分配律,故答案为:②,③;【小问2详解】解:甲同学的解法:原式()()()()()()2111 1111x x x x xx x x x x ⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦()()()()221111x x xx xx xx x=⋅+++---+的()()()()211112x x x x x x =⋅+-+- 2x =; 乙同学的解法: 原式221111x x x x x x x x--=⋅+⋅+- ()()()()111111x x x x x x x x x x=⋅+⋅+-+--+ 11x x =-++2x =.【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.16. 为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员. (1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”) (2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.【答案】(1)随机 (2)16【解析】【分析】(1)由确定事件与随机事件的概念可得答案;(2)先画树状图得到所有可能的情况数与符合条件的情况数,再利用概率公式计算即可.【小问1详解】解:“甲、乙同学都被选为宣传员”是随机事件;【小问2详解】画树状图为:共有12种等可能的结果,其中选中的两名同学恰好是甲,丁的结果数为2,所以选中的两名同学恰好是甲,丁的概率21126==.【点睛】本题考查的是事件的含义,利用画树状图求解随机事件的概率,熟记事件的概念与分类以及画树状图的方法是解本题的关键.17. 如图,已知直线y x b =+与反比例函数(0)k y x x =>的图象交于点(2,3)A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数(0)k y x x=>的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC 的面积.【答案】(1)直线AB 的表达式为1y x =+,反比例函数的表达式为6y x=(2)6【解析】【分析】(1)利用待定系数法求函数解析式即可;(2)由一次函数解析式求得点B 的坐标,再根据BC x ∥轴,可得点C 的纵坐标为1,再利用反比例函数表达式求得点C 坐标,即可求得结果.【小问1详解】解:∵直线y x b =+与反比例函数(0)k y x x =>的图象交于点(2,3)A , ∴236k =⨯=,23b +=,即1b =,∴直线AB 的表达式为1y x =+,反比例函数的表达式为6y x =. 【小问2详解】解:∵直线1y x =+的图象与y 轴交于点B ,∴当0x =时,1y =,∴()0,1B ,∵BC x ∥轴,直线BC 与反比例函数(0)k y x x =>的图象交于点C , ∴点C 的纵坐标为1, ∴61x=,即6x =,∴()6,1C ,∴6BC =, ∴12662ABC S =⨯⨯= . 【点睛】本题考查用待定系数法求一次函数和反比例函数解析式、一次函数与反比例函数的交点、一次函数与y 轴的交点,熟练掌握用待定系数法求函数解析式是解题的关键.四、解答题(本大题共3小题,每小题8分,共24分)18. 今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?【答案】(1)该班的学生人数为45人(2)至少购买了甲树苗80棵【解析】【分析】(1)设该班的学生人数为x 人,根据两种方案下树苗的总数不变列出方程求解即可;(2)根据(1)所求求出树苗的总数为155棵,设购买了甲树苗m 棵,则购买了乙树苗()155m -棵树苗,再根据总费用不超过5400元列出不等式求解即可.【小问1详解】解:设该班的学生人数为x 人,由题意得,320425x x +=-,解得45x =,∴该班的学生人数为45人;【小问2详解】解:由(1)得一共购买了34520155⨯+=棵树苗,设购买了甲树苗m 棵,则购买了乙树苗()155m -棵树苗,由题意得,()30401555400m m +-≤,解得80m ≥,∴m 得最小值为80,∴至少购买了甲树苗80棵,答:至少购买了甲树苗80棵.【点睛】本题主要考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意找到等量关系列出方程,找到不等关系列出不等式是解题的关键.19. 如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点B ,A ,D ,E 均在同一直线上,AB AC AD ==,测得55 1.8m 2m B BC DE ∠=︒==,,.(结果保小数点后一位)(1)连接CD ,求证:DC BC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:sin 550.82cos550.57tan 55 1.43︒≈︒≈︒≈,,)【答案】(1)见解析(2)雕塑的高约为4.2米 【解析】【分析】(1)根据等边对等角得出,B ACB ACD ADC ∠=∠∠=∠,根据三角形内角和定理得出()2180B ADC ∠+∠=︒,进而得出90BCD ∠=︒,即可得证;(2)过点E 作EF BC ⊥,交BC 的延长线于点F ,在Rt BDC 中,得出 1.8cos cos55BC AD B ==︒,则1.82cos55BE AD DE =+=+︒,在Rt EBF △中,根据sin EF BE B =⋅,即可求解. 【小问1详解】 解:∵AB AC AD ==,∴,B ACB ACD ADC ∠=∠∠=∠∵180B ADC BCD ∠+∠+∠=︒即()2180B ADC ∠+∠=︒∴90B ADC ∠+∠=︒即90BCD ∠=︒∴DC BC ⊥;【小问2详解】如图所示,过点E 作EF BC ⊥,交BC 的延长线于点F ,在Rt BDC 中,55 1.8m 2m B BC DE ∠=︒==,, ∴cos BC B AD=, ∴ 1.8cos cos55BC AD B ==︒ ∴ 1.82cos55BE AD DE =+=+︒在Rt EBF △中,sin EF B BE =, ∴sin EF BE B =⋅1.82sin 55cos55⎛⎫=+⨯︒ ⎪︒⎝⎭ 1.820.820.57⎛⎫≈+⨯ ⎪⎝⎭ 4.2≈(米). 答:雕塑的高约为4.2米.【点睛】本题考查了等腰三角形的性质,三角形内角和定理的应用,解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.20. 如图,在ABC 中,464AB C =∠=︒,,以AB 为直径的O 与AC 相交于点D ,E 为 ABD 上一点,且40ADE ∠=︒.(1)求 BE的长; (2)若76EAD ∠=︒,求证:CB 为O 的切线.【答案】(1)109π (2)证明见解析【解析】【分析】(1)如图所示,连接OE ,先求出2OE OB OA ===,再由圆周角定理得到280AOE ADE ==︒∠∠,进而求出100∠=︒BOE ,再根据弧长公式进行求解即可;(2)如图所示,连接BD ,先由三角形内角和定理得到64AED ∠=︒,则由圆周角定理可得64ABD AED ==︒∠∠,再由AB 是O 的直径,得到90ADB ∠=︒,进而求出26BAC ∠=︒,进一步推出90ABC ∠=︒,由此即可证明BC 是O 的切线.【小问1详解】解:如图所示,连接OE ,∵AB 是O 的直径,且4AB =,∴2OE OB OA ===,∵E 为 ABD 上一点,且40ADE ∠=︒,∴280AOE ADE ==︒∠∠,∴180100BOE AOE ∠=︒-=︒∠,∴ BE 的长1002101809ππ⨯⨯==;【小问2详解】证明:如图所示,连接BD ,∵76EAD ∠=︒,40ADE ∠=︒,∴18064AED EAD ADE =︒--=︒∠∠∠,∴64ABD AED ==︒∠∠,∵AB 是O 的直径,∴90ADB ∠=︒,∴9026BAC ABD =︒-=︒∠∠,∵64C ∠=︒,∴18090ABC C BAC =︒--=︒∠∠∠,即AB BC ⊥,∵OB 是O 的半径,∴BC 是O 的切线.【点睛】本题主要考查了切线的判定,求弧长,圆周角定理,三角形内角和定理等等,正确作出辅助线是解题的关键.五、解答题(本大题共2小题,每小题9分,共18分)21. 为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表 视力人数 百分比 0.6及以下8 4% 0.716 8% 0.828 14% 0.9 3417% 1.0 m 34%1.1及以上46 n 合计 200 100%高中学生视力情况统计图(1)m =_______,n =_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由:②约定:视力未达到1.0为视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.【答案】(1)68;23%;(2)320;(3)①小胡的说法合理,选择中位数,理由见解析;②14300人,合理化建议见解析,合理即可.【解析】【分析】(1)由总人数乘以视力为1.0的百分比可得m 的值,再由视力1.1及以上的人数除以总人数可得n 的值;(2)由条形统计图中各数据之和可得答案;(3)①选择视力的中位数进行比较即可得到小胡说法合理;②由中学生总人数乘以样本中视力不良的百分比即可,根据自身体会提出合理化建议即可.【小问1详解】解:由题意可得:初中样本总人数为:200人, ∴34%20068m =⨯=(人),4620023%n =÷=;【小问2详解】由题意可得:144460826555320+++++=,∴被调查的高中学生视力情况的样本容量为320;【小问3详解】①小胡说:“初中学生的视力水平比高中学生的好.”小胡的说法合理;初中学生视力的中位数为第100个与第101个数据的平均数,落在视力为1.0这一组,而高中学生视力的中位数为第160个与第161个数据的平均数,落在视力为0.9的这一组,而1.0>0.9,∴小胡的说法合理. ②由题意可得:8162834144460822600014300200320+++++++⨯=+(人), ∴该区有26000名中学生,估计该区有14300名中学生视力不良;合理化建议为:学校可以多开展用眼知识的普及,规定时刻做眼保健操.【点睛】本题考查的是从频数分布表与频数分布直方图中获取信息,中位数的含义,利用样本估计总体,理解题意,确定合适的统计量解决问题是解本题的关键.22. 课本再现 思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.己知:在ABCD Y 中,对角线BD AC ⊥,垂足为O .求证:ABCD Y 是菱形.(2)知识应用:如图2,在ABCD Y 中,对角线AC 和BD 相交于点O ,586AD AC BD ===,,.①求证:ABCD Y 是菱形;②延长BC 至点E ,连接OE 交CD 于点F ,若12E ACD ∠=∠,求OF EF的值. 【答案】(1)见解析(2)①见解析;②58【解析】 【分析】(1)根据平行四边形的性质证明AOB COB ≌得出AB CB =,同理可得DOA ODC ≌,则DA DC =, AB CD =,进而根据四边相等的四边形是菱形,即可得证;(2)①勾股定理的逆定理证明AOD △是直角三角形,且90AOD ∠=︒,得出AC BD ⊥,即可得证; ②根据菱形的性质结合已知条件得出E COE ∠=∠,则142OC OE AC ===,过点O 作OG CD ∥交BC 于点G ,根据平行线分线段成比例求得1522CG CB ==,然后根据平行线分线段成比例即可求解. 【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AO CO =, AB DC =,∵BD AC ⊥∴90AOB COB ∠=∠=︒,在,AOB COB 中,AO CO AOB COB BO BO =⎧⎪∠=∠⎨⎪=⎩∴AOB COB ≌∴AB CB =,同理可得DOA ODC ≌,则DA DC =,又∵AB CD =∴AB BC CD DA ===∴四边形ABCD 是菱形;【小问2详解】①证明:∵四边形ABCD 是平行四边形,586AD AC BD ===,,. ∴113,422DO BO BD AO CO AC ====== 在AOD △中,225AD =,22223425AO OD +=+=,∴222AD AO OD =+,∴AOD △是直角三角形,且90AOD ∠=︒,∴AC BD ⊥,∴四边形ABCD 是菱形;②∵四边形ABCD 是菱形;∴ACB ACD ∠=∠ ∵12E ACD ∠=∠, ∴12E ACB ∠=∠, ∵ACB E COE ∠=∠+∠,∴E COE ∠=∠, ∴142OC OE AC ===, 如图所示,过点O 作OG CD ∥交BC 于点G ,∴1BG BO GC OD==, ∴115222CG BC AD ===, ∴55248OF GC EF CE ===. 【点睛】本题考查了菱形的性质与判定,勾股定理以及勾股定理的逆定理,等腰三角形的性质与判定,平行线分线段成比例,熟练掌握菱形的性质与判定是解题的关键.六、解答题(本大题共12分)23. 综合与实践问题提出:某兴趣小组开展综合实践活动:在Rt ABC △中,90C ∠=︒,D 为AC 上一点,CD =,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF 设点P 的运动时间为s t ,正方形DPEF 的而积为S ,探究S 与t 的关系(1)初步感知:如图1,当点P 由点C 运动到点B 时,①当1t =时,S =_______.②S 关于t 的函数解析式为_______.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.(3)延伸探究:若存在3个时刻123,,t t t (123t t t <<)对应的正方形DPEF 的面积均相等.①12t t +=_______;②当314t t =时,求正方形DPEF 的面积.【答案】(1)①3;②24S t =+(2)()281828S t t t =-+≤≤,6AB =(3)①4;②349【解析】【分析】(1)①先求出1CP =,再利用勾股定理求出DP =,最后根据正方形面积公式求解即可;②仿照(1)①先求出CP t =,进而求出222DP t =+,则222S DP t ==+;(2)先由函数图象可得当点P 运动到B 点时,26S DP ==,由此求出当2t =时,6S =,可设S 关于t 的函数解析式为()242S a t =-+,利用待定系数法求出2818S t t =-+,进而求出当281818S t t =-+=时,求得t 的值即可得答案;(3)①根据题意可得可知函数()242S t =-+可以看作是由函数22S t =+向右平移四个单位得到的,设()()()1221P m n Q m n m m >,,,是函数22S t =+上的两点,则()14m n +,,()24m n +,是函数()242S t =-+上的两点,由此可得121212044m m m m m m +=<<+<+,,则2144m m ++=,根据题意可以看作21321244m m t t m t ==+=+,,,则124t t +=;②由(3)①可得134t t =+,再由314t t =,得到143t =,继而得答案. 【小问1详解】 解:∵动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,∴当1t =时,点P 在BC 上,且1CP =,∵90C ∠=︒,CD =,∴DP ==∴23S DP ==,故答案为:3;②∵动点P 以每秒1个单位的速度从C 点出发,在BC 匀速运动,。

精选最新初中数学中考考试题库(标准答案)

精选最新初中数学中考考试题库(标准答案)

2019年初中数学中考复习试题(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.不论a ,b 为何实数,22248a b a b +--+的值---------------------------------------( )(A )总是正数 (B )总是负数 (C )可以是零 (D )可以是正数也可以是负数2.多项式22215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y -3.三角形三边长分别是6、8、10,那么它最长边上的高为 ( ) (A )6 (B )4.8 (C )2.4 (D )8第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题4.如图:DE 是△ABC 的中位线,∠ABC 的平分线交DE 于点F. 求证:AF ⊥BF5. 图8是二次函数122-+-=a x ax y 的图象,则a 的值是____________.6. 一条抛物线的对称轴是x=1且与x轴有惟一的公共点,并且开口方向向下,则这条抛物线的解析式是____________________(任写一个)7. 如图,抛物线对称轴是x=1,与x 轴交于A 、B 两点,若B 点坐标是(3,0),则A 点的坐标是______________8.线y =a x 2+b x +c 经过A ,B ,C 三点,当x ≥0时,其图象如图所示. (1) 求抛物线的解析式,写出抛物线的顶点坐标; (2) 画出抛物线y =a x 2+b x +c 当x <0时的图象; (3) 利用抛物线y =a x 2+b x +c ,写出x 为何值时,y >0.图 8A9. 如右图,在△ABC 中,BC = 8 cm ,AB 的垂直平分线交AB 于点D,交边AC 于点E , △BCE 的周长等于18 cm ,则AC 的长等于 。

2023年山东省临沂市中考数学真题(答案解析)

2023年山东省临沂市中考数学真题(答案解析)

2023年临沂市初中学业水平考试试题数学一、选择题1.【答案】C【解析】解:2(7)(5)()57=----+=-;故选C .2.【答案】C【解析】解:由题意,可得130ABC ∠=︒,故选:C .3.【答案】B【解析】解:最符合视图特点的建筑物的图片是选项B 所示图片.故选:B .4.【答案】A【解析】解:由题意,得:点B 的坐标为(6,2);故选A .5.【答案】C【解析】解:∵在同一平面内,过直线l 外一点P 作l 的垂线m ,即l m ⊥,又∵过P 作m 的垂线n ,即n m ⊥,∴l n ∥,∴直线l 与n 的位置关系是平行,故选:C .6.【答案】D【解析】解:A 选项,32a a a -=,故选项错误,不符合题意;B 选项,222()2a b a ab b -=-+,故选项错误,不符合题意;C 选项,()2510a a =,故选项错误,不符合题意;D 选项,325326a a a ⋅=,故选项正确,符合题意;故选D .7.【答案】B【解析】解:正六边形的中心角的度数为:360606︒=︒,∴正六边形绕其中心旋转60︒或60︒的整数倍时,仍与原图形重合,∴旋转角的大小不可能是90︒;故选B .8.【答案】B【解析】解:m ====-∵=<<∴54-<-<-,即54m -<<-,故选:B .9.【答案】D【解析】解:设两名男生分别记为A ,B ,两名女生分别记为C ,D ,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为82123=,故选:D .10.【答案】A【解析】解:由题意,得:105V t=,∴V 与t 满足反比例函数关系.故选A .11.【答案】C【解析】解:∵一次函数y kx b =+的图象不经过第二象限,∴00k b ><,,故选项A 正确,不符合题意;∴0kb <,故选项B 正确,不符合题意;∵一次函数y kx b =+的图象经过点()20,,∴20k b +=,则2b k =-,∴20k b k k k +=-=-<,故选项C 错误,符合题意;∵2b k =-,∴12k b =-,故选项D 正确,不符合题意;故选:C .12.【答案】A【解析】解:∵0a b +=∴a b =,故①错误,∵0,0a b b c c a +=->->∴b c a >>,又0a b +=∴0,0a b <>,故②③错误,∵0a b +=∴=-b a∵0b c c a ->->∴a c c a -->-∴c c->∴0c <,故④正确或借助数轴,如图所示,故选:A .二、填空题13.【答案】24【解析】解:根据菱形面积等于两条对角线乘积的一半可得:面积168242=⨯⨯=,故答案为:24.14.【答案】()()111n n -++【解析】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++15.【答案】14【解析】解:如图,由题意得13AD AB =,四边形DECF 是平行四边形,∴DF BC ∥,DE AC ∥,∴ ∽ADF ABC ,BDE BAC ∽△△,∴13DF AD BC AB ==,23DE BD AC AB ==,∵69AC BC ==,,∴3DF =,4DE =,∵四边形DECF 平行四边形,∴平行四边形DECF 纸片的周长是()23414+=,故答案为:14.16.【答案】②③④【解析】解:列表,x L 2.5-2-1-0.5-0.512L yL5.4531- 3.75- 4.2535L描点、连线,图象如下,根据图象知:①当1x <-时,x 越小,函数值越大,错误;②当10x -<<时,x 越大,函数值越小,正确;③当01x <<时,x 越小,函数值越大,正确;④当1x >时,x 越大,函数值越大,正确.故答案为:②③④.三、解答题17.【答案】(1)3x >(2)从第①步开始出错,过程见解析【解析】解:(1)1522xx --<,去分母,得:1041x x -<-,移项,合并,得:39x -<-,系数化1,得:3x >;(2)从第①步开始出错,正确的解题过程如下:()()22111111a a a a a a a a +---=----22111a a a a -=---11a =-.18.【答案】(1)见解析(2)①90.5;②测试成绩分布在9195 的较多(不唯一);(3)估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.【解析】(1)解:数据从小到大排列:81、82、83、85、86、87、87、88、89、90、91、92、92、92、93、94、95、96、99、100最大值是100,最小值为81,极差为1008119-=,若组距为5,则分为4组,频数分布表成绩分组8185 8690 9195 96100划记正一频数4673频数分布直方图,如图;;(2)解:①中位数是909190.52+=;故答案为90.5;②测试成绩分布在9195 的较多(不唯一);(3)解:67360048020++⨯=(人),答:估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.19.【答案】渔船没有触礁的危险【解析】解:过点A 作AD BC ⊥,由题意,得:905832ABC ∠=︒-︒=︒,45ACD ∠=︒,6BC =,设AD x =,在Rt ADC 中,45ACD ∠=︒,∴AD CD x ==,∴6BD x =+,在Rt ADB 中,tan 0.6256AD xABD BD x ∠==≈+,∴10x =,∴10AD =,∵109>,∴渔船没有触礁的危险.20.【答案】(1)这台M 型平板电脑的价值为2100元(2)她应获得120m 元的报酬【解析】(1)解:设这台M 型平板电脑的价值为x 元,由题意,得:15003003020x x ++=,解得:2100x =;∴这台M 型平板电脑的价值为2100元;(2)解:由题意,得:2100150012030m m +⋅=;答:她应获得120m 元的报酬.21.【答案】(1)见解析(2)43π【解析】(1)证明:连接AO 并延长交BC 于点F ,∵O 是ABC 的外接圆,∴点O 是ABC 三边中垂线的交点,∵AB AC =,∴AO BC ⊥,∵AE BC ∥,∴AO AE ⊥,∵AO 是O 的半径,∴AE 是O 的切线;(2)解:连接OC ,∵AB AC =,∴75ABC ACB ∠=∠=︒,∴18027530BAC ∠=︒-⨯︒=︒,∴260BOC BAC ∠=∠=︒,∵OB OC =,∴BOC 为等边三角形,∴2===OC OB BC ,∴180120COD BOC ∠=︒-∠=︒,∴ CD的长为120241803ππ⨯=.22.【答案】(1))21AB BD =,(2)见解析(3)见解析【解析】(1)解:∵90,A AB AC ∠=︒=∴2BC =,∵BC AB BD =+2AB BD =+即)21AB BD =;(2)证明:如图所示,∴90,A AB AC ∠=︒=∴=45ABC ∠︒,∵BD AB ⊥,∴45DBC ∠=︒∵CE BC =,12∠=∠,CF DC =∴CBD CEF ≌∴=45E DBC ∠=∠︒∴EF BD ∥∴AB EF⊥(3)证明:如图所示,延长,BA EF 交于点M ,延长CH 交ME 于点G ,∵EF AB ⊥,AC AB ⊥,∴ME AC ∥,∴CGE ACG∠=∠∵CH 是ACE ∠的角平分线,∴ACG ECG ∠=∠,∴CGE ECG ∠=∠∴EG EC =∵CBD CEF ≌,∴EF BD =,CE CB =,∴EG CB =,又∵BC AB BD =+,∴EG AB BD AC EF =+=+,即FG EF AC EF +=+,∴AC EG =,又AC FG ∥,则HAG HFG ∠=∠,在,AHC FHG 中,HAG HFG AHG FHG AC FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AHC FHG ≌,∴AHHF=23.【答案】(1)见解析(2)售价每涨价2元,日销售量少卖4盆(3)①定价为每盆25元或每盆35元时,每天获得400元的利润;②售价定为30元时,每天能够获得最大利润【解析】(1)解:按照售价从低到高排列列出表格如下:售价(元/盆)1820222630日销售量(盆)5450463830【小问2详解】由表格可知,售价每涨价2元,日销售量少卖4盆;(3)①设:定价应为x 元,由题意,得:()()181********x x -⎡⎤--⨯=⎢⎥⎣⎦,整理得:2212017500x x -+-=,解得:1225,35x x ==,∴定价为每盆25元或每盆35元时,每天获得400元的利润;②设每天的利润为w ,由题意,得:()()22120135018155442x w x x x -⎡⎤=--⨯+⎣--=⎢⎥⎦,∴()2221201350230450w x x x -+---+==,∵20-<,∴当30x =时,w 有最大值为450元.答:售价定为30元时,每天能够获得最大利润.。

中考数学题库(含答案和解析)

中考数学题库(含答案和解析)

中考数学题库(含答案和解析)一、选择题(共10小题.每小题3分.共30分)1.(3分)﹣3的倒数是()A.﹣3B.3C.D.﹣2.(3分)计算2x(3x2+1).正确的结果是()A.5x3+2x B.6x3+1C.6x3+2x D.6x2+2x 3.(3分)二次根式中字母x的取值范围是()A.x<1B.x≤1C.x>1D.x≥1 4.(3分)如图.已知AB是△ABC外接圆的直径.∠A=35°.则∠B的度数是()A.35°B.45°C.55°D.65°5.(3分)数据﹣2.﹣1.0.1.2的方差是()A.0B.C.2D.46.(3分)如图.已知Rt△ABC中.∠C=90°.AC=4.tan A=.则BC的长是()A.2B.8C.2D.47.(3分)已知一个布袋里装有2个红球.3个白球和a个黄球.这些球除颜色外其余都相同.若从该布袋里任意摸出1个球.是红球的概率为.则a等于()A.1B.2C.3D.48.(3分)如图.已知在Rt△ABC中.∠ABC=90°.点D是BC边的中点.分别以B、C为圆心.大于线段BC长度一半的长为半径画弧.两弧在直线BC上方的交点为P.直线PD交AC于点E.连接BE.则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED =AB中.一定正确的是()A.①②③B.①②④C.①③④D.②③④9.(3分)如图.已知正方形ABCD.点E是边AB的中点.点O是线段AE上的一个动点(不与A、E重合).以O为圆心.OB为半径的圆与边AD相交于点M.过点M作⊙O的切线交DC于点N.连接OM、ON、BM、BN.记△MNO、△AOM、△DMN的面积分别为S1、S2、S3.则下列结论不一定成立的是()A.S1>S2+S3B.△AOM∽△DMN C.∠MBN=45°D.MN=AM+CN10.(3分)在连接A地与B地的线段上有四个不同的点D、G、K、Q.下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向).则路程最长的行进路线图是()A.B.C.D.二、填空题(共6小题.每小题4分.共24分)11.(4分)方程2x﹣1=0的解是x=.12.(4分)如图.由四个小正方体组成的几何体中.若每个小正方体的棱长都是1.则该几何体俯视图的面积是.13.(4分)计算:50°﹣15°30′=.14.(4分)下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况.记该月A市和B市日平均气温是8℃的天数分别为a天和b天.则a+b=.15.(4分)如图.已知在Rt△OAC中.O为坐标原点.直角顶点C在x 轴的正半轴上.反比例函数y=(k≠0)在第一象限的图象经过OA的中点B.交AC于点D.连接OD.若△OCD∽△ACO.则直线OA的解析式为.16.(4分)已知当x1=a.x2=b.x3=c时.二次函数y=x2+mx对应的函数值分别为y1.y2.y3.若正整数a.b.c恰好是一个三角形的三边长.且当a<b<c时.都有y1<y2<y3.则实数m的取值范围是.三、解答题(共8小题.共66分)17.(6分)计算:(3+a)(3﹣a)+a2.18.(6分)解方程组.19.(6分)已知在以点O为圆心的两个同心圆中.大圆的弦AB交小圆于点C.D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10.小圆的半径r=8.且圆O到直线AB的距离为6.求AC的长.20.(8分)如图.已知在平面直角坐标系xOy中.O是坐标原点.点A(2.5)在反比例函数y=的图象上.过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.21.(8分)已知2014年3月份在某医院出生的20名新生婴儿的体重如下(单位:kg)4.7 2.9 3.2 3.5 3.8 3.4 2.8 3.3 4.0 4.53.64.8 4.3 3.6 3.4 3.5 3.6 3.5 3.7 3.7(1)求这组数据的极差;(2)若以0.4kg为组距.对这组数据进行分组.制作了如下的“某医院2014年3月份20名新生婴儿体重的频数分布表”(部分空格未填).请在频数分布表的空格中填写相关的量某医院2014年3月份20名新生儿体重的频数分布表组别(kg)划记频数略略3.55﹣3.95正一6略略略合计20(3)经检测.这20名婴儿的血型的扇形统计图如图所示(不完整).求:①这20名婴儿中是A型血的人数;②表示O型血的扇形的圆心角度数.22.(10分)已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.(1)当x≥50时.求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元.求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略.鼓励企业节约用水.该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费.规定:若企业月用水量x超过80吨.则除按2013年收费标准收取水费外.超过80吨部分每吨另加收元.若某企业2014年3月份的水费和污水处理费共600元.求这个企业该月的用水量.23.(10分)如图.已知在平面直角坐标系xOy中.O是坐标原点.抛物线y=﹣x2+bx+c(c>0)的顶点为D.与y轴的交点为C.过点C作CA∥x轴交抛物线于点A.在AC延长线上取点B.使BC=AC.连接OA.OB.BD和AD.(1)若点A的坐标是(﹣4.4).①求b.c的值;②试判断四边形AOBD的形状.并说明理由;(2)是否存在这样的点A.使得四边形AOBD是矩形?若存在.请直接写出一个符合条件的点A的坐标;若不存在.请说明理由.24.(12分)已知在平面直角坐标系xOy中.O是坐标原点.以P(1.1)为圆心的⊙P与x轴.y轴分别相切于点M和点N.点F从点M出发.沿x轴正方向以每秒1个单位长度的速度运动.连接PF.过点P作PE⊥PF交y轴于点E.设点F运动的时间是t秒(t>0).(1)若点E在y轴的负半轴上(如图所示).求证:PE=PF;(2)在点F运动过程中.设OE=a.OF=b.试用含a的代数式表示b;(3)作点F关于点M的对称点F′.经过M、E和F′三点的抛物线的对称轴交x轴于点Q.连接QE.在点F运动过程中.是否存在某一时刻.使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在.请直接写出t的值;若不存在.请说明理由.参考答案与试题解析一、选择题(共10小题.每小题3分.共30分)1.【分析】根据乘积为的1两个数互为倒数.可得到一个数的倒数.【解答】解:﹣3的倒数是﹣.故选:D.【点评】本题考查了倒数.分子分母交换位置是求一个数的倒数的关键.2.【分析】原式利用单项式乘以多项式法则计算即可得到结果.【解答】解:原式=6x3+2x.故选:C.【点评】此题考查了单项式乘多项式.熟练掌握运算法则是解本题的关键.3.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得.x﹣1≥0.解得x≥1.故选:D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.4.【分析】由AB是△ABC外接圆的直径.根据直径所对的圆周角是直角.可求得∠ACB=90°.又由∠A=35°.即可求得∠B的度数.【解答】解:∵AB是△ABC外接圆的直径.∴∠C=90°.∵∠A=35°.∴∠B=90°﹣∠A=55°.故选:C.【点评】此题考查了圆周角定理.此题比较简单.注意掌握数形结合思想的应用.5.【分析】先求出这组数据的平均数.再根据方差的公式进行计算即可.【解答】解:∵数据﹣2.﹣1.0.1.2的平均数是:(﹣2﹣1+0+1+2)÷5=0.∴数据﹣2.﹣1.0.1.2的方差是:×[(﹣2)2+(﹣1)2+02+12+22]=2.故选:C.【点评】本题考查了方差:一般地设n个数据x1.x2.….x n的平均数为.则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].它反映了一组数据的波动大小.方差越大.波动性越大.反之也成立.6.【分析】根据锐角三角函数定义得出tan A=.代入求出即可.【解答】解:∵tan A==.AC=4.∴BC=2.故选:A.【点评】本题考查了锐角三角函数定义的应用.注意:在Rt△ACB 中.∠C=90°.sin A=.cos A=.tan A=.7.【分析】首先根据题意得:=.解此分式方程即可求得答案.【解答】解:根据题意得:=.解得:a=1.经检验.a=1是原分式方程的解.∴a=1.故选:A.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.8.【分析】根据作图过程得到PB=PC.然后利用D为BC的中点.得到PD垂直平分BC.从而利用垂直平分线的性质对各选项进行判断即可.【解答】解:根据作图过程可知:PB=CP.∵D为BC的中点.∴PD垂直平分BC.∴①ED⊥BC正确;∵∠ABC=90°.∴PD∥AB.∴E为AC的中点.∴EC=EA.∵EB=EC.∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.故正确的有①②④.故选:B.【点评】本题考查了基本作图的知识.解题的关键是了解如何作已知线段的垂直平分线.难度中等.9.【分析】(1)如图作MP∥AO交ON于点P.当AM=MD时.求得S1=S2+S3.(2)利用MN是⊙O的切线.四边形ABCD为正方形.求得△AOM ∽△DMN.(3)作BP⊥MN于点P.利用Rt△MAB≌Rt△MPB和Rt△BPN≌Rt△BCN来证明C.D成立.【解答】解:(1)如图.作MP∥AO交ON于点P.∵点O是线段AE上的一个动点.当AM=MD时.S梯形ONDA=(OA+DN)•ADS△MNO=S△MOP+S△MPN=MP•AM+MP•MD=MP•AD.∵(OA+DN)=MP.∴S△MNO=S梯形ONDA.∴S1=S2+S3.∴不一定有S1>S2+S3.(2)∵MN是⊙O的切线.∴OM⊥MN.又∵四边形ABCD为正方形.∴∠A=∠D=90°.∠AMO+∠DMN=90°.∠AMO+∠AOM=90°.∴∠AOM=∠DMN.在△AMO和△DMN中..∴△AOM∽△DMN.故B成立;(3)如图.作BP⊥MN于点P.∵MN.BC是⊙O的切线.∴∠PMB=∠MOB.∠CBM=∠MOB.∵AD∥BC.∴∠CBM=∠AMB.∴∠AMB=∠PMB.在Rt△MAB和Rt△MPB中.∴Rt△MAB≌Rt△MPB(AAS)∴AM=MP.∠ABM=∠MBP.BP=AB=BC.在Rt△BPN和Rt△BCN中.∴Rt△BPN≌Rt△BCN(HL)∴PN=CN.∠PBN=∠CBN.∴∠MBN=∠MBP+∠PBN.MN=MP+PN=AM+CN.故C.D成立.综上所述.A不一定成立.故选:A.【点评】本题主要考查了圆的切线及全等三角形的判定和性质.关键是作出辅助线利用三角形全等证明.10.【分析】分别构造出平行四边形和三角形.根据平行四边形的性质和全等三角形的性质进行比较.即可判断.【解答】解:如图A中、延长AC、BE交于S.∵∠CAB=∠EDB=45°.∴AS∥ED.则SC∥DE.同理SE∥CD.∴四边形SCDE是平行四边形.∴SE=CD.DE=CS.即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;如图B中、延长AF、BH交于S.作EG∥AS交BS于E.显然AF+FG+GH+HB<SA+SB.如图C中、延长AI到S.使得∠SBA=70°.SB交KM于T.显然AI+IK+KM+BM>SA+SB.如图D中、显然AN+NQ+QP+PB>SA+SB.如图D中.延长AN交BP的延长线于T.作∠RQB=45°.显然:AN+NQ+QP+PB>AN+NQ+QR=RB.即AN+NQ+PQ+PB>AI+IK+KM+MB.综上所述.D选项的所走的线路最长.故选:D.【点评】本题考查了平行线的判定.平行四边形的性质和判定的应用.注意:两组对边分别平行的四边形是平行四边形.平行四边形的对边相等.二、填空题(共6小题.每小题4分.共24分)11.【分析】此题可有两种方法:(1)观察法:根据方程解的定义.当x=时.方程左右两边相等;(2)根据等式性质计算.即解方程步骤中的移项、系数化为1.【解答】解:移项得:2x=1.系数化为1得:x=.故答案为:.【点评】此题虽很容易.但也要注意方程解的表示方法:填空时应填若横线外没有“x=”.应注意要填x=.不能直接填.12.【分析】根据从上面看得到的图形是俯视图.可得俯视图.根据矩形的面积公式.可得答案.【解答】解:从上面看三个正方形组成的矩形.矩形的面积为1×3=3.故答案为:3.【点评】本题考查了简单组合体的三视图.先确定俯视图.再求面积.13.【分析】根据度化成分乘以60.可得度分的表示方法.根据同单位的相减.可得答案.【解答】解:原式=49°60′﹣15°30′=34°30′.故答案为:34°30′.【点评】此类题是进行度、分、秒的加法计算.相对比较简单.注意以60为进制即可.14.【分析】根据折线图即可求得a、b的值.从而求得代数式的值.【解答】解:根据图表可得:a=10.b=2.则a+b=10+2=12.故答案为:12.【点评】本题考查读频数分布折线图的能力和利用统计图获取信息的能力.利用统计图获取信息时.必须认真观察、分析、研究统计图.才能作出正确的判断和解决问题.15.【分析】设OC=a.根据点D在反比例函数图象上表示出CD.再根据相似三角形对应边成比例列式求出AC.然后根据中点的定义表示出点B的坐标.再根据点B在反比例函数图象上表示出a、k的关系.然后用a表示出点B的坐标.再利用待定系数法求一次函数解析式解答.【解答】解:设OC=a.∵点D在y=上.∴CD=.∵△OCD∽△ACO.∴=.∴AC==.∴点A(a.).∵点B是OA的中点.∴点B的坐标为(.).∵点B在反比例函数图象上.∴=.∴=2k2.∴a4=4k2.解得.a2=2k.∴点B的坐标为(.a).设直线OA的解析式为y=mx.则m•=a.解得m=2.所以.直线OA的解析式为y=2x.故答案为:y=2x.【点评】本题考查了相似三角形的性质.反比例函数图象上点的坐标特征.用OC的长度表示出点B的坐标是解题的关键.也是本题的难点.16.【分析】根据三角形的任意两边之和大于第三边判断出a最小为2.再根据二次函数的增减性和对称性判断出对称轴在2、3之间偏向2.即小于2.5.然后列出不等式求解即可.【解答】方法一:解:∵正整数a.b.c恰好是一个三角形的三边长.且a<b<c.∴a最小是2.∵y1<y2<y3.∴﹣<2.5.解得m>﹣2.5.方法二:解:当a<b<c时.都有y1<y2<y3.即.∴.∴.∵a.b.c恰好是一个三角形的三边长.a<b<c.∴a+b<b+c.∴m>﹣(a+b).∵a.b.c为正整数.∴a.b.c的最小值分别为2、3、4.∴m>﹣(a+b)≥﹣(2+3)=﹣.∴m>﹣.故答案为:m>﹣.【点评】本题考查了二次函数图象上点的坐标特征.三角形的三边关系.判断出a最小可以取2以及对称轴的位置是解题的关键.三、解答题(共8小题.共66分)17.【分析】原式第一项利用平方差公式计算.合并即可得到结果.【解答】解:原式=9﹣a2+a2=9.【点评】此题考查了整式的混合运算.熟练掌握运算法则是解本题的关键.18.【分析】方程组利用加减消元法求出解即可.【解答】解:.①+②得:5x=10.即x=2.将x=2代入①得:y=1.则方程组的解为.【点评】此题考查了解二元一次方程组.利用了消元的思想.消元的方法有:加减消元法与代入消元法.19.【分析】(1)过O作OE⊥AB.根据垂径定理得到AE=BE.CE=DE.从而得到AC=BD;(2)由(1)可知.OE⊥AB且OE⊥CD.连接OC.OA.再根据勾股定理求出CE及AE的长.根据AC=AE﹣CE即可得出结论.【解答】(1)证明:过O作OE⊥AB于点E.则CE=DE.AE=BE.∴BE﹣DE=AE﹣CE.即AC=BD;(2)解:由(1)可知.OE⊥AB且OE⊥CD.连接OC.OA.∴OE=6.∴CE===2.AE===8.∴AC=AE﹣CE=8﹣2.【点评】本题考查的是垂径定理.根据题意作出辅助线.构造出直角三角形是解答此题的关键.20.【分析】(1)根据待定系数法.可得答案;(2)根据三角形的面积公式.可得答案.【解答】解:(1)把A(2.5)分别代入y=和y=x+b.得.解得k=10.b=3;(2)作AC⊥x轴于点C.由(1)得直线AB的解析式为y=x+3.∴点B的坐标为(﹣3.0).∴OB=3.∵点A的坐标是(2.5).∴AC=5.∴=5=.【点评】本题考查了反比例函数与一次函数的交点问题.利用了待定系数法.三角形的面积公式.21.【分析】(1)根据求极差的方法用这组数据的最大值减去最小值即可;(2)根据所给出的数据和以0.4kg为组距.分别进行分组.再找出各组的数即可;(3)①用总人数乘以A型血的人数所占的百分比即可;②用360°减去A型、B型和AB型的圆心角的度数即可求出O型血的扇形的圆心角度数.【解答】解:(1)这组数据的极差是4.8﹣2.8=2(kg);(2)根据所给出的数据填表如下:某医院2014年3月份20名新生儿体重的频数分布表组别(kg)划记频数2.75﹣3.15略23.15﹣3.55略73.55﹣3.95正一63.95﹣4.35略24.35﹣4.75略24.75﹣5.15略1合计20(3)①A型血的人数是:20×45%=9(人);②表示O型血的扇形的圆心角度数是360°﹣(45%+30%)×360°﹣36°=360°﹣270°﹣36°=54°.【点评】此题考查了频数(率)分布表、扇形统计图以及极差的求法.读图时要全面细致.同时.解题方法要灵活多样.切忌死记硬背.要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.22.【分析】(1)设y关于x的函数关系式y=kx+b.代入(50.200)、(60.260)两点求得解析式即可;(2)把y=620代入(1)求得答案即可;(3)利用水费+污水处理费=600元.列出方程解决问题.【解答】解:(1)设y关于x的函数关系式y=kx+b.∵直线y=kx+b经过点(50.200).(60.260)∴解得∴y关于x的函数关系式是y=6x﹣100;(2)由图可知.当y=620时.x>50.∴6x﹣100=620.解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x﹣100+(x﹣80)=600.化简得x2+40x﹣14000=0解得:x1=100.x2=﹣140(不合题意.舍去).答:这个企业2014年3月份的用水量是100吨.【点评】此题考查一次函数的运用.一元二次方程和一元一次方程的运用.注意理解题意.结合图象.根据实际选择合理的方法解答.23.【分析】(1)①将抛物线上的点的坐标代入抛物线即可求出b、c 的值;②求证AD=BO和AD∥BO即可判定四边形为平行四边形;(2)根据矩形的各角为90°可以求得△ABO∽△OBC即=.再根据勾股定理可得OC=BC.AC=OC.可求得横坐标为﹣c.纵坐标为c.【解答】解:(1)①∵AC∥x轴.A点坐标为(﹣4.4).∴点C的坐标是(0.4)把A、C两点的坐标代入y=﹣x2+bx+c得..解得;②四边形AOBD是平行四边形;理由如下:由①得抛物线的解析式为y=﹣x2﹣4x+4.∵y=﹣(x+2)2+8.∴顶点D的坐标为(﹣2.8).过D点作DE⊥AB于点E.则DE=OC=4.AE=2.∵AC=4.∴BC=AC=2.∴AE=BC.∵AC∥x轴.∴∠AED=∠BCO=90°.∴△AED≌△BCO.∴AD=BO.∠DAE=∠OBC.∴AD∥BO.∴四边形AOBD是平行四边形.(2)存在.点A的坐标可以是(﹣2.2)要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°.∵∠ABO=∠OBC.∴△ABO∽△OBC.∴=.又∵AB=AC+BC=3BC.∴OB=BC.∴在Rt△OBC中.根据勾股定理可得:OC=BC.AC=OC.∵C点是抛物线与y轴交点.∴OC=c.∴A点坐标为(﹣c.c).∴顶点横坐标=﹣c.b=﹣c.顶点D纵坐标是点A纵坐标的2倍.为2c.顶点D的坐标为(﹣c.2c)∵将D点代入可得2c=﹣(﹣c)2+c•c+c.解得:c=2或者0.当c为0时四边形AOBD不是矩形.舍去.故c=2;∴A点坐标为(﹣2.2).【点评】本题主要考查了二次函数对称轴顶点坐标的公式.以及函数与坐标轴交点坐标的求解方法.24.【分析】(1)连接PM.PN.运用△PMF≌△PNE证明;(2)分两种情况:①当t>1时.点E在y轴的负半轴上;②当0<t≤1时.点E在y轴的正半轴或原点上.再根据(1)求解.(3)分两种情况.当1<t<2时.当t>2时.三角形相似时还各有两种情况.根据比例式求出时间t.【解答】证明:(1)如图.连接PM.PN.∵⊙P与x轴.y轴分别相切于点M和点N.∴PM⊥MF.PN⊥ON且PM=PN.∴∠PMF=∠PNE=90°且∠NPM=90°.∵PE⊥PF.∠NPE=∠MPF=90°﹣∠MPE.在△PMF和△PNE中..∴△PMF≌△PNE(ASA).∴PE=PF;(2)解:分两种情况:①当t>1时.点E在y轴的负半轴上.如图1.由(1)得△PMF≌△PNE.∴NE=MF=t.PM=PN=1.∴b=OF=OM+MF=1+t.a=NE﹣ON=t﹣1.∴b﹣a=1+t﹣(t﹣1)=2.∴b=2+a.②0<t≤1时.如图2.点E在y轴的正半轴或原点上.同理可证△PMF≌△PNE.∴b=OF=OM+MF=1+t.a=OE=ON﹣NE=1﹣t.∴b+a=1+t+1﹣t=2.∴b=2﹣a.综上所述.当t>1时.b=2+a;当0<t≤1时.b=2﹣a;(3)存在;①如图3.当0<t<1时.∵F(1+t.0).F和F′关于点M对称.M的坐标为(1.0).∴F′(1﹣t.0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q.∴Q(1﹣t.0)∴OQ=1﹣t.由(1)得△PMF≌△PNE∴NE=MF=t.∴OE=1﹣t.当△OEQ∽△MPF∴=∴=.此时无解.当△OEQ∽△MFP时.∴=.=.解得.t=2﹣或t=2+(舍去);②如图4.当1<t<2时.∵F(1+t.0).F和F′关于点M对称.M的坐标为(1.0).∴F′(1﹣t.0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q.∴Q(1﹣t.0)∴OQ=1﹣t.由(1)得△PMF≌△PNE∴NE=MF=t.∴OE=t﹣1当△OEQ∽△MPF∴=∴=.解得.t=.当△OEQ∽△MFP时.∴=.=.解得.t=.③如图5.当t>2时.∵F(1+t.0).F和F′关于点M对称.∴F′(1﹣t.0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q.∴Q(1﹣t.0)∴OQ=t﹣1.由(1)得△PMF≌△PNE∴NE=MF=t.∴OE=t﹣1当△OEQ∽△MPF∴=∴=.无解.当△OEQ∽△MFP时.∴=.=.解得.t=2+.t=2﹣(舍去)所以当t=2﹣或或或t=2+时.使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.【点评】本题主要考查了圆的综合题.解题的关键是把圆的知识与全等三角形与相似三角形相结合找出线段关系.。

2023年江苏省盐城市中考数学真题卷(含答案与解析)_8652

2023年江苏省盐城市中考数学真题卷(含答案与解析)_8652

2023年江苏省盐城市初中学业水平考试数学试卷本试卷共6页,满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1. 下列数中,属于负数的是( )A. 2023B. 2023-C. 12023D. 02. 在平面直角坐标系中,点2(1)A ,在( ) A 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 下列图形中,属于中心对称图形的是( )A B.C. D.4. 下列每组数分别表示3根小木棒的长度(单位:cm ),其中能搭成一个三角形的是( )A. 5,7,12B. 7,7,15C. 6,9,16D. 6,8,125. 2023年5月21日,盐城市家长学校总校五月课堂正式开讲,直播点击量达105000人次.数据105000用科学记数法表示为( )A. 51.0510⨯B. 410.510⨯C. 60.10510⨯D. 61.0510⨯ 6. 由六块相同的小正方体搭成的几何体如图所示,则它的俯视图是( )..A. B.C. D.7. 小华将一副三角板(90C D ∠=∠=︒,30B ∠=︒,45E ∠=︒)按如图所示的方式摆放,其中AB EF ∥,则1∠的度数为( )A. 45︒B. 60︒C. 75︒D. 105︒8. 如图,关于x 的函数y 的图象与x 轴有且仅有三个交点,分别是()()()301030--,,,,,,对此,小华认为:①当0y >时,31x -<<-;②当3x >-时,y 有最小值;③点(),1P m m --在函数y 的图象上,符合要求的点P 只有1个;④将函数y 的图象向右平移1个或3个单位长度经过原点.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共8小题,每小题3分,共24分)9. 在英文句子“Happy Teachers' Day !”中,字母“a ”出现的频数为__________.10. 因式分解:2x xy -=__________________.11. 在ABC 中,D ,E 分别为边AB ,AC 的中点,10cm BC =,则DE 的长为__________cm. 12. 如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为__________.13. 我国古代数学著作《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:“几个人一起去购买某物品,每人出8钱,则多出3钱;每人出7钱,则还差4钱.问人数、物品的价格分别是多少?”该问题中的人数为__________.14. 如图1,位于市区的“铁军”雕塑“大铜马”是盐城市标志性文化名片,如图2,线段AB 表示“铁军”雕塑的高,点B ,C ,D 在同一条直线上,且60ACB ∠=︒,30ADB ∠=︒,17.5m CD =,则线段AB 的长约为__________m. 1.7≈)15. 如图,在Rt ABC △中,90ACB ∠=︒,=60B ∠︒,3BC =,将ABC 绕点C 逆时针旋转到EDC △的位置,点B 的对应点D 首次落在斜边AB 上,则点A 的运动路径的长为_________.16. 如图,在平面直角坐标系xOy 中,点A ,B 都在反比例函数()0k y x x=>的图象上,延长AB 交y 轴于点C ,过点A 作AD y ⊥轴于点D ,连接BD 并延长,交x 轴于点E ,连接CE .若2AB BC =,BCE 的面积是4.5,则k 的值为_________.三、解答题(本大题共11小题,共102分.解答时应写出文字说明、证明过程或演算步骤)17. 计算:()1014cos 6052π-⎛⎫+︒-- ⎪⎝⎭. 18. 解不等式4233x x --<,并把它的解集在数轴上表示出来.19. 先化简,再求值:()()()2333a b a b a b +++-,其中2a =,1b =-.20. 随着盐城交通的快速发展,城乡居民出行更加便捷.如图,从甲镇到乙镇有乡村公路A 和省级公路B 两条路线;从乙镇到盐城南洋国际机场,有省级公路C 、高速公路D 和城市高架E 三条路线.小华驾车从甲镇到盐城南洋国际机场接人(不考虑其他因素).(1)从甲镇到乙镇,小华所选路线是乡村公路A 的概率为_________.(2)用列表或画树状图的方法,求小华两段路程都选省级公路的概率.21. 如图,AB AE =,BC ED =,B E ∠=∠.(1)求证:AC AD =;(2)用直尺和圆规作图:过点A 作AF CD ⊥,垂足为F .(不写作法,保留作图痕迹)22. 盐城市大丰国家级麋鹿自然保护区在过去的37年间,将濒临灭绝的39头世界珍稀野生动物麋鹿发展到如今的7033头.某校生物兴趣小组去实地调查,绘制出如下统计图.(注:麋鹿总头数=人工驯养头数+野生头数)解答下列问题:(1)①在扇形统计图中,哺乳类所在扇形的圆心角度数为_________°;②在折线统计图中,近6年野生麋鹿头数的中位数为_________头.(2)填表: 年份 2017 2018 2019 2020 2021 2022人工驯养麋鹿头数 3473 3531 3666 3861 _________ 3917(3)结合以上统计和计算,谈谈你对该保护区的建议或想法.23.课堂上,老师提出了下面的问题:已知30a b >>,a M b =,13a Nb +=+,试比较M 与N 的大小. 的小华:整式的大小比较可采用“作差法”.老师:比较21x +与21x -的大小.小华:∵()()()222121121110x x x x x +--=+-+=-+>, ∴2121x x +>-.老师:分式大小比较能用“作差法”吗?…(1)请用“作差法”完成老师提出的问题.(2)比较大小:2368__________2265.(填“>”“=”或“<”) 24. 如图,在ABC 中,O 是AC 上(异于点A ,C )的一点,O 恰好经过点A ,B ,AD CB ⊥于点D ,且AB 平分CAD ∠.(1)判断BC 与O 位置关系,并说明理由;(2)若10AC =,8DC =,求O 的半径长.25. 某校举行“二十大知识学习竞赛”活动,老师让班长小华到商店购买笔记本作为奖品.甲、乙两家商店每本硬面笔记本比软面笔记本都贵3元(单价均为整数).(1)若班长小华在甲商店购买,他发现用240元购买硬面笔记本与用195元购买软面笔记本的数量相同,求甲商店硬面笔记本的单价.(2)若班长小华在乙商店购买硬面笔记本,乙商店给出了硬面笔记本的优惠条件(软面笔记本单价不变):一次购买的数量少于30本,按原价售出;不少于30本按软面笔记本的单价售出.班长小华打算购买m 本硬面笔记本(m 为正整数),他发现再多购买5本的费用恰好与按原价购买的费用相同,求乙商店硬面笔记本的原价.26. 定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】的的(1)现有以下两个函数:①21y x =-;②2y x x =-,其中,_________为函数1y x =-的轴点函数.(填序号)【尝试应用】(2)函数y x c =+(c 为常数,0c >)的图象与x 轴交于点A ,其轴点函数2y ax bx c =++与x 轴的另一交点为点B .若14OB OA =,求b 的值. 【拓展延伸】(3)如图,函数12y x t =+(t 为常数,0t >)的图象与x 轴、y 轴分别交于M ,C 两点,在x 轴的正半轴上取一点N ,使得ON OC =.以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE .若函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++的顶点P 在矩形MNDE 的边上,求n 的值.27. 综合与实践【问题情境】如图1,小华将矩形纸片ABCD 先沿对角线BD 折叠,展开后再折叠,使点B 落在对角线BD 上,点B 的对应点记为B ',折痕与边AD ,BC 分别交于点E ,F .【活动猜想】(1)如图2,当点B '与点D 重合时,四边形BEDF 是哪种特殊的四边形?答:_________.【问题解决】(2)如图3,当4AB =,8AD =,3BF =时,求证:点A ',B ',C 在同一条直线上.【深入探究】(3)如图4,当AB 与BC 满足什么关系时,始终有A B ''与对角线AC 平行?请说明理由.(4)在(3)的情形下,设AC 与BD ,EF 分别交于点O ,P ,试探究三条线段AP ,B D ',EF 之间满足的等量关系,并说明理由.参考答案一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1. 下列数中,属于负数的是( )A. 2023B. 2023-C. 12023D. 0 【答案】B【解析】【分析】根据小于0的数即为负数解答可得.【详解】2023-是负数,2023和12023是正数,0既不是正数也不是负数 故选:B .【点睛】本题主要考查正数和负数,熟练掌握负数的概念是解题的关键. 2. 在平面直角坐标系中,点2(1)A ,在( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】根据各象限内点的坐标特征解答.【详解】点(1,2)所在的象限是第一象限.故选:A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−). 3. 下列图形中,属于中心对称图形的是( )A. B.C. D.【答案】B【解析】【分析】根据中心对称图形的定义进行逐一判断即可:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【详解】解:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.由定义可判定A 、C 、D 选项的图形不是中心对称图形,故不符合题意;B 选项的图形是中心对称图形,符合题意.故选:B .【点睛】本题主要考查了中心对称图形,熟知中心对称图形的定义是解题的关键.4. 下列每组数分别表示3根小木棒的长度(单位:cm ),其中能搭成一个三角形的是( )A. 5,7,12B. 7,7,15C. 6,9,16D. 6,8,12【答案】D【解析】【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【详解】A 、5712+=,不能构成三角形,故此选项不合题意;B 、771415+=<,不能构成三角形,故此选项不合题意;C 、691516+=<,不能构成三角形,故此选项不合题意;D 、681412+=>,能构成三角形,故此选项符合题意.故选:D .【点睛】此题考查了三角形三边关系,看能否组成三角形的简便方法:看较小的两个数的和能否大于第三个数.5. 2023年5月21日,盐城市家长学校总校五月课堂正式开讲,直播点击量达105000人次.数据105000用科学记数法表示为( )A. 51.0510⨯B. 410.510⨯C. 60.10510⨯D. 61.0510⨯ 【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为10n a ⨯,n 为正整数,且n 比原数的整数位数少1,据此可以解答.【详解】解:数据105000用科学记数法表示为51.0510⨯ .故选:A .【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键.6. 由六块相同的小正方体搭成的几何体如图所示,则它的俯视图是( )A. B.C. D.【答案】D【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】观察图形可知,该几何体的俯视图如下:.故选:D .【点睛】本题考查了简单组合体的三视图的知识,俯视图是从物体的上面看得到的视图. 7. 小华将一副三角板(90C D ∠=∠=︒,30B ∠=︒,45E ∠=︒)按如图所示的方式摆放,其中AB EF ∥,则1∠的度数为( )A. 45︒B. 60︒C. 75︒D. 105︒【答案】C【解析】 【分析】根据平行线的性质得出45AGF F ∠=∠=︒,然后根据三角形内角和定理求解即可.【详解】解:如图:设AB FD 、交于点G ,∵AB EF ∥,∴45AGF F ∠=∠=︒,∵60A ∠=︒,∴1180180604575A AGF ∠=︒-∠-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查了三角形内角和定理、平行线的性质等知识点,熟练掌握平行线的性质是解题的关键.8. 如图,关于x 的函数y 的图象与x 轴有且仅有三个交点,分别是()()()301030--,,,,,,对此,小华认为:①当0y >时,31x -<<-;②当3x >-时,y 有最小值;③点(),1P m m --在函数y 的图象上,符合要求的点P 只有1个;④将函数y 的图象向右平移1个或3个单位长度经过原点.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个【答案】C【解析】 【分析】结合函数图象逐个分析即可.【详解】由函数图象可得:当0y >时,31x -<<-或3x >;故①错误;当3x >-时,y 有最小值;故②正确;点(),1P m m --在直线=1y x --上,直线=1y x --与函数图象有3个交点,故③错误;将函数y 的图象向右平移1个或3个单位长度经过原点,故④正确;故选:C .【点睛】本题考查了函数的图象与性质,一次函数图象,解题的关键是数形结合.二、填空题(本大题共8小题,每小题3分,共24分)9. 在英文句子“Happy Teachers' Day !”中,字母“a ”出现的频数为__________.【答案】3【解析】【分析】根据频数定义可得答案.【详解】在英文句子“Happy Teachers' Day !”中,字母“a ”出现的频数为3,故答案为:3.【点睛】此题主要考查了频数,关键是掌握频数是指每个对象出现的次数.10. 因式分解:2x xy -=__________________.【答案】()x x y -【解析】【分析】根据观察可知公因式是x ,因此提出x 即可得出答案.【详解】解:x 2-xy = x (x -y ).故答案:()x x y -【点睛】提公因式法因式分解是本题的考点,通过观察正确找出公因式是解题的关键.11. 在ABC 中,D ,E 分别为边AB ,AC 的中点,10cm BC =,则DE 的长为__________cm.【答案】5【解析】【分析】由于D 、E 分别为AB 、AC 边上的中点,那么DE 是ABC 的中位线,根据三角形中位线定理可求DE .【详解】如图所示,D 、E 分别为AB 、AC 边上的中点,DE ∴是ABC 的中位线,12DE BC ∴=; 又∵10cm BC =, ∴15cm 2DE BC ==; 故答案为:5.【点睛】本题考查了三角形中位线定理.三角形的中位线等于第三边的一半.12. 如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为__________.【答案】59【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】解:设小正方形的边长为1,则总面积为9,其中阴影部分面积为5, ∴飞镖落在阴影部分的概率是59, 故答案为:59. 【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.13. 我国古代数学著作《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:“几个人一起去购买某物品,每人出8钱,则多出3钱;每人出7钱,则还差4钱.问人数、物品的价格分别是多少?”该问题中的人数为__________.【答案】7人【解析】【分析】设共有x 人,价格为y 钱,根据题意列出二元一次方程组即可求解.【详解】解:设共有x 人,价格为y 钱,依题意得:8374x y x y -=⎧⎨+=⎩, 解得:753x y =⎧⎨=⎩, 答:物品价格为53钱,共同购买该物品的人数有7人,故答案为:7.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程组即可求解.14. 如图1,位于市区的“铁军”雕塑“大铜马”是盐城市标志性文化名片,如图2,线段AB 表示“铁军”雕塑的高,点B ,C ,D 在同一条直线上,且60ACB ∠=︒,30ADB ∠=︒,17.5m CD =,则线段AB 的长约为__________m. 1.7≈)【答案】15【解析】【分析】由60ACB ∠=︒,30ADB ∠=︒可得30ADB CAB CAD ∠︒=∠=∠=,可推得17.5m AC CD ==,由三角函数求出AB 即可.【详解】∵60ACB ∠=︒,30ADB ∠=︒,ACB ADB CAD ∠=∠+∠,∴30ADB CAD ∠=∠=︒,∴17.5m AC CD ==,又∵90ABC ∠=︒,∴906030CAB ∠=︒-︒=︒, ∵cos ∠=AB CAB AC,17.5AB = 解得15AB ≈,故答案为:15.【点睛】此题主要考查了解直角三角形的应用,正确得出AC 的长是解题关键.15. 如图,在Rt ABC △中,90ACB ∠=︒,=60B ∠︒,3BC =,将ABC 绕点C 逆时针旋转到EDC △的位置,点B 的对应点D 首次落在斜边AB 上,则点A 的运动路径的长为_________.【解析】【分析】首先证明BCD △是等边三角形,再根据弧长公式计算即可.【详解】解:在Rt ABC △中,∵90ACB ∠=︒,=60B ∠︒,3BC =,∴26AB BC ==,由旋转的性质得CE CA ===,90ACE BCD ACD ∠=∠=︒-∠,CB CD =,∴BCD △是等边三角形,∴60BCD ACE ∠=︒=∠,∴点A =..【点睛】本题考查了旋转变换,含30︒直角三角形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是证明BCD △是等边三角形.16. 如图,在平面直角坐标系xOy 中,点A ,B 都在反比例函数()0k y x x=>的图象上,延长AB 交y 轴于点C ,过点A 作AD y ⊥轴于点D ,连接BD 并延长,交x 轴于点E ,连接CE .若2AB BC =,BCE 的面积是4.5,则k 的值为_________.【答案】6【解析】【分析】过点B 作BF AD ⊥于点F ,连接AE ,设点A 的坐标为,k a a ⎛⎫ ⎪⎝⎭,点B 的坐标为,k b b ⎛⎫ ⎪⎝⎭,则,AD a =,k k AF a b BF b a=-=-,证明∽ ABF ACD ,则AB AF AC AD =,得到3a b =,根据29ABE S BCE == ,进一步列式即可求出k 的值.【详解】解:过点B 作BF AD ⊥于点F ,连接AE ,设点A 的坐标为,k a a ⎛⎫ ⎪⎝⎭,点B 的坐标为,k b b ⎛⎫ ⎪⎝⎭,则,AD a =,k k AF a b BF b a =-=-, ∵2AB BC =, ∴23AB AC =,∵AD y ⊥轴于点D ,∴CD BF ,∴∽ ABF ACD , ∴AB AF AC AD=, ∴23AB a b AC a -==, ∴3a b =,∵2AB BC =,BCE 的面积是4.5,∴29ABE S BCE == , ∴11922AD BF AD OD ⋅+⋅=, ∴11922k k k a a b a a⎛⎫-+⋅= ⎪⎝⎭, 则113392323k k k b b b b b ⎛⎫-+⋅= ⎪⎝⎭, 即3119222k k k -+=,解得6k =,故答案为:6【点睛】此题考查反比例函数的图象和性质、相似三角形的判定和性质等知识,求出3a b =是解题的关键.三、解答题(本大题共11小题,共102分.解答时应写出文字说明、证明过程或演算步骤)17. 计算:()1014cos 6052π-⎛⎫+︒-- ⎪⎝⎭. 【答案】3【解析】【分析】直接利用负整数指数幂的性质、特殊角的三角函数值、零指数幂分别化简,进而得出答案. 【详解】原式124132=+⨯-=. 【点睛】此题主要考查了实数的运算,正确化简各数是解题关键.18. 解不等式4233x x --<,并把它的解集在数轴上表示出来.【答案】1x <,数轴见详解【解析】【分析】根据解一元一次不等式的步骤解答即可. 【详解】4233x x --< 去分母得:()3234x x -<-,去括号得:694x x -<-,移项得:694x x -<-,合并同类项得:55x <,系数化为1:1x <.在数轴上可表示为:.【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能求出不等式的解集是解此题的关键,难度适中.19. 先化简,再求值:()()()2333a b a b a b +++-,其中2a =,1b =-.【答案】226a ab +,4-【解析】【分析】根据完全平方公式和平方差公式展开后化简,最后代入求值即可.【详解】()()()2333a b a b a b +++- 2222699a ab b a b =+++-226a ab =+当2a =,1b =-时,原式()2226214=⨯+⨯⨯-=-. 【点睛】本题考查整式混合运算的化简求值,解题的关键是根据完全平方公式和平方差公式展开. 20. 随着盐城交通快速发展,城乡居民出行更加便捷.如图,从甲镇到乙镇有乡村公路A 和省级公路B 两条路线;从乙镇到盐城南洋国际机场,有省级公路C 、高速公路D 和城市高架E 三条路线.小华驾车从甲镇到盐城南洋国际机场接人(不考虑其他因素).(1)从甲镇到乙镇,小华所选路线是乡村公路A 的概率为_________.(2)用列表或画树状图的方法,求小华两段路程都选省级公路的概率.【答案】(1)12(2)16【解析】【分析】(1)根据概率公式计算即可;(2)列表表示出所有的可能性,再根据概率公式计算即可.的【小问1详解】从甲镇到乙镇,小华所选路线是乡村公路A 的概率为12, 故答案为:12.【小问2详解】列表如下:C D E AAC AD AE B BC BD BE 共有6种等可能的结果,其中两段路程都选省级公路只有BC ,共1种, ∴小华两段路程都选省级公路的概率16. 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m PA n =. 21. 如图,AB AE =,BC ED =,BE ∠=∠.(1)求证:AC AD =;(2)用直尺和圆规作图:过点A 作AF CD ⊥,垂足为F .(不写作法,保留作图痕迹)【答案】(1)见解析(2)见解析 【解析】【分析】(1)根据边角边证明ABC AED ≌△△即可证明结论成立; (2)根据过直线外一点向直线最垂线的作法得出即可.【小问1详解】证明:∵AB AE =,B E ∠=∠,BC ED =,∴()SAS ABC AED ≌,∴AC AD;【小问2详解】解:所作图形如图,.【点睛】本题主要考查了全等三角形的判定和性质,过直线外一点向直线最垂线的作法,熟练记忆正确作法是解题关键.22. 盐城市大丰国家级麋鹿自然保护区在过去的37年间,将濒临灭绝的39头世界珍稀野生动物麋鹿发展到如今的7033头.某校生物兴趣小组去实地调查,绘制出如下统计图.(注:麋鹿总头数=人工驯养头数+野生头数)解答下列问题:(1)①在扇形统计图中,哺乳类所在扇形的圆心角度数为_________°;②在折线统计图中,近6年野生麋鹿头数的中位数为_________头.(2)填表:年份2017 2018 2019 2020 2021 2022人工驯养麋鹿头数 3473 3531 3666 3861 _________ 3917(3)结合以上的统计和计算,谈谈你对该保护区的建议或想法.【答案】(1)14.4︒,1585(2)3980(3)见解析【解析】【分析】(1)先计算哺乳类所占百分比,再计算该部分扇形圆心角的度数;(2)先排序,再计算中间的两个数的平均数;(3)从人工驯养和野生保护两个方面表述即可.【小问1详解】解:①在扇形统计图中,哺乳类所占的百分比为:154%32%10%4%---=,∴哺乳类所在扇形的圆心角度数为:3604%14.4︒⨯=︒;②在折线统计图中,近6年野生麋鹿头数按从小到大顺序排序为: 765,1025,1350,1820,2503,3116,近6年野生麋鹿头数的中位数为1350182015852+=, 故答案为:14.4︒,1585;【小问2详解】解:648325033980-=,故答案为:3980;【小问3详解】加强对野生麋鹿的保护的同时,提高人工驯养的技术.【点睛】本题考查了扇形统计图和拆线统计图,中位数,掌握从图形中获取信息的方法是解题的关键. 23. 课堂上,老师提出了下面的问题:已知30a b >>,a M b =,13a Nb +=+,试比较M 与N 的大小. 小华:整式的大小比较可采用“作差法”.老师:比较21x +与21x -的大小.小华:∵()()()222121121110x x x x x +--=+-+=-+>, ∴2121x x +>-.老师:分式大小比较能用“作差法”吗?…(1)请用“作差法”完成老师提出的问题.(2)比较大小:2368__________2265.(填“>”“=”或“<”) 【答案】(1)M N >(2)<【解析】【分析】(1)根据作差法求M N -的值即可得出答案;(2)根据作差法求23226865-的值即可得出答案. 【小问1详解】 解:()()()()()311333333a b b a a a ab a ba b a b M N b b b b b b b b +-+++----=-===++++, 30a b >> ,()3>03a b b b -∴+, >M N ∴; 【小问2详解】解:2322149514961=<06865442044204420--=-, 2322<6865∴. 故答案为:<.【点睛】本题考查分式运算的应用,解题关键是理解材料,通过作差法求解,掌握分式运算的方法. 24. 如图,在ABC 中,O 是AC 上(异于点A ,C )一点,O 恰好经过点A ,B ,AD CB ⊥于点D ,且AB 平分CAD ∠.的的(1)判断BC 与O 的位置关系,并说明理由;(2)若10AC =,8DC =,求O 的半径长.【答案】(1)见解析(2)O 的半径长为154. 【解析】【分析】(1)连接OB ,证明OB AD ∥,即可证得OB BC ⊥,从而证得BC 是圆的切线;(2)设OB OA x ==,则10OC AC OA x =-=-,利用勾股定理求得6AD =,推出COB CAD ∽△△,利用相似三角形的性质列得比例式,据此求解即可.【小问1详解】证明:连接OB ,如下图所示,∵AB 是CAD ∠的平分线,∴BAD BAO ∠=∠,又∵OB OA =,∴OAB OBA ∠=∠,∴BAD OBA ∠=∠,∴OB AD ∥,∴90OBC D ∠=∠=︒,即OB BC ⊥,又∵BC 过半径OB 的外端点B ,∴BC 与O 相切;【小问2详解】解:设OB OA x ==,则10OC AC OA x =-=-,∵在ADC △中,90D Ð=°,10AC =,8DC =,∴6AD ==,∵OB AD ∥,∴COB CAD ∽△△, ∴OB OC AD AC=,即10610x x -=, 解得154x =. 故O 的半径长为154. 【点睛】本题考查了切线的判定,相似三角形的判定和性质,以及勾股定理,熟练掌握切线的判定是解本题的关键.25. 某校举行“二十大知识学习竞赛”活动,老师让班长小华到商店购买笔记本作为奖品.甲、乙两家商店每本硬面笔记本比软面笔记本都贵3元(单价均为整数).(1)若班长小华在甲商店购买,他发现用240元购买硬面笔记本与用195元购买软面笔记本的数量相同,求甲商店硬面笔记本的单价.(2)若班长小华在乙商店购买硬面笔记本,乙商店给出了硬面笔记本的优惠条件(软面笔记本单价不变):一次购买的数量少于30本,按原价售出;不少于30本按软面笔记本的单价售出.班长小华打算购买m 本硬面笔记本(m 为正整数),他发现再多购买5本的费用恰好与按原价购买的费用相同,求乙商店硬面笔记本的原价.【答案】(1)甲商店硬面笔记本的单价为16元(2)乙商店硬面笔记本的原价18元【解析】【分析】(1)根据“硬面笔记本数量=软面笔记本数量”列出分式方程,求解检验即可;(2)设乙商店硬面笔记本的原价为a 元,则软面笔记本的单价为()3a -元,由再多购买5本的费用恰好与按原价购买的费用相同可得()()53ma m a =+-,再根据30530m m <⎧⎨+≥⎩且m ,均为正整数,即可求解. 【小问1详解】解:设硬面笔记本的单价为x 元,则软面笔记本的单价为()3x -元,根据题意得 2401953x x =-,解得16x =,经检验,16x =是原方程的根,且符合题意,故甲商店硬面笔记本单价为16元;【小问2详解】设乙商店硬面笔记本的原价为a 元,则软面笔记本的单价为()3a -元,由题意可得30530m m <⎧⎨+≥⎩, 解得2530m ≤<,根据题意得()()53ma m a =+-, 解得3155m a +=, m 为正整数, 25m ∴=,26,27,28,29,分别代入3155m a +=, 可得18a =,18.6,19.2,19.8,20.4,由单价均为整数可得18a =,故乙商店硬面笔记本的原价18元.【点睛】本题考查了分式方程的应用以及二元一次方程的应用,解题的关键是找准等量关系,正确列出相应方程.26. 定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①21y x =-;②2y x x =-,其中,_________为函数1y x =-的轴点函数.(填序号)【尝试应用】(2)函数y x c =+(c 为常数,0c >)的图象与x 轴交于点A ,其轴点函数2y ax bx c =++与x 轴的另一交点为点B .若14OB OA =,求b 的值. 【拓展延伸】 的(3)如图,函数12y x t =+(t 为常数,0t >)的图象与x 轴、y 轴分别交于M ,C 两点,在x 轴的正半轴上取一点N ,使得ON OC =.以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE .若函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++的顶点P 在矩形MNDE 的边上,求n 的值.【答案】(1)①;(2)5b =或3-;(3)1n =或n =14n = 【解析】 【分析】(1)求出函数1y x =-与坐标轴的交点,再判断这两个点在不在二次函数图象上即可; (2)求出函数y x c =+与坐标轴的交点,再由14OB OA =求出点B 坐标,代入二次函数解析式计算即可; (3)先求出M ,C 的坐标,再根据2y mx nx t =++的顶点P 在矩形MNDE 的边上分类讨论即可.【详解】(1)函数1y x =-交x 轴于()1,0,交y 轴于()0,1-,∵点()1,0、()0,1-都在21y x =-函数图象上∴①21y x =-为函数1y x =-的轴点函数;∵点()0,1-不在2y x x =-函数图象上∴②2y x x =-不是函数1y x =-的轴点函数;故答案为:①;(2)函数y x c =+交x 轴于(),0A c -,交y 轴于()0,c , ∵函数y x c =+的轴点函数2y ax bx c =++∴(),0A c -和()0,c 都在2y ax bx c =++上,∵0c >∴OA c = ∵14OB OA =, ∴14OB c = ∴1,04B c ⎛⎫- ⎪⎝⎭或1,04B c ⎛⎫ ⎪⎝⎭当1,04B c ⎛⎫-⎪⎝⎭时,把(),0A c -1,04B c ⎛⎫- ⎪⎝⎭代入2y ax bx c =++得 221101640ac bc c ac bc c⎧=-+⎪⎨⎪=-+⎩,解得5b =, 当1,04B c ⎛⎫ ⎪⎝⎭时,把(),0A c -1,04B c ⎛⎫ ⎪⎝⎭代入2y ax bx c =++得 221101640ac bc c ac bc c⎧=++⎪⎨⎪=-+⎩,解得3b =-, 综上,5b =或3-;(3)函数12y x t =+交x 轴于()2,0M t -,交y 轴于()0,C t , ∵ON OC =,以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE∴(),0N t ,(),2D t t ,()2,2E t t -, ∵函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++ ∴()2,0M t -和()0,C t 在2y mx nx t =++上∴()()2022m t n t t =-+-+,整理得4210mt n -+= ∴122n mt =+∴2y mx nx t =++的顶点P 坐标为24,24n mt n m m ⎛⎫-- ⎪⎝⎭, ∵函数2y mx nx t =++的顶点P 在矩形MNDE 的边上。

最新版精编初中数学中考考核题库完整版(标准答案)

最新版精编初中数学中考考核题库完整版(标准答案)

2019年初中数学中考复习试题(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.不论a ,b 为何实数,22248a b a b +--+的值---------------------------------------( )(A )总是正数 (B )总是负数 (C )可以是零 (D )可以是正数也可以是负数2.关于x 的一元二次方程a 2x -5x +a 2+a =0的一个根是0,则a 的值是--------------------( )(A )0 (B )1 (C )-1 (D )0,或-13.若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是----------------------------------------------------------------------------------------------------------------------------------------( )(A )m <14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-14,且m ≠0 4.D 是ABC ∆的边AB 上的一点,过D 点作DE //BC 交AC 于E 。

已知AD :DB =2:3,则BCED ADE S S 四边形:∆= ( ) (A )2:3 (B )4:9 (C )4:5 (D )4:21第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题5.将图中的△ABC 作下列运动,画出相应的图形: (1)关于y 轴对称图形;(2)以B 点为位似中心,将△ABC 放大到2倍。

6.已知: 2228162n n ⨯⨯=,求n 的值7. 抛物线3)2(2+-=x y 的对称轴是_______________________8. 如图,抛物线对称轴是x=1,与x 轴交于A 、B 两点,若B 点坐标是(3,0),则A 点的坐标是______________A9.线y =a x 2+b x +c 经过A ,B ,C 三点,当x ≥0时,其图象如图所示. (1) 求抛物线的解析式,写出抛物线的顶点坐标; (2) 画出抛物线y =a x 2+b x +c 当x <0时的图象; (3) 利用抛物线y =a x 2+b x +c ,写出x 为何值时,y >0.10.已知:在菱形ABCD 中,分别延长AB 、AD 到E 、F ,使得BE =DF ,连结EC 、FC . 求证:EC =FC .11.如图,AB ⊥BE ,BC ⊥BD ,AB=BE ,BC=BD,求证:AD=CE12.25的相反数是 ▲ ,9的平方根是 ▲ ,计算:24(2)3x x -⋅= ▲ ,23--= ▲ .13.在△ABC 中,D 、E 是AB 上的点,且AD=DE=EB,DF ∥EG ∥BC ,则△ABC 被分成的三部分的面积比S △ADF :S 四边形DEGF :S 四边形EBCG 等于 。

2024年重庆市中考真题(A卷)数学试题(含答案)

2024年重庆市中考真题(A卷)数学试题(含答案)

重庆市2024年初中学业水平暨高中招生考试数学试题(A卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a=++≠的顶点坐标为24,24b ac ba a⎛⎫-- ⎪⎝⎭,对称轴为2bxa=-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑.1.下列四个数中,最小的数是()A.2-B.0C.3D.1 2-【答案】A【解析】【分析】本题考查了有理数比较大小,解题的关键是掌握比较大小的法则.根据正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵13022>>->-,∴最小的数是2-;故选:A.2.下列四种化学仪器的示意图中,是轴对称图形的是()A.B.C. D.【答案】C【解析】【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】A 、不是轴对称图形,故本选项不符合题意;B 、不是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项符合题意;D 、不是轴对称图形,故本选项不符合题意;故选:C .3.已知点()3,2-在反比例函数()0k y k x =≠的图象上,则k 的值为()A.3- B.3 C.6- D.6【答案】C【解析】【分析】本题考查了待定系数法求反比例解析式,把()3,2-代入()0k y k x=≠求解即可.【详解】解:把()3,2-代入()0k y k x =≠,得326k =-⨯=-.故选C .4.如图,AB CD ∥,165∠=︒,则2∠的度数是()A.105︒B.115︒C.125︒D.135︒【答案】B【解析】∠=∠=︒,由邻补角性质得【分析】本题主要考查了平行线的性质,根据平行线的性质得3165∠+∠=︒,然后求解即可,熟练掌握两直线平行,同位角相等是解题的关键.23180【详解】解:如图,∥,∵AB CD∠=∠=︒,∴3165∠+∠=︒,∵23180∠=︒,∴2115故选:B.5.若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是()A.1:3B.1:4C.1:6D.1:9【答案】D【解析】【分析】此题考查了相似三角形的性质,根据“相似三角形的面积比等于相似比的平方”解答即可.【详解】解:两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是1:9,故选:D.6.烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是()A.20B.22C.24D.26【答案】B【解析】【分析】本题考查数字的变化类,根据图形,可归纳出规律表达式的特点,再解答即可.【详解】解:由图可得,第1种如图①有4个氢原子,即2214+⨯=第2种如图②有6个氢原子,即2226+⨯=第3种如图③有8个氢原子,即2238+⨯=⋯,∴第10种化合物的分子结构模型中氢原子的个数是:221022+⨯=;故选:B .7.已知m =,则实数m 的范围是()A.23m << B.34m << C.45m << D.56m <<【答案】B【解析】【分析】此题考查的是求无理数的取值范围,二次根式的加减运算,掌握求算术平方根的取值范围的方法是解决此题的关键.先求出m ==,即可求出m 的范围.【详解】解:∵m ====,∵34<<,∴34m <<,故选:B .8.如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为()A.328π- B.4πC.324π- D.8π【答案】D【解析】【分析】本题考查扇形面积的计算,勾股定理等知识.根据题意可得28AC AD ==,由勾股定理得出AB =2个扇形的面积即可得到结论.【详解】解:连接AC ,根据题意可得28AC AD ==,∵矩形ABCD ,∴4AD BC ==,90ABC ∠=︒,在Rt ABC △中,AB ==,∴图中阴影部分的面积2904428360ππ⨯=⨯⨯=.故选:D .9.如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FG CE 的值为()A. B.C.2 D.2【答案】A【解析】【分析】过点F 作DC 延长线的垂线,垂足为点H ,则90H ∠=︒,证明ADE EHF ≌,则1AD EH ==,设DE HF x ==,得到HF CH x ==,则45HCF ∠=︒,故CF =,同理可求CG ==则)1FG CG CF x =-=-,因此)11x FG CE x -==-.【详解】解:过点F 作DC 延长线的垂线,垂足为点H ,则90H ∠=︒,由旋转得,90EA EF AEF =∠=︒,∵四边形ABCD 是正方形,∴90D Ð=°,DC AB ∥,DA DC BC ==,设1DA DC BC ===,∴D H ∠=∠,∵12AEH AEF D ∠=∠+∠=∠+∠,∴12∠=∠,∴ADE EHF ≌,∴DE HF =,1AD EH ==,设DE HF x ==,则1CE DC DE x =-=-,∴()11CH EH EC x x =-=--=,∴HF CH x ==,而90H ∠=︒,∴45HCF ∠=︒,∴2sin 45HF CF ==︒,∵DC AB ∥,∴45HCF G ∠=∠=︒,同理可求22CG BC ==∴)2221FG CG CF x x =-==-,∴)2121x FG CE x-==-,故选:A .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,解直角三角形,旋转的性质,正确添加辅助线,构造“一线三等角全等”是解题的关键.10.已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是()A.0B.1C.2D.3【答案】D【解析】【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算:011(3)(2π--+=_____.【答案】3【解析】【分析】根据零指数幂和负指数幂的意义计算.【详解】解:011(3)()1232π--+=+=,故答案为:3.【点睛】本题考查了整数指数幂的运算,熟练掌握零指数幂和负指数幂的意义是解题关键.12.如果一个多边形的每一个外角都是40︒,那么这个多边形的边数为______.【答案】9【解析】【分析】本题考查了多边形的外角和定理,用外角和360︒除以40︒即可求解,掌握多边形的外角和等于360︒是解题的关键.【详解】解:360409︒÷︒=,∴这个多边形的边数是9,故答案为:9.13.重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为_____.【答案】19【解析】【分析】本题考查了画树状图法或列表法求概率,根据画树状图法求概率即可,熟练掌握画树状图法或列表法求概率是解题的关键.【详解】解:画树状图如下:由图可知,共有9种等可能的情况,其中甲、乙两人同时选择景点B 的情况有1种,∴甲、乙两人同时选择景点B 的的概率为19,故答案为:19.14.随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是______.【答案】10%【解析】【分析】本题主要考查一元二次方程的应用.设平均增长率为x ,然后根据题意可列方程进行求解.【详解】解:设平均增长率为x ,由题意得:()240148.4x +=,解得:10.110%x ==,2 2.1x =-(不符合题意,舍去);故答案为:10%.15.如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF =______.【答案】3【解析】【分析】先根据平行线分线段成比例证AF EF =,进而得22DE CD AC CF ====,4AD =,再证明CAB DEA ≌,得4BC AD ==,从而即可得解.【详解】解:∵CD CA =,过点D 作DE CB ∥,CD CA =,DE DC =,∴1FA CA FE CD==,CD CA DE ==,∴AF EF =,∴22DE CD AC CF ====,∴4AD AC CD =+=,∵DE CB ∥,∴CFA E ∠∠=,ACB D ∠∠=,∵CAB CFA ∠=∠,∴CAB E ∠∠=,∵CD CA =,DE CD =,∴CA DE =,∴CAB DEA ≌,∴4BC AD ==,∴3BF BC CF =-=,故答案为:3,【点睛】本题主要考查了平行线的性质,三角形的中位线定理,平行线分线段成比例以及全等三角形的判定及性质,熟练掌握三角形的中位线定理,平行线分线段成比例以及全等三角形的判定及性质是解题的关键.16.若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y -=---的解为非负整数,则所有满足条件的整数a 的值之和为______.【答案】16【解析】【分析】本题考查了分式方程的解,以及解一元一次不等式组.先解不等式组,根据关于x 的一元一次不等式组至少有两个整数解,确定a 的取值范围8a ≤,再把分式方程去分母转化为整式方程,解得22a y -=,由分式方程的解为非负整数,确定a 的取值范围2a ≥且4a ≠,进而得到28a ≤≤且4a ≠,根据范围确定出a 的取值,相加即可得到答案.【详解】解:()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩①②,解①得:4x <,解②得:23a x -≥, 关于x 的一元一次不等式组至少有两个整数解,∴223a -≤,解得8a ≤,解方程13211a y y -=---,得22a y -=, 关于y 的分式方程的解为非负整数,∴202a -≥且212a -≠,2a -是偶数,解得2a ≥且4a ≠,a 是偶数,∴28a ≤≤且4a ≠,a 是偶数,则所有满足条件的整数a 的值之和是26816++=,故答案为:16.17.如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF =______.DG =______.【答案】①.8②.13【解析】【分析】连接DO 并延长,交O 于点H ,连接GH ,设CE 、AB 交于点M ,根据四边形ACDE 为平行四边形,得出∥DE AC ,8AC DE ==,证明AB DE ⊥,根据垂径定理得出142DF EF DE ===,根据勾股定理得出3OF ==,求出538AF OA OF =+=+=;证明EFM CAM ∽,得出EF FM AC AM =,求出83FM =,根据勾股定理得出4133EM ===,证明EFM HGD ∽,得出FM EM DG DH =,求出201313DG =.【详解】解:连接DO 并延长,交O 于点H ,连接GH ,设CE 、AB 交于点M ,如图所示:∵以AB 为直径的O 与AC 相切于点A ,∴AB AC ⊥,∴90CAB ∠=︒,∵四边形ACDE 为平行四边形,∴∥DE AC ,8AC DE ==,∴90BFD CAB ==︒∠∠,∴AB DE ⊥,∴142DF EF DE ===,∵10AB =,∴152DO BO AO AB ====,∴3OF ==,∴538AF OA OF =+=+=;∵∥DE AC ,∴EFM CAM ∽,∴EF FMAC AM =,∴48FM AF FM =-,即488FM FM =-,解得:83FM =,∴3EM ===,∵DH 为直径,∴90DGH ∠=︒,∴DGH EFM ∠=∠,∵ DGDG =,∴DEG DHG =∠∠,∴EFM HGD ∽,∴FM EM DG DH=,即84133310DG =,解得:201313DG =.故答案为:8;201313.【点睛】本题主要考查了平行四边形的性质,垂径定理,圆周角定理,切线的性质,勾股定理,三角形相似的判定和性质,解题的关键是作出辅助线,熟练掌握三角形相似的判定方法.18.我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是______.把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为______.【答案】①.82②.4564【解析】【分析】本题考查了新定义,设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)根据最小的“方减数”可得10,18m n ==,代入,即可求解;根据B 除以19余数为1,且22m n k +=(k 为整数),得出34719a b ++为整数,308a b ++是完全平方数,在19a ≤≤,08b ≤≤,逐个检验计算,即可求解.【详解】①设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)由题意得:()()2210108m n a b a b -=+-+-,∵19a ≤≤,“方减数”最小,∴1a =,则10m b =+,18n b =-,∴()()2222101810020188221m n b b b b b b b -=+--=++-+=++,则当0b =时,2m n -最小,为82,故答案为:82;②设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)∴10001001081010998B a b a b a b =+++-=++∵B 除以19余数为1,∴1010997a b ++能被19整除∴134********B a b a b -++=++为整数,又22m n k +=(k 为整数)∴()210108308a b a b a b +++-=++是完全平方数,∵19a ≤≤,08b ≤≤∴308a b ++最小为49,最大为256即716k ≤≤设34719a b t ++=,t 为正整数,则13t ≤≤当1t =时,3412a b +=,则334b a =-,则330830384a b a a ++=+-+是完全平方数,又19a ≤≤,08b ≤≤,无整数解,当2t =时,无整数解,当3t =时,3450a b +=,则5034a b -=,则5033083084a ab a -++=++是完全平方数,经检验,当6,8a b ==时,3473648757193a b ++=⨯+⨯+==⨯,23068819614⨯++==,3,14t k ==,∴68,60m n ==,∴268604564A =-=故答案为:82,4564.三、解答题:(本大题8个小题,第19题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪+⎝⎭.【答案】(1)222x y +;(2)11a a +-.【解析】【分析】(1)根据单项式乘以多项式和完全平方公式法则分别计算,然后合并同类项即可;(2)先将括号里的异分母分式相减化为同分母分式相减,再算分式的除法运算得以化简;本题考查了单项式乘以多项式,完全平方公式和分式的化简,熟练掌握运算法则是解题的关键.【小问1详解】解:原式22222x xy x xy y =-+++,222x y =+;【小问2详解】解:原式()()()1111a a a a a a +-+=÷+,()()()11·11a a a a a a ++=+-,11a a +=-.20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b 众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?【答案】(1)86,87.5,40;(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.【解析】【分析】(1)根据表格及题意可直接进行求解;(2)根据平均分、中位数及众数分析即可得出结果;(3)由题意可得出参加此次竞赛活动成绩优秀的百分比,然后可进行求解;本题主要考查扇形统计图及中位数、众数、平均数,熟练掌握扇形统计图及中位数、众数、平均数是解题的关键.【小问1详解】根据七年级学生竞赛成绩可知:86出现次数最多,则众数为86,八年级竞赛成绩中A 组:2010%2⨯=(人),B 组:2020%4⨯=(人),C 组:6人,所占百分比为6100%30%20⨯=D 组:202468---=(人)所占百分比为%110%20%30%40%m =---=,则40m =,∴八年级的中位数为第1011、个同学竞赛成绩的平均数,即C 组第45、个同学竞赛成绩的平均数878887.52b +==,故答案为:86,87.5,40;【小问2详解】八年级学生竞赛成绩较好,理由:七、八年级的平均分均为85分,八年级的中位数高于七年级的中位数,整体上看八年级学生竞赛成绩较好;【小问3详解】640040%50032020⨯+⨯=(人),答:该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EFAC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【解析】【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【小问1详解】解:如图所示,即为所求;【小问2详解】证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22.为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?【答案】(1)该企业甲类生产线有10条,则乙类生产线各有20条;(2)需要更新设备费用为1330万元【解析】【分析】本题考查的是一元一次方程的应用,分式方程的应用,理解题意,确定相等关系是解本题的关键.(1)设该企业甲类生产线有x 条,则乙类生产线各有()30x -条,再利用更新完这30条生产线的设备,该企业可获得70万元的补贴,再建立方程求解即可;(2)设购买更新1条甲类生产线的设备为m 万元,则购买更新1条乙类生产线的设备为()5m -万元,利用用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,再建立分式方程,进一步求解.【小问1详解】解:设该企业甲类生产线有x 条,则乙类生产线各有()30x -条,则()323070x x +-=,解得:10x =,则3020x -=;答:该企业甲类生产线有10条,则乙类生产线各有20条;【小问2详解】解:设购买更新1条甲类生产线的设备为m 万元,则购买更新1条乙类生产线的设备为()5m -万元,则2001805m m =-,解得:50m =,经检验:50m =是原方程的根,且符合题意;则545m -=,则还需要更新设备费用为10502045701330⨯+⨯-=(万元);23.如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y.(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)【答案】(1)()()124606063y x x y x x =<≤=<≤,(2)函数图象见解析,1y 随x 增大而增大,2y 随x 增大而减小(3)2.26x <≤【解析】【分析】本题主要考查了一次函数与反比例函数综合,相似三角形的性质与判定:(1)证明APQ ABC ∽,根据相似三角形的性质得到APQABC C PQ APC BC AB ==△△,据此可得答案;(2)根据(1)所求利用描点法画出对应的函数图象并根据函数图象写出对应的函数图象的性质即可;(3)找到一次函数图象在反比例函数图象上方时自变量的取值范围即可.【小问1详解】解:∵PQ BC ∥,∴APQ ABC ∽,∴APQABC C PQ APC BC AB ==△△,∴12686y x AB y AP x===,∴()()124606063y x x y x x =<≤=<≤,;【小问2详解】解:如图所示,即为所求;由函数图象可知,1y 随x 增大而增大,2y 随x 增大而减小;【小问3详解】解:由函数图象可知,当12y y >时x 的取值范围2.26x <≤.24.如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C港.(参考数据: 1.41≈ 1.73≈ 2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.【答案】(1)A ,C 两港之间的距离77.2海里;(2)甲货轮先到达C 港.【解析】【分析】(1)过B 作BE AC ⊥于点E ,由题意可知:45GAB ∠=︒,60EBC ∠=︒,求出cos AE AB BAE =∠=tan CE BE EBC =∠=(2)通过三角函数求出甲行驶路程为:4056.496.4AB BC +=+=,乙行驶路程为:66.838.6105.4AD CD +=+=,然后比较即可;本题考查了方位角视角下的解直角三角形,构造直角三角形,熟练掌握锐角三角函数是解题的关键.【小问1详解】如图,过B 作BE AC ⊥于点E,∴90AEB CEB ∠=∠=︒,由题意可知:45GAB ∠=︒,60EBC ∠=︒,∴45BAE ∠=︒,∴cos 40cos 45AE AB BAE =∠=⨯︒=∴tan 60CE BE EBC =∠=︒=∴201.4120 2.4577.2AC AE CE =+=⨯+⨯≈(海里),∴A ,C 两港之间的距离77.2海里;【小问2详解】由(1)得:45BAE ∠=︒,60EBC ∠=︒,77.2AC =,∴sin 40sin 45BE AB BAE =∠=⨯︒=∴56.41cos cos 602BE BC EBC ====≈∠︒,由题意得:60ADF ∠=︒,30CDF ∠=︒,∴90ADC ∠=︒,∴1177.238.622CD AC ==⨯=, 1.73cos3077.266.82AD AC =︒=⨯≈(海里),∴甲行驶路程为:4056.496.4AB BC +=+=(海里),乙行驶路程为:66.838.6105.4AD CD +=+=(海里),∵96.4105.4<,且甲、乙速度相同,∴甲货轮先到达C 港.25.如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.【答案】(1)234y x x =--+;(2)AM MN NF ++的最小值为4122+;(3)符合条件的点Q 的坐标为()1,2--或1943,416⎛⎫-⎪⎝⎭.【解析】【分析】(1)利用正切函数求得1OB =,得到()1,0B ,再利用待定系数法即可求解;(2)求得()4,0A -,利用待定系数法求得直线AC 的解析式,设()2,34P p p p --+,求得PD 最大,点()2,6P -,再证明四边形AMNE 是平行四边形,得到AM EN =,推出当E N F 、、共线时,EF 取最小值,即AM MN NF ++取最小值,据此求解即可;(3)求得()2,2D -,再利用平移的性质得到新抛物线的解析式278y x x '=---,再分两种情况讨论,计算即可求解.【小问1详解】解:令0x =,则4y =,∴()0,4C ,∴4OC =,∵tan 4CBA ∠=,∴4OC OB =,∴1OB =,∴()1,0B ,将()1,0B 和()1,6-代入24y ax bx =++得6404a b a b =-+⎧⎨=++⎩,解得13a b =-⎧⎨=-⎩,∴抛物线的表达式为234y x x =--+;【小问2详解】解:令0y =,则2034x x =--+,解得4x =-或1x =,∴()4,0A -,设直线AC 的解析式为4y mx =+,代入()4,0A -,得044m =-+,解得1m =,∴直线AC 的解析式为4y x =+,设()2,34P p p p --+(40p -<<),则(),4D p p +,∴()()2234424PD p p p p =--+-+=-++,∵10-<,∴当2p =-时,PD 最大,此时()2,6P -,∴2AE =,2MN OE ==,()2,0E -,∴AE MN =,AE MN ∥,连接EN ,∴四边形AMNE 是平行四边形,∴AM EN =,∴AM MN NF EN MN NF MN EF ++=++≥+,∴当E N F 、、共线时,EF 取最小值,即AM MN NF ++取最小值,∵点F 为线段BC 的中点,∴1,22F ⎛⎫ ⎪⎝⎭,∴412EF ==,∴AM MN NF ++的最小值为4122+;【小问3详解】解:由(2)得点D 的横坐标为2-,代入4y x =+,得2y =,∴()2,2D -,∴新抛物线由234y x x =--+向左平移2个单位,向下平移2个单位得到,∴()()222324278y x x x x =-+-++-=---',过点D 作1DQ BC ∥交抛物线y '于点1Q ,∴1Q DK BCA ∠=∠,同理求得直线BC 的解析式为44y x =-+,∵1DQ BC ∥,∴直线1DQ 的解析式为46y x =--,联立得28476x x x =-----,解得11x =-,22x =-,当=1x -时,=2y -,∴()11,2Q --,作1DQ 关于直线AC 的对称线得2DQ 交抛物线y '于点2Q ,∴21Q DK Q DK BCA ∠=∠=∠,设1DQ 交x 轴于点G ,由旋转的性质得到DG DG '=,过点D 作DR x ∥轴,作DH x ⊥轴于点H ,作G H DR ''⊥于点H ',当0y =时,046x =--,解得32x =-,∴3,02G ⎛⎫- ⎪⎝⎭∵()4,0A -,()0,4C ,∴OA OC =,∴45OAC OCA ∠=∠=︒,∵DR x ∥轴,∴45RDA DAH ADH ∠=∠=∠=︒,∴'G DH GDH '∠=∠,∵''90G H D GHD ∠=∠=︒,'DG DG=∴GD H GDH ''≌△△,∴31222G H GH ''==-=,2DH DH '==,∴54,2G ⎛⎫- ⎪⎝⎭',同理直线2DQ 的解析式为4213=-+y x ,联立2134278x x x =--+--,解得2x =-或194x =-,当194x =-时,11934344216y ⎛⎫=-⨯-+= ⎪⎝⎭,∴21943,416Q ⎛⎫- ⎪⎝⎭,综上,符合条件的点Q 的坐标为()1,2--或1943,416⎛⎫-⎪⎝⎭.【点睛】本题是二次函数综合问题,考查二次函数的图象及性质,待定系数法确定函数关系式,熟练掌握二次函数的图象及性质,轴对称的性质,直角三角形的性质,数形结合是解题的关键.26.在ABC 中,AB AC =,点D 是BC 边上一点(点D 不与端点重合).点D 关于直线AB 的对称点为点E ,连接,AD DE .在直线AD 上取一点F ,使EFD BAC ∠∠=,直线EF 与直线AC 交于点G .(1)如图1,若60,,BAC BD CD BAD α∠=︒<∠=,求AGE ∠的度数(用含α的代数式表示);(2)如图1,若60,BAC BD CD ∠=︒<,用等式表示线段CG 与DE 之间的数量关系,并证明;(3)如图2,若90BAC ∠=︒,点D 从点B 移动到点C 的过程中,连接AE ,当AEG △为等腰三角形时,请直接写出此时CG AG的值.【答案】(1)60α︒+(352+【解析】【分析】(1)由三角形内角和定理及外角定理结合EFD BAC ∠∠=即可求解;(2)在CG 上截取CM BD =,连接,BM BE ,BM 交AD 于点H ,连接,BE AE ,先证明,再证明四边形EBMG 是平行四边形,可得2CG BD =,记AB 与DE 的交点为点N ,则由轴对称可知:DE AB ⊥,NE ND =,再解Rt BND △即可;(3)连接BE ,记AB 与DE 的交点为点N ,由轴对称知EAB DAB ∠=∠,DE AB ⊥,NE ND =,45EBA DBA ∠=∠=︒,当点G 在边AC 上时,由于90EAG ∠>︒,当AEG △为等腰三角形时,只能是AE AG =,由(1)得BAD ∠=α,60AGE α∠=︒+,Rt AFG △中,290αα+=︒,解得30α=︒,然后AF x =,解直角三角形,表示出2AG x =,)1CG x =,即可求解;当点G 在CA 延长线上时,只能是GE GA =,设BAD BAE β∠=∠=,在Rt AFE 中,90180290ββ︒-+︒-=︒,解得60β=︒,设GF x =,解直角三角形求出(5CG x =+,即可求解.【小问1详解】解:如图,∵EFD BAC ∠∠=,60BAC ∠=︒,∴60EFD ∠=︒∵11EFD BAD α∠=∠+∠=∠+,∴160α∠=︒-,∵1180AGE BAC ∠+∠+∠=︒,∴1806011201AGE ∠=︒-︒-∠=︒-∠,∴()1206060AGE αα∠=︒-︒-=︒+;【小问2详解】在CG 上截取CM BD =,连接,,BM BE AE ,BM 交AD 于点H ,∵,60AB AC BAC =∠=︒,∴BCA V 为等边三角形,∴60,ABC C BC AB ∠=∠=︒=,∴ABD BCM △≌△,∴3=4∠∠,∵35AHM ∠=∠+∠,∴4560AHM ∠=∠+∠=︒,∵60EFD BAC ∠=∠=︒,∴AHM EFD ∠=∠,∴EG BM ∥,∵点D 关于直线AB 的对称点为点E ,∴,,60AE AD BE BD ABE ABC ==∠=∠=︒,∴120EBC ∠=︒,∴180EBC C ∠+∠=︒,∴EB AC ∥,∴四边形EBMG 是平行四边形,∴BE GM =,∴BE GM BD CM ===,∴2CG BD =,记AB 与DE 的交点为点N ,。

2024年荆州市中考数学试卷(含答案解析)

2024年荆州市中考数学试卷(含答案解析)

2024年荆州市中考数学试卷(含答案解析).doc某书签分享赚钱赏收藏原创保护版权申诉/ 16 立即下载加入VIP,备课更划算当前位置:首页> 初中 > 初中数学 > 数学中考 > 中考真题> 2024年荆州市中考数学试卷(含答案解析).docx 2024年荆州市中考数学试卷(含答案解析).docx文档编号:上传时间:2024-06-23 类型:DOCX 级别:精品资源页数:16 大小:1.82MB 价格:61.00积分(10积分=1元)《2024年荆州市中考数学试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2024年荆州市中考数学试卷(含答案解析).docx(16页珍藏版)》请在七彩学科网上搜索。

1、2024年荆州市初中学业水平考试数学(本试卷共6页,满分120分,考试时间120分钟)祝考试顺利注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B铅笔或黑色签字笔.4.考试结束后,请将本试卷和答题卡一并交回._一、选择题(共10题,每题3分,共30分.在每题给出的四个选项中2、,只有一项符合题目要求)1. -15的相反数为 A. 15 B. -15 C. 5 D. -52. 据统计,2024 年国内全年出游人次为48.9亿,则数据4 890 000 000用科学记数法表示为 A.4.8910 B.48.910 C. 4.8910 D. 48.9103.某几何体的三视图如图所示,则该几何体可能是4.下列计算正确的是 A. 2a-a=1 B.aa=a C.a-1=a-1 D.a=a5.如图,将一块含60角的直角三角板斜边的两个顶点分别放在直尺的两条边上.若1=140,则2的度数为 A. 20 B. 25 C. 30 D. 35数学第1页(共6页)6.下列调查中,最适合3、采用全面调查(普查)方式的是A.调查某市初中学生每天课外锻炼的时间B.调查春节期间全国居民的花销情况C.调查某批次新能源汽车的续航能力D.调查乘坐飞机的乘客随身携带物品的安全性7. 如图,O是ABC的外接圆,ABC 的平分线交O于点D,连接AD,CD,若ADC=120,则tanACD= A. 33 B. 1 C. 3 D. 138.某同学在物理实验课上做“小孔成像”实验时,将一支长约3cm的蜡烛(包括火焰高度)立在小孔前,蜡烛所立位置离小孔的水平距离为6cm,此时蜡烛火焰通过小孔刚好在小孔另一侧距小孔2cm处的投影屏上形成了一个“像”,若以小孔为坐标原点,构建如图所示的平面直角坐标系xOy,记蜡4、烛火焰顶端A点处的坐标为(-6,3),则A点对应的“像”的坐标为 A. (3,-1) B. (2,-1) C. (2,-2) D. (3,-2)9. 如图,在菱形ABCD中,B=60,E,F分别是边AB,BC的中点,连接EF,DF,若 EF=2,则DF 的长为A. 2 2B. 23C. 2 5D.2 710. 如图1,在矩形ABCD中(AD2AB),P,Q分别为边AB,BC上的动点,点 P 沿折线B-A-D-C以每秒2个单位长度的速度运动,同时点Q以每秒1个单位长度的速度从点 B沿着 BC运动,当点Q到达点C时,点P随之停止运动.连接PQ,若BPQ的面积与运动时间t之间的函数图象如图2所示.下列结论中:AB边的长度为4;四边形ABCD的面积为20;当t=3时,点P与点D的距离为4;当t=4时,PQAB.正确的序号为 A. B. C. D. 数学第2页(共6页)二、填空题(共5题,每题3分,共15分)11. 计算: 3-8+|-3|=_.12.藤球是一项古老而独特的体育运动项目,有着悠久的历史,又叫“脚踢的排球”.下表是学校藤球队中三名学生五次传踢球成绩的平均数及方差统计表,若要从这三名学生中选择一名成绩好且稳定的学生作为校藤球队的队长,则应选择学生 . 甲乙丙平均数方差1.20.50.513.端午节是中国首个入选世界非物质文化遗产的节文档加载中……请稍候!如果长时间未打开,您也可以点击刷新试试。

最新版精选初中数学中考测试题库(标准答案)

最新版精选初中数学中考测试题库(标准答案)

2019年初中数学中考复习试题(含答案)学校:__________第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.选择题:若关于x的方程2x+(k2-1) x+k+1=0的两根互为相反数,则k的值为--------()(A)1,或-1 (B)1 (C)-1 (D)02.函数y=-12(x+1)2+2的顶点坐标是------------------------------------------------()(A)(1,2) (B)(1,-2) (C)(-1,2) (D)(-1,-2)3.若12,x x是方程22630x x-+=的两个根,则1211x x+的值为---------------------------( )(A)2(B)2-(C)12(D)924.若变量y与x成正比例,变量x又与z成反比例,则y与z的关系是()A.成反比例 B.成正比例C.y与2z成正比例 D.y与2z成反比例5.下列图形中既是中心对称图形又是轴对称图形的是【▲】A B C D6.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 (平方毫米),这个数用科学记数法表示为 【 ▲ 】 A .6107-⨯ B .6107.0-⨯ C .7107-⨯ D .81070-⨯第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题7.如图,四边形ABCD 是⊙O 的内接矩形,AB=2,BC=4,E 是BC 的中点,AE 的延长线交⊙O 于点F ,则EF 的长是_________。

8.21)(a an --= ;212216-+⨯⨯m m = ;23)()(a b b a -⨯-= ;54)1()1(x x --= 。

9.(1)x 28=,则=x ;x248=⨯,则=x ;x 39273=⨯⨯,则=x ;10.计算下列各式(1)n b b b ⋅-⋅-23)( (2) n n 212)3(3)3(-⋅+-+11. 抛物线3)2(2+-=x y 的对称轴是_______________________ 12.m x mx y +++=)14(412的图象与x 轴相交于点A 、B 两点. (1)求证:不论m 为何值该抛物线总经过点(-4,0); (2)若B (x 0,0)且-4<x 0<0,试确定m 的取值范围;(3)在(2)的条件下,如果这个二次函数的图象与一次函数949+-=x y 的图象相交于点C ,且∠BAC 的余弦值为 54,求这个二次函数的解析式.13.如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为________________14.如图,在矩形ABCD 中,AD =6,AB =4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF =CG =2,BE =DH =1,点P 是直线EF 、GH 之间任意一点,连结PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于 ▲ .ABCOED15. 已知:如图9,在ΔABC 中,AB=AC ,AD ⊥BC ,垂足为点D ,AN 是ΔABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E 。

精选初中数学中考测试题库(含答案)

精选初中数学中考测试题库(含答案)

精选初中数学中考测试题库(含答案)精选初中数学中考测试题库(含答案)同学们,数学是我们初中生活中非常重要的一门学科,也是中考中必考的科目之一。

为了帮助大家更好地备战中考,我为大家准备了精选初中数学中考测试题库,并提供了答案。

希望这些题目能够帮助大家巩固知识,提高解题能力。

祝愿大家在中考中取得优异成绩!一、选择题1. 下列哪个数是分数 2/3 的两倍?A) 1/2 B) 1 1/4 C) 1 2/3 D) 2 1/22. 如果 a + b = 10,且 a^2 + b^2 = 34,那么 ab 的值等于多少?A) 11 B) 10 C) 9 D) 83. 有一个面积为 64 平方米的正方形花坛,若要在这个花坛内铺设宽度为 1 米的小石子边行道,需要多少条石子边行道?A) 8 B) 16 C) 32 D) 644. 一根长为15 厘米的绳子剪成两段,其中一段比另一段长7 厘米。

较短一段的长度是多少厘米?A) 7 B) 8 C) 9 D) 10二、填空题1. 若对任意正数 a,b,都有 a ÷ b + b ÷ a = 2,那么 a 的值为______,b 的值为______。

2. 若 x-2y = 5,3x+y = 10,则 x 的值为______,y 的值为______。

3. 甲、乙两班学生的平均身高都是 160 厘米,但甲班身高的标准差为 5 厘米,乙班身高的标准差为 8 厘米。

根据这些信息,我们可以推断甲班和乙班学生身高的分布情况是(填写正确选项):A) 甲班的学生身高更集中,乙班的学生身高更分散;B) 甲班和乙班的学生身高都很集中;C) 甲班和乙班的学生身高都很分散;D) 无法判断。

三、解答题1. 一辆以每小时 60 公里的速度行驶的列车从 A 站开往 B 站,经过两小时后,又以每小时 90 公里的速度行驶到达 B 站。

求 A、B 两站之间的距离。

2. 某书店原价出售一本书,72 元。

2023年重庆市中考数学真题(A卷)(答案解析)

2023年重庆市中考数学真题(A卷)(答案解析)

重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)一、选择题:(本大题10个小题,每小题4分,共40分)1.【答案】A【解析】解:8的相反数是8-,故选A .2.【答案】D【解析】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .3.【答案】C【解析】解:A 选项,将1x =代入反比例函数4y x =-得到14y =-≠,故A 项不符合题意;B 选项,项将1x =-代入反比例函数4y x =-得到44y =≠-,故B 项不符合题意;C 选项,项将=−2代入反比例函数4y x =-得到22y ==,故C 项符合题意;D 选项,项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .4.【答案】B【解析】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .5.【答案】A【解析】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .6.【答案】B+=4=+∵2 2.5<<,∴45<<,∴849<+,故选:B .7.【答案】B【解析】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .8.【答案】C【解析】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =∴在Rt OAB 中,3tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .9.【答案】A【解析】将ADF 绕点A 逆时针旋转90︒至ABH,∵四边形ABCD 是正方形,∴AB AD =,90B D BAD C ∠=∠=∠=∠=︒,由旋转性质可知:DAF BAH ∠=∠,90D ABH ∠=∠=︒,AF AH =,∴180AHB ABC ∠+∠=︒,∴点H B C ,,三点共线,∵BAE α∠=,45EAF ∠=︒,90BAD HAF ∠=∠=︒,∴45DAF BAH α∠=∠=︒-,45EAF EAH ∠=∠=︒,∵90AHB BAH ∠+∠=︒,∴45AHB α∠=︒+,在AEF 和AEH 中AF AH FAE HAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()AFE AHE SAS ≌,∴45AHE AFE α∠=∠=︒+,∴45AHE AFD AFE α∠=∠=∠=︒+,∴902DFE AFD AFE α∠=∠+∠=︒+,∵90DFE FEC C FEC ∠=∠+∠=∠+︒,∴2FEC α∠=,故选:A .10.【答案】C【解析】解:x y z m n x y z m n ----=----,故说法①正确.若使其运算结果与原多项式之和为0,必须出现x -,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x y z m n x y z m n ----=----;x y z m n x y z m n ----=-+--;||x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+.当添加两个绝对值时,共有3种情况,分别是x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+;x y z m n x y z m n ----=-+-+.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .二、填空题:(本大题8个小题,每小题4分,共32分)11.【答案】1.5【解析】1023-+=11=1.52+.故答案为1.5.12.【答案】36°【解析】正五边形内角和:(5﹣2)×180°=3×180°=540°∴5401085B ︒︒∠==,∴180B 1801083622BAC ︒︒︒︒-∠-∠===.故答案为36°.13.【答案】19【解析】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.14.【答案】()2150111815x +=【解析】解:设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意得,()2150111815x +=,故答案为:()2150111815x +=.15.【答案】3【解析】解:∵90BAC ∠=︒,∴90EAB EAC ∠+∠=︒,∵BE AD ⊥,CF AD ⊥,∴90AEB AFC ∠=∠=︒,∴90ACF EAC ∠+∠=︒,∴ACF BAE ∠=∠,在AFC △和BEA △中:AEB CFA ACF BAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AFC BEA ≌△△,∴4,1AF BE AE CF ====,∴413EF AF AE =-=-=,故答案为:3.16.【答案】25124π-【解析】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是O 的直径,∵4,3AB AD ==,∴5BD ==,∴O 的半径为52,∴O 的面积为254π,矩形的面积为3412⨯=,∴阴影部分的面积为25124π-;故答案为25124π-;17.【答案】4【解析】解:+34222x x a ⎧≤⎪⎨⎪-≥⎩①②解不等式①得:5x ≤,解不等式②得:1+2a x ≥,∴不等式的解集为1+52a x ≤≤,∵不等式组至少有2个整数解,∴1+42a ≤,解得:6a ≤;∵关于y 的分式方程14222a y y-+=--有非负整数解,∴()1422a y ---=解得:12a y -=,即102a -≥且122a -≠,解得:1a ≥且5a ≠∴a 的取值范围是16a ≤≤,且5a ≠∴a 可以取:1,3,∴134+=,故答案为:4.18.【答案】①.4312②.8165【解析】解:∵a312是递减数,∴1033112a +-=,∴4a =,∴这个数为4312;故答案为:4312∵一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴101010a b b c c d +--=+,∵1001010010abc bcd a b c b c d +=+++++,∴110010110100110001abc bcd a b c b b a b a b c +=++++++--=,∵()11010199112a b a b a b +=+++,能被9整除,∴112a b +能被9整除,∵各数位上的数字互不相等且均不为0,∴12345678,,,,,,,87654321a a a a a a a ab b b b b b b b ========⎧⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨⎨========⎩⎩⎩⎩⎩⎩⎩⎩,∵最大的递减数,∴8,1a b ==,∴1089110c c d ⨯-⨯-=+,即:1171c d +=,∴c 最大取6,此时5d =,∴这个最大的递减数为8165.故答案为:8165.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)19.【答案】(1)21a -(2)11x +【解析】(1)解:原式2221a a a =-+-21a =-;(2)原式()222.11x x x x x x ⎛⎫+-=÷ ⎪++⎝⎭()22211x x x x =÷++()22211x x x x +=⋅+11x =+.20.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.21.【答案】(1)72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有192架.【解析】(1)解:由题意可知10架A 款智能玩具飞机充满电后运行最长时间中,只有72出现了三次,且次数最多,则该组数据的众数为72,即72a =;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为40%,则B 款智能玩具飞机运行时间合格的架次为:1040%4⨯=(架)则B 款智能玩具飞机运行时间优等的架次为:10451--=(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:70,71,故B 款智能玩具飞机运行时间的中位数为:707170.52+=B 款智能玩具飞机运行时间优等的百分比为:1100%10%10⨯=即10m =故答案为:72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)200架A 款智能玩具飞机运行性能在中等及以上的架次为:620012010⨯=(架)200架A 款智能玩具飞机运行性能在中等及以上的架次为:61207210⨯=(架)则两款智能玩具飞机运行性能在中等及以上的共有:12072192+=架,答:两款智能玩具飞机运行性能在中等及以上的大约共有192架.22.【答案】(1)购买杂酱面80份,购买牛肉面90份(2)购买牛肉面60份【解析】(1)解:设购买杂酱面x 份,则购买牛肉面()170x -份,由题意知,()152********x x +⨯-=,解得,80x =,∴17090x -=,∴购买杂酱面80份,购买牛肉面90份;(2)解:设购买牛肉面a 份,则购买杂酱面1.5a 份,由题意知,1260120061.5a a+=,解得60a =,经检验,60a =是分式方程的解,∴购买牛肉面60份.23.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =-;(2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【解析】(1)解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =-;(2)函数图象如图:当04t <≤时,y 随t 的增大而增大;(3)当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t -=,解得 4.5t =,故t 的值为3或4.5.24.【答案】(1)AD 的长度约为14千米(2)小明应该选择路线①,理由见解析【解析】(1)解:过点D 作DF AB ⊥于点F ,由题意可得:四边形BCDF 是矩形,∴10DF BC ==千米,∵点D 在点A 的北偏东45︒方向,∴45DAF DAN Ð=Ð=°,∴14sin 45DF AD ==°千米,答:AD 的长度约为14千米;(2)由题意可得:10BC =,14CD =,∴路线①的路程为:14102438AD DC BC ++=+=+(千米),∵10DF BC ==,45DAF DAN Ð=Ð=°,90DFA ∠=︒,∴DAF △为等腰直角三角形,∴10AF DF ==,∴101424AB AF BF AF DC =+=+=+=,由题意可得60EBS Ð=°,∴60E ∠=︒,∴tan 60AB AE ==°,sin 60AB BE ==°,所以路线②的路程为:42AE BE +=千米,∴路线①的路程<路线②的路程,故小明应该选择路线①.25.【答案】(1)213222y x x =-++(2)PDE △周长的最大值65105+,此时点()2,3P (3)以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛ ⎝⎭或137,22⎛⎫- ⎪ ⎪⎝⎭【解析】(1)把()1,3、()1,0A -代入22y ax bx =++得,3202a b a b =++⎧⎨=-+⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为213222y x x =-++;(2)延长PE 交x 轴于F,∵过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,∴DEP BCO ∠=∠,90PDE COB ∠=∠=︒,∴DPE OBC ,∴DPE PEOBC BC =周长周长 ,∴PEDPE OBC BC =⋅周长周长 ,∴当PE 最大时PDE △周长的最大∵抛物线的表达式为213222y x x =-++,∴()4,0B ,∴直线BC 解析式为122y x =-+,BC ==设213,222P m m m ⎛⎫-++ ⎪⎝⎭,则1,22E m m ⎛⎫-+ ⎪⎝⎭∴()222131112222222222PE m m m m m m ⎛⎫=-++--+=-+=--+ ⎪⎝⎭,∴当2m =时2PE =最大,此时()2,3P ∵BOC周长为6OC OB BC ++=+,∴PDE △(651065++=,此时()2,3P ,即PDE △周长的最大值65105+,此时点()2,3P ;(3)∵将该抛物线沿射线CB方向平移个单位长度,可以看成是向右平移2个单位长度再向下平移一个单位长度,∴平移后的解析式为()()221317222142222y x x x =--+-+-=-+-,此抛物线对称轴为直线72x =,∴设7,2M n ⎛⎫ ⎪⎝⎭,(),N s t ∵()2,3P ,()1,0A -∴218PA =,()()22227923324PM n n ⎛⎫=-+-=+- ⎪⎝⎭,()22227811024AM n n ⎛⎫=++-=+ ⎪⎝⎭,当PA 为对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴PA 与MN 互相平分,且PM AM=∴()22981344n n +-=+,解得32n =-∵PA 中点坐标为2130,22-+⎛⎫ ⎪⎝⎭,MN 中点坐标为72,22s n t ⎛⎫+ ⎪+ ⎪ ⎪⎝⎭,∴7123s n t ⎧+=⎪⎨⎪+=⎩,解得5292s t ⎧=-⎪⎪⎨⎪=⎪⎩,此时59,22N ⎛⎫- ⎪⎝⎭;当PA 为边长且AM 和PN 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AM 与PN 互相平分,且PMPA =∴()293184n +-=,解得3732n =±∵PN 中点坐标为23,22s t ++⎛⎫ ⎪⎝⎭,AM 中点坐标为7102,22n ⎛⎫- ⎪+ ⎪ ⎪⎝⎭,∴721230s t n ⎧+=-⎪⎨⎪+=+⎩,解得122s t ⎧=⎪⎪⎨⎪=±⎪⎩,此时137,22N ⎛⎫ ⎪ ⎪⎝⎭或137,22N ⎛- ⎝⎭;同理,当PA 为边长且AN 和PM 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AN 和PM 互相平分,且AM PA =281184n +=,此方程无解;综上所述,以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛⎫ ⎪ ⎪⎝⎭或137,22⎛- ⎝⎭;26.【答案】(1)(2)见解析(3)435【解析】(1)解:在Rt ABC 中,90ACB ∠=︒,=60B ∠︒,∴sin 32AC AB B ===,∵BD =,∴AD AB BD =-=(2)证明:如图所示,延长FB 使得FH FG =,连接EH ,∵F 是DE 的中点则DF FE =,FH FG =,GFD HFE ∠=∠,∴()SAS GFD HFE ≌,∴H G ∠=∠,∴EH GC ∥,∴60HEC ECD ∠=∠=︒∵DEC 是等边三角形,∴60DEC EDC ∠=∠=︒,∵60DEC DBC ==︒∠∠,∴,,,B C D E 四点共圆,∴EDB BCE ∠=∠,BEC BDC ∠=∠,∴6060BEH BEC BDC EDB ∠=︒-∠=︒-∠=∠,∵G BCE BDE H ∠=∠=∠=∠,∴H BEH ∠=∠,∴EB BH =,∴FH FG BF BH BF EB ==+=+;(3)解:如图所示,在CD 取得最小值的条件下,即CD AB ⊥,设4AB a =,则2BC a =,AC =,∴24AC BC a CD AB a⨯⨯===,12BD BC a ==,∵将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .∴BE BN=∴点N 在以B 为圆心,a 为半径的圆上运动,取AB 的中点S ,连接SP ,则SP 是ABN 的中位线,∴P 在半径为12a 的S 上运动,当CP 取最大值时,即,,P S C 三点共线时,此时如图,过点P 作PTAC ⊥于点T ,过点N 作NR AC ⊥于点R ,∵S 是AB 的中点,60ABC ∠=︒∴SC SB BC ==,∴BCS △是等边三角形,则60PCB ∠=︒,∴30PCA ACB BCP ∠=∠-∠=︒,∵2BC a =,4AB a =,∴2CS BC a ==,12PS a =∴52PC a =,15sin 24PT PC PCT PC a =⨯∠==,TC ==∵AC =,∴AT =,如图所示,连接PQ ,交NR 于点U ,则四边形PURT是矩形,∴PU AR ∥,P 是AN 的中点,∴1NU NP UR PA==即PD 是ANR 的中位线,同理可得PT 是ANR 的中位线,∴54NU UR PT a ===,12PU AR AT ===∵BCS △是等边三角形,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,∴2120QCP BCP ∠=∠=︒∴PQ ===则UQ PQ PU =-=-=在Rt NUQ中,432NQ a =∴43432552a NQ CP a ==.。

2023年海南省中考数学真题试卷及答案

2023年海南省中考数学真题试卷及答案

海南省2023年初中学业水平考试数学(全卷满分120分,考试时间100分钟)一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑.1. 如图,数轴上点A 表示的数的相反数是( )A. 1B. 0C. 1-D. 2- 2. 若代数式2x +的值为7,则x 等于( )A. 9B. 9-C. 5D. 5- 3. 共享开放机遇,共创美好生活.2023年4月10日至15日,第三届中国品博览会在海南省海口市举行,以“打造全球消费精品展示交易平台”为目标,进场观众超32万人次,数据320000用科学记数法表示为( )A. 43.210⨯B. 53.210⨯C. 63.210⨯D. 43210⨯ 4. 如图是由5个完全相同的小正方体摆成的几何体,则这个几何体的俯视图是( )A. B. C. D. 5. 下列计算中,正确的是( )A. 235a a a ⋅=B. ()235a a =C. ()55210a a =D. 448a a a += 6. 水是生命之源.为了倡导节约用水,随机抽取某小区7户家庭上个月家里的用水量情况(单位:吨),数据为:7,5,6,8,9,9,10.这组数据的中位数和众数分别是( )A. 9,8B. 9,9C. 8.5,9D. 8,9 7. 分式方程115x =-的解是( )A. 6x =B. 6x =-C. 5x =D. 5x =- 8. 若反比例函数k y x=(0k ≠)的图象经过点2,1,则k 的值是( ) A. 2 B. 2- C. 12 D. 12- 9. 如图,直线m n ∥,ABC 是直角三角形,90B,点C 在直线n 上.若150∠=︒,则2∠的度数是( )A. 60°B. 50°C. 45°D. 40°10. 如图,在ABC ∆中,40C ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于M N ,两点,作直线MN ,交边AC 于点D ,连接BD ,则ADB ∠的度数为( )A. 40︒B. 50︒C. 80︒D. 100︒11. 如图,在平面直角坐标系中,点A 在y 轴上,点B 的坐标为()6,0,将ABO ∆绕着点B 顺时针旋转60︒,得到DBC △,则点C 的坐标是( )A. ()B. (C. ()6,3D. ()3,6 12. 如图,在ABCD 中,8AB =,60ABC ∠=︒,BE 平分ABC ∠,交边AD 于点E ,连接CE ,若2AE ED =,则CE 的长为( )A. 6B. 4C.D.二、填空题(本大题满分12分,每小题3分)13. 因式分解:mx my -=________.14. 设n 为正整数,若1n n <<+,则n 的值为_______. 15. 如图,AB 为O 的直径,AC 是O 的切线,点A 是切点,连接BC 交O 于点D ,连接OD ,若40C ∠=︒,则AOD ∠=________度.16. 如图,在正方形ABCD 中,8AB =,点E 在边AD 上,且4AD AE =,点P 为边AB 上的动点,连接PE ,过点E 作EF PE ⊥,交射线BC 于点F ,则EF PE=______.若点M 是线段EF 的中点,则当点P 从点A 运动到点B 时,点M 运动的路径长为_______.三、解答题(本大题满分72分)17. (1)计算:21332-÷-(2)解不等式组:122113x x ->⎧⎪⎨+≥⎪⎩①② 18. 2023年5月10日,搭载天舟六号货运飞船的长征七号遥七运载火箭,在我国文昌航天发射场点火发射成功.为了普及航空航天科普知识,某校组织学生去文昌卫星发射中心参观学习.已知该校租用甲,乙两种不同型号的客车共15辆,租用1辆甲型客车需600元,1辆乙型客车需500元,租车费共8000元.问甲,乙两种型号客车各租多少辆?19. 某中学为了了解学生最喜欢的课外活动,以便更好开展课后服务.随机抽取若干名学生进行了问卷调查.调查问卷如下:根据统计得到的数据,绘制成下面的两幅不完整的统计图.请根据统计图提供的信息,解答下面的问题:(1)本次调查采用的调查方式为 (填写“普查”或“抽样调查”);(2)在这次调查中,抽取的学生一共有 人;扇形统计图中n 的值为 ;(3)已知选择“科技”类课外活动的50名学生中有30名男生和20名女生.若从这50名学生中随机抽取1名学生座谈,且每名学生被抽到的可能性相同,则恰好抽到女生的概率是;(4)若该校共有1000名学生参加课外活动,则估计选择“文学”类课外活动的学生有 人. 20. 如图,一艘轮船在A 处测得灯塔M 位于A 的北偏东30︒方向上,轮船沿着正北方向航行20海里到达B 处,测得灯塔M 位于B 的北偏东60︒方向上,测得港口C 位于B 的北偏东45︒方向上.已知港口C 在灯塔M 的正北方向上.(1)填空:AMB ∠= 度,BCM ∠= 度;(2)求灯塔M 到轮船航线AB 的距离(结果保留根号);(3)求港口C 与灯塔M 的距离(结果保留根号).21. 如图1,在菱形ABCD 中,对角线AC ,BD 相交于点O ,6AB =,60ABC ∠=︒,点P 为线段BO 上的动点(不与点B ,O 重合),连接CP 并延长交边AB 于点G ,交DA 的延长线于点H .(1)当点G 恰好为AB 的中点时,求证:AGH BGC ≌;(2)求线段BD 的长;(3)当APH 为直角三角形时,求HP PC的值; (4)如图2,作线段CG 的垂直平分线,交BD 于点N ,交CG 于点M ,连接NG ,在点P 的运动过程中,CGN ∠的度数是否为定值?如果是,求出这个定值;如果不是,请说明理由.22. 如图1,抛物线2y x bx c =++交x 轴于A ,()3,0B 两点,交y 轴于点()0,3C-.点P 为抛物线上一动点.(1)求该抛物线的函数表达式;(2)当点P 的坐标为()1,4-时,求四边形BACP 的面积;(3)当动点P 在直线BC 上方时,在平面直角坐标系是否存在点Q ,使得以B ,C ,P ,Q 为顶点的四边形是矩形?若存在,请求出点Q 的坐标;若不存在,请说明理由;(4)如图2,点D 是抛物线的顶点,过点D 作直线DH y ∥轴,交x 轴于点H ,当点P 在第二象限时,作直线PA ,PB 分别与直线DH 交于点G 和点I ,求证:点D 是线段IG 的中点.海南省2023年初中学业水平考试数学参考答案一,选择题1. A2. C3. B4. C5. A6. D7. A8. B9. D10. C11. B解:过点C 作CE OB ⊥,如下图:则90CEB ∠=︒由题意可得:60OBC ∠=︒,6OB OC == ∴30BCE ∠=︒ ∴132BE BC ==∴CE ==3OE OB BE =-=∴C 点的坐标为(故选:B12. C 解:四边形ABCD 是平行四边形60D ABC ∴∠=∠=︒,8CD AB ==,AD BC ∥ AEB CBE ∴∠=∠BE 平分ABC ∠ABE CBE ∴∠=∠ABE AEB ∴∠=∠8AE AB ∴==2AE ED =4DE ∴=如图,过点E 作EF CD ⊥于点F则90EFC EFD ∠=∠=︒90906030DEF D ∴∠=︒-∠=︒-︒=︒ 122DF DE ∴==EF ∴===826CF CD DF =-=-=CE ∴===故选:C . 二、填空题13. ()m x y -14. 115. 10016. ①. 4 ①. 16解:过F 作FK AD ⊥交AD 延长线于点K则四边形ABFK 为矩形,90A K ∠=∠=︒ ∴8AB FK == 由题意可得:124AE AD == ∵EF PE ⊥∴90AEP KEF PEF ∠+∠=∠=︒又∵90PEA APE ∠∠+=︒∴APE KEF ∠=∠∴AEP KFE ∆∆∽ ∴4EF FK PE AE== 过M 作GH AD ⊥交AD 于点G ,交BC 于点H ,如下图∵AD CB ∥,GH AD ⊥∴GH BC ⊥在EGM ∆和△FHM 中MGE MHF EMG FMH ME MF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS EGM FHM ∆∆≌∴MG MH =故点M 的运动轨迹是一条平行于BC 的线段 当点P 与A 重合时,12BF AE ==当点P 与B 重合时,22190BEF F EBF ∠=∠+∠=︒,1190BEF EBF ∠+∠=︒ ∴21F BEF ∠=∠∵12190EF F EF B ∠=∠=︒∴121EF B F F E ∽ ∴11112BF EF EF F F =,即12288F F = 解得1232F F =∵1M ,2M 分别为1EF ,2EF 的中点∴12M M 是12EF F 的中位线 ∴12121162M M F F ==,即点M 运动的路径长为16 故答案为:4,16三、解答题17. (1)2;(2)3x >.18. 甲型号客车租5辆,乙型号客车租10辆 19. (1)抽样调查(2)200,22 (3)25 (4)35020. (1)30,45(2)灯塔M 到轮船航线AB的距离为 (3)港口C 与灯塔M的距离为)101海里 21. (1)见解析 (2)(3)2 (4)CGN ∠的度数是定值,30︒【小问1详解】 证明:四边形ABCD 是菱形AD BC ∴∥HAB ABC ∴∠=∠点G 是AB 的中点AG BG ∴=AGH BGC ∠=∠()AAS AGH BGC ∴∆∆≌;【小问2详解】 解:四边形ABCD 是菱形,6AB =,60ABC ∠=︒AO CO ∴=,BO DO =,AC BD ⊥,1302ABD ABC ∠=∠=︒ 90AOB ∴∠=︒132AO AB ∴==BO ∴===2BD BO ∴==【小问3详解】解:APH ∆为直角三角形AP AD ∴⊥90DAP ∴∠=︒四边形ABCD 是菱形60ABC ADC ∴∠=∠=︒,1302ADB ADC ∠=∠=︒,6AD AB ==,AD BC ∥12AP PD ∴=222AP AD PD +=,即222162PD PD ⎛⎫+= ⎪⎝⎭PD ∴=AP =//AD BC ,60ABC ∠=︒180********BAD ABC ∴∠=︒-∠=︒-︒=︒1209030BAP BAD PAD ABP ∴∠=∠-∠=︒-︒=︒=∠BP AP ∴==//AD BCBPC DPH ∴∆∆∽DP HP BP PC∴=2HP PC ∴==; 【小问4详解】解:CGN ∠的度数是定值如图,取BC 的中点H ,连接OH ,HM ,NCMN 是CG 的垂直平分线GN CN ∴=,GM CM =NGC GCN ∴∠=∠点H 是BC 的中点,GM CM =A MHB ∴∥四边形ABCD 是菱形AO CO ∴=,AC BD ⊥,1230C CBO AB ∠=∠=︒ 点H 是BC 的中点,AO CO =OH AB ∴∥∴点M ,点H ,点O 三点共线点H 是BC 的中点,AC BD ⊥HO HB CH ∴==30CBO BOH ∴∠=∠=︒90COB NMC ∠=∠=︒180CON NMC ∴∠+∠=︒∴点O ,点C ,点M ,点N 四点共圆30BOH NCM ∴∠=∠=︒30CGN NCM ∴∠=∠=︒.22. (1)2=23y x x --(2)9 (3)在平面直角坐标系内存在点Q ,使得以B ,C ,P ,Q 为顶点的四边形是矩形,此时点Q 的坐标为()5,2-或5122⎛⎫+- ⎪ ⎪⎝⎭ (4)证明过程见解析【小问1详解】解:由题意可得,3093c b c=-⎧⎨=++⎩ 解得23b c =-⎧⎨=-⎩∴抛物线的解析式为2=23y x x --;【小问2详解】解:连接OP ,过点P 作PE AB ⊥于点E ,如图∵点P 的坐标为()1,4-∴4PE =,1OE =令0y =,则2230x x --=解得3x =或1x =∴()1,0A -∴1OA =∵()0,3C -,()3,0B∴3OC =,3OB = ∴OAC OCP OBPBACP S S S S =++四边形 111=222OA OC OC OE OB PE ⋅+⋅+⋅ 111133134222=⨯⨯+⨯⨯+⨯⨯ 9=;【小问3详解】解:在平面直角坐标系内存在点Q ,使得以B ,C ,P ,Q 为顶点的四边形是矩形,理由如下:如图,当BC 为边时,四边形BCQP 为符合条件的矩形,PB 交y 轴于点E ,CQ 交x 轴于点F ,连接EF ,过点P 作PM y ⊥轴于点M ,过点Q 作QN x ⊥轴于点N∵3OC OB ==∴45OBC OCB ∠=∠=︒∵四边形BCQP 为矩形∴==90PBC QCB ∠∠︒∴45OBE OCF ∠=∠=︒∴OBE △和OCF ∆为等腰直角三角形∴====3OB OC OE OF∵四边形BCFE 为正方形∴CF BE =,90EFC BEF ∠=∠=︒∴四边形EFQP 为矩形∴QF PE =∵==45MEP BEO ∠∠︒,==45QFN OFC ∠∠︒∴PME △和QNF △为全等的等腰直角三角形∴===NF QN PM ME∵3OE =∴()0,3E设直线BE 的解析式为()0y kx n k =+≠∴303k n n +=⎧⎨=⎩∴13k n =-⎧⎨=⎩ ∴直线BE 的解析式为3y x =-+联立方程组得2323y x y x x =-+⎧⎨=--⎩解得30x y =⎧⎨=⎩或25x y =-⎧⎨=⎩ ∴()2,5P -∴2PM =∴==2QN NF∴==32=5ON OF NF ++∴()5,2Q -;如图,当BC 为对角线时,四边形BPCQ 为矩形,过点Q 作QD x ⊥轴于点D ,PE x ⊥轴于点E则90PEB BDQ ∠=∠=︒,90PBQ ∠=︒∵90PBE EPB PBE DBQ ∠+∠=∠+∠=︒∴EPB DBQ ∠=∠①BEP QDB ∆∆∽ ①PE BE DB DQ= 设点P 的坐标为:()()2,2303t t t t t --或,()Q Q Q x y ,①()0,3C -,()3,0B①3Q x t =-,22Q y t t =-+①()23,2Q t t t --+∴22DQ t t =-,BD t =-,223EP t t =-++,3BE t =- ∴222332t t t t t t-++-=-- 整理得:324230t t t -++=分解因式得:()()2310t t t ---=解得:13t =(舍去),23t =<(舍去),30t =<①此时点Q 的坐标为:51,22⎛+- ⎝⎭. 综上所述,在平面直角坐标系内存在点Q ,使得以B ,C ,P ,Q 为顶点的四边形是矩形,此时点Q 的坐标为()5,2-或5122⎛+- ⎝⎭; 【小问4详解】证明:∵()222314y x x x =--=--∴抛物线2=23y x x --的顶点D 的坐标为()1,4-,对称轴为直线1x = 设()2,23P m m m --,直线PB 的解析式为()=0y cx d c +≠ ∴22330cm d m m c d ⎧+=--⎨+=⎩∴133c m d m =+⎧⎨=--⎩∴直线PB 的解析式为()=133y m x m +--当1x =时,22y m =--∴()1,22I m --∴()=224=22ID m m -----+设直线PA 的解析式为()=0y ex f e +≠∴2230em f m m e d ⎧+=--⎨-+=⎩∴33e mf m =-⎧⎨=-⎩ ∴直线PA 的解析式为()33y m x m =-+-当1x =时,26y m =-∴()1,26G m -∴()=426=22DG m m ----+∴=ID DG∴点D 是线段IG 的中点.。

2023年湖北省武汉市中考数学试卷(含答案及解析)

2023年湖北省武汉市中考数学试卷(含答案及解析)

2023年武汉市初中毕业生学业考试数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑。

1.实数3的相反数是()A.3B.13C.-13D.-32.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.3.掷两枚质地均匀的骰子,下列事件是随机事件的是()A.点数的和为1B.点数的和为6C.点数的和大于12D.点数的和小于134.计算2a23的结果是()A.2a5B.6a5C.8a5D.8a65.如图是由4个相同的小正方体组成的几何体,它的左视图是()A. B. C. D.6.关于反比例函数y=3x,下列结论正确的是()A.图像位于第二、四象限B.图像与坐标轴有公共点C.图像所在的每一个象限内,y随x的增大而减小D.图像经过点a,a+2,则a=17.某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.1128.已知x 2-x -1=0,计算2x +1-1x ÷x 2-xx 2+2x +1的值是()A.1 B.-1 C.2D.-29.如图,在四边形ABCD 中,AB ∥CD ,AD ⊥AB ,以D 为圆心,AD 为半径的弧恰好与BC 相切,切点为E .若ABCD =13,则sinC 的值是()A.23 B.53C.34D.7410.皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积S =N+12L -1,其中N ,L 分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A 0,30 ,B 20,10 ,O 0,0 ,则△ABO 内部的格点个数是()A.266B.270C.271D.285二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年初中数学中考复习试题(含答案)
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一 二 三 总分 得分
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人 得分
一、选择题
1.如图1,已知ABC ∆周长为1,连结ABC ∆三边的中点构成第二个三角形,再连结第二个对角线三边中点构成第三个三角形,依此类推,第2003个三角形周长为-------------------------------( ) (A )12002 (B )12003 (C )200212 (D )20031
2
2.若12,x x 是方程22630x x -+=的两个根,则12
11
x x +的值为---------------------------( ) (A )2 (B )2-
(C )
12
(D )
92
3.三角形三边长分别是6、8、10,那么它最短边上的高为---------------------------------( )
(A )6 (B )4.5 (C )2.4 (D )8 4.多项式2
2
215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y -
图1
5.右图是由八个相同小正方体组合而成的几何体,则其左视图是 【 ▲ 】
6.下列图形中既是中心对称图形又是轴对称图形的是 【 ▲ 】
A B C D
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人 得分
二、填空题
7. 如图,在△ABC 中,AB=AC ,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F.现有下列结论:(1)DE=DF ;(2)BD=CD ;(3)AD 上任意一点到AB 、AC 的距离相等;(4)AD 上任意一点到BC 两端点的距离相等,其中正确结论的个数有________个
8.6
2a a ⋅-= ;=--3))((x x ;1
+m m y
y =
9.下面的计算对不对?如果不对,应怎样改正?
(1) (2) (3)
A
B
C
D
F E A A
B
D C
(4) (5) (6)
10.已知函数y= ax 2+bx+c 的一些对应值如下:
判断方程ax 2+bx+c =0(a ≠0,a ,b ,c 为常数)一个解x 的范围是_________________ 11. 抛物线3)2(2
+-=x y 的对称轴是_______________________
12. 已知039,0=++=+-c b a c b a ,则二次函数c bx ax y ++=2
的图象的顶点 可能在第_______________象限 13.m x m
x y +++=
)14
(412的图象与x 轴相交于点A 、B 两点. (1)求证:不论m 为何值该抛物线总经过点(-4,0); (2)若B (x 0,0)且-4<x 0<0,试确定m 的取值范围;
(3)在(2)的条件下,如果这个二次函数的图象与一次函数94
9
+-=x y 的图象相交于点C ,且∠BAC 的余弦值为 5
4
,求这个二次函数的解析式.
14.如图,从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,
x -2 -1 0 1 y -5
-2
3
10
O
A
C
x
y
B
,则这个圆形纸板的半径为 ▲ .
15.如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为________________
16.若∆ABC 的面积为S ,且三边长分别为a b c 、、,则∆的内切圆的半径是 。

17.将图中的△ABC 作下列运动,画出相应的图形: (1)关于y 轴对称图形;
(2)以B 点为位似中心,将△ABC 放大到2倍。

18. 如图,为了测量小河的宽度,小明先在河岸边任意取一点A ,再在河岸这边取两点B 、C ,测得∠ABC =45°,∠ACB =30°,量得BC 为20米,根据以上数据,请帮小明算出河的宽度d (结果保留根号).
A
B
C
O
E
D
19.如果点(a,-2a)在函数y=k
x
的图象上,那么k______0.(填“>”或
“<”)
20.二次函数n mx x y +-=2
2图象的顶点坐标为)2,1(-,则=m ,=n .
21.方程022
=-+m x mx 的根的情况是 .
22.若x 是16的一个平方根,y 是9的一个平方根,则x+y=______
23.设12,x x 是方程2
0x px q ++=的两实根,121,1x x ++是关于
x 的方程
20x qx p ++=的两实根,
则p = ___ __ ,q = _ ____ .
24.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点D ,下列结论①AE=BF ;②AE ⊥BF ;③ AO=OE ; ④DEOF AOB S S 四边形=∆中,错误的有_______________个
评卷人 得分
三、解答题
25.菱形的面积为2
24cm ,两条对角线分别为xcm 和ycm , 求(1)y 与x 之间的函数关系式
C
B
A
(2)当其中一条对角线x=6cm 时,求另一条对角线的长
26.已知x 1和x 2是一元二次方程2x 2+5x -3=0的两根,利用根与系数的关系求下列各式的值:
(1)求| x 1-x 2|的值; (2)求2212
11x x +的值; (3)x 13+x 23.
27.因式分解:3
2
933x x x +++
28.已知321x -与323-y 互为相反数,求y
x
21+的值。

29.某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图.试根据统计图提供的信息,回答下列问题:
(1)共抽取了 名学生的体育测试成绩进行统计; (2)随机抽取的这部分学生中男生体育成绩众数是 ; 女生体育成绩的中位数是 .
(3)若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是多少?
30.计算或化简:
(1
-(1)0
-2sin45° (2)先化简,再求值:x x 12-÷⎪⎭
⎫ ⎝⎛--x x 121,其
中x =2。

相关文档
最新文档