非晶硅薄膜太阳能电池及制造工艺
非晶硅薄膜太阳能电池应用分析
非晶硅薄膜太阳能电池应用分析1. 简介非晶硅薄膜太阳能电池是一种主要由非晶硅薄膜材料制成的光伏电池。
本章将介绍非晶硅薄膜太阳能电池的基本原理和优点,以及其在太阳能行业中的前景和应用。
2. 非晶硅薄膜太阳能电池的技术原理本章将详细介绍非晶硅薄膜太阳能电池的技术原理,包括其制备、结构、物理特性等方面的内容。
同时,还将重点探讨非晶硅薄膜太阳能电池的能量转换效率、光电性能、光损失等方面的问题。
3. 非晶硅薄膜太阳能电池的应用现状本章将介绍非晶硅薄膜太阳能电池在各个领域的应用情况,包括建筑、汽车、移动电源、航空航天等方面。
同时,还将分析非晶硅薄膜太阳能电池在实际应用中面临的挑战和前景。
4. 非晶硅薄膜太阳能电池的未来发展方向本章将分析非晶硅薄膜太阳能电池的未来发展趋势和方向。
主要从材料、工艺、结构和技术方面探讨非晶硅薄膜太阳能电池的改进和提高能量转换效率等方面的发展。
5. 结论本文对非晶硅薄膜太阳能电池的技术原理、应用现状和未来展望进行了比较全面的介绍和分析。
结合当前的环境和产业背景,本文认为非晶硅薄膜太阳能电池具有广阔的市场前景,并有望在未来成为太阳能电池领域的主流产品之一。
第一章:简介随着全球能源需求的不断增长和对可再生能源的需求越来越强烈,太阳能电池作为最具代表性的新能源技术之一,正变得越来越受到人们的关注。
非晶硅薄膜太阳能电池(Amorphous Silicon Thin Film Solar Cell,简称a-Si电池)是目前人们对太阳能电池的一种有效研究和开发方向之一。
相较于传统的多晶硅太阳能电池和单晶硅太阳能电池,a-Si电池具有材料和制造成本低、可扩展性高、透明性好等特点。
本章将介绍非晶硅薄膜太阳能电池的基本原理和优点,以及其在太阳能行业中的前景和应用。
1.1 非晶硅薄膜太阳能电池的基本原理多晶硅太阳能电池和单晶硅太阳能电池的构造非常相似,主要由n型硅和p型硅两种材料组成。
在阳光的照射下,太阳能会被电池中的半导体材料吸收,产生电子与空穴。
非晶硅太阳电池
非晶硅太阳电池非晶硅太阳电池,也被称为非晶硅薄膜太阳电池,是一种利用非晶硅材料制成的光伏电池。
非晶硅太阳电池具有柔性、轻薄和低造价等优点,适用于一些特殊场合和应用领域。
本文将从非晶硅材料的特性、非晶硅太阳电池的结构和工作原理、非晶硅太阳电池的优缺点以及应用领域等方面进行详细介绍。
非晶硅是一种非晶态的硅材料,其原子结构杂乱无序,与晶体硅相比,非晶硅具有更高的能量转换效率和更低的制造成本。
非晶硅太阳电池通常由玻璃或塑料基底、透明导电薄膜、非晶硅光伏层、背电极和接线等部分组成。
非晶硅太阳电池使用非晶硅材料作为光伏层,其中掺杂了少量的杂质元素,使得材料具有较高的光电转换效率。
非晶硅太阳电池的工作原理主要基于光伏效应,即光子入射到非晶硅光伏层上后被吸收,释放出电子和空穴,并在电场的作用下分别流向背电极和透明导电薄膜,从而形成电流。
非晶硅太阳电池的光伏转换效率与光伏层的材料性能、光伏层的厚度、非晶硅材料的电学性质等因素密切相关。
非晶硅太阳电池具有以下优点:首先,非晶硅太阳电池可以制备成柔性和轻薄的结构,适应各种复杂的曲面和形状,具有更广阔的应用空间;其次,非晶硅太阳电池的制造成本较低,生产工艺简单,可以实现大规模生产和应用;此外,非晶硅太阳电池在低光强和低温环境下具有较高的光电转换效率,适用于一些特殊应用领域。
然而,非晶硅太阳电池也存在一些缺点:首先,非晶硅太阳电池的光电转换效率相比于其他材料的太阳电池要低一些;其次,非晶硅太阳电池对光强和温度的变化较为敏感,在高温和强光环境下效果较差;另外,非晶硅太阳电池的使用寿命较短,一般在10年左右。
非晶硅太阳电池在一些特殊领域有广泛应用。
例如,在电子设备领域,非晶硅太阳电池可以用于制备柔性和可折叠的光伏电池组件,为电子设备提供可持续的电力;在建筑领域,非晶硅太阳电池可以嵌入到建筑材料中,如玻璃幕墙、屋顶瓦片等,实现建筑一体化太阳能利用;此外,非晶硅太阳电池还可以应用于一些便携式充电设备、户外太阳能供电系统等领域。
新能源技术知识:太阳能电池的产业化生产和制造工艺
新能源技术知识:太阳能电池的产业化生产和制造工艺太阳能电池是将太阳辐射能转化为电能的一种装置,是太阳能利用的最基本的技术之一。
太阳能电池不仅具有无污染、可再生和背景良好等优点,而且其产业化生产对促进清洁能源产业的发展也具有重要的意义。
目前太阳能电池的制造主要分为单晶硅、多晶硅、非晶硅和柔性薄膜太阳能电池等几种不同的技术。
单晶硅太阳能电池:单晶硅太阳能电池是目前使用最广泛的太阳能电池类型之一。
其制造工艺需要从纯硅晶体中制成厚度约为0.3毫米的硅片,然后在硅片上切出200至300微米的薄片,再加上其他辅助生产设备制成太阳能电池。
单晶硅太阳能电池的效率高,稳定性好,长期使用后衰减很小,但其成本较高。
多晶硅太阳能电池:多晶硅太阳能电池制造工艺与单晶硅太阳能电池类似,其所使用的硅片是由多晶硅块晶体生长而成的,单晶硅太阳能电池成本较高。
多晶硅太阳能电池效率稍低,但其供给应用场景比单晶硅太阳能电池更广泛。
非晶硅太阳能电池:非晶硅太阳能电池以硅为基材,安放层叠的多层薄膜。
这种太阳能电池制造工艺简单,成本较低,但效率相对较低。
柔性薄膜太阳能电池:柔性薄膜太阳能电池以多种材料为基材,采用柔性工艺制造而成。
该电池型材较轻薄、柔韧、携带灵活,能适应各种曲面倾斜。
柔性太阳能电池制造工艺复杂,但成本较低,具有很大的市场发展空间。
在太阳能电池生产过程中,使用的核心技术为精确切割、配合材料、应用各种机械和化学技术等等。
太阳能电池产业化生产需要通过掌握各种专业技能和经验,以确保广泛使用时的安全、可靠和高效。
太阳能电池生产的辅助技术和设备包括:硅片生长炉设备、硅片切割机、清洗、涂层、刻蚀、衬底和加热设备等。
制造商也需要耗费大量的人力、财力和物力在质量管理、性能测试以及产品设计等方面的投入。
太阳能电池技术日益发展,新材料和新技术也不断出现,旧材料和旧技术也在不断更新。
建立太阳能电池产业链,发挥各个生产环节之间的优势,加快产业化发展步伐,将是推动太阳能电池产业发展,进一步推进可持续发展的关键所在。
!!!太阳能电池制造工艺---工艺流程以及工序简介
去除磷硅玻璃的目的、作用:
1.
磷硅玻璃的厚度在扩散中工艺难控制,且其工艺窗口太小,不稳 定。 磷硅玻璃的折射率在1.5左右,比氮化硅折射率(2.07左右)小, 若磷硅玻璃较厚会降低减反射效果。 磷硅玻璃中含有高浓度的磷杂质,会增加少子表面复合,使电池 效率下降。
2.
3.
2. 扩散(POCl3液态扩散)
结的附近形成了与内建电场方
向相反的光生电场。在n区与p 区间产生了电动势。当接通外
电路时便有了电流输出。
单晶硅太阳电池
多晶硅太阳电池
非晶硅太阳电池
2. 硅太阳电池的制造工艺流程
下面我们就硅太阳电池的制造工艺流程以及各工序进行简 单的介绍。 晶体硅太阳能电池制造的常规工艺流程主要包括:硅片清 洗、绒面制备、扩散制结、(等离子周边刻蚀)、去 PSG(磷硅玻璃) 、PECVD 减反射膜制备、电极(背面电极、 铝背场和正电极) 印刷及烘干、烧结、Laser和分选测试等。 同时,在各工序之间还有检测项目,主要有抽样检测制绒效 果、抽样 测方块电阻、抽样测氮化硅减反射膜厚度和折射 率等项目。
(c). 去磷硅玻璃---PSG
在扩散过程中发生如下反应:
4PCl3 5O2 2PO 2 5 6Cl2
POCl3分解产生的P2O5淀积在硅片表面, P2O5与Si反应生成SiO2和 磷原子:
2P O 5Si 5SiO 4P
2 5 2
这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。
ser
4.沉积减反射膜(PECVD)
10.烧 结
5.丝网印刷背电极
6.烘 干
9.丝网印刷正电极
8.烘 干
7.丝网印刷背电场
一文读懂非晶硅太阳能电池及其应用
一文读懂非晶硅太阳能电池及其应用目前光伏市场上,制作太阳能电池使用的最多的材料就是硅,其中主要分为单晶硅太阳能电池,多晶硅太阳能电池以及非晶硅太阳能电池,前两种,由于所用材料是间接带隙半导体——吸收太阳能时需要一定的厚度,PN结比较厚(一般大于200微米),所以其硅原料消耗较多,成本相应较高,电池板的价格居高不下,其所造成的硅浪费也比较大,而硅是十分多用途的重要半导体。
非晶硅为直接带隙半导体,光辐射吸收范围广,所需厚度薄,故此非晶硅薄膜太阳能电池可以做得很薄,光吸收薄膜总厚度大约1微米,非晶硅以其原料消耗少,低成本以及较好的性能而得到市场的青睐。
非晶硅太阳能电池的特点低成本1、硅材料用料少,可充分吸收光,单晶要200μ厚,非晶1μ厚(非晶硅光吸收系数大)。
2、主要原材料是生产高纯多晶硅过程中使用的硅烷,这种气体,化学工业可大量供应,且十分便宜,制造一瓦非晶硅太阳能电池的原材料本约RMB3.5-4(效率高于6%)。
3、晶体硅太阳电池的基本厚度为240-270um,相差200多倍,大规模生产需极大量的半导体级,仅硅片的成本就占整个太阳电池成本的65-70%,在中国1瓦晶体硅太阳电池的硅材料成本已上升到RMB22以上。
从原材料供应角度分析,人类大规模使用阳光发电,最终的选择只能是非晶硅太阳电池及其它薄膜太阳电池,别无它法!易于形成大规模因为核心工艺适合制作特大面积无结构缺陷的a-Si合金薄膜;只需改变气相成分或者气体流量便可实现pn结以及相应的叠层结构;生产可全程自动化。
品种多,用途广薄膜的a-Si太阳能电池易于实现集成化,器件功率、输出电压、输出电流都可自由设计制造,可以较方便地制作出适合不同需求的多品种产品。
由于光吸收系数高,暗电导很低,适合制作室内用的微低功耗电源,如手表电池、计算器电池等。
由于a-Si膜的硅网结构力学性能结实,适合在柔性的衬底上制作轻型的太阳能电池。
灵活多样的制造方法,可以制造建筑集成的电池,适合户用屋顶电站的安装。
应用于低成本非晶硅薄膜太阳能电池组件生产的大批量并行生产工艺
积 。通 过 台 阶仪 测 试 了基 板 编 号 为 1 1 0 6 — 3 2 4 0 3 — 5 4 8 双 节 非 晶硅 薄 膜 的 总 厚度 。 其 厚 薄 差见 三 维 立 体 图 ( 见图3 ) 。总 的来 讲, 厚度 均匀 性是 非常 好 的 , 平均 厚度为 5 3 7 n m, 偏差为 1 3
0 0 0 W, m 2 。 大气质量指数 为 A M1 . 5 。 电池 温 度 为 2 5  ̄ 2  ̄ C 。 测 试
结 果 见 图 4:
占
坐 。
15
分 。
比 5
( %) 0
功率 ( WP )
图2 ( b ) 功 率分 布 图
Ou t d o o r d a t a( a n d c u r v e i f t ) o v e r a 4 y e a r p e r i o d
图 4 老 化试 验 功 率 衰减 曲线
刘先平等 : 应 用于低成本 非晶硅 薄膜 太阳能 电池组件 生产的 大批 量并行生产 工艺
在晴天尤其在室外强光直射下 , 电池 板 温 度 较 高 。 如 前 所
学术研 究
1 3
积 2 8炉 产 品 的 生 产 统 计 , 平均 功率达到 5 7 . 6 5 Wp 。 大 于 等 于
了 4年 多 , 在 这 个 过 程 中 组 件 在 开 路 状 态 下 连 续暴 露 在 室外 ,
并 从 老 化 试 验架 上 挪 到 双 轴 太 阳能 跟 踪 装 置 的支 架 上 进 行 定
功率 ( WP 】 图2 ( a ) 功率 分 布 图
期 的 耐 老 化 性 能 测 试 ,测 试 条 件 为 标 准 测 试 条 件 :光 强 1
非晶硅及薄膜太阳能电池技术的发展与应用
非晶硅及薄膜太阳能电池技术的发展与应用随着环保意识的不断提高和能源危机的日益加剧,太阳能电池作为一种清洁、可再生的能源,逐渐成为了世界各国节能减排和发展可再生能源的重要选择。
而在众多太阳能电池技术中,非晶硅和薄膜太阳能电池技术因其高效、轻薄、柔性等优点,受到了越来越多的关注。
本文将探讨非晶硅及薄膜太阳能电池技术的发展历程、特点以及应用前景。
一、非晶硅太阳能电池技术的起源和发展非晶硅太阳能电池是一种利用非结晶硅(a-Si)薄膜作为光电转化层制成的新型太阳能电池。
20世纪70年代初期,斯坦福大学的英国物理学家David Adler和John W. Coburn等人,在研究等离子体物理学时,偶尔发现了a-Si材料的非晶性质和光电特性,进而发展出了非晶硅太阳能电池。
相较于传统的晶硅太阳能电池,非晶硅太阳能电池具有以下几个突出优点:1.高效:非晶硅太阳能电池的光电转换效率高,可以达到10%以上。
2.轻薄:由于非晶硅材料具有较小的晶粒大小和结构不规则,因此可以制备出非常薄的电池层,使得整个太阳能电池组件变得轻薄、灵活,便于安装和使用。
3.低成本:非晶硅太阳能电池具有制备工艺简单、原材料价格低廉的特点,因此制造成本相对于晶硅太阳能电池较低。
4.半透明:非晶硅太阳能电池可制成半透明的电池层,可以用于建筑物的幕墙、采光、遮阳等场合。
二、薄膜太阳能电池技术的发展历程和优势薄膜太阳能电池技术是指将各种材料的薄膜制成太阳能电池的光电转化层,其中包括非晶硅、铜铟镓硫(CIGS)、铜铟镓铝硫(CIGAS)等多种材料。
相比非晶硅太阳能电池,薄膜太阳能电池材料的选择更加广泛,也因此有更大的发展前景。
早在20世纪50年代,人们就开始了对于薄膜太阳能电池的研究。
当时使用的材料主要是半导体材料,但是效率较低,仅能达到不到1%。
1983年,美国联邦航空局研制出了铜铟镓硫(CIGS)薄膜太阳能电池,并在1991年实现了15.9%的能量转化效率,创造出了当时太阳能电池记录,这一技术因其高效、柔性等特点,受到了世界各国的瞩目。
nip型非晶硅薄膜太阳能电池的研究
《探究nip型非晶硅薄膜太阳能电池的研究》1. 引言近年来,随着能源危机日益严重,太阳能作为清洁能源备受人们关注。
而nip型非晶硅薄膜太阳能电池作为一种新型高效太阳能电池,受到了广泛的研究和关注。
本文将针对nip型非晶硅薄膜太阳能电池进行深入探究,从深度和广度两个方面进行全面评估,并为读者提供有价值的文章。
2. nip型非晶硅薄膜太阳能电池概述2.1 nip型非晶硅薄膜太阳能电池的基本结构nip型非晶硅薄膜太阳能电池通常由n型非晶硅薄膜、i型非晶硅薄膜和p型非晶硅薄膜组成,其中i型层是光吸收层。
2.2 nip型非晶硅薄膜太阳能电池的工作原理当太阳光照射到nip型非晶硅薄膜太阳能电池时,光子被i型层吸收,激发出电子和空穴,从而产生光生电荷对。
3. nip型非晶硅薄膜太阳能电池的研究现状3.1 nip型非晶硅薄膜太阳能电池的发展历程nip型非晶硅薄膜太阳能电池的研究始于20世纪80年代,经过多年的发展,取得了显著的进展。
3.2 nip型非晶硅薄膜太阳能电池的研究热点当前,研究人员主要集中在提高nip型非晶硅薄膜太阳能电池的光电转换效率、稳定性和制备工艺上。
4. nip型非晶硅薄膜太阳能电池的优势与挑战4.1 优势:相较于传统多晶硅太阳能电池,nip型非晶硅薄膜太阳能电池具有较高的光吸收系数和较低的制备成本。
4.2 挑战:目前nip型非晶硅薄膜太阳能电池在光电转换效率、稳定性和长期耐久性方面仍存在挑战。
5. 个人观点与总结个人认为,nip型非晶硅薄膜太阳能电池作为一种新型高效太阳能电池,在清洁能源领域具有重要的应用前景。
鉴于其目前面临的挑战,未来的研究应该集中在提高光电转换效率、提升稳定性和减少制备成本上。
各界应该加大对nip型非晶硅薄膜太阳能电池的投入和支持,推动其在太阳能领域的广泛应用。
结语通过本文的探究,相信读者已经对nip型非晶硅薄膜太阳能电池有了更深入的理解。
未来,随着科技的不断进步和研究的不断深入,相信nip型非晶硅薄膜太阳能电池必将成为清洁能源领域的重要力量。
非晶硅太阳能电池
1、电池结构
下图是两种非晶硅内部结构示意图:
2、制作步骤
清洗 裁块 PECVD 刻铝 镀铝 刻a-Si膜 测试
⑴ 清洗 将标准透明导电玻璃板和玻璃背板放入 专用清洗机进行清洗,清洗液用电阻率 10MΩ以上的去离子纯水
⑵ 裁块
根据实际需要,用专用激光刻线机对透 明导电玻璃板进行激光刻线(用1064nm的 红外激光)
⑸ 镀铝 做电池的背电极,以增大太阳能电池对 光的吸收
制作方法:掩膜蒸发镀铝
⑹ 刻铝 根据预定的线宽以及与SnO2切割线的线 间距,用波长为532nm绿激光将a-Si刻穿, 目的是让背电极通过,并与前电极相连接, 从而使最初切割而成的若干电池串联
⑺ 测试 在经过上面六道主要工序过后,非晶硅 电池板已形成,需要进行测试,以获得电 池板各性能参数,通过对参数的分析,来 判定工序的质量,以便提高电池质量
主要用于光伏发电站;
3、封装
由于不同的太阳能电池对于封装要求不 同,根据适用范围,大致可以分为以下4个 方面: ⅰ:电池/PVC膜(封装结构) 适用于一般太阳能应用产品,如应 急灯、要求不高的小型用电户电源;
ⅱ:电池/EVA/PET(TPT) 适用于一般户用发电; ⅲ:电池/EVA/普通玻璃 可用于发电系统; ⅳ:钢化玻璃/EVA/电池/EVA/普通玻 璃二、非晶硅太阳能电池
基本原理
一、太阳能电池的基本原理
什么叫太阳能电池?
太阳能电池是光能转换为电能的器件。 太阳光照在半导体p-n结上,产生新的 电子-空穴对,在p-n结电场的作用下,空 穴由p区流向n区,电子由n区流向p区的过 程
基本原理
为了将整板分为若干块,作为若干个单 体电池的电极
非晶硅薄膜太阳能电池特点及简介 李炜解析
中文摘要中文摘要非晶硅太阳能电池作为一种新型太阳能电池,其原材料来源广泛、生产成本低、便于大规模生产,因而具有广阔的市场前景。
它具有较高的光吸收系数,在0.4~0.75um的可见光波,其吸收系数比单晶硅要高出一个数量级,比单晶硅对太阳能辐射的吸收率要高40倍左右,用很薄的非晶硅膜(约1um厚)就能吸收约80%有用的太阳能,且暗电导很低,在实际使用中对低光强光有较好的适应,特别适用于制作室内用的微低功耗电源,这些都是非晶硅材料最重要的特点,也是它能够成为低价太阳能电池的重要因素。
非晶硅薄膜电池由于没有晶体硅所需要的周期性原子排列要求,可以不考虑制备晶体所必须考虑的材料与衬底间的晶格失配问题,在较低的温度(200摄氏度左右)下可直接沉积在玻璃、不锈钢、塑料膜和陶瓷等廉价衬底材料上,工艺简单,单片电池面积大,便于工业化大规模生产,同时亦能减少能量回收时间,降低生产成本。
另外,非晶硅的禁带宽度比单晶硅大,随制备条件的不同约在1.5~2.0eV的范围内变化,这样制成的非晶硅太阳能电池的开路电压高,同时,还适合在柔性的衬底上制作轻型的太阳能电池,可做成半透明的电池组件,直接用做幕墙和天窗玻璃,从而实现光伏发电和建筑房屋一体化。
总之,非晶硅薄膜电池具有生产成本低、能量回收时间短、适于大批量生产、弱光响应好以及易实现与建筑相结合、适用范围广等优点。
关键字:非晶硅薄膜;光致衰退效应;界面态;太阳能电池I目录目录中文摘要 (I)第一章非晶硅薄膜太阳电池 (1)第一节非晶硅薄膜太阳电池基础知识简介 (1)第二节非晶硅薄膜太阳电池生产线及制造流程简介 (4)第二章非晶硅薄膜太阳电池应用分析 (7)第一节非晶硅电池特点 (7)第二节非晶硅电池光致衰退效应 (8)第三节非晶硅电池性能影响因素及发展前景 (9)第三章总结 (11)致谢 (12)参考文献 (13)II第一章 简易文本编辑器内容和功能第 1 页第一章 非晶硅薄膜太阳电池第一节 非晶硅薄膜太阳电池基础知识简介1976年美国RCA 实验室的D.E.Conlson 和C.R.Wronski 在Spear 形成和控制p-n 结工作的基础上利用光生伏特(PV)效应制成世界上第一个a-Si 太阳能电池,揭开了a-Si 在光电子器件或PV 组件中应用的幄幕。
非晶硅太阳能电池生产工艺流程
一、薄膜电池种类:
非晶硅(a-Si)—纳晶硅(nc-Si)—微晶硅(μc-Si)—多晶硅(poly-Si)碲化镉(CdTe)—铜铟镓硒(CuInGaSe)—染料(T i O2)—陶瓷—有机
二、非晶硅薄膜电池的结构:载体(玻璃)—导电膜(正极)—非晶硅(a-Si)
(p-i-n)—金属膜(负极)
三、导电膜(TCO)种类:SnO2——硬膜;ZnO或ITO——软膜
四、非晶硅层结构种类:a-Si——a-Si / a-Si——a-Si / a-SiGe——a-Si /
a-SiGe / a-SiGe——poly-Si——a-Si /poly-Si
五、金属膜种类:Al——Ag——ZnO
六、膜层形成方式:TCO——化学沉积(喷涂);a-Si——气相沉积;Al
——磁控溅射
七、膜层厚度:TCO——0.7~0.8μm;a-Si——0.3~0.5μm;Al—
—0.8~1μm
八、切割使用激光波长:TCO——1064 nm;a-Si /Al——532 nm
九、非晶硅薄膜电池膜层结构及切割要求示意:
十、封装:双层玻璃,EVA夹层,层压封装;或贴PVC防护膜;或涂光洁树脂
等。
十一、测试:负载匹配、数据采集、光源脉宽、响应时间。
十二、主要生产工艺流程(如下)。
非晶硅薄膜太阳能电池
一、引言太阳能光电转换电池主要分为两类,一类是晶体硅电池,包括单晶硅(sc—si)电池、多晶硅(mc—si)电池两种,它们占据约93%的市场份额;另一类是薄膜电池,主要包括非晶体硅(a—Si,使用的是硅,但以不同的形态表现)太阳能电池、铜铟镓硒(cICS)太阳能电池和碲化镉(cdTe)太阳能电池,这类电池占据7%的市场份额。
晶体硅太阳能电池一直是主流产品,其中多晶硅太阳能电池自l998年开始成为世界光伏市场的主角。
但是由于晶体硅太阳能电池所需的高纯多晶硅价格飙升,使得晶体硅电池价格上涨,为非晶硅太阳能电池带来了行业机会。
制造晶体硅类太阳能电池成本高、能耗大、有污染,要解决这些问题,使太阳能行业真正变成最环保的产业,只能大力发展非晶硅太阳能电池。
二、优点1.非晶硅具有较高的光吸收系数.特别是在0.3-0.75um的可见光波段,它的吸收系数比单晶硅要高出一个数量级.因而它比单晶硅对太阳能辐射的吸收率要高40倍左右,用很薄的非晶硅膜(约1um厚)就能吸收90%有用的太阳能.这是非晶硅材料最重要的特点,也是它能够成为低价格太阳能电池的最主要因素.2.非晶硅的禁带宽度比单晶硅大,随制备条件的不同约在1.5-2.0eV的范围内变化,这样制成的非晶硅太阳能电池的开路电压高.3.制备非晶硅的工艺和设备简单,淀积温度低,时间短,适于大批生产.制作单晶硅电池一般需要1000度以上的高温,而非晶硅电池的制作仅需200度左右.4.由于非晶硅没有晶体硅所需要的周期性原子排列,可以不考虑制备晶体所必须考虑的材料与衬底间的晶格失配问题.因而它几乎可以淀积在任何衬底上,包括廉价的玻璃衬底,并且易于实现大面积化.5.制备非晶硅太阳能电池能耗少,约100千瓦小时,能耗的回收年数比单晶硅电池短很多三、原理非晶硅电池的工作原理是基于半导体的光伏效应。
当太阳光照射到电池上时,电池吸收光能产生光生电子—空穴对,在电池内建电场Vb的作用下,光生电子和空穴被分离,空穴漂移到P边,电子漂移到N边,形成光生电动势VL,VL与内建电势Vb相反,当VL=Vb时,达到平衡;IL=0,VL达到最大值,称之为开路电压Voc;当外电路接通时,则形成最大光电流,称之为短路电流Isc,此时VL=0;当外电路加入负载时,则维持某一光电压VL 和光电流IL。
非晶硅薄膜太阳能电池基础知识
1.非晶硅太阳电池原理非晶硅太阳电池是20世纪70年代中期发展起来的一种新型薄膜太阳电池,与其他太阳电池相比,非晶硅电池具有以下突出特点:1).制作工艺简单,在制备非晶硅薄膜的同时就能制作pin结构。
2).可连续、大面积、自动化批量生产。
3).非晶硅太阳电池的衬底材料可以是玻璃、不锈钢等,因而成本小。
4).可以设计成各种形式,利用集成型结构,可获得更高的输出电压和光电转换效率。
5).薄膜材料是用硅烷SiH4等的辉光放电分解得到的,原材料价格低。
1.非晶硅太阳电池的结构、原理及制备方法非晶硅太阳电池是以玻璃、不锈钢及特种塑料为衬底的薄膜太阳电池,结构如图1所示。
为减少串联电阻,通常用激光器将TCO膜、非晶硅(A-si)膜和铝(Al)电极膜分别切割成条状,如图2所示。
国际上采用的标准条宽约1cm,称为一个子电池,用内部连接的方式将各子电池串连起来,因此集成型电池的输出电流为每个子电池的电流,总输出电压为各个子电池的串联电压。
在实际应用中,可根据电流、电压的需要选择电池的结构和面积,制成非晶硅太阳电池。
1.1 工作原理非晶硅太阳电池的工作原理是基于半导体的光伏效应。
当太阳光照射到电池上时,电池吸收光能产生光生电子—空穴对,在电池内建电场Vb的作用下,光生电子和空穴被分离,空穴漂移到P边,电子漂移到N边,形成光生电动势VL, VL 与内建电势Vb相反,当VL = Vb 时,达到平衡; IL = 0, VL达到最大值,称之为开路电压Voc ; 当外电路接通时,则形成最大光电流,称之为短路电流Isc,此时VL= 0;当外电路加入负载时,则维持某一光电压VL和光电流IL。
其I--V特性曲线见图3非晶硅太阳电池的转换效率定义为:Pi是光入射到电池上的总功率密度,Isc是短路电流密度,FF为电池的填充因子,Voc 为开路电压,Im 和 Vm 分别是电池在最大输出功率密度下工作的电流密度和电压。
目前,子电池的开路电压约在0.8V—0.9V之间,Isc达到13mA/cm2,FF在0.7-0.8之间,η达到12%以上。
nip型非晶硅薄膜太阳能电池的研究
nip型非晶硅薄膜太阳能电池的研究【主题】nip型非晶硅薄膜太阳能电池的研究一、nip型非晶硅薄膜太阳能电池的定义和原理1. nip型非晶硅薄膜太阳能电池的结构和特点2. 太阳能电池的工作原理和能量转换过程二、nip型非晶硅薄膜太阳能电池的研究现状1. 目前nip型非晶硅薄膜太阳能电池在能源领域的应用情况2. 目前nip型非晶硅薄膜太阳能电池的研究进展和最新成果3. nip型非晶硅薄膜太阳能电池的发展前景和挑战三、nip型非晶硅薄膜太阳能电池的优势和局限性1. nip型非晶硅薄膜太阳能电池与其他太阳能电池的比较2. nip型非晶硅薄膜太阳能电池在实际应用中可能遇到的问题和挑战四、个人观点和总结1. nip型非晶硅薄膜太阳能电池的发展前景和价值2. 对nip型非晶硅薄膜太阳能电池的未来发展方向和可能的应用领域的展望【文章】在当今社会,可再生能源已成为人们关注的热门话题之一。
太阳能作为最具潜力和广泛应用的可再生能源之一,受到了广泛的关注和研究。
而在太阳能电池的发展过程中,nip型非晶硅薄膜太阳能电池作为一种新型的太阳能电池,备受研究者和产业界的青睐。
本文将就nip型非晶硅薄膜太阳能电池的研究进行全面探讨,深入剖析其结构、原理、研究现状、优势和局限性,并在此基础上对其未来发展做出展望和个人观点。
一、nip型非晶硅薄膜太阳能电池的定义和原理1. nip型非晶硅薄膜太阳能电池的结构和特点nip型非晶硅薄膜太阳能电池是一种以非晶硅薄膜材料为基础的太阳能电池,其结构主要由n型非晶硅层、i型非晶硅层和p型非晶硅层组成。
相比于传统的太阳能电池,nip型非晶硅薄膜太阳能电池具有薄膜轻薄、柔性和稳定的特点,且转换效率较高。
2. 太阳能电池的工作原理和能量转换过程太阳能电池的工作原理是利用光电效应,将太阳能转化为电能。
当光子照射到太阳能电池上时,光子的能量被转化为电子的能量,从而在电场的作用下产生电流。
而nip型非晶硅薄膜太阳能电池则是通过非晶硅材料的特性,实现对光能的吸收和转化。
非晶硅薄膜电池
非晶硅薄膜电池
非晶硅薄膜电池,也称为非晶硅太阳能电池,是一种光伏
电池技术。
它使用非晶硅(a-Si)材料作为光电转换层,将太阳能转化为电能。
非晶硅材料是由非晶形态的硅原子组成,其晶格结构不规则,而不同于晶体硅的有序结构。
这使得非晶硅具有一些
特殊的电学和光学性质。
非晶硅薄膜电池的制作过程主要包括以下步骤:
1. 材料准备:将特定成分的硅化合物蒸发在基板上,形成
非晶硅薄膜。
2. 电极制备:在薄膜上加上透明导电氧化物电极和背电极。
3. 光学改性:可进行氢化、氟化等处理来改善非晶硅的光
学吸收性能。
4. 封装:将薄膜电池封装于透明保护层中。
非晶硅薄膜电池具有以下优点:
1. 高效率转化:非晶硅薄膜电池可以将太阳能转化为电能,其转换效率较高。
2. 薄膜结构:由于非晶硅材料的特性,非晶硅薄膜电池可
以制作成薄膜结构,更适合柔性电子设备的应用。
3. 成本低:非晶硅材料相对廉价且易于制备,在能源产业
中具有较大潜力。
尽管非晶硅薄膜电池具有一些优点,但也存在一些限制,
如稳定性较差、光电转换效率相对较低等。
在太阳能电池
技术的发展中,其他类型的电池如多晶硅电池、薄膜太阳
能电池等也在不断取得进展。
薄膜太阳能电池的制备及应用研究
薄膜太阳能电池的制备及应用研究在日益紧张的能源短缺背景下,太阳能电池作为一种清洁绿色的新型能源,备受关注。
与传统的硅晶太阳能电池相比,薄膜太阳能电池具有更高的光电转换效率和更大的灵活性,逐渐成为研究的热点之一。
本文将介绍薄膜太阳能电池制备及其应用研究的进展和趋势。
一、薄膜太阳能电池制备技术薄膜太阳能电池主要由多层薄膜堆积结构组成,其中光吸收层、电荷分离层和电子传输层等是实现高效能量转换的关键部分。
目前,主要的薄膜太阳能电池有非晶硅、染料敏化型(DSSC)、有机太阳能电池(OSC)和钙钛矿太阳能电池(PSC)等。
(一)非晶硅太阳能电池非晶硅太阳能电池是最早被研究和应用的一种薄膜太阳能电池。
其基本结构是由玻璃基板、导电层、p-i-n结构薄膜和金属电极组成。
非晶硅薄膜由于具有高的光吸收系数和高的载流子迁移率,因此具有较高的光电转换效率。
但是其低稳定性和性能退化等问题限制了其应用。
(二)染料敏化型太阳能电池染料敏化型太阳能电池常用的是钛酸盐作为阳极材料,以染料分子为光吸收层进行光电转换。
其基本结构是由导电玻璃、导电链、暴露于染料敏化电解液中的TiO2纳米晶、染料分子和反电极组成。
染料敏化型太阳能电池具有较高的光电转换效率和较低的成本,但是其稳定性仍存在问题,需要进一步改进和优化。
(三)有机太阳能电池有机太阳能电池以有机分子或聚合物为光吸收层,光生载流子的传输过程中利用电子与空穴的相互作用进行光电转换。
其优点是重量轻、柔性好、性能可调,但是其效率仍需要提高和稳定性也需要解决。
(四)钙钛矿太阳能电池钙钛矿太阳能电池是近年发展起来的一类新型太阳能电池。
其光吸收层为有机-无机钙钛矿晶体,具有高的光吸收系数和光电转换效率,已经成为应用研究的热点。
此外,钙钛矿太阳能电池具有可调性强、制备工艺简单等优点。
二、薄膜太阳能电池应用研究随着薄膜太阳能电池制备技术的不断发展,其应用领域也逐渐扩大。
目前,薄膜太阳能电池主要应用于移动电源、灵活显示屏、无线传感器等领域,未来还将有更广泛的应用前景。
非晶硅薄膜太阳能电池具体工艺流程
非晶硅薄膜太阳能电池具体工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!随着清洁能源的需求不断增加,太阳能电池作为一种可再生能源的重要代表,受到了广泛关注。
pin型非晶硅太阳能电池的制备与特性的研究_
薄膜制备的步骤如下:①由于制备pin型非晶硅薄膜太阳能电池a-Si:H薄膜所用的气体SiH4、PH3和B3H6气体都具有危险性,因此在进行实验之前要先进行气体安全性检查;②将保存在去离子水中的基片取出,用N2气将其吹干,然后将基片放在基片架上并作相应的固定处理;③将装有基片的基片架通过送样室送入反应室,对送样室、反应室以及出样室分别抽真空,并根据预先制定的沉积条件对基片架加热;④为了保证基片温度达到预定的温度,需要保温3~5小时,然后打开控制电调节气体压强、气体流量等参数,开始通入气体;⑤气体供应按照“先通入普氮清洗,后通入氩气清洗,再通入工作气体”的原则进行;⑥通入反应气体时,打开射频电源,并调整射频功率至需要的数值,开始镀膜;⑦沉膜结束后,关闭SiH4、PH3 和B3H6气阀,并通入Ar气和N2气清洗气路,排尽系统中的反应气体,以确保安全;⑧气路清洗完毕以后,将基片架送入出样室,并待其温度降到室温后,去除真空取出室外。
4.4 p、n层材料的制备及工艺选择p、n层的作用:p、n层作为电池内建电场产生的来源,对pin单结太阳能电池的性能有着重要的影响。
理论认为带尾态的复合对pin结构太阳电池的开压起着基本的限制作用,电池的开压有i层的电子和空穴费米能级差来决定。
我们可以通过改变p型层结构和组成来提高电池的开压,并且影响i层光生载流子的收集,从而直接影响电池的填充因子和转换效率。
作为掺杂层,要求p、n层重掺杂与电极形成良好的欧姆接触外,p在pin结构电池中,p是受光面,要求比较严格一些,不仅要有比较高的电导率,还要有高的光透射率,一般膜厚只需要20nm左右,沉积时间一般在几分钟到十几分钟左右。
层材料还要有高的光学带隙,以增大内建电势,减小串联电阻,允许更多的太阳光透过它进入i层有源层,为此,p层选用了p型硼掺杂a-Si:H材料作为电池的窗口层。
43444.4.1 衬底温度对p 型硅薄膜材料带隙影响实验:在PECVD 系统中制备p 型硅薄膜材料和电池。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非晶硅薄膜太阳能电池及制造工艺一、非晶硅薄膜太阳能电池结构、制造技术简介1、电池结构分为:单结、双结、三结2、制造技术①单室,多片玻璃衬底制造技术。
主要以美国Chronar、APS、EPV公司为代表②多室,双片(或多片)玻璃衬底制造技。
主要以日本KANEKA公司为代表③卷绕柔性衬底制造技术(衬底:不锈钢、聚酰亚胺)。
主要以美国Uni-Solar 公司为代表。
所谓“单室,多片玻璃衬底制造技术”就是指在一个真空室内,完成P、I、N三层非晶硅的沉积方法。
作为工业生产的设备,重点考虑生产效率问题,因此,工业生产用的“单室,多片玻璃衬底制造技术”的非晶硅沉积,其配置可以由X个真空室组成(X为≥1的正整数),每个真空室可以放Y个沉积夹具(Y为≥1的正整数),例如:•1986年哈尔滨哈克公司、1988年深圳宇康公司从美国Chronar公司引进的内联式非晶硅太阳能电池生产线中非晶硅沉积用6个真空室,每个真空室装1个分立夹具,每1个分立夹具装4片基片,即生产线一批次沉积6×1×4=24片基片,每片基片面积305mm×915mm。
•1990年美国APS公司生产线非晶硅沉积用1个真空室,该沉积室可装1个集成夹具,该集成夹具可装48片基片,即生产线一批次沉积1×48=48片基片,每片基片面积760mm×1520mm。
•本世纪初我国天津津能公司、泰国曼谷太阳公司(BangKok Solar Corp)、泰国光伏公司(Thai Photovoltaic Ltd)、分别引进美国EPV技术生产线,非晶硅沉积也是1个真空室,真空室可装1个集成夹具,集成夹具可装48片基片,即生产线一批次沉积1×48=48片基片,每片基片面积635mm×1250mm。
•国内有许多国产化设备的生产厂家,每条生产线非晶硅沉积有只用1个真空室,真空室可装2个沉积夹具,或3个沉积夹具,或4个沉积夹具;也有每条生产线非晶硅沉积有2个真空室或3个真空室,而每个真空室可装2个沉积夹具,或3个沉积夹具。
总之目前国内主要非晶硅电池生产线不管是进口还是国产均主要是用单室,多片玻璃衬底制造技术,下面就该技术的生产制造工艺作简单介绍。
二、非晶硅太阳能电池制造工艺1、内部结构及生产制造工艺流程下图是美国Chronar公司技术为代表的内联式单结非晶硅电池内部结构示意图:图1、内联式单结非晶硅电池内部结构示意图生产制造工艺流程:SnO2导电玻璃-SnO2膜切割-清洗-预热-a-Si沉积(PIN)-冷却-a-Si切割-掩膜镀铝-测试1-老化-测试2-UV保护层-封装-成品测试-分类包装下图是以美国EPV公司技术为代表的内联式双结非晶硅电池内部结构示意图:图2、内联式双结非晶硅电池内部结构示意图它的生产制造工艺流程为:SnO2导电玻璃-SnO2膜切割-清洗-预热-a-Si沉积(PIN/PIN)-冷却-a-Si切割-溅射镀铝-Al切割-测试1-老化-测试2-封装-成品测试-分类包装2、内联式非晶硅电池生产工艺过程介绍:⑴SnO2透明导电玻璃(或AZO透明导电玻璃)规格尺寸:305 mm×915 mm×3 mm、635 mm×1245 mm×3 等•要求:方块电阻:6~8Ω/□、8~10Ω/□、10~12Ω/□、12~14Ω/□、14~16Ω/□等透过率:≥80%膜牢固、平整,玻璃4个角、8个棱磨光(目的是减少玻璃应力以及防止操作人员受伤)⑵红激光刻划SnO2膜根据生产线预定的线距,用红激光(波长1064nm)将SnO2导电膜刻划成相互独立的部分,目的是将整板分为若干块,作为若干个单体电池的电极。
•激光刻划时SnO2导电膜朝上(也可朝下)•线距:单结电池一般是10mm或5mm,双结电池一般20mm•刻线要求:绝缘电阻≥2MΩ线宽(光斑直经)<100um线速>500mm/S⑶清洗将刻划好的SnO2导电玻璃进行自动清洗,确保SnO2导电膜的洁净。
⑷装基片将清洗洁净的SnO2透明导电玻璃装入“沉积夹具”基片数量:对于美国Chronar公司技术,每个沉积夹具装4片305 mm×915 mm×3 mm的基片,每批次(炉)产出6×4=24片对于美国EPV技术,每个沉积夹具装48片635 mm×1245 mm×3 mm的基片,即每批次(炉)产出1×48=48片⑸基片预热将SnO2导电玻璃装入夹具后推入烘炉进行预热。
⑹a-Si沉积基本预热后将其转移入PECVD沉积炉,进行PIN(或PIN/PIN)沉积。
•根据生产工艺要求控制:沉积炉真空度,沉积温度,各种工作气体流量,沉积压力,沉积时间,射频电源放电功率等工艺参数,确保非晶硅薄膜沉积质量。
沉积P、I、N层的工作气体P层:硅烷(SiH4)、硼烷(B2H6)、甲烷(CH4)、高纯氩(Ar)、高纯氢(H2)I层:硅烷(SiH4)、高纯氢(H2)N层:硅烷(SiH4)、磷烷(PH3)、高纯氩(Ar)、高纯氢(H2)•各种工作气体配比有两种方法:第一种:P型混合气体,N型混合气体由国内专业特种气体厂家配制提供。
第二种:PECVD系统在线根据工艺要求调节各种气体流量配制。
⑺冷却a- Si完成沉积后,将基片装载夹具取出,放入冷却室慢速降温。
⑻绿激光刻划a-Si膜根据生产预定的线宽以及与SnO2切割线的线间距,用绿激光(波长532nm)将a-Si膜刻划穿,目的是让背电极(金属铝)通过与前电极(SnO2导电膜)相联接,实现整板由若干个单体电池内部串联而成。
激光刻划时a-Si膜朝下刻划要求:线宽(光斑直经)<100um与SnO2刻划线的线距<100um直线度线速>500mm/S⑼镀铝镀铝的目的是形成电池的背电极,它既是各单体电池的负极,又是各子电池串联的导电通道,它还能反射透过a-Si膜层的部分光线,以增加太阳能电池对光的吸收。
•镀铝有2种方法:一是蒸发镀铝:工艺简单,设备投入小,运行成本低,但膜层均匀性差,牢固度不好,掩膜效果难保证,操作多耗人工,仅适用小面积镀铝。
二是磁控溅射镀铝:膜层均匀性好,牢固,质量保证,适应小面积镀铝,更适应大面积镀铝,但设备投资大,运行成本稍高。
•每节电池铝膜分隔有2种方法:一是掩膜法:仅适用于小面积蒸发镀铝二是绿激光刻划法:既适用于磁控溅射镀铝,也适用于蒸发镀铝。
⑽绿激光刻铝(掩膜蒸发镀铝,没有该工序)对于蒸发镀铝,以及磁控镀铝要根据预定的线宽以及与a-Si切割线的线间距,用绿激光(波长532nm)将铝膜刻划成相互独立的部分,目的是将整个铝膜分成若干个单体电池的背电极,进而实现整板若干个电池的内部串联。
•激光刻划时铝膜朝下•刻划要求:线宽(光斑直经)<100um 与a-Si刻划线的线距<100um直线度线速>500mm/S⑾IV测试:通过上述各道工序,非晶硅电池芯板已形成,需进行IV测试,以获得电池板的各个性能参数,通过对各参数的分析,来判断莫道工序是否出现问题,便于提高电池的质量。
⑿热老化:将经IV测试合格的电池芯板置于热老化炉内,进行110℃/12h热老化,热老化的目的是使铝膜与非晶硅层结合得更加紧密,减小串联电阻,消除由于工作温度高所引起的电性能热衰减现象。
三、非晶硅电池封装工艺薄膜非晶硅电池的封装方法多种多样,如何选择,是要根据其使用的区域,场合和具体要求而确定。
不同的封装方法,其封装材料、制造工艺是不同的,相应的制造成本和售价也不同。
下面介绍目前几种封装方法:1、电池/UV光固胶适用:电池芯板储存制造工艺流程:电池芯板→覆涂UV胶→紫外光固→分类储存2、电池/PVC膜适用:小型太阳能应用产品,且应用产品上有对太阳能电池板进行密封保护,如风帽、收音机、草坪灯、庭院灯、工艺品、水泵、充电器、小型电源等制造工艺流程:电池芯板→贴PVC膜→切割→边缘处理→焊线→焊点保护→检测→包装(注:边缘处理目的是防止短路,边缘处理的方法有化学腐蚀法、激光刻划法等)3、组件封装⑴电池/PVC膜适用:一般太阳能应用产品,如应急灯,要求不高的小型户用电源(几十瓦以下)等。
制造工艺流程:电池芯板(或芯板切割→边缘处理)→贴PVC膜→焊线→焊点保护→检测→装边框(电池四周加套防震橡胶)→装插座→检测→包装。
该方法制造的组件特点:制造工艺简单、成本低,但防水性、防腐性、可靠性差。
⑵电池/EVA/PET(或TPT)适用:一般太阳能应用产品,如应急灯,户用发电系统等制造工艺流程:电池芯板(或芯板切割→边缘处理)→焊涂锡带→检测→EVA/P ET层压→检测→装边框(边框四周注电子硅胶)→装接线盒(或装插头)→连接线夹→检测→包装该方法制造的组件特点:防水性、防腐性、可靠性好,成本高。
⑶电池/EVA/普通玻璃适用:发电系统等制造工艺流程:电池芯板→电池四周喷砂或激光处理(10mm)→超声焊接→检测→层压(电池/EVA/经钻孔的普通玻璃)→装边框(或不装框)→装接线盒→连接线夹→检测→包装该方法制造的组件特点:防水性、防腐性、可靠性好,成本高。
⑷钢化玻璃/EVA/电池/EVA/普通玻璃适用:光伏发电站等制造工艺流程:电池芯板→电池四周喷砂或激光处理(10mm)→超声焊接→检测→层压(钢化玻璃/EVA/电池/EVA/经钻孔的普通玻璃)→装边框(或不装框)→装接线盒→连接线夹→检测→包装该方法制造的组件特点:稳定性和可靠性好,具有抗冰雹、抗台风、抗水汽渗入、耐腐蚀、不漏电等优点,但造价高。