初三数学《图形的相似》单元测试卷(含答案)
九年级上册数学单元测试卷-第1章 图形的相似-青岛版(含答案)
九年级上册数学单元测试卷-第1章图形的相似-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,等腰与等腰是以点O为位似中心的位似图形,位似比为,则点D的坐标是()A. B. C. D.2、如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下的矩形面积是()A.2 cm 2B.4 cm 2C.8 cm 2D.16 cm 23、如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F 点,且图中四边形BOAP的面积为6,则EF:AC为()A. :1B.2:C.2:1D.29:144、如图,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=2AA′,S△ABC=8,则S△A′B′C′=()A.18B.12C.32D.165、已知:如图,在△ABC中,∠ADE=∠C,则下列等式成立的是()A. B. C. D.6、如图,在中,,为上一点,连接,将沿翻折,点恰好落在上的点处,连.若,,则的长度为()A. B. C. D.7、如图,与相交于点,.若,则为()A. B. C. D.8、如图,矩形ABCD的对角线AC、BD交于点O,OE⊥BD交BC于E.若AB=6,BC=8,则△BOE的周长为()A.12B.C.15D.9、如图所示,在矩形ABCD中,AB=,BC=2,对角线AC,BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A. B. C.1 D.1.510、如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对B.2对C.3对D.4对11、如图,铁道口的栏道木短臂长1米,长臂长16米,当短臂下降0.5米时,长臂的端点升高()米A.11.25B.6. 6C.8D.10.512、在▱ABCD中,E为BD上一点,在连结AE并延长交BC于F点,且BD=4BE,△BEF的面积为1,则▱ABCD的面积为()A.12B.24C.13D.2613、已知,,,则与的面积之比为()A. B. C. D.14、如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A. B. C.D.15、在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为()A.8,3B.8,6C.4,3D.4,6二、填空题(共10题,共计30分)16、如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=________m.17、如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设B′的坐标是(3,﹣1),则点B的坐标是________.18、如图,在中,于点,于点,为边的中点,连接,则下列结论:①,②,③为等边三角形,④当时,.请将符合题意结论的序号填在横线上________.19、已知的周长为1,连接其三边中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形,以此类推,则第2019个三角形周长为________.20、在△ABC中,E是AB上一点,AE=2,BE=3,AC=4,在AC上取一点D,使△ADE与△ABC相似,则AD的长为________.21、如图,在平面直角坐标系中,△OAB的边OB在x轴的正半轴上,AO=AB,M是边AB的中点,经过点M的反比例函数y= (k>0,x>0)的图象与边OA交于点C,则的值为________ 。
(数学试卷九年级)第四章图形的相似单元测试卷及答案
九(上) 第四章图形的相似 单元测试一、选择题1、【基础题】在比例尺为1:5000的地图上,量得甲,乙两地的距离为25 cm ,则甲、乙两地的实际距离是 ( )A. 1250千米B. 125千米C. 12.5千米D. 1.25千米2、【基础题】已知135=a b ,则ba b a +-的值是( ) ★A. 32B. 23C. 49D. 943、【基础题】如右图,在△ABC 中,看DE ∥BC ,12AD BD ,DE =4 cm ,则BC 的长为 ( ) A .8 cm B .12 cm C .11 cm D .10 cm 4、【基础题】如右图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( ) A .1:1 B .1:2 C .1:3 D .1:45、【基础题】如下图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( ) ★★★6、【基础题】下列结论不正确的是( ) ★ A. 所有的矩形都相似 B. 所有的正方形都相似 C. 所有的等腰直角三角形都相似 D. 所有的正八边形都相似7、【基础题】下列说法中正确的是( ) ★A. 位似图形可以通过平移而相互得到B. 位似图形的对应边平行且相等C. 位似图形的位似中心不只有一个D. 位似中心到对应点的距离之比都相等 8、【综合题Ⅰ】如左下图,ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件中,A不能推出△ABP与△ECP相似的是()★★★A.∠APB=∠EPCB. ∠APE=90°C. P是BC的中点D. BP︰BC=2︰39、【综合题Ⅱ】(2020山东潍坊)如右上图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P 是BC边上一点,作PE⊥AB于E,PD⊥AC于D,设BP=x,则PD+PE=()A. 35x+ B. 45x- C.72D.21212525x x-10、【综合题Ⅲ】如图,在Rt ABC△内有边长分别为a,b,c的三个正方形.则a、b、c满足的关系式是()A. b a c=+ B. b ac=C. 222b a c=+ D. 22b a c==二、填空题11、【基础题】在同一时刻,高为1.5m的标杆的影长为2.5m,一古塔在地面上影长为50m,那么古塔的高为.12、【基础题】两个相似三角形面积比是9∶25,其中一个三角形的周长为36cm,则另一个三角形的周长是.13、【综合题Ⅰ】如左下图,在△ABC中,AB=5,D、E分别是边AC和AB上的点,且∠ADE=∠B,DE=2,那么AD·BC= . ★★★ABCDEP14、【基础题】如右上图,在△ABC 和△DEF 中,G 、H 分别是边BC 和EF 的中点,已知AB =2DE ,AC =2DF ,∠BAC =∠EDF. 那么AG :DH = ,△ABC 与△DEF 的面积比是 . ★★★15、【基础题】把一个三角形改做成和它相似的三角形,如果面积缩小到原来的21倍,边长应缩小到原来的____倍.16、【综合Ⅱ】如左下图在Rt△ABC 中, ∠ACB=90°,CD⊥AB 于D ,若AD =1,BD =4,则CD = . ★17、【基础题】如右上图,一人拿着一支厘米小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上12厘米的长度恰好遮住电线杆,已知手臂长约60厘米,则电线杆的高为 . ★★★ 18、【基础题】已知一本书的宽与长之比为黄金比,且这本书的长是20 cm ,则它的宽为_____cm.(结果保留根号) 19、【综合Ⅲ】顶角为36°的等腰三角形称为黄金三角形,如图,在△ABC 中,AB =AC =1,∠A =36°,BD 是三角形ABC 的角平分线,那么AD = . ★20、【提高题】如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213243A B A B A B ∥∥.若212A B B △、323A B B △的面积分别为1、4,则图中三个阴影三角形面积之和为 .三、解答题 21、【基础题】(2020无锡)如图,已知点E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于点F ,求证△ABF ∽△EAD . 22、【综合Ⅰ】如图27-106所示,已知E 为ABCD 的边CD 延长线上的一点,连接BE 交AC 于O ,交AD 于F .求证BO 2=OF ·OE .23、如图,在平面直角坐标系中,已知OA=12 cm ,OB=6 cm ,点P 从O 点开始沿OA边向点A 以1cm/s 的速度移动,点Q 从点B 开始沿BO 边向点O 以1cm/s 的速度移动,如果P 、Q 同时出发,用t (单位:秒) 表示移动的时间(06t ≤≤),那么:(1)当t 为何值时, △POQ 与△AOB 相似?(第20题图) OA A A A AB B B 2 B 31 4(2)设△POQ 的面积为y ,求y 关于t 的函数解析式。
九年级数学上图形的相似单元测试题含答案
九年级数学上图形的相似单元测试题含答案图形的相似一、选择题(每小题3分,共24分)1.观察下面各组图形,其中不相似的一组是()2.下列命题正确的是()A.所有的直角三角形都相似B.所有的等腰三角形都相似C.两个半径不等的圆相似D.有一个角是30°的等腰三角形都相似3.如图1,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,则图中相似三角形有()A.4对B.3对C.2对D.1对4.在一张由复印机复印出来的纸上,一个多边形的一条边由原来的1cm变成了4cm,那么这次复印的面积变为原来的()A.不变B.2倍C.4倍D.16倍5.如图2,在平行四边形ABCD中,E是AD上的一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是()A.∠AEF=∠DEC B.F A∶CD=AE∶BCC.F A∶AB=FE∶EC D.AB=DC6.正方形ABCD中,E、F分别为AB、BC的中点,AF与DE相交与点O,则AODO()A.13B.255C.23D.127.若平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长为()A.1.8 B.5 C.6或4 D.8或28.某校有两块相似的多边形草坪,其面积比为9∶4,其中一块草坪的周长是36米,则另一块草坪的周长是()A.24米B.54米C.24米或54米D.36米或54米二、填空题(每小题3分,共24分)9.若两个三角形的相似比是1,则这两个三角形.10.两地的实际距离是60km,在地图上量得的距离是3cm,这张地图的比例尺为.11.根据图3中给出的线段的长度,尽量多地写出图中成比例的线段.12.如图4,已知△ABC 中,P 是AB 上一点;连接CP ,要使△ACP ∽△ABC ,只需添加条件 .(只要求写出一个合适的条件)13.如图5,AB 是斜靠在墙壁上的长梯,梯脚B 距墙80cm ,梯上点D 距墙70cm ,BD 长55cm ,则梯子的长为 .14.如图6,火焰AC 通过纸板EF 上的一个小孔O 照射到屏幕上形成倒立的实像,像的长度BD =2cm ,OA =60cm ,OB =20cm ,则火焰AC 的长为 .15.已知三角形ABC 的三边长分别为5、12、13,与其相似的A B C '''△的最大边长为26,则A B C '''△的面积为 .16.如图7,我们可以用下面的方法测出月球与地球的距离:在月圆时,把一个五分的硬币(直径约为2.4cm ),放在离眼睛O 约2.6m 的AB 处,正好把月亮遮住,已知月球的直径约为3500km ,那么月球与地球的距离约为 .(保留两个有效数字) 三、解答题(本大题共52分)17.(本题8分)如图8左边格点图中有一个四边形ABCD ,请在右边的格点图中画一个与该四边形相似的图形A B C D ''''.18.(本题8分)如图9,小明为了测量一高楼MN 的高,在离点N 20m 的A 处放了一个平面镜,小明沿NA 后退到点C ,正好从镜中看到楼顶M ,若AC =1.5m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m )19.(本题10分)如图10,是某菜农的菜地,菜地呈矩形状,矩形ABCD中,E、F 分别在BC、AD上,矩形ABCD(大块菜地)∽矩形ECDF(小块菜地),S矩形ABCD=3S矩形ECDF,AB=12m,求S矩形ABCD.20.(本题13分)将两块完全相同的等腰直角三角板摆成如图11所示的样子,设两块三角板所有的点、边都在同一平面内.通过观察回答:图中有相似三角形吗?如果有,请把它们一一写出来.(不另添辅助线和标字母)若换成两块完全相同的含30°角的直角三角板时,情形又怎样?21.(本题13分)小明按下面方法来测量电线杆的高度:如图12所示,小明拿着一把刻有厘米刻度的小尺,站在距电线杆约30m的地方,把手臂向前伸直,小尺竖直,看到尺上18个刻度恰好遮住电线杆,已知手臂长约60cm.小明能求出电线杆的高度吗?不能时还缺少什么数据?若能求,请你替小明写出求解过程.附加题:(本题20分,不计入总分)22.如图13,在矩形ABCD 中,AB =12cm ,BC =6cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动,点Q 以1cm/s 的速度从点D 开始向点A 移动,如果P 、Q 同时出发,用t (s )表示移动的时间(0≤t ≤6).(1)t 为何值时,△QAP 为等腰直角三角形;(2)求四边形QAPC 的面积;并提出一个与计算有关的结论;(3)当t 为何值时,以点Q 、P 、A 为顶点的三角形与△ABC 相似.参考答案:一、1~5.DCBDB DAC 二、9.全等 10.1:2 000 00011.如AB EF BD BD CE CE BC DE AB EF AB EF ======…,AC AC CD CD DFBC DE BC DE BC=====…. 12.答案不惟一,如:ACP B =∠∠,或APC ACB =∠∠,或AP ACAC AB=等 13.4.4m14.6cm 15.12016.53.810km ⨯三、17.略.18.21.3(m ).19.21443(m ).20.解:ADE BAE △∽△(因为45DAE B ==∠∠,AED BEA =∠∠).ADE CDA △∽△(因为45DAE C ==∠∠,ADE CDA =∠∠).ABE DCA △∽△. 如换成含30角的两直角三角板时,只存在一对三角形相似. 21.能,电线杆高9m .附加题:22.(1)2(s)t =;(2)36QAPC S =四边形;(3)当APQ BAC △∽△时,AP AQ BA BC =,即26126t t-=,解得3(s)t =. 当APQ BCA △∽△时,AP AQ BC BA =,即26612t t-=, 解得 1.2(s)t =.所以当3(s)t =或1.2(s)时,以点Q P A ,,为顶点的三角形与ABC △相似.。
湘教版九年级上册数学《第3章图形的相似》单元测试题含答案
第3章图形的相似一、选择题1.在1:1000000的地图上,A,B两点之间的距离是5cm,则A,B两地的实际距离是()A. 5kmB. 50kmC. 500kmD. 5000km2.下列说法错误的是()A. 两个等边三角形一定相似B. 两个等腰三角形一定相似C. 两个等腰直角三角形一定相似D. 两个全等三角形一定相似3.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A. 1:2B. 1:4C. 2:1D. 4:14.已知△ABC∽△DEF,如果∠A=55º,∠B=100º,则∠F=()A. 55ºB. 100ºC. 25ºD. 30º5.如图,若DC∥FE∥AB,则有()A. B. C. D.6.如图,已知l1∥l2∥l3,DE=4,DF=6,那么下列结论正确的是()A. BC:EF=1:1B. BC:AB=1:2C. AD:CF=2:3D. BE:CF=2:37.某一时刻,身高1.6m 的小明在阳光下的影长是0.4m.同一时刻同一地点,测得某旗杆的影长是5m,则该旗杆的高度是()A. 1.25mB. 10mC. 20mD. 8m8.如图,已知D、E分别是△ABC的AB、AC边上的点,DE∥BC,且S四边形DBCE=8S△ADE.那么AE:AC的值为()A. 1:8B. 1:4C. 1:3D. 1:99.如图所示,在△ABC中D为AC边上一点,若∠DBC=∠A ,BC=3,AC=6,则CD的长为()A. 1B. 2C.D.10.如图,在▱ABCD中,E为BC的中点,连接AE、AC,分别交BD于M、N,则BM:DN等于()A. 1:2B. 1:3C. 2:3D. 以上都不正确二、填空题11.若线段a,b,c,d成比例,其中a=3cm,b=6cm,c=2cm,则d=________ .12.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是________.13.已知实数a,b,c满足a+b+c=10,且,则的值是________14.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则=________ .15.如图,四边形ABCD与四边形EFGH位似,位似中心点是O,= ,则=________ .16.已知,△ABC在直角坐标系内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长均为一个单位长度).①画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是________ ;②以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1________ ,点C2的坐标是________ ;③若M(a,b)为线段AC上任一点,写出点M的对应点M2的坐标________ .17.如图,已知D ,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB ,那么BC:CD应等于________.18.如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,那么=________ .19.如图,阳光通过窗口AB照射到室内,在地面上留下4米宽的亮区DE,已知亮区DE到窗口下的墙角距离CE=5米,窗口高AB=2米,那么窗口底边离地面的高BC=________米.20.一个等腰直角三角形和一个正方形如图摆放,被分割成了5个部分.①,②,③这三块的面积比依次为1:4:41,那么④,⑤这两块的面积比是________三、解答题21.如图,在△ABC中,点D在边AB上,满足且∠ACD=∠ABC,若AC=2,AD=1,求DB的长.22.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE与△DEF相似吗?为什么?23.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.24.已知:如图,.(1)求证:;(2)当时,求证:EC BC.25.在矩形ABCD中,AD=3,CD=4,点E在边CD上,且DE=1.(1)感知:如图①,连接AE,过点E作EF⊥AE,交BC于点F,连接AF,易证:△ADE≌△ECF(不需要证明);(2)探究:如图②,点P在矩形ABCD的边AD上(点P不与点A、D重合),连接PE,过点E作EF⊥PE,交BC于点F,连接PF.求证:△PDE∽△ECF;(3)应用:如图③,若EF交AB边于点F,其他条件不变,且△PEF的面积是3,则AP的长为________.参考答案一、选择题B B BCD B C C C C二、填空题11.4cm12.1:913.14.15..16.(2,﹣2);;(1,0);(2a﹣3,2b﹣4)17.18.19.2.520.9:14三、解答题21.解∵∠ACD=∠ABC,∠BAC=∠CAD,∴△ADC∽△ACB.∴. ∵AC=2,AD=1,∴.∴DB=AB-AD=3.22.解:△ABE与△DEF相似.理由如下:∵四边形ABCD为正方形,∴∠A=∠D=90°,AB=AD=CD,设AB=AD=CD=4a,∵E为边AD的中点,CF=3FD,∴AE=DE=2a,DF=a,∴=2,=2,∴而∠A=∠D,∴△ABE∽△DEF.23.解:∵△PCD是等边三角形,∴∠PCD=60°,∴∠ACP=120°,∵△ACP∽△PDB,∴∠APC=∠B,又∠A=∠A,∴△ACP∽△ABP,∴∠APB=∠ACP=120°24.证明:(1)∵∴△ABC∽△DEF∴,(2)∵BAC=DAE∴BAD=CAE又∵∴∴△ABD∽△ACE∴ABD=ACE∵BAC=90°∴ABD+ACD=90°∴ACE+ACD=90°即EC BC.25.(1)证明:感知:如图①,∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠DAE+∠DEA=90°,∵EF⊥AE,∴∠AEF=90°,∴∠DEA+∠FEC=90°,∴∠DAE=∠FEC,∵DE=1,CD=4,∴CE=3,∵AD=3,∴AD=CE,∴△ADE≌△ECF(ASA)(2)探究:如图②,∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠DPE+∠DEP=90°,∵EF⊥PE,∴∠PEF=90°,∴∠DEP+∠FEC=90°,∴∠DPE=∠FEC,∴△PDE∽△ECF(3)2。
第23章 图形的相似单元测试卷(基础卷)(解析版)
1第23章图形的相似单元测试卷(基础卷)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四条线段中,不能成比例的是( )A .a=3)b=6)c=2)d=4B .a=1)b= 263C .a=4)b=6)c=5)d=10D .a=2)b= 5153【答案】C【解析】试题解析:∵3264=,故选项A 中的线段成比例; 22=6223=B 中的线段成比例;∵46510=,故选项C 中的线段不成比例; 2555=2325515=,故选项D 中的线段成比例;故选C)2.下列说法正确的是( )A .矩形都是相似图形;B .菱形都是相似图形C .各边对应成比例的多边形是相似多边形;D .等边三角形都是相似三角形【答案】D【解析】试题分析:根据相似多边形的判定法则可以得出所有的等边三角形都是相似三角形.2考点:相似多边形的判定3.点P 是线段AB 的黄金分割点,且AP PB >,下列命题:()()()()2221AB AP PB 2AP PB AB 3BP AP AB 4AP:AB PB:AP =⋅=⋅=⋅=,中正确的有( ) A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值512叫做黄金比. 【详解】∵点P 是线段AB 的黄金分割点,且AP)PB)∴根据线段黄金分割的定义得:AP 2)PB•AB)AP)AB)PB)AP)∴只有②④正确.故选B)【点睛】本题主要考查了理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.本题同时考查了乘积形式和比例形式的转化,难度适中.4.如图,下列条件使△ACD ∽△ABC 成立的是) )3A .AC AB CD BC = B .CD BC AD AC = C .AC 2)AD·AB D .CD 2)AD·BD【答案】C【解析】试题分析:本题主要考查的就是三角形相似的判定,本题根据有一个角相等,且对应角的两边对应成比例,则两个三角形相似可以得出答案.根据题意可得∠A 为公共角,则要使三角形相似则必须满足AC AB =AD AC. 点晴:本题主要考查的就是三角形相似的判定定理,在有一个角相等的情况下,必须是角的两边对应成比例,如果不是角的两边对应成比例,则这两个三角形不相似;相似还可以利用有两个角对应相等的两个三角形全等.5.如图,在平面直角坐标系中,已知点A (―3,6)、B (―9,一3),以原点O 为位似中心,相似比为,把∠ABO 缩小,则点A 的对应点A′的坐标是( )A .(―1,2)B .(―9,18)C .(―9,18)或(9,―18)4D .(―1,2)或(1,―2)【答案】D【解析】【分析】【详解】试题分析:方法一:))ABO 和)A′B′O 关于原点位似,)) ABO))A′B′O 且OA'OA =13 .)A E AD=0E 0D =13.)A′E =13AD =2,OE =13OD =1.)A′(-1,2).同理可得A′′(1,―2). 方法二:)点A (―3,6)且相似比为13,)点A 的对应点A′的坐标是(―3×13,6×13),)A′(-1,2). )点A′′和点A′(-1,2)关于原点O 对称,)A′′(1,―2).故答案选D.考点:位似变换.6.如图,在△ABC 中,AB =6,AC =10,点D ,E ,F 分别是AB ,BC ,AC 的中点,则四边形ADEF 的周长为().5A .16B .12C .10D .8【答案】A【解析】【分析】 根据三角形的中位线定理,判断出四边形ADEF 平行四边形,根据平行四边形的性质求出ADEF 的周长即可.【详解】解:∵点D ,E ,F 分别是AB ,BC ,AC 的中点,∴DE ∥AC ,EF ∥AB ,DE=12AC=5,EF=12AB=3, ∴四边形ADEF 是平行四边形,∴AD=EF ,DE=AF ,∴四边形ADEF 的周长为2(DE+EF )=16,故选A .【点睛】本题考查了三角形中位线定理,利用中位线定理判断出四边形ADEF 为平行四边形是解题的关键. 7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)【答案】D【解析】【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.【详解】如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.67【点睛】本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.8.如图,锐角△ABC 的高CD 和BE 相交于点O ,图中与△ODB 相似的三角形有( )A .1个B .2个C .3个D .4个【答案】C【解析】试题解析:∵∠BDO =∠BEA =90°)∠DBO =∠EBA )∴△BDO ∽△BEA )∵∠BOD =∠COE )∠BDO =∠CEO =90°)∴△BDO ∽△CEO )∵∠CEO =∠CDA =90°)∠ECO =∠DCA )∴△CEO ∽△CDA )∴△BDO ∽△BEA ∽△CEO ∽△CDA )故选C)89.如图,已知DAB CAE ∠=∠,那么添加下列一个条件后,仍然无法判定....A ABC DE ∽△△的是( )A .AB BC AD DE = B .AB AC AD AE = C .B D ∠∠= D .C AED ∠=∠【答案】A【解析】【分析】先根据∠DAB =∠CAE 得出∠DAE =∠BAC ,再由相似三角形的判定定理对各选项进行逐一判定即可.【详解】∵∠DAB =∠CAE ,∴∠DAE =∠BAC .A .∵AB BC AD DE=,∠B 与∠D 的大小无法判定,∴无法判定△ABC ∽△ADE ,故本选项正确; B .∵AB AC AD AE =,∴△ABC ∽△ADE ,故本选项错误; C .∵∠B =∠D ,∴△ABC ∽△ADE ,故本选项错误;D .∵∠C =∠AED ,∴△ABC ∽△ADE ,故本选项错误.故选A .【点睛】本题考查了相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.10.如图,在)ABC 中,点D 是AB 边上的一点,若)ACD=)B)AD=1)AC=2))ACD 的面积为1,则)ABC9 的面积为( )A .1B .2C .3D .4【答案】D【解析】【分析】由∠ACD=∠B 结合公共角∠A=∠A ,即可证出△ACD ∽△ABC ,根据相似三角形的性质可得出214ACD ABC S AD S AC ⎛⎫== ⎪⎝⎭, 结合△ADC的面积为1,即可求出△ABC 的面积.【详解】 ∵∠ACD=∠B)∠A=∠A)∴△ACD ∽△ABC)214ACD ABC S AD S AC ⎛⎫∴== ⎪⎝⎭,∴S △ABC =4)故选D)【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键.11.如图,若D 、E 分别为△ABC 中AB 、AC边上的点,且∠AED=∠B,AD=3,AC=6,DB=5,则AE 的长度为()10A.94 B .52 C .185 D .4【答案】D【解析】【分析】根据相似三角形的判定首先证出△ADE ))ACB ,然后根据相似三角形的性质得出AE AB =AD AC ,从而求出AE 的长度.【详解】解:∵∠A =)A ))AED =)B )))ADE ))ACB ))AE AB =AD AC) 又∵AD =3)AC =6)DB =5))AB =AD +DB =8))AE =8×3÷6=4)故选D)【点睛】本题主要考查了相似三角形的判定及性质.有两角对应相等的两个三角形相似.相似三角形的三边对应成比例.12.如图,在▱ABCD 中,AC )BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,11则下列结论:①12AFFD =)②S △BCE =36)③S △ABE =12)④△AEF )△ACD ,其中一定正确的是( )A .①②③④B .①④C .②③④D .①②③【答案】D【解析】【详解】∵在▱ABCD 中,AO =12AC )∵点E 是OA 的中点,∴AE =13CE )∵AD ∥BC ) ∴△AFE ∽△CBE ) ∴AFAE BC CE ==13)∵AD =BC )∴AF =13AD )∴12AFFD =;故①正确;∵S △AEF =4) AEF BCE SS =)AF BC)2=19)12 ∴S △BCE =36;故②正确;∵EF AEBE CE = =13) ∴AEF ABE S S =13)∴S △ABE =12,故③正确;∵BF 不平行于CD )∴△AEF 与△ADC 只有一个角相等,∴△AEF 与△ACD 不一定相似,故④错误,故选D)二、填空题13.若34y x =,则x yx +=______【答案】74【解析】【分析】可设x=4k ,根据已知条件得到y=3k ,再代入计算即可得到正确结论.【详解】解:∵ 34yx =, ∴y=3k ,x=4k ; 代入x yx +=4k 3k 7=4k 4+故答案为7413【点睛】本题考查了比例的性质的应用,主要考查学生的计算能力,题目比较好,难度不大.14.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为2)3,则△ABC 与△DEF 对应边上的中线的比为________)【答案】2)3【解析】试题分析:根据相似三角形对应边上的中线之比等于相似比可得:∠ABC 与∠DEF 对应边上的中线的比为2:3. 考点:相似三角形的应用.15.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为 米.【答案】5. 【解析】根据题意,易得∠MBA∠∠MCO ,根据相似三角形的性质可知AB AM OC OA AM =+,即1.6AM 820AM=+,解得AM=5. ∠小明的影长为5米.16.如图,正∠ABC 的边长为2,以BC 边上的高1AB 为边作正11AB C ∆,∠ABC 与11AB C ∆公共部分的面积记为1S ;再以正11AB C ∆边11B C 上的高2AB 为边作22AB C ∆,11AB C ∆与22AB C ∆公共部分的面积记为14 2S ;......,以此类推,则n S = .(用含n 的式子表示). 33)4n【解析】【分析】【详解】因为)ABC 是边长为2的等边三角形,1AB 是高,所以1AB 31112111333(3)22A B C S S ∆=== 同理:2332AB ==,22222113393()224232A B C S S ∆==⨯=......32()n n AB =⨯,11121133332()()224n n n n n n A B C S S ---∆⎡⎤==⨯⨯⨯=⎢⎥⎣⎦.三、解答题1517.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (-2,4),B (4,4),C(6,0).(1)△ABC 的面积是 .(2)请以原点O 为位似中心,画出△A'B'C',使它与△ABC 的相似比为1:2,变换后点A 、B 的对应点分别为点A'、B',点B'在第一象限;(3)若P (a,b)为线段BC 上的任一点,则变换后点P 的对应点P' 的坐标为 .【答案】(1)12;(2)作图见详解;(3)11(,)22a b . 【解析】【分析】 (1)先以AB 为底,计算三角形的高,利用面积公式即可求出△ABC 的面积;(2)根据题意利用位似中心相关方法,画出△A'B'C',使它与△ABC 的相似比为1:2即可;(3)根据(2)的作图,利用相似比为1:2,直接观察即可得到答案.【详解】解:(1)由△ABC 的顶点坐标分别为A (-2,4),B (4,4),C(6,0),可知底AB=6,高为4,所以△ABC 的面积为12;16(2);(3)根据相似比为1:2,可知P 11(,)22a b . 【点睛】 本题主要考查作图-位似变换,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点. 18.如图,在△ABC 中,AB=AC ,点P)D 分别是BC)AC 边上的点,且∠APD=∠B,)1)求证:AC•CD=CP•BP))2)若AB=10)BC=12,当PD ∥AB 时,求BP 的长.【答案】(1)证明见解析;(2)253. 【解析】)2)易证∠APD=∠B=∠C ,从而可证到△ABP ∽△PCD ,即可得到BP AB CD CP,即AB•CD=CP•BP ,由AB=AC 即可得到AC•CD=CP•BP) )2)由PD ∥AB 可得∠APD=∠BAP ,即可得到∠BAP=∠C ,从而可证到△BAP ∽△BCA ,然后运用相似三角形的性质即可求出BP 的长.解:(1)∵AB=AC)∴∠B=∠C)∵∠APD=∠B)∴∠APD=∠B=∠C)17∵∠APC=∠BAP+∠B)∠APC=∠APD+∠DPC)∴∠BAP=∠DPC) ∴△ABP ∽△PCD)∴BP AB CD CP=) ∴AB•CD=CP•BP)∵AB=AC)∴AC•CD=CP•BP))2)∵PD ∥AB)∴∠APD=∠BAP)∵∠APD=∠C)∴∠BAP=∠C)∵∠B=∠B) ∴△BAP ∽△BCA)∴BA BP BC BA =) ∵AB=10)BC=12)∴101210BP =) ∴BP=253) “点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP 转化为证明AB•CD=CP•BP 是解决第(1)小题的关键,证到∠BAP=∠C 进而得到△BAP ∽△BCA 是解决第(2)小题的关键.19.如图,△ABC 中,AB =8厘米,AC =16厘米,点P 从A 出发,以每秒2厘米的速度向B 运动,点Q 从C18同时出发,以每秒3厘米的速度向A 运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t )⑴用含t 的代数式表示:AP = )AQ = )⑵当以A )P )Q 为顶点的三角形与△ABC 相似时,求运动时间是多少?【答案】)1)AP=2t)AQ=16)3t))2)运动时间为167秒或4秒. 【解析】【分析】)1)根据路程=速度⨯时间,即可表示出AP)AQ 的长度.)2)此题应分两种情况讨论.(1)当△APQ ∽△ABC 时;(2)当△APQ ∽△ACB 时.利用相似三角形的性质求解即可.【详解】)1)AP=2t)AQ=16)3t) )2)∵∠PAQ=∠BAC)∴当AP AQ AB AC =时,△APQ ∽△ABC ,即2163816t t -=,解得167t =; 当AP AQ AC AB =时,△APQ ∽△ACB ,即2163168t t -=,解得t=4)∴运动时间为167秒或4秒.19【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解. 20.如图,O 为正方形ABCD 对角线的交点,E 为AB 边上一点,F 为BC 边上一点,△EBF 的周长等于BC 的长.)1)若AB=12)BE=3,求EF 的长;)2)求∠EOF 的度数;)3)若5OF ,求AE CF的值.【答案】(1)EF =5))2))EOF=45°))3)54AE CF =) 【解析】【分析】)1)设BF=x ,则FC=12-x ,根据△EBF 的周长等于BC 的长得出EF=9-x)Rt)BEF 中利用勾股定理求出x 的值即可得;)2)在FC 上截取FM=FE ,连接OM .首先证明∠EOM=90°,再证明△OFE))OFM)SSS )即可解决问题;)3)证明∠FOC=)AEO ,结合∠EAO=)OCF=45°可证△AOE))CFO 得5OE AE AO OF CO CF ===,推出55,由AO=CO ,可得5554CF)进20 而求解)【详解】(1)设BF=x ,则FC=BC ﹣BF=12﹣x ,∠BE=3,且BE +BF+EF=BC ,∠EF=9﹣x ,在Rt ∠BEF 中,由BE 2+BF 2=EF 2可得32+x 2=(9﹣x )2, 解得:x=4,则EF=9﹣x=5;(2)如图,在FC 上截取FM=FE ,连接OM ,∠C △EBF 的周长=BE+EF+BF=BC ,则BE +EF+BF=BF+FM+MC , ∠BE=MC ,∠O 为正方形中心,∠OB=OC ,∠OBE=∠OCM=45°,在∠OBE 和∠OCM 中,∠OB OCOBE OCM BE CM=⎧⎪∠=∠⎨⎪=⎩,21 ∠∠OBE∠∠OCM ,∠∠EOB=∠MOC ,OE=OM ,∠∠EOB+∠BOM=∠MOC+∠BOM ,即∠EOM=∠BOC=90°,在∠OFE 与∠OFM 中,∠OE OMOF OF EF MF=⎧⎪=⎨⎪=⎩, ∠∠OFE∠∠OFM (SSS ), ∠∠EOF=∠MOF=12∠EO M=45°.(3)证明:由(2)可知:∠EOF=45°,∠∠AOE+∠FOC=135°,∠∠EAO=45°,∠∠AOE+∠AEO=135°,∠∠FOC=∠AEO ,∠∠EAO=∠OCF=45°,∠∠AOE∠∠CFO .∠52OEAE AO OF CO CF ===,5,5,∠AO=CO ,225554CF , ∠AE CF =54. 【点睛】本题考查了正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题) 21.(问题情境)如图1)Rt ABC 中,90ACB ∠=)CD AB ⊥,我们可以利用ABC 与ACD 相似证明2AC AD AB =⋅,这个结论我们称之为射影定理,试证明这个定理;(结论运用)如图2,正方形ABCD 的边长为6,点O 是对角线AC )BD 的交点,点E 在CD 上,过点C 作CF BE ⊥,垂足为F ,连接OF ))1)试利用射影定理证明BOF BED ∽))2)若2DE CE =,求OF 的长.【答案】问题情境:证明见解析;结论运用:()1证明见解析;(2)655) 【解析】【分析】问题情境:通过证明Rt △ACD ∽Rt △ABC 得到AC )AB =AD )AC )然后利用比例性质即可得到AC 2=AD•AB ) 结论运用:23(1)根据射影定理得BC 2=BO •BD )BC 2=BF •BE )则BO •BD =BF •BE )即BO BE =BF BD)加上∠OBF =∠EBD )于是可根据相似三角形的判定得到△BOF ∽△BED ) )2)先计算出DE =4)CE =2)BE 10)OB 2)再利用(1)中结论△BOF ∽△BED 得到OF DE =BO BE )即4OF 32210)然后利用比例性质求OF )【详解】解:如图1)∵CD ⊥AB )∴∠ADC =90°)而∠CAD =∠BAC )∴Rt △ACD ∽Rt △ABC )∴AC )AB =AD )AC )∴AC 2=AD •AB ))1)如图2)∵四边形ABCD 为正方形)∴OC ⊥BO )∠BCD =90°)∴BC 2=BO •BD )∵CF ⊥BE )∴BC 2=BF •BE )∴BO •BD =BF •BE )即BOBE =BFBD )而∠OBF =∠EBD )∴△BOF ∽△BED )24)2)∵BC =CD =6)而DE =CE )∴DE =4)CE =2)在Rt △BCE 中)BE 2226+10.在Rt △OBC 中)OB =22BC 2) ∵△BOF ∽△BED )∴OF DE =BO BE )即4OF 32210) ∴OF =55)【点睛】本题考查了射影定理)直角三角形中)斜边上的高是两直角边在斜边上射影的比例中项)每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.也考查了相似三角形的判定与性质和正方形的性质) 22.如图, AM 是 ABC ∆ 的中线, D 是线段 AM 上一点(不与点 A 重合). //DE AB 交 AC 于点 F , //CE AM,连结 AE .25(1)如图1,当点D 与M 重合时,求证:四边形ABDE 是平行四边形(2)如图2,当点D 不与M 重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD 交AC 于点H ,若BH AC ⊥,且BH AM =.①求CAM ∠的度数;②当3FH =4DM =时,求 DH 的长.【答案】(1)证明见解析(2)成立,理由见解析;(35【解析】试题分析:(1)只要证明AE=BM)AE ∥BM 即可解决问题;)2)成立.如图2中,过点M 作MG ∥DE 交CE 于G .由四边形DMGE 是平行四边形,推出ED=GM ,且ED ∥GM ,由(1)可知AB=GM)AB ∥GM ,可知AB ∥DE)AB=DE ,即可推出四边形ABDE 是平行四边形;)3)①如图3中,取线段HC 的中点I ,连接MI ,只要证明MI=12AM)MI ⊥AC ,即可解决问题; ②设DH=x ,则3,推出AM=4+2x)BH=4+2x ,由四边形ABDE 是平行四边形,推出DF ∥AB ,推出HF HD HA HB =3423x x x=+,解方程即可;试题解析:(1)证明:如图1中,26∵DE ∥AB)∴∠EDC=∠ABM)∵CE ∥AM)∴∠ECD=∠ADB)∵AM 是△ABC 的中线,且D 与M 重合, ∴BD=DC)∴△ABD ≌△EDC)∴AB=ED)∵AB ∥ED)∴四边形ABDE 是平行四边形. )2)结论:成立.理由如下:如图2中,过点M 作MG∥DE 交CE 于G)27 ∴四边形DMGE 是平行四边形, ∴ED=GM ,且ED ∥GM)由(1)可知AB=GM)AB ∥GM) ∴AB ∥DE)AB=DE)∴四边形ABDE 是平行四边形. )3)①如图3中,取线段HC 的中点I ,连接MI)∵BM=MC)∴MI 是△BHC 的中位线,∴∥BH)MI=12BH)∵BH ⊥AC ,且BH=AM)∴MI=12AM)MI ⊥AC)∴∠CAM=30°)②设DH=x ,则3∴BH=4+2x)∵四边形ABDE是平行四边形,∴DF∥AB)∴HF HDHA HB=)3423xxx=+)解得515,∴528。
北师大版九年级上册数学 第四章 图形的相似(单元综合卷)(解析版)
第四章 图形的相似(单元综合卷)一、单选题1.若0234a b c ==≠,则22a b c a-+= ( ) A .45 B .54 C .34 D .无法确定【答案】B【解析】【分析】设比值为k ,然后用k 表示出a 、b 、c ,再代入算式进行计算即可求解.【详解】 设234a b c k ===、 则2a k =、3b k =、4c k =、 ∴2223452224a b c k k k a k -+⨯-+==⨯. 故选、B .【点睛】本题考查了比例的性质,利用设“k ”法表示出a 、b 、c 是解题的关键,设“k ”法是中学阶段常用的方法之一,需熟练掌握并灵活运用.2.若、ABC、、DEF ,且、ABC 与、DEF 的面积比是94,则、ABC 与、DEF 对应中线的比为( ) A .23 B .8116 C .94 D .32【解析】【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应中线的比等于相似比解答即可.【详解】、、ABC、、DEF、、ABC与、DEF的面积比是9 4、、、ABC与、DEF的相似比为3 2、、、ABC与、DEF对应中线的比为3 2、故选D、【点睛】考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.如图,在ABC中,点D在BC边上,连接AD,点G在线段AD上,过点G作//GE BD,交AB边于点E,作//GF AC,交BC边于点F,则下列结论中一定正确的是()A.AB AGAE AD=B.DF DGCF AD=C.FG EGAC BD=D.AE CFBE DF=【答案】D 【解析】由GE、BD、GF、AC利用平行线分线段成比例,可得出AE AGBE DG=,AG CFDG DF=,进而可得出AE CFBE DF=,此题得解.【详解】、GE、BD,GF、AC,、AE AGBE DG=,AG CFDG DF=,、AE CF BE DF=.故选:D.【点睛】本题考查了平行线分线段成比例,利用平行线分线段成比例,找出AE AGBE DG=,AG CFDG DF=是解题的关键.4.如图,平面直角坐标系中,点E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,把、EFO缩小为、E′F′O,且、E′F′O与、EFO的相似比为1:2,则点E的对应点E′的坐标为()A.(2,﹣1)B.(8,﹣4)C.(2,﹣1)或(﹣2,1)D.(8,﹣4)或(﹣8,4)【答案】C【解析】【分析】利用位似图形的性质,即可求得点E的对应点E'的坐标.【详解】、点E(﹣4,2),以O为位似中心,按2:1的相似比把、EFO缩小为、E'F'O,、点E的对应点E'的坐标为:(2,﹣1)或(﹣2,1).故选C.【点睛】本题考查了位似图形的性质.此题比较简单,注意熟记位似图形的性质是解答此题的关键.5.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为(、A.11.5米B.11.75米C.11.8米D.12.25米【答案】C【解析】【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.本题中:经过树在台阶上的影子的顶端作树的垂线和经过树顶的太阳光线以及树所成三角形,与竹竿,影子光线形成的三角形相似,这样就可求出垂足到树的顶端的高度,再加上台阶的高就是树高.【详解】如图,根据题意可知EF=BC=4.4米,DE=0.2米,BE=FC=0.3米,则ED=4.6米,、同一时刻物高与影长成正比例,、AE、ED=1、0.4、即AE、4.6=1、0.4、、AE=11.5米,、AB=AE+EB=11.5+0.3=11.8米,、树的高度是11.8米、故选C.【点睛】本题考查了相似三角形的应用,把实际问题抽象到相似三角形中,根据相似三角形的相似比,列出方程进行求解是关键.6.如图所示的两个四边形相似、则α的度数是()A.60°B.75°C.87°D.120°【答案】C【解析】【分析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.7.下列条件中,能使ABC DEF ∽△△成立的是( )A .、C =98°,、E =98°,AC DE BC DF; B .AB =1,AC =1.5,BC =2,EF =8,DE =10,FD =6C .、A =、F =90°,AC =5,BC =13,DF =10,EF =26;D .、B =35°,BC =10,BC 上的高AG =7;、E =35°,EF =5,EF 上的高DH =3.5【答案】D【解析】【分析】根据相似三角形的判定定理对四个选项进行分析即可.【详解】A 、若、ABC~、DEF ,则AC DF =BC EF,故本选项错误; B 、若、ABC~、DEE ,则AB AC BC ==DE DF EF 而AB 1=DE 10≠AC 1.5=DF 6,故本选项错误; C 、若、ABC~、DEF ,、A =90°,则、D =90°,故本选项错误;D 、BC AG ==2EF DH且、AGC =、BHF =90°,因此、AGC、、BHF ,所以、C =、F ,而、B =、E =35°,因此可判断相似,故本选项正确;所以D 选项是正确的.【点睛】本题考查的是相似三角形的判定定理,解答此类题目时要熟知相似三角形的判定方法,即:(1)三组对应边的比相等的两个三角形相似;(2)两组对应边的比相等且夹角对应相等的两个三角形相似;(3)有两组角对应相等的两个三角形相似8.如图,、ABC 中,点D 在AB 上,过点D 作DE、BC 交AC 于点E ,过点E 作 EF、AB 交BC 于点F ,连接CD ,交EF 于点G ,则下列说法不正确的是( 、A .BD BF FG FC =B .DE AE BC AC = C .AD AE AB AC = D .BF AD BC AB= 【答案】A【解析】因为DE、BC, 所以,,DE AE AD AE BC AC AB AC== 因为EF、AB, 所以,,BF AE BD BC BC AC FK CF== 所以,BF AD BC AB = 故选A.9.如图, ABC 中, 90C ∠=︒,3,4,AC BC M ==是BC 边上的动点,过M 作//MN AB 交AC 于点,N P 是MN 的中点,当PA 平分BAC ∠时, BM =( )A .2011B .2013C .1511D .2513【答案】A【解析】【分析】根据题意作PD AC ⊥于D ,PE AB ⊥于,E MF AB ⊥于F ,利用相似三角形判定证得BMF BAC ∽,进而设3,PD PE MF x ===建立方程求解即可.【详解】解:作PD AC ⊥于D ,PE AB ⊥于,E MF AB ⊥于F ,则,PD PE MF BMF BAC ==∽.、3,4,AC BC ==、5AB =设3,PD PE MF x ===则26,5CM PD x BM x ===由65114,BC x x x =+==得420 =,1111x BM =. 故选:A .【点睛】 本题考查三角形动点问题,熟练掌握相似三角形判定并运用方程结合思维进行分析是解题的关键. 10.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CE 平分、DCB 交BD 于点F ,且、ABC =60°,AB =2BC ,连接OE ,下列结论:、、ACD =30°;、S 平行四边形ABCD =AC BC ⋅;、OE :AC =1:4;、S 、OCF =2S 、OEF .其中正确的有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 由四边形ABCD 是平行四边形,得到、ABC=、ADC=60°,、BAD=120°,根据角平分线的定义得到、DCE=、BCE=60°推出、CBE 是等边三角形,证得、ACB=90°,求出、ACD=、CAB=30°,故、正确; 由AC、BC ,得到S、ABCD=AC•BC ,故、正确;根据直角三角形的性质得到,根据三角形的中位线的性质得到OE=12BC ,于是得到OE :AC=6,故、错误;由三角形的中位线可得BC、OE ,可判断、OEF、、BCF ,根据相似三角形的性质得到CF BC EF OE==2,求得S 、OCF =2S 、OEF ;故、正确.【详解】解:、四边形ABCD是平行四边形,、、ABC=、ADC=60°,、BCD=120°,、CE平分、BCD交AB于点E,、、DCE=、BCE=60°、、CBE是等边三角形,、BE=BC=CE,、AB=2BC,、AE=BC=CE,、、ACB=90°,、、ACD=、CAB=30°,故、正确;、AC、BC,、S、ABCD=AC•BC,故、正确,在Rt、ACB中,、ACB=90°,、CAB=30°,,、AO=OC,AE=BE,、OE=12 BC,、OE:6;故、错误;、AO=OC,AE=BE,、OE、BC,、、OEF、、BCF , 、CF BC EF OE==2 、S 、OCF :S 、OEF =CF EF =2, 、S 、OCF =2S 、OEF ;故、正确.故选C .【点睛】本题考查了平行四边形的性质、三角形中位线、相似三角形的性质,熟练掌握并灵活运用是解题的关键.二、填空题11.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且3AB =,4BC =, 4.8EF =,则DE 的长为__________.【答案】3.6【解析】【分析】根据平行线分线段成比例定理即可得.【详解】由平行线分线段成比例定理得:AB DE BC EF= 3AB =,4BC =, 4.8EF =34 4.8DE ∴= 解得 3.6DE =故答案为:3.6.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.12.已知x 是正整数,且x 是4和16的比例中项,那么x =______.【答案】8【解析】【分析】根据比例中项的性质进行求解.【详解】解:、x 是4和16的比例中项,且是正整数,、241664x =⨯=,解得8x =.故答案是:8.【点睛】本题考查比例中项的性质,解题的关键是掌握比例中项的性质.13.如图,、ABC 与、A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__、【答案】(9,0)【解析】【分析】【详解】根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).14.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.【答案】4【解析】【分析】根据题意,画出示意图,易得:Rt、EDC、Rt、CDF,进而可得EDDC=DCFD;即DC2=ED•FD,代入数据可得答案.【详解】如图:过点C作CD、EF,由题意得:、EFC是直角三角形,、ECF=90°,、、EDC=、CDF=90°,、、E+、ECD=、ECD+、DCF=90°,、、E=、DCF,、Rt、EDC、Rt、CDF,有EDDC=DCFD;即DC2=ED FD,代入数据可得DC2=16,DC=4;故答案为4.【点睛】本题考查了相似三角形的应用,能够将实际问题转化为相似三角形的问题是解题的关键.15.如图,E,F分别为矩形ABCD的边AD,BC的中点,且矩形ABCD与矩形EABF相似,AB=1,则BC 的长为_____.【解析】【分析】根据相似多边形的性质列出比例式,计算即可.【详解】、矩形ABCD与矩形EABF相似,、AEAB=ABAD,即121AD=1AD,解得,AD,、矩形ABCD 的面积=AB •AD ,.【点睛】本题考查了相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.16.如图,////AB EF DC ,//AD BC ,EF 与AC 交于点G ,则是相似三角形共有__________对.【答案】6【解析】【分析】图中三角形有:、AEG ,、ADC ,、CFG ,、CBA ,因为////AB EF DC ,//AD BC ,所以、AEG、、ADC、、CFG、、CBA ,有6中组合,据此可得出答案.【详解】图中三角形有:、AEG ,、ADC ,、CFG ,、CBA ,、////AB EF DC ,//AD BC ,、、AEG、、ADC、、CFG、、CBA共有6个组合分别为:、AEG、、ADC ,、AEG、、CFG ,、AEG、、CBA ,、ADC、、CFG ,、ADC、、CBA ,、CFG、、CBA故答案为6.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.17.如图,在三角形ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点组成的三角形与ABC相似,则AE=__________.【答案】9或16【解析】【分析】根据相似三角形的判断,要使得、ADE与、ABC相似,已经满足、BAC=、DAE,因此只要两边对应成比例即可,由于本题中三角形相似,对应点没有确定,因此分两种情况,画出图形,然后根据相似三角形对应边成比例,就出AE的长.【详解】第一种情况:当、ABC、、ADE时,如图、;、、ABC、、ADE,、AB AC AD AE=,、AB=24,AC=18,AD=12,、2418 12AE=,、AE=9.第二种情况:当、ABC、、AED ,如图、;、、ABC、、AED , 、AB AC AE AD=, 、AB =24,AC =18,AD =12, 、241812AE =, 、AE =16.故填9或16.考点:相似三角形的性质.18.如图,在ABC ∆中,D 、E 分别是AB 、BC 上的点,且DE AC ,若:1:4BDE CDE S S ∆∆=,则:BDE ACD S S ∆∆=______.【答案】1:20【解析】【分析】根据、BDE和、CDE高相同得到BE:EC=1:4,再证明、BDE、、BAC,利用面积比等于相似比的平方即可解题.【详解】、、BDE和、CDE高相同,且:1:4BDE CDES S=,、BE:EC=1:4,、//DE AC、、BDE、、BAC,即BE:BC=1:5、:BDE BACS S=1:25、:BDE ACDS S=1、、25-1-4、=1:20【点睛】本题考查了相似三角形的判定和性质,属于简单题,熟悉相似三角形性质是解题关键.19.如图,在矩形ABCD中,BC=4,AB=2,Rt、BEF的顶点E在边CD上,且、BEF=90°,EF=12 BE,DF BE=_____.【解析】【分析】过F作FG、CD,交CD的延长线于G,依据相似三角形的性质,即可得到FG=12EC,GE=2=CD;设EC=x,则DG=x,FG=12x,再根据勾股定理,即可得到CE2=94,最后依据勾股定理进行计算,即可得出BE的长.【详解】解:如图所示,过F作FG、CD,交CD的延长线于G,则、G=90°,、四边形ABCD是矩形,、、C=90°,AB=CD=2,又、、BEF=90°,、、FEG+、BEC=90°=、EBC+、BEC,、、FEG=、EBC,又、、C=、G=90°,、、BCE、、EGF,、FG GE EF EC CB BE ==,即142EG CE EC ==, 、FG =12EC ,GE =2=CD , 、DG =EC ,设EC =x ,则DG =x ,FG =12x , 、Rt、FDG 中,FG 2+DG 2=DF 2,、(12x )2+x 22, 解得x 2=94, 即CE 2=94,、Rt、BCE 中,BE ==.【点睛】本题主要考查了相似三角形和勾股定理的结合,准确分析计算是解题的关键.20.如图,在直角坐标系中,将OAB 绕原点旋转到OCD ,其中()3,1A -、()4,3B ,点D 在x 轴正半轴上,则点C 的坐标为_______.【答案】913,55⎛⎫- ⎪⎝⎭【解析】【分析】连接AC 、BD ,设点C 的坐标为(a ,b ),根据平面直角坐标系中任意两点之间的距离公式即可求出OA 、OB ,由旋转的性质即可求出OC 和OD ,从而证出OAC、OBD ,列出比例式即可求出AC ,再利用平面直角坐标系中任意两点之间的距离公式列出方程即可求出结论.【详解】解:连接AC 、BD ,设点C 的坐标为(a ,b )、()3,1A -、()4,3B ,=5由旋转的性质可得,OD=OB=5,、AOC=、BOD、点D 的坐标为(5,0),OA OC OB OD==OAC、OBD、AC OA BDOB== 解得AC=2、()()222210314a b a b ⎧+=⎪⎨++-=⎪⎩ 解得:95135a b ⎧=-⎪⎪⎨⎪=⎪⎩或31a b =-⎧⎨=-⎩ 、点C 在第二象限,、95135a b ⎧=-⎪⎪⎨⎪=⎪⎩即点C 913,55⎛⎫- ⎪⎝⎭ 故答案为:913,55⎛⎫- ⎪⎝⎭. 【点睛】此题考查的是坐标与图形的变化、相似三角形的判定及性质和平面直角坐标系中任意两点之间的距离公式,此题难度较大,掌握旋转的性质、相似三角形的判定及性质和平面直角坐标系中任意两点之间的距离公式是解决此题的关键.三、解答题21.化简并求值:已知2,235a c e a c e b d f===-+=,求b -2d+3f 的值. 【答案】52【解析】【分析】 由2a c e b d f===可知2,2,2a b c d e f ===,代入235a c e -+=易得b -2d+3f 的值. 【详解】 解:2a c e b d f=== 2,2,2a b c d e f ∴===232462(23)5a c e b d f b d f ∴-+=-+=-+=5232b d f ∴-+=【点睛】 本题考查了比例的性质,灵活的利用比例进行等量代换是解题的关键.22.如图,已知DE、BC ,FE、CD ,AF =3,AD =5,AE =4.(1)求CE 的长;(2)求AB 的长.【答案】(1)CE=83;(2)AB=253.【解析】【分析】(1)根据平行线分线段成比例定理列出比例式求出AC即可解决问题;(2)根据平行线分线段成比例定理列出比例式,然后代入数据计算即可.【详解】解:(1)、FE、CD,、AEAC=AFAD,即4AC=35,解得,AC=203,则CE=AC﹣AE=203﹣4=83;(2)、DE、BC,、ADAB=AEAC,即5AB=4203,解得,AB=253.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.23.如图,在、ABC中,点D,E分别在边AB,AC上,、AED=、B,射线AG分别交线段DE,BC于点F,G,且AD DF AC CG=.(1)求证:、ADF、、ACG;(2)若12ADAC=,求AFFG的值.【答案】(1)证明见解析;(2、1.【解析】(1)欲证明、ADF、、ACG,由可知,只要证明、ADF=、C即可.(2)利用相似三角形的性质得到,由此即可证明.【解答】(1)证明:、、AED=、B,、DAE=、DAE,、、ADF=、C,、,、、ADF、、ACG.(2)解:、、ADF、、ACG,、,又、,、,、1.24.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:2CF GF EF=⋅.【答案】详见解析【解析】【分析】由平行四边形对边互相平行,可得平行线分线段成比例,得出比例式进行等比代换即可得证.【详解】解:、四边形ABCD 是平行四边形,、AD BC ∥,AB CD ∥. 、GF DF CF BF =,CF DF EF BF= 、GF CF CF EF =, 即2CF GF EF =⋅.【点睛】本题考查证明线段乘积关系,由平行线分线段成比例得到比例式是解决本题的关键.25.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点、ABC (顶点是网格线的交点),在建立的平面直角坐标系中,、ABC 绕旋转中心P 逆时针旋转90°后得到、A 1B 1C 1、、1)在图中标示出旋转中心P ,并写出它的坐标;、2)以原点O 为位似中心,将、A 1B 1C 1作位似变换且放大到原来的两倍,得到、A 2B 2C 2,在图中画出、A 2B 2C 2,并写出C 2的坐标.【答案】、1、见解析、P点坐标为(3、1、、、2、作图见解析、C2的坐标为(2、4)或(﹣2、、4、、【解析】【分析】、1)作BB1和AA1的垂直平分线,它们的交点即为P点,然后写出P点坐标;(2)把点A1、B1、C1的横纵坐标都乘以2或-2得到对应点A2、B2、C2的坐标,然后描点即可得到、A2B2C2、【详解】、、、1)如图,点P为所作,P点坐标为(3、1、、、2)如图,、A2B2C2为所作,C2的坐标为(2、4)或(﹣2、、4、、【点睛】本题考查了位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.26.如图,在平行四边形ABCD中,过点A作AE、BC,垂足为E,连接DE,F为线段DE上一点,且、AFE=、B(1)求证:、ADF、、DEC;(2)若AB=8,AE的长.【答案】(1)见解析(2)6【解析】【分析】(1)利用对应两角相等,证明两个三角形相似、ADF、、DEC.(2)利用、ADF、、DEC,可以求出线段DE的长度;然后在在Rt、ADE中,利用勾股定理求出线段AE的长度.【详解】解:(1)证明:、四边形ABCD是平行四边形,、AB、CD,AD、BC、、C+、B=180°,、ADF=、DEC、、AFD+、AFE=180°,、AFE=、B,、、AFD=、C在、ADF与、DEC中,、、AFD=、C,、ADF=、DEC,、、ADF、、DEC(2)、四边形ABCD是平行四边形,、CD=AB=8.由(1)知、ADF、、DEC,、AD AF DE CD=,、AD CDDE12AF⋅===在Rt、ADE中,由勾股定理得:AE6===27.如图,在菱形ABCD中,60C︒∠=,4AB=,点E是边BC的中点,连接DE,AE.(1)求DE的长;(2)点F为边CD上的一点,连接AF,交DE于点G,连接EF,若DAG FEG∠=∠,、求证:、AGE∽、DGF;、求DF的长.【答案】(1)DE=(2)、详见解析;、1.【解析】【分析】(1)只要证明DE 是等边、DBC 的高即可解决问题;(2)、由、AGD、、EGF ,可得AG DG EG FG=,即可推出AG EG DG FG =又、AGE=、DGF ,即可推出、AGE、、DGF ; 、根据相似求出EF,再根据勾股定理求出FH 的长,再求出CF 即可解决问题.【详解】解:(1)连结BD4604122∵四边形是菱形,∵△是等边三角形∵点是边的中点ABCD CB CD AB C CDB DB DC BC E BC BE EC BC DE BCDE ︒∴===∠=∴∴===∴===∴⊥∴==(2)、DAG FEG AGD EGFAGD EGFAG DG EG FG AG EG DG FGAGE DGFAGE DGF∠=∠∠=∠∴∴=∴=∠=∠∴∵,△∽△又∵△∽△ 、,9030,901222131∵△∽△∵又∵过点作于点在△中,AGE DGF DE BCEAG GDF C AGD EGF AGE DGFGFE ADG DE EF AE E EH DC HRt ECH FH CF FH CH DF CD CF ︒︒︒⊥∴∠=∠=-∠=∠=∠∠=∠∴∠=∠==∴===⊥==∴=+=+=∴=-=【点睛】此题考查菱形的性质、相似三角形的判定和性质、直角三角形30°角性质、勾股定理等知识,解题的关键是准确寻找相似三角形解决问题,所以中考常考题型.。
2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)
第四章测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,)题号12345678910答案B C A D B C C C A C1.下列形状分别为正方形、矩形、正三角形、圆的边框,其中不一定是相似图形的是( )2.在比例尺为1:500000的交通地图上,玉林到灵山的长度约为 23.6cm ,则它的实际长度约为( )A.0.118km B.1.18km C.118km D.1180km3.如图,以A ,B ,C 为顶点的三角形与以D ,E ,F 为顶点的三角形相似,则这两个三角形的相似比为( )A.2:1B.3:1C.4:3D.3:24.在△ABC 中,D 是AB 中点,E 是AC 中点,若△ADE 的面积是3,则△ABC 的面积是 ( )A.3 B.6 C.9 D.125.如图,在△ABC 中,点D 在AB 边上,过点 D 作DE ∥BC 交AC 于点E,DF ∥AC 交BC 于F,若AE:DF=2:3,则BF:BC 的值是 ( )A. 23 B. 35 C. 12D. 256.如图,在四边形ABCD 中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC 和△BAC 相似的是 ( )A.∠DAC=∠ABC B. AC 是∠BCD 的平分线 C.AC²=BC ⋅CD D.ADAB =DCAC7. 若△ABC 的各 边都分别扩大到原来的 2 倍,得到△A ₁B ₁C ₁,下列结论正确的是 ( )A.△ABC 与△A ₁B ₁C ₁的对应角不相等 B.△ABC 与△A ₁B ₁C ₁不一定相似C.△ABC 与△A ₁B ₁C ₁的相似比为1:2 D.△ABC 与△A ₁B ₁C ₁的相似比为2:18.如图,点 E 是▱ABCD 的边 BC 延长线上的一点,AE 和CD 交于点G ,AC 是▱ABCD 的对角线,则图中相似三角形共有 ( )A.2 对B.3 对C.4 对D.5 对9.如图,已知E(-4,2),F(--2,--2),以O 为位似中心,把△EFO 缩小到原来的 12,则点E 的对应点的坐标为( )A.(2,一1)或(-2,1)B.(8,一4)或(一8,4)C.(2,-1)D.(8,-4)10.如图,在正方形 ABCD 中,点 E 、F 分别在边AD 和CD 上,AF ⊥BE,垂足为G,若 AEED =2,则 AGGF 的值为( )A. 45B. 56C.67D.78二、填空题(每小题3分,共15分)11.若△ABC ∽△A'B'C',且相似比为3:5,已知△ABC 的周长为21,则△A'B'C'的周长为 .12.如图是一架梯子的示意图,其中 AA₁‖BB₁‖CC₁‖DD₁,且AB=BC=CD.为使其更稳固,在A ,D ₁间加绑一条安全绳( 线段AD ₁),量得 AE=0.4m,则 AD₁= m13.如图,阳光通过窗口照到室内,在地上留下3m 宽的亮区.已知亮区一边到窗下的墙角的距离CE=7m ,窗口高AB=1.8m,那么窗口底边离地面的高BC 等于 m.14.如图,已知每个小方格的边长均为1,则△ABC 与△CDE 的面积比为 .15.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且 CF =14CD,下列结论:①∠BAE=30°,②△ABE ∽△ECF,③AE ⊥EF,④△ADF ∽△ECF.其中正确的结论是 (填序号).三、解答题(本大题8个小题,共75 分)16.(8分)根据下列条件,判断△ABC 与△A'B'C'是否相似,并说明理由. AB =3,BC =4,AC =5,A 'B '=12,B 'C '=16,C 'A '=2017.(9分)如图,D 是△ABC 的边AC 上的一点,连接BD,已知∠ABD=∠C,BC=6,BD=4,如果△ABD 的面积为4,求△BC D 的面积.18.(9分)在平面直角坐标系中,△ABC 的三个顶点的坐标分别是 A(1,3),B(4,1),C(1,1).(1)画出△ABC 关于x 轴成轴对称的△A ₁B ₁C ₁;(2)画出△ABC 以点O 为位似中心,相似比为 1:2的△A ₂B ₂C ₂.19.(9分)如图,四边形ABCD 是菱形,AF ⊥BC 交BD 于E,交 BC 于F.求证: AD 2=12DE ⋅DB.20.(10分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一颗大树,将其底部作为点 A,在他们所在的岸边选择了 B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB 的延长线上选择点 D 竖起标杆DE,使得点 E 与点C、A共线.已知:CB⊥AD,ED⊥AD,测得 BC=1m,DE=1.5m,BD=8.5m,测量示意图如图所示.请根据相关测量信息,求河宽 AB.21.(10分)如图,E是平行四边形ABCD的边 DA 延长线上一点,连结 EC 交AB 于 P.(1)写出图中的三对相似三角形(不添加辅助线);(2)请在你所写的相似三角形中选一对,说明相似的理由.22.(10分)阅读与计算:请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理:如图1,在△ABC中,AD平分∠BAC,则ABAC =BDCD.下面是这个定理的部分证明过程.证明:如图2,过点C作CE∥DA,交 BA的延长线于点 E⋯任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分;(2)如图3,在△ABC中,AD是角平分线,AB=5cm ,AC=4 cm,BC=7 cm.求 BD的长.23.(10分)在矩形 ABCD中,点 E 是对角线AC 上一动点,连接 DE,过点 E 作EF⊥DE 交AB 于点 F.(1)如图1,当DE=DA时,求证:AF=EF;(2)如图2,点E 在运动过程中,DEEF的值是否发生变化?请说明理由.第四章测试卷答案一、选择题1、B2、C3、A4、D5、B6、C7、C8、C9、A 10、C 二、填空题11、35 12、1.2m 13、2.4m 14、4:1 15、②③三、解答题16、解:相似,理由: ∵AB A 'B '=312=14,BC B 'C '=416=14,AC A 'C '=520=14,∴ABA 'B'=BCB 'C '=ACA 'C ',∴ABC ∽A 'B 'C '.17、解:∵∠ABD=∠C,又∠A=∠A,∴△ABD ∽△ACB,S ABD S ACB=(BD CB )2=(46)2=49,18、解:如图所示19、证明:连接AC 交 BD 于点O,∵四边形ABCD 为菱形,∴AC ⊥BD,BO=OD,∵AE ⊥AD,∴△AOD ∽△EAD, ∴AD OD=ED AD,∴A D 2=ED ⋅OD,即 A D 2=12DE ⋅DB.20、解:∵CB ⊥AD,ED ⊥AD, ∴∠CBA =∠EDA =90°.∵∠CAB=∠EAD, ∴ABCOADE,∴AB AD=BC DE,∴AB AB +8.5=11.5,∴AB =17,.∴河宽为17m.21、解:(1)△EAP ∽△CBP,△AEP ∽△DEC,△BCP ∽△DEC.(2)选. △EAPO △CBP,理由如下:在▱ABCD 中AD ∥BC,∴∠EAP=∠B.又∵∠APE=∠BPC,∴△EAP ∽△CBP.22、解:(1)证明:如图2,过点C作CE∥DA,交BA的延长线于点E, ∵CEDA,∴BDCD =BAEA,∠CAD=∠ACE,∠BAD=∠E,∵AD平分∠BAC,∴∠BAD=∠CAD, ∠ACE=∠E,∴AE=AC,∴ABAC =BDCD;(2)∵AD是角平分线, ∴ABAC =BDCD,AB=5 cm,AC=4 cm,BC=7 cm, C.54=BD7−BD,解得BD=359cm.23、解:(1)证明:如图,连接 DF,在矩形ABCD 中,∠DAF=90°,又∵DE⊥EF,∴∠DEF=90°,∵AD=DE,DF=DF,∴Rt△DAF≌Rt△DEF(HL),∴AF=EF;(2)DEEF 的值不变.如图,过点E作EM⊥AD于点M,过点E 作EN⊥AB 于点 N,∵EM∥CD,EN∥BC,∴EMCD =AEAC,ENBC=AEAC,∴EMEN=CDBC,∵∠DEF=∠MEN=90°,∴∠DEM=∠FEN,又·∴∠DME=∠ENF=90°,∴△DME⊗△FNE,∴DEEF =EMEN,∴DEEF=CDBC,∵CD 与BC 的长度不变, ∴DEFF的长度不变.。
第1章 图形的相似数学九年级上册-单元测试卷-青岛版(含答案)
第1章图形的相似数学九年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、下列各组图形必相似的是()A.任意两个等腰三角形B.有两边对应成比例,且有一个角对应相等的两三角形C.两边为4和5的直角三角形与两边为8和10的直角三角形 D.两边及其中一边上的中线对应成比例的两三角形2、两个相似五边形,一组对应边的长分别为3cm和4.5cm,如果它们的面积之和是78cm2,则较大的五边形面积是()cm2.A.44.8B.52C.54D.423、如图,P为反比例函数y= (k>0)在第一象限内图象上的一点,过点P分别作x 轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A,B.若∠AOB=135°,则k的值是()A.2B.4C.6D.84、如图,已知正方形ABCD的边长为1,M是AB的中点,则图中阴影部分的面积是()A. B. C. D.5、如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=3,则CD的长是( )A. B. C. D.6、下列说法正确的是()A.相似多边形都是位似多边形B.有一个角是100°的两个等腰三角形一定相似C.两边对应成比例,且有一个角对应相等的两个三角形一定相似 D.所有的菱形都相似7、如图,正方形BODC的顶点C的坐标是(3,3),以原点O为位似中心,将正方形BODC 缩小后得到正方形B'ODC',点C的对应点C'的坐标为(﹣1,﹣1),那么点D的对应点D'的坐标为()A.(﹣1,0)B.(0,﹣1)C.(1,0)D.(0,1)8、如图:把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB=,则此三角形移动的距离AA′是()A. B. C.1 D.9、如图,在中,点D,E分别为AB,AC边上的点,且,CD、BE相较于点O,连接AO并延长交DE于点G,交BC边于点F,则下列结论中一定正确的是A. B. C. D.10、下列命题是真命题的是()A.两直线平行,同位角相等B.相似三角形的面积比等于相似比C.菱形的对角线相等D.相等的两个角是对顶角11、如图,在菱形ABCD中,点E是BC的中点,DE与AC交于点F,若AB=6,∠B=60°,则AF的长为()A.3B.3.5C.3D.412、如图,已知O是坐标原点,△OBC与△ODE是以0点为位似中心的位似图形,且△OBC 与△ODE的相似比为1:2,如果△OBC内部一点M的坐标为(x,y),则M在△ODE中的对应点M′的坐标为()A.(﹣x,﹣y)B.(﹣2x,﹣2y)C.(﹣2x,2y)D.(2x,﹣2y)13、如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠CAD=14、如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A. B. C. D.15、如图,在四边形中,,连接,以为直径的圆交于点.若,则的长为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,且AB=4 ,AC=5,AD=4,则⊙O的直径AE=________.17、如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB=________米.18、如图,正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF⊥AB,EG⊥BC,垂足分别为点F,G,则正方形FBGE与正方形ABCD的相似比为________.19、如图,在中,是中线,F是上的点,,的延长线交于点E,则________.20、如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段.要使点恰好落在上,则的长是________21、如图,正方形ABCD 中,边AB=6 ,点E 在边BC 上,且BE=2 ,点F 为边CD 上的一个动点,以 EF为直角边作直角三角形,,且,点G在直线 EF的左上方,连接BG ,当点F 在边 CD上运动时,的周长的最小值为________.22、如图,在中,,,点是边上一点(点不与点,重合),将沿翻折,点的对应点是,交于点,若,则的长为________.23、如图,平面直角坐标系中,矩形ABOC的边BO,CO分别在x轴,y轴上,A点的坐标为(﹣8,6),点P在矩形ABOC的内部,点E在BO边上,满足△PBE∽△CBO,当△APC是等腰三角形时,P点坐标为________.24、如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,如果AB=12,BC=9,AC=6,四边形BCED的周长为21,那么DE的长为________.25、如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=________.三、解答题(共5题,共计25分)26、如图,△DEF是△ABC经过位似变换得到的,位似中心是点O,请确定点O的位置,如果OC=3.6cm,OF=2.4cm,求它们的相似比.27、已知△ABC是等腰直角三角形,∠A=90°,点D是腰AC上的一个动点,过C作CE垂直于BD的延长线,垂足为E.(1)若BD是AC边上的中线,如图1,求的值;(2)若BD是∠ABC的角平分线,如图2,求的值.28、如图,某校数学兴趣小组利用自制的直角三角形硬纸板来测量操场旗杆的高度,他们通过调整测量位置,使斜边与地面保持平行,并使边与旗杆顶点在同一直线上,已知,,目测点到地面的距离,到旗杆的水平距离,求旗杆的高度.29、如图,在中,点D在边上,,求证:.30、如图,以O为位似中心,在网格内作出四边形ABCD的位似图形,使新图形与原图形的相似比为2:1,并以O为原点,写出新图形各点的坐标.参考答案一、单选题(共15题,共计45分)1、D2、C3、D4、D5、D6、B7、A8、A9、C10、A11、D12、B13、D14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、30、。
【湘教版】九年级数学上册:第三章《图形的相似》单元测试(含答案)
形上的顶点坐标为()A. (-2^, 一26)B. (2乞 2方)C. (—2b, —2a )D. (— 2&,—方)7. 如图,下列各式不能说明AMCs △血於的是()A. ZADE=ZBB. ZAED^ZC C AD _ AED A 。
_ DE '~AB~~AC • ~AB~~BC8. 如图,将△宓的三边缩小为原来的丄,下列说法: 2①ZXMC 与△必F 是位似图形;②△宓与△化尸是相似图形;③AMC 与△加7的周长之比为2 : 1;④ZXMC 与济'的而积之比 为4 : 1.其中正确的个数是()(第8题) (第11题) (第12题) 二.填空题(本大题共6个小题,每小题3分,共18分) 9. 己皿ABC S 'DEF,且兰=丄,则 S“r : S SF = _______ . DE 2 10. 已知- = 则-=. a + b 5 b 11. 如图,在DABCD 中,尸是肋延长线上一点,连接矿交%于点E,在 不添加辅助线的情况下,请写出图中一对相似三角 形: 个1±A.B C12. 如图,甲,乙两楼相距20米,甲楼高20米小明站在距甲楼10米的S 处目测得点力与甲,乙楼顶B. C 刚好在同一直线上,若小明的身 高忽略不计,则乙楼的高度是 ____ 米.13. 若△ ABCsM ff C',且 —=-,^\ABC 的周长为12阿则A'B' 4△才B' C'的周长为 _______ c m.14. 如图,△宓与△才B' C 是位似图形,且顶点都在格点上,则位 似中心的坐标是 _______ .三•解答题(共58分)15. (10分)如图所示,矩形力磁与矩形加/相似吗?若相似,请加以 证明,并求出相似比;若不相似,请说明理由.16. (12分)如图,以点0为位似中心,位似比为2,画岀△遊 的位似 △才B lC・2 cm B 4 cm1.3 cm17.(12 分)如图,在△遊中、DE〃BC、EF〃AB、求证:\ADEs\E仏18.(12分)如图,ZC=90°,点〃是初的中点,质丄丽于点0交氏于点E,若肋=30,胚=18,求图中四边形血疗C的而积.19.(12分)如图,路灯(尸点)距地面8米,身高1.6米的小明从距路灯的底部(0点)20米的A点,沿创所在的直线行走14米到方点时,身影的长度是变长了还是变短了?变长或变短了多少米?\/9O B N A .W参考答案l.A 2.D 3.B 4. A 5.B 6.力1.D 8. D9.- 10. - 11.答案不唯一,如△加12. 60 13. 164214.(9, 0)15.矩形初仞与矩形加/相似,相似比为20 : 13,理由:.. AB BC CD AD20 □・——= ——= ——= ——= ——,且EF FG GH EH13・•・矩形個g矩形日沏16.图略.17.9:DE//BC y :.又、:EF"AB,:・乙姑乙F氏.:.'ADE S'EFZ、]& 在Rt'ABC中,BC=yjAB2-AC2 =24.•・•点刀是肋的中点,:.BD=丄M=15.2•:乙BDE= ZC=9X , ZB= ZA・•・△宓s△朗,.・・竺=竺,.・・%=兰DE CA 45㈣边形Q£C= Sggc —丄X 18 X 24 —— X — X 15 —131 — .2 2 4 819.变短了.V , ZAM(=ZOMP y・•・\MACs3OP.・••也=竺,即MA = 口.解得畅二5.MO OP 20 + MA 8同理由△*劭“△用"可求得NB=1. 5.JHA-NB=5-1. 5=3. 5(米).即小明的身影变短了3. 5米.。
第六章《图形的相似》单元测试题(含答案)
第六章《图形的相似》单元测试题一、选择题:(本题共10小题,每小题3分,共30分)1.若34yx=,则x yx+的值为()A. 1B. 47C.54D.742.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长为()A. 18cm;B. 5cm;C. 6cm;D. ±6cm;3.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A. 252-B. 25- C. 251- D.52-4. 如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A. ∠ABP=∠CB. ∠APB=∠ABCC. AP ABAB AC= D.AB ACBP CB=5.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A. 1:16B. 1:6C. 1:4D. 1:26. 如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A. 4B. 7C. 3D. 127.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A. (1,2)B. (1,1)C. 22)D. (2,1)8.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A. 1B. 2C. 3D. 49.如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( )A. 4.5米B. 6米C. 7.2米D. 8米10. 如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为A.2B. 2.5或3.5C. 3.5或4.5D. 2或3.5或4.5二、填空题:(本题共8小题,每小题3分,共24分) 11.如果在比例尺为1:1 000 000地图上,A 、B 两地的图上距离是3.4cm ,那么A 、B 两地的实际距离是____km .12.如图,已知:l 1∥l 2∥l 3,AB=6,DE=5,EF=7.5,则AC=__.13.如图,△ABC 与△A ′B ′C ′是位似图形,且顶点都在格点上,则位似中心的坐标是__.14.如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=3,则点A到BC的距离为_____.15.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲.16.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为__时,△ADP和△ABC相似.17.如图,双曲线y=kx经过Rt△BOC斜边上的点A,且满足23AOAB,与BC交于点D,S△BOD=21,求k=__.18.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF 上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=32S△FGH;④AG+DF =FG.其中正确的是_____.(把所有正确结论的序号都选上)三、解答题:(本大题共10大题,共76分)19.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.(1)求证:△ADE∽△MAB;(2)求DE的长.20.如图,在△ABC中,DE∥BC,EF∥AB,若S△ADE=4cm2,S△EFC=9cm2,求S△ABC.21.如图,△ABC中,CD是边AB上的高,且AD CD CD BD.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.22.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.23.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为0.9米,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为1.2米,又测得地面部分的影长(BD)为2.7米,则他测得的树高应为多少米?24.如图,把△ABC沿边BA平移到△DEF的位置,它们重叠部分(即图中阴影部分)的面积是△ABC面积的49,若AB=2,求△ABC移动的距离BE的长.25.如图,点A(1,4)、B(2,a)在函数y=mx(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.(1)m=;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.26.如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O . M 为AD 中点,连接CM 交BD 于点N ,且1ON =.(1)求BD 的长;(2)若DCN ∆的面积为2,求四边形ABNM 的面积.27.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,点D 为边CB 上的一个动点(点D 不与点B 重合),过D 作DO ⊥AB ,垂足为O ,点B ′在边AB 上,且与点B 关于直线DO 对称,连接DB ′,AD . (1)求证:△DOB ∽△ACB ;(2)若AD 平分∠CAB ,求线段BD 的长; (3)当△AB ′D 为等腰三角形时,求线段BD 的长.28.已知:如图,在矩形ABCD 中,AB=6cm ,BC=8cm ,对角线AC ,BD 交于点0.点P 从点A 出发,沿方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm/s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF ∥AC ,交BD 于点F .设运动时间为t (s )(0<t <6),解答下列问题:(1)当t 为何值时,△AOP 是等腰三角形?(2)设五边形OECQF 的面积为S (cm 2),试确定S 与t 的函数关系式; (3)在运动过程中,是否存在某一时刻t ,使S 五边形S 五边形OECQF :S △ACD =9:16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP ?若存在,求出t 的值;若不存在,请说明理由.一、选择题:(本题共10小题,每小题3分,共30分)1.若34y x =,则x yx+的值为( ) A. 1 B. 47C.54D.74【答案】D 【解析】【详解】∵34y x =, ∴x y x +=434+=74,故选D2.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a=9cm ,b=4cm ,则线段c 长为( ) A. 18cm ; B. 5cm ;C. 6cm ;D. ±6cm ;【答案】C 【解析】根据比例中项的概念,当两个比例内项相同时,就叫比例中项,再列出比例式即可得出c . 解:根据比例中项的概念,得c 2=ab=36,c=±6, 又线段不能是负数,-6应舍去,取c=6, 故选C .“点睛”考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.3.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A. 252B. 25C. 51D.52【答案】A 【解析】根据黄金比的定义得:51AP AB -=,得514252AP -== .故选A. 4. 如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A. ∠ABP=∠CB. ∠APB=∠ABCC. AP ABAB AC= D.AB ACBP CB=【答案】D【解析】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当AP ABAB AC=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.5.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A. 1:16B. 1:6C. 1:4D. 1:2 【答案】D【解析】【分析】根据相似三角形面积的比等于相似比的平方求出相似比,根据相似三角形周长的比等于相似比解答即可.【详解】解:Q两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2,故选D.【点睛】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.6. 如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A. 4B. 7C. 3D. 12 【答案】B【解析】试题分析:∵DE:EA=3:4,∴DE:DA=3:7,∵EF∥AB,∴DE EFDA AB=,∵EF=3,∴337AB=,解得:AB=7,∵四边形ABCD是平行四边形,∴CD=AB=7.故选B.考点:1.相似三角形的判定与性质;2.平行四边形的性质.7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A. (1,2)B. (1,1)C. (2,2)D. (2,1)【答案】B【解析】【详解】∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=22,∴A(12,12),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,1).故选B.【点睛】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.【此处有视频,请去附件查看】8.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A. 1B. 2C. 3D. 4【答案】B【解析】试题分析:∵△ABC和△ADE均为等边三角形,∴∠B=∠BAC=60°,∠E=∠EAD=60°,∴∠B=∠E,∠BAD=∠EAF,∴△ABD∽△AEF,∴AB:BD=AE:EF.同理:△CDF∽△EAF,∴CD:CF=AE:EF,∴AB:BD=CD:CF,即9:3=(9﹣3):CF,∴CF=2.故选B.考点:1.相似三角形的判定与性质;2.等边三角形的性质.9.如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( )A. 4.5米B. 6米C. 7.2米D. 8米【答案】B 【解析】 试题分析:如图:根据题意可得:Rt △DCG ∽Rt △DBA ,Rt △FEH ∽Rt △FBA ,所以CD CG BD AB =,EF EH CGBF AB AB==,∴CD EFBD BF=,∵CG=EH=1.5米,CD=1米,CE=3米,EF=2米,设AB=x ,BC=y ,∴1 1.51y x =+,2 1.55y x =+,∴2151y y =++,∴y=3m ,∴1.514x =,解得:x=6米.即路灯A 的高度AB=6米.考点:相似三角形的判定与性质.10. 如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为A. 2B. 2.5或3.5C. 3.5或4.5D. 2或3.5或4.5【答案】D【解析】 试题分析:∵Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,∴AB=2BC=4(cm ). ∵BC=2cm ,D 为BC 的中点,动点E 以1cm/s 的速度从A 点出发,∴BD=12BC=1(cm ),BE=AB ﹣AE=4﹣t (cm ), 若∠DBE=90°,∵∠ABC=60°,∴∠BDE=30°.∴BE=12BD=12(cm ). 当A →B 时,t=4﹣0.5=3.5;当B →A 时,t=4+0.5=4.5.若∠EDB=90°时,∵∠ABC=60°,∴∠BED=30°.∴BE=2BD=2(cm ).当A →B 时,∴t=4﹣2=2;当B →A 时,t=4+2=6(舍去).综上可得:t 的值为2或3.5或4.5.故选D .二、填空题:(本题共8小题,每小题3分,共24分)11.如果在比例尺为1:1 000 000的地图上,A 、B 两地的图上距离是3.4cm ,那么A 、B 两地的实际距离是____km .【答案】34【解析】【分析】根据比例尺的定义:实际距离=图上距离:比例尺,由题意代入数据可直接得出实际距离.【详解】根据题意,13.434000001000000÷=厘米=34千米. 即实际距离是34千米.故答案为:34.【点睛】本题考查了比例尺的定义,熟练掌握实际距离、图上距离和比例尺的关系是解决本题的关键. 12.如图,已知:l 1∥l 2∥l 3,AB=6,DE=5,EF=7.5,则AC=__.【答案】15【解析】l 1∥l 2∥l 3,AB DE AB BC EF DE=++,所以6512.5AC,所以AC=15.13.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.【答案】(9,0)【解析】【详解】根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).14.如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=3,则点A到BC的距离为_____.【答案】9【解析】设BC的中线是AD,BC的高是AE,由重心性质可知:AD:GD=3:1,∵GH⊥BC,∴△ADE∽△GDH,∴AD:GD=AE:GH=3:1,∴AE=3GH=3×3=9,故答案为9.点睛:证明相似三角形:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似.(2)平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似(3)两边成比例且夹角相等的两个三角形相似. (4)三边成比例的两个三角形相似. (5)证明两个对应角相等的过程中,经常使用等腰三角形,等边三角形,特殊矩形,菱形,平行四边形构成的等角作为桥梁,成为解题的关键.15.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB ,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm ,EF=20cm ,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲.【答案】5.5【解析】【详解】试题分析:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m考点:相似三角形【此处有视频,请去附件查看】16.如图,已知△ABC 中,D 为边AC 上一点,P 为边AB 上一点,AB=12,AC=8,AD=6,当AP 的长度为__时,△ADP 和△ABC 相似.【答案】4或9.【解析】当△ADP ∽△ACB 时,需有AP AD AB AC =,∴6128AP =,解得AP =9.当△ADP ∽△ABC 时,需有AP AD AC AB=,∴6812AP =,解得AP =4.∴当AP 的长为4或9时,△ADP 和△ABC 相似. 17.如图,双曲线y=k x 经过Rt △BOC 斜边上的点A ,且满足23AO AB =,与BC 交于点D ,S △BOD =21,求k=__.【答案】8 【解析】 试题分析:解:过A 作AE ⊥x 轴于点E .因为S △OAE =S △OCD ,所以S 四边形AECB =S △BOD =21,因为AE ∥BC ,所以△OAE ∽△OBC ,所以==()2=,所以S △OAE =4,则k=8.考点:1.相似三角形的判定与性质;2.反比例函数的性质.【此处有视频,请去附件查看】18.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF 上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=32S△FGH;④AG+DF =FG.其中正确的是_____.(把所有正确结论的序号都选上)【答案】①③④【解析】试题解析:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF=22106=8,∴DF=AD-AF=10-8=2,设EF=x,则CE=x,DE=CD-CE=6-x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6-x)2+22=x2,解得x=103,∴ED= 83,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=12∠ABC=45°,所以①正确;HF=BF-BH=10-6=4,设AG=y,则GH=y,GF=8-y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8-y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,69843ABDE==,32AGDF=,∴AB AGDE DF≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=12•6•3=9,S△FGH=12•GH•HF=12×3×4=6,∴S△ABG=32S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.∴①③④正确.【此处有视频,请去附件查看】三、解答题:(本大题共10大题,共76分)19.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.(1)求证:△ADE∽△MAB;(2)求DE的长.【答案】(1)证明见解析;(2)245.【解析】试题分析:利用矩形角相等的性质证明△DAE∽△AMB.试题解析:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是边BC的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=245.20.如图,在△ABC中,DE∥BC,EF∥AB,若S△ADE=4cm2,S△EFC=9cm2,求S△ABC.【答案】25cm2.【解析】试题分析:利用平行证明三角形相似,再利用相似的性质求三角形面积.试题解析:解:∵DE∥BC,EF∥AB,∴∠A=∠FEC,∠AED=∠C,∴△ADE∽△ECF;∴S△ADE:S△ECF=(AE:EC)2,∵S△ADE=4cm2,S△EFC=9cm2,∴(AE:EC)2=4:9,∴AE:EC=2:3,即EC:AE=3:2,∴(EC+AE):AE=5:2,即AC:AE=5:2.∵DE∥BC,∴∠C=∠AED,又∵∠A=∠A,∴△ABC∽△ADE,∴S△ABC:S△ADE=(AC:AE)2,∴S△ABC:4=(5:2)2,∴S△ABC=25cm2.21.如图,△ABC中,CD是边AB上的高,且AD CD CD BD.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【答案】(1)证明见试题解析;(2)90°.【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.试题解析:(1)∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵AD CD CD BD.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考点:相似三角形的判定与性质.【此处有视频,请去附件查看】22.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.【答案】(1)作图见解析;(2)作图见解析;A2坐标(﹣2,﹣2).【解析】试题分析(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点的位置进而得出.试题解析:⑴如图所示: △A1B1C1,即为所求;⑵如图所示△A2B2C2,即为所求;A2坐标(-2,-2)23.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为0.9米,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为1.2米,又测得地面部分的影长(BD)为2.7米,则他测得的树高应为多少米?【答案】测得的树高为4.2米.【解析】先求出墙上的影高CD落在地面上时的长度,再设树高为h,根据同一时刻物高与影长成正比列出关系式求出h的值即可24.如图,把△ABC沿边BA平移到△DEF的位置,它们重叠部分(即图中阴影部分)的面积是△ABC面积的49,若AB=2,求△ABC移动的距离BE的长.【答案】4 3【解析】试题分析:证明平移前后图象的相似,再根据相似的性质定理求BE长. 试题解析:解:∵把△ABC沿边BA平移到△DEF的位置,∴E F∥AC,∴△BEG∽△BAC,∴BEABBEGABCSSnn23,∵AB=2,∴BE=43.25.如图,点A(1,4)、B(2,a)在函数y=mx(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.(1)m=;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.【答案】(1)4;(2)C的坐标为(3,0);(3)(﹣2,0).【解析】试题分析:(1)把点代入求值.(2)先利用反比例函数求出A,B,点坐标,再利用待定系数法求直线方程.(3)假设存在E点,因为n ACD是直角三角形,假设n ABE也是直角三角形,利用勾股定理分别计算A,B,C,是直角时AB长度,均与已知矛盾,所以不存在.试题解析:解:(1)∵点A(1,4)在反比例函数y=mx(x>0)的图象上,∴m=1×4=4,故答案为4.(2)∵点B(2,a)在反比例函数y=4x的图象上,∴a==2,∴B(2,2).设过点A、B的直线的解析式为y=kx+b,∴422k bk b=+⎧⎨=+⎩,解得:26kb=-⎧⎨=⎩,∴过点A、B的直线的解析式为y=﹣2x+6.当y=0时,有﹣2x+6=0,解得:x=3,∴点C的坐标为(3,0).(3)假设存在,设点E的坐标为(n,0).①当∠ABE=90°时(如图1所示),∵A(1,4),B(2,2),C(3,0),∴B是AC的中点,∴EB垂直平分AC,EA=EC=n+3.由勾股定理得:AD2+DE2=AE2,即42+(x+1)2=(x+3)2,解得:x=﹣2,此时点E的坐标为(﹣2,0);②当∠BAE=90°时,∠ABE>∠ACD,故△EBA与△ACD不可能相似;③当∠AEB=90°时,∵A(1,4),B(2,2),∴AB=5,2>5,2∴以AB为直径作圆与x轴无交点(如图3),∴不存在∠AEB=90°.综上可知:在x轴上存在点E,使以A、B、E为顶点的三角形与△ACD相似,点E的坐标为(﹣2,0).26.如图,在平行四边形ABCD中,对角线AC,BD交于点O. M为AD中点,连接CMON=.交BD于点N,且1(1)求BD的长;∆的面积为2,求四边形ABNM的面积.(2)若DCN【答案】(1)6;(2)5.【解析】【分析】(1)由四边形ABCD为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND与三角形CNB相似,由相似得比例,得到DN:BN=1:2,设OB=OD=x,表示出BN与DN,求出x的值,即可确定出BD的长;(2)由相似三角形相似比为1:2,得到S△MND:S△CND=1:4,可得到△MND面积为1,△MCD面积为3,由S平行四边形ABCD=AD•h,S△MCD=MD•h=AD•h,=4S△MCD,即可求得答案.【详解】(1)∵平行四边形ABCD,∴AD∥BC,AD=BC,OB=OD,∴∠DMN=∠BCN,∠MDN=∠NBC,∴△MND∽△CNB,∴MD DN BC BN,∵M为AD中点,所以BN=2DN,设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,∴x+1=2(x﹣1),解得:x=3, ∴BD=2x=6;(2)、∵△MND∽△CNB,且相似比为1:2,∴MN:CN=1:2,∴S△MND:S△CND=1:4,∵△DCN的面积为2,∴△MND面积为1,∴△MCD面积为3,设平行四边形AD边上的高为h,∵S平行四边形ABCD=AD•h,S△MCD=12MD•h=14AD•h,∴S平行四边形ABCD=4S△MCD=12,∴S△ABD=6,∴S四边形ABNM= S△ABD- S△MND =6-1=5.【点睛】本题考查相似三角形的性质与判定,解题的关键是熟悉相似三角形的判定与性质与平行四边形的性质.27. 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO 对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.【答案】(1)证明见试题解析;(2)5;(3)50 13.【解析】试题分析:(1)公共角和直角两个角相等,所以相似.(2)由(1)可得三角形相似比,设BD =x,CD,BD,BO用x表示出来,所以可得BD长.(3)同(2)原理,BD=B′D=x, AB′,B′O,BO用x表示,利用等腰三角形求BD长.试题解析:(1)证明:∵DO ⊥AB ,∴∠DOB =90°,∴∠ACB =∠DOB =90°,又∵∠B =∠B .∴△DOB ∽△ACB .(2)∵AD 平分∠CAB ,DC ⊥AC,DO ⊥AB,∴DO =DC ,在 Rt △ABC 中,AC =6,BC =,8,∴AB =10,∵△DOB ∽△ACB,∴DO ∶BO ∶BD =AC ∶BC ∶AB =3∶4∶5,设BD =x ,则DO =DC =35x ,BO =45x , ∵CD +BD =8,∴35x +x =8,解得x =,5,即:BD =5. (3)∵点B 与点B ′关于直线DO 对称,∴∠B =∠OB ′D ,BO =B ′O =45x ,BD =B ′D =x , ∵∠B 为锐角,∴∠OB ′D 也为锐角,∴∠AB ′D 为钝角,∴当△AB ′D 是等腰三角形时,AB ′=DB ′,∵AB ′+B ′O +BO =10,∴x +45x +45x =10,解得x =5013,即BD =5013, ∴当△AB ′D 为等腰三角形时,BD =5013. 点睛:角平分线问题的辅助线添加及其解题模型.①垂两边:如图(1),已知BP 平分ABC ∠,过点P 作PA AB ⊥,PC BC ⊥,则PA PC =. ②截两边:如图(2),已知BP 平分MBN ∠,点A BM 上,在BN 上截取BC BA =,则ABP ∆≌CBP ∆.③角平分线+平行线→等腰三角形:如图(3),已知BP 平分ABC ∠,//PA AC ,则AB AP =;如图(4),已知BP 平分ABC ∠,//EF PB ,则BE BF =.(1) (2) (3) (4) ④三线合一(利用角平分线+垂线→等腰三角形):如图(5),已知AD 平分BAC ∠,且AD BC ⊥,则AB AC =,BD CD =.(5)【此处有视频,请去附件查看】28.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点0.点P 从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【答案】(1)258或5;(2)213=1232S t t-++;(3)92;(4)2.88.【解析】试题分析:(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,根据相似三角形的性质得到AP=t=258,②当AP=AO=t=5,于是得到结论;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,根据全等三角形的性质得到CE=AP=t,根据相似三角形的性质表示出EH,根据相似三角形的性质表示出QM,FQ,根据图形的面积即可得到结论;(3)根据题意列方程得到t的值,于是得到结论;(4)由角平分线的性质得到DM的长,根据勾股定理得到ON的长,由三角形的面积公式表示出OP,根据勾股定理列方程即可得到结论.试题解析:(1)∵在矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①当AP =PO =t ,如图1,过P 作PM ⊥AO ,∴AM =12AO =52, ∵∠PMA =∠ADC =90°,∠PAM =∠CAD ,∴△APM ∽△ADC , ∴AP AM AC AD=, ∴AP =t =258, ②当AP =AO =t =5,∴当t 为258或5时,△AOP 是等腰三角形; (2)作EH ⊥AC 于H ,QM ⊥AC 于M ,DN ⊥AC 于N ,交QF 于G ,在△APO 与△CEO 中,∵∠PAO =∠ECO ,AO =OC ,∠AOP =∠COE ,∴△AOP ≌△COE ,∴CE =AP =t ,∵△CEH ∽△ABC , ∴EH CE AB AC=, ∴EH =35t , ∵DN =AD CD AC ⋅=245, ∵QM ∥DN ,∴△CQM ∽△CDN , ∴QM CQ DN CD =,即62465QM t -=, ∴QM =2445t -, ∴DG =2424455t --=45t , ∵FQ ∥AC ,∴△DFQ ∽△DOC , ∴FQ DG OC DN=, ∴FQ =56t , ∴S 五边形OECQF =S △OEC +S 四边形OCQF =13152445(5)25265t t t -⨯⨯++⋅=2131232t t -++,∴S 与t 的函数关系式为2131232S t t =-++; (3)存在,∵S △ACD =12×6×8=24, ∴S 五边形OECQF :S △ACD =(2131232t t -++):24=9:16,解得t =92,t =0,(不合题意,舍去),∴t =92时,S 五边形S 五边形OECQF :S △ACD =9:16; (4)如图3,过D 作DM ⊥AC 于M ,DN ⊥AC 于N , ∵∠POD =∠COD ,∴DM =DN =245, ∴ON =OM =22OD DN -=75, ∵OP •DM =3PD ,∴OP =558t -, ∴PM =18558t -, ∵222PD PM DM =+,∴22218524(8)()()585t t -=-+,解得:t ≈15(不合题意,舍去),t ≈2.88, ∴当t =2.88时,OD 平分∠COP .。
青岛版九年级数学上册《第1章图形的相似》单元测试卷-带答案
青岛版九年级数学上册《第1章图形的相似》单元测试卷-带答案学校:___________班级:___________姓名:___________考号:___________(满分100分,限时60分钟)一、选择题(每小题3分,共30分)1.【新独家原创】如图,用放大镜看一个等腰三角形,该三角形边长放大到原来的10倍后,下列结论不正确的是()A.角的大小不变B.周长是原来的10倍C.底边上的高是原来的10倍D.面积是原来的10倍2.如图,练习本中的横格线都平行且相邻两条横格线间的距离都相等,同一条直线上的三个点A,B,C都在横格线上.若线段AB=6,则线段AC的长为()A.12B.18C.24D.303.如图所示的两个五边形相似,则以下a,b,c,d的值错误的是(M910102) ()A.a=3B.b=4.5C.c=4D.d=84.如图,已知△ABC的六个元素,其中a、b、c表示三角形三边的长,则甲、乙、丙、丁四个三角形中与△ABC 不一定相似的是()A.甲B.乙C.丙D.丁5.【主题教育·中华优秀传统文化】中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF.观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论正确的是()A.CECA =CFBFB.CFBF=EFABC.CEAE=EFABD.CECA=EFAB6.如图,四边形ABCD与四边形A'B'C'D'是位似图形,点O是位似中心,若OA∶AA'=2∶1,则四边形ABCD与四边形A'B'C'D'的面积之比等于() A.1∶2 B.1∶4 C.2∶3 D.4∶97.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍.设点B的对应点B'的横坐标是a,则点B的横坐标是()A.-12a B.-12(a+1) C.-12(a-1) D.-12(a+3)第7题图第8题图8.圆桌上方的灯泡(看做一个点)发出的光线照射到桌面后,在地面上形成阴影,如图,已知桌面的直径为1.2 m,桌面距离地面1 m,若灯泡距离地面3 m,则地面上阴影部分的面积为()A.0.36π m2B.0.81π m2C.2π m2D.3.24π m29.【双垂直模型】如图,嘉嘉在A时测得一棵4 m高的树的影长DF为8 m,若A时和B时两次日照的光线互相垂直,则B时的影长DE为() A.2 m B.2√5m C.4 m D.4√2m第9题图第10题图10.如图,在△ABC中,CH⊥AB于H,CH=h,AB=c,若内接正方形DEFG的边长是x,则h、c、x的数量关系为()A.x2+h2=c2B.12x+h=c C.h2=xc D.1x=1ℎ+1c二、填空题(每小题3分,共18分)11.【X字模型】如图,已知△OAB与△OA'B'是相似比为1∶2的位似图形,点O为位似中心,若△OAB 内一点P(x,y)与△OA'B'内一点P'是一对对应点,则P'的坐标是。
人教版数学九年级图形的相似(单元测试卷)
班级小组姓名成绩(满分120)一、填空题(每空4分,共44分)1、如果两个三角形相似,相似比为2∶3,则它们对应边上的中线比为。
2、如果两个相似三角形的面积比为3∶4,则它们的周长比为。
3、把一个三角形改成与它相似的三角形,若边长扩大4倍,则面积扩大倍。
4、如图所示,要证ABC ACD∽,已经具备了A A∆∆∠=∠,还需添加的条件是或。
5、两个相似三角形的一对对应边分别为20㎝和8㎝,它们的周长相差60㎝,则这两个三角形的周长分别为和。
6、已知两数4和8,试写出第三个数,使这三个数中,其中一个数是其余两数的比例中项,第三个数是(只需写出一个即可).7、已知D、E分别是△ABC的边AB、AC上的点,请你添加一个条件,使△ABC与△AED相似.你添加的条件是(只需添加一个你认为适当的条件即可).8、下列说法:①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有等腰直角三角形都相似;④所有的直角三角形都相似.其中正确的是(把你认为正确的说法的序号都填上).9、如图,在平行四边形ABCD中,AB=8cm,AD=4cm,E为AD的中点,在AB上取一点F,使△CBF ∽△CDE,则AF=cm。
二、选择题(每题4分,共24分)10、已知A、B两地的实际距离AB=5千米,画在图上的距离A B=2cm,则该地图的比例尺是()A、2∶5B、1∶2500C、250000∶1D、1∶25000011、已知线段a,b,且23ab ,则下列说法错误的是()12、在比例尺为1∶20的图纸上画出的某个零件的长是32mm,这个零件的实际长是()A、64mB、64dmC、64cmD、64mm13、如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形()A、1对B、2对C、3对D、4对14、△ABC中,DE∥BC,且AD∶DB=2∶1,那么DE∶BC等于()A、2∶1B、1∶2C、2∶3D、3∶215、如图,P是Rt△ABC的斜边BC上异于B、C的一点,过点P做直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()A、1条B、2条C、3条D、4条三、解答题(16、17每题9分,其他题目每题10分)16、如图,△ABC与△ADB中,∠ABC=∠ADB=90°,AC=5cm,AB=4cm,若图中的两个直角三角形相似,求AD的长。
冀教版九年级数学上册第25章 图形的相似 单元测试卷(图片版手写答案)
第1页/共1页 冀教版-《图形的相似》章节测试 答案一、选择题1-5DCBAD 6-8ADD二、填空题9、4 10、67 11、32 12、34 13、1 14、 15、①②③ 16、家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高很快。
17、这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?18、19、我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
知道“是这样”,就是讲不出“为什么”。
根本原因还是无“米”下“锅”。
于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。
九年级数学上册第三章《图形的相似》单元测试卷-湘教版(含答案)
九年级数学上册第三章《图形的相似》单元测试卷-湘教版(含答案) 一、选择题(本题共计12小题,每题3分,共计36分,) 1.下列图形中不一定相似的是A .两个矩形B .两个圆C .两个正方形D .两个等边三角形2.下面四条线段中成比例线段的是A .1a =,2b =,3c =,4d =B .3a =,6b =,9c =,12c =C .1a =,3b =,2c =,6d =D .1a =,2b =,4c =,6d =3.如图,四边形ABCD ∽四边形EFGH ,80A ∠=︒,90C ∠=︒,70F ∠=︒,则H ∠等于A .70︒B .80︒C .110︒D .120︒4.已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点()AC BC >,下列结论正确的是A .2AB AC BC = B .2BC AC BC = C .512AC BC -=D .352BC AB -= 5.如图,已知////AD BE CF ,23AB BC =,3DE =,则DF 的长为 A .2 B .4.5 C .3 D .7.56.如图,D 是ABC ∆的边AC 上一点,那么下面四个命题中错误的是A .如果ADB ABC ∠=∠,则ADB ABC ∆∆∽B .如果ABDC ∠=∠,则ABD ACB ∆∆∽ C .如果AB AD AC AB =,则ABC ADB ∆∆∽ D .如果AD AB AB BC=,则ADB ABC ∆∆∽ 7.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边60DE cm =,30EF cm =,测得边DF 离地面的高度 1.5AC m =,10CD m =,则树高AB 为A .4mB .5mC .5.5mD .6.5m第3题图 第5题图 第6题图 第7题图 第8题图8.如图所示,在离某建筑物4m 处有一棵树,在某时刻,1.2m 长的竹竿垂直地面,影长为2m ,此时,树的影子有一部分映在地面上,还有一部分影子映在建筑物的墙上,墙上的影高为2m ,则这棵树高约有多少米A .6.4米B .5.4米C .4.4米D .3.4米9.点D 是线段AB 的黄金分割点()AD BD >,若2AB =,则(BD =A 51-B 35-C .35D 5110.如图,在ABC ∆中,点D 、E 分别在边AB 、AC 上,//DE BC ,8AC =,6AE =,12AB =,则BD 等于A .3B .9C .6D .811.如图,在ABC ∆,D 是BC 上一点,:1:2BD CD =,E 是AD 上一点,:1:2DE AE =,连接CE ,CE 的延长线交AB 于F ,则:AF AB 为A .1:2B .2:3C .4:3D .4:712.如图所示,为了测量文昌塔AB 的高度,数学兴趣小组根据光的反射定理(图中12)∠=∠,把一面镜子放在点C 处,然后观测者沿着直线BC 后退到点D .这时恰好在镜子里看到塔顶A ,此时量得4CD m =,94BD m =,观测者目高 1.6ED m =,则塔AB 的高度为A .35mB .36mC .37mD .38m第10题图 第11题图 第12题图 二、填空题(本题共计6小题,每题3分,共计18分) 13.若两个相似三角形对应角平分线的比是2:3,它们的周长之和为15cm ,则较小的三角形的周长为 .14.如图,平面直角坐标系中有正方形ABCD 和正方形EFGH ,若点A 和点E 的坐标分别为(2,3)-,(1,1)-,则两个正方形的位似中心的坐标是 .15.设223x y x -=,则x y = . 16.如图,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为1:3,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为5,则C 点坐标为 .17.如图,ABC ∆中,D 是AB 的黄金分割点()AD BD <,过点D 作//DE BC 交AC 于E ,若35BC =+,则DE = .第14题图 第16题图 第17题图18.四条线段a ,b ,c ,d 成比例,其中3b cm =,2c cm =,8d cm =,则a 的长为 .三.解答题(共8小题,共66分)19.已知a 、b 、c 为ABC ∆的三边长,且48a b c ++=,457a b c ==,求ABC ∆三边的长.20.如图,在68⨯的网格图中,每个小正方形边长均为1,点O 和ABC ∆的顶点均为小正方形的顶点.(1)以O 为位似中心,在网格图中作△A B C ''',使△A B C '''和ABC ∆位似,且位似比为1:2.(2)连接(1)中的AA ',求四边形AA C C ''的周长.(结果保留根号)21.如图,在ABC ∆中,D 是AB 的中点,F 是BC 边延长线上的点,连接DF 交AC 于点E .求证:::CF BF CE AE =.(提示:过点C 作//)CG AB22.如图,在ABC ∆中,4BC =,D 为AC 延长线上一点,3AC CD =,CBD A ∠=∠,过D 作//DH AB ,交BC 的延长线于点H .(1)试说明:HCD HDB ∆∆∽.(2)求DH 的长.23.在ABC ∆中,10BC cm =,6AC cm =,点P 从点B出发,沿BC 方向以2/cm s 的速度向点C 移动,点Q 从点C 出发,沿CA 方向以1/cm s 的速度向点A 移动,若P ,Q 同时出发,设运动时间为ts ,则CPQ ∆能否与CBA ∆相似?若能,求t 的值;若不能,请说明理由.24.如图,是一个零件图,利用三角形位似的知识,以O 为位似中心把原图尺寸放大2倍.25.我们定义:顶角等于36︒的等腰三角形为黄金三角形.如图,ABC ∆中,AB AC =且36A ∠=︒,则ABC ∆为黄金三角形.(1)尺规作图:作B ∠的角平分线,交AC 于点D .(保留作图痕迹,不写作法)(2)请判断BDC ∆是否为黄金三角形,如果是,请给出证明,如果不是,请说明理由.26.阅读下列材料,并按要求完成相应的任务.黄金三角形与五角星当等腰三角形的顶角为36︒(或108)︒时,它的底与腰的比(或腰与底的比)为512-,我们把这样的三角形叫做黄金三角形.按下面的步骤画一个五角星(如图):①作一个以AB为直径的圆,圆心为O;②过圆心O作半径OC AB⊥;③取OC的中点D,连接AD;④以D为圆心OD为半径画弧交AD于点E;⑤从点A开始以AE为半径顺时针依次画弧,正好把O十等分(其中点F,G,B,H,I为五等分点);⑥以点F,G,B,H,I为顶点画出五角星.任务:(1)求出AEOA的值为;(2)如图,GH与BF,BI分别交于点M,N,求证:BMN∆是黄金三角形.参考答案 一、选择题(本题共计12小题,每题3分,共计36分,) 1.A .2.C .3.D .4.D . 5.D . 6.D . 7.D .8.C .9.C .10.A .11.D .12.B .二、填空题(本题共计6小题,每题3分,共计18分)13.6cm . 14.1(4,0)或3(4,)2-. 15. 34. 16. 5(2,5)3. 17. 2. 18.34cm . 三.解答题(共8小题,共66分)19.解:设457a b c x ===, 得4a x =,5b x =,7c x =.48a b c ++=,45748x x x ∴++=,解得3x =,412a x ∴==,515b x ==,721c x ==.20.解:(1)如图所示,△A B C '''即为所求作的三角形;(2)根据勾股定理,222425AC =+=, 22125A C ''=+=,所以,四边形AAC C ''的周长为:15225335+++=+.21.证明:过点C 作//CG AB 交DF 于G , ∴CE CG AE AD=, D 是AB 的中点,AD BD ∴=,∴CG CE BD AE=, //CG AB ,BD FB::CF BF CE AE ∴=.22.解:(1)//DH AB ,A HDC ∴∠=∠,CBD A ∠=∠,HDC CBD ∴∠=∠,又H H ∠=∠,HCD HDB ∴∆∆∽;(2)//DH AB , ∴CD CH AC BC=, 3AC CD =, ∴134CH =, 43CH ∴=, 416433BH BC CH ∴=+=+=, 由(1)知HCD HDB ∆∆∽, ∴DH CH BH DH=, ∴43163DH DH= ∴64893DH ==, 83DH ∴=(负值舍去). 答:DH 的长度为83. 23.解:设运动时间为ts ,则2BP t =,102CP t =-,CQ t =, 90PCQ ACB ∠=∠=︒,∴当CPQ ∆和CAB ∆相似时,有CPQ B ∠=∠或CPQ A ∠=∠, 当CPQ B ∠=∠时,则有CP CQ CB CA =,106解得3011t =. 当CPQ A ∠=∠时,则有CP CQ CA CB =, ∴102610t t -=, 解得5013t =. 综上所述,t 的值为3011或5013. 24.解:如图,25.解:(1)如图所示,BD 即为所求;(2)BDC ∆是黄金三角形,理由如下: BD 是ABC ∠的平分线,36ABD CBD ∴∠=∠=︒,36A ∠=︒,AB AC =,1(18036)722ABC C ∴∠=∠=︒-︒=︒, 又72BDC A ABD ∠=∠+∠=︒, BDC C ∴∠=∠,BD BC ∴=,BDC ∴∆是黄金三角形.26.(1)解:设2OA OC m ==,则OD DC m ==, OC AB ⊥,90AOD ∴∠=︒,2222(2)5AD OD AO m m m ∴=+=+=, DE DO m ==,5AE m m ∴=-,∴55122AE m m OA m --==.故答案为:512-. (2)证明:连接OH ,OI . 点F ,G ,B ,H ,I 为五等分点,1360725HOI ∴∠=⨯︒=︒, 36G ∴∠=︒,同理36F FBI GHF BIG ∠=∠=∠=∠=︒, 又BMN ∠是MHF ∆的外角, 72BMN F GHF ∴∠=∠+∠=︒, 同理72BNM ∠=︒,BMN BNM ∴∠=∠,BM BN ∴=,36FBI ∠=︒,BMN ∴∆是黄金三角形.。
第1章 图形的相似数学九年级上册-单元测试卷-青岛版(含答案)
第1章图形的相似数学九年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,在中,点分别是和上的点,且,则和的面积之比为()A. B. C. D.2、如图,∠ABC=∠CDB=90°,BC=3,AC=5,如果△ABC与△CDB相似,那么BD的长()A. B. C. D. 或3、如图,在平面直角坐标系中,已知点E(−4,2),F(−1,−1).以原点O为位似中心,把△EFO扩大到原来的2倍,则点E的对应点E′的坐标为()A.(−8,4)B.(8,−4)C.(8,4)或(−8,−4)D.(−8,4)或(8,−4)4、如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A. B. C. D.5、下列关于相似三角形的说法,正确的是()A.等腰三角形都相似B.直角三角形都相似C.两边对应成比例,且其中一组对应角相等的两个三角形相似D.一条直角边和斜边对应成比例的两个直角三角形相似6、如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到对应的△A′B′O.若点B的坐标是(-2,1),则点B′的坐标是()A.(-2,4)B.(-4,2)C.(2,-4)D.(4,-2)7、在△ABC中,∠BAC=90°,AB=3,点M为边BC上的点,连结AM(如图所示),如果将△ABM沿直线AM折叠后,点B恰好落在边AC的中点M处,那么点M到边AC的距离是()A.2B.2.5C.3D.48、如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,记与点A重合的点为A′,则A′BG的面积与该矩形面积的比为()A. B. C. D.9、如图,在中,,分别以的边向外作正方形,连接EC、BF,过B作于M,交AC于N,下列结论:≌;;;,其中正确的是()A. B. C. D.10、如图,在□ABCD中,点E在边AD上,射线CE、BA交于点F,下列等式成立的是()A. B. C. D.11、如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(-1,2)B.(-9,18)C.(-9,18)或(9,-18)D.(-1,2)或(1,-2)12、如图,△ABC和△DEF都是等腰直角三角形,∠ACB=∠EFD=90°,△DEF的顶点E与△ABC的斜边AB的中点重合.将△DEF绕点E旋转,旋转过程中,线段AC与线段EF相交于点Q,射线ED与射线BC相交于点P,线段ED与AC交于点M.若AQ=4,PB=18,则MQ的长为()A. B.5 C.4 D.13、一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要估做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有()A.0种B.1种C.2种D.3种14、把一张矩形纸片对折后得到的半张矩形纸片与原来的整张矩形纸片相似,则原矩形的长与宽的比值为()A. B. C.1 D.15、如图,△ABC中,AB=4,BC=6.点D,点E分别是边AB,BC上的两个动点,若按照下列条件将△ABC沿DE剪开,剪下的△BDE与原三角形不相似的是()A.∠BDE=∠CB.DE∥ACC.AD=3,BE=2D.AD=1,CE=4二、填空题(共10题,共计30分)16、一天晚上,某人在路灯下距路灯竿6米远时,发现他在地面上的影子是3米长,则当他离路灯竿10米远时,他的影子长是________米.17、如图,在△ABC中,AB=AC=2BC,以点B为圆心,BC长为半径作弧,与AC交于点D.若AC=4,则线段CD的长为________.18、如图,已知△ABC∽△ADB,若AD=2,CD=2,则AB的长为________.19、已知:△ABC中,点E是AB边的中点,点F在AC边上,若以A,E,F为顶点的三角形与△ABC相似,则需要增加的一个条件是________ (写出一个即可).20、勾股定理是一个基本的几何定理,有数百种证明方法.“青朱出入图”是我国古代数学家证明勾股定理的几何证明法.刘徽描述此图“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,加就其余不动也,合成弦方之幂,开方除之,即弦也”.若图中,,则________.21、若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为________.22、已知:如图,AB=BC,∠ABC=90°,以AB为直径的⊙O交OC与点D,AD的延长线交BC 于点E,过D作⊙O的切线交BC于点F.下列结论:①CD2=CE·CB;②4EF 2=ED ·EA;③∠OCB=∠EAB;④.其中正确的只有________.(填序号)23、如图,△∽△,那么它们的相似比是________;24、如图,在矩形中,点E在边上,与关于直线对称,点B 的对称点F在边上,G为中点,连结分别与交于M,N两点,若,,则的长为________,的值为________.25、如图,正方形中,绕点逆时针旋转到,,分别交对角线于点,若,则的值为________.三、解答题(共5题,共计25分)26、如图,已知△ABC中,AB=4,AC=6,BC=9,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.27、如图,在网格图中的△ABC与△DEF是否成位似图形?说明理由.如果是,同时指出它们的位似中心.28、如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.(1)判断直线DE与⊙O的位置关系,并说明理由.(2)若⊙O的半径R=5,tanA=,求线段CD的长.29、如图,在阳光下,身高165cm的小军测得自己的影长为0.9m,同时还测得教学楼的影长为8.1m,求该教学楼的高度.30、如图,扇形OAB的半径为4,圆心角∠AOB=90°,点C是上异于点A、B的一动点,过点C作CD⊥OB于点D,作CE⊥OA于点E,联结DE,过O点作OF⊥DE于点F,点M 为线段OD上一动点,联结MF,过点F作NF⊥MF,交OA于点N.(1)当tan MOF=时,求的值;(2)设OM=x,ON=y,当时,求y关于x 的函数解析式,并写出它的定义域;(3)在(2)的条件下,联结CF,当△ECF与△OFN相似时,求OD的长.参考答案一、单选题(共15题,共计45分)1、D2、D3、D4、D5、D6、D7、A8、C9、D10、C11、D12、B13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《图形的相似》单元测试卷(1)一.选择题1.若=,则=()A.B.C.D.2.线段MN长为1cm,点P是MN的黄金分割点,则MP的长是()A.B.C.或D.不能确定3.小惠将一根绳子进行黄金分割,分割后较短绳子的长度(3﹣)米,则这根绳子的总长度为()A.1米B.1.5米C.2米D.4米4.小明的数学作业本的纸上都是等距离的横线,他在上面任意画一条不与这些横线平行的直线,那么这条直线被这些横线所截得的线段()A.平行B.相等C.平行或相等D.不相等5.如图,已知AB∥CD,AC与BD交于点O,则下列比例中成立的是()A.B.C.D.6.下列语句中的图形必成相似形的是()A.只有一个角为30°的等腰三角形B.邻边之比为2的两个平行四边形C.底角为40°的两个等腰梯形D.有一个角为40°的两个等腰梯形7.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形()A.仍是直角三角形B.不可能是直角三角形C.是锐角三角形D.是钝角三角形8.下列图形中:①放大镜下的图片与原来的图片;②幻灯片的底片与投影在屏幕上的图象;③天空中两朵白云的照片;④卫星上拍摄的长城照片与相机拍摄的长城照片.其中相似的组数有()A.4组B.3组C.2组D.1组9.根据下列各组条件,△ABC与△A1B1C1相似的有()①∠A=45°,AB=12,AC=15,∠A1=45°,A1B1=16,A1C1=20②AB=12,BC=15,AC=24,A1B1=20,A1C1=40,B1C1=25③∠B=∠B1=75°,∠C=50°,∠A1=55°④∠C=∠C1=90°,AB=10,AC=6,A1B1=15,A1C1=9A.1个B.2个C.3个D.4个10.如图,在△ABC中,∠BAC=90°,D是BC中点,AE⊥AD交CB的延长线于E,则下列结论正确的是()A.△AED∽△ACB B.△AEB∽△ACD C.△BAE∽△ACE D.△AEC∽△DAC 11.△ABC∽△A′B′C′,已知AB=5,A′B′=6,△ABC面积为10,那么另一个三角形的面积为()A.15 B.14.4 C.12 D.10.812.如图,把△PQR沿着PQ的方向平移到△P′Q′R′的位置,它们重叠部分的面积是△PQR 面积的一半,若PQ=,则此三角形移动的距离PP′是()A.B.C.1 D.13.如图,身高1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,则树的高度为()A.4.8 m B.6.4 m C.8 m D.10 m14.下列命题中,正确的是()A.两个相似三角形面积比为2:3,则周长比是4:9B.相似图形一定构成位似图形C.如果点D、E分别在△ABC的边AB、AC上,△ABC与△ADE相似,则DE∥BC D.在Rt△ABC中,斜边上的高CD2=AD•BD15.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为()A.(﹣a,﹣2b)B.(﹣2a,﹣b)C.(﹣2a,﹣2b)D.(﹣b,﹣2a)16.如图,△ABC与△A′B′C′是位似图形,PB′=BB′,则△A′B′C′与△ABC的周长之比为()A.1:2 B.1:4 C.1:3 D.1:917.已知CD是Rt△ABC斜边上的高,则下列各式中不正确的是()A.BC2=BD•AB B.CD2=BD•ADC.AC2=AD•AB D.BC•AD=AC•BD二.填空题18.若==,则=.19.你手中的一副三角板,它们的两直角边的比分别是和,斜边与直角边的比是和.20.若b是a,c的比例中项,且a=cm,b=cm,则c=.21.三角形三边之比为3:5:7,与它相似的三角形最长边为21cm,那么与它相似的三角形周长为.22.在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.如图,请你在4×4的方格纸中,画一个格点三角形A1B1C1,使△A1B1C1与格点三角形ABC 相似(相似比不为1)..23.在Rt△ABC中,C为直角顶点,过点C作AB的垂线,若D为垂足,若AC、BC为方程x2﹣6x+2=0的两根,则AD•BD的值等于.三.解答题24.已知C、D是线段AB上的点,CD=(﹣2)AB,AC=BD,则C、D是黄金分割点吗?为什么?25.如图,在Rt△ABC中,∠C=90°,M是AB的中点,ME⊥AB交AC于点D,交BC 的延长线于点E,求证:CM2=MD•ME.26.如图所示,晚上小亮走在大街上,他发现当他站在大街上高度相等的两盏路灯AB和CD之间时,自己右边的影子NE的长为3m,左边的影子ME的长为1.5m,又知小亮的身高EF为1.80m,两盏路灯AC之间的距离为12m,点A、M、E、N、C在同一条直线上,问:路灯的高为多少米?27.(1)将下图中的各个点的纵坐标不变,横坐标都乘﹣1,与原图案相比,所得图案有什么变化?请画出图形并写出结论;(2)将下图中的,与原图案相比,所得图案有什么变化?请画出图形并写出结论;(3)将下图中的各个点的横坐标不变,纵坐标都+3,与原图案相比,所得图案有什么变化?请画出图形并写出结论;(4)将下图中的各个点的横坐标﹣2,纵坐标不变,与原图案相比,所得图案有什么变化?请画出图形并写出结论;(5)将下图中的各个点的横坐标都乘2,纵坐标都乘2,与原图案相比,所得图案有什么变化?请画出图形并写出结论.28.(1)以下列正方形网络的交点为顶点,分别画出两个相似比不为1的相似三角形,使它们:(1)都是直角三角形;(2)都是锐角三角形;(3)都是钝角三角形.(2)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).①以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;②分别写出B、C两点的对应点B′、C′的坐标;③如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.29.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)图形ABCD与图形A1B1C1D1关于直线MN成轴对称,请在图中画出对称轴并标注上相应字母M、N;(2)以图中O点为位似中心,将图形ABCD放大,得到放大后的图形A2B2C2D2,则图形ABCD与图形A2B2C2D2的对应边的比是多少(注:只要写出对应边的比即可);(3)求图形A2B2C2D2的面积.30.如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点,(1)若BK=KC,求的值;(2)联结BE,若BE平分∠ABC,则当AE=AD时,猜想线段AB、BC、CD三者之间有怎样的数量关系?请写出你的结论并予以证明;(3)试探究:当BE平分∠ABC,且AE=AD(n>2)时,线段AB、BC,CD三者之间有怎样的数量关系?请直接写出你的结论,不必证明.参考答案一.选择题1.解:设==k,则x=2k,y=3k,∴==,故选:D.2.解:设MP=x,则PN=1﹣x,根据题意得,解得,x=或>1(不合题意,舍去),又因为题中没强调MP是长的一段还是短的一段,所以MP的长也可以为1﹣=.故选:C.3.解:设线段的全长为x,由题意得,x﹣x=3﹣解得,x=2故选:C.4.解:根据平行线等分线段定理,得这条直线被横线所截得的线段相等.故选B.5.解:因为AB∥CD,所以=,所以,所以A选项正确,B、C、D选项错误.故选:A.6.解:A、只有一个角为30°的等腰三角形,30°的角必定是顶角,所以,底角也一定相等,三角形相似,故本选项正确;B、邻边之比为2,夹角不一定相等,两平行四边形不一定相似,故本选项错误;C、底角为40°的等腰梯形,角对应相等,边不一定对应成比例,两等腰梯形不一定相似,故本选项错误;D、有一个角为40°的等腰梯形,角对应相等,边不一定对应成比例,两等腰梯形不一定相似,故本选项错误.故选:A.7.解:∵将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形的三条边与原三角形的三条边对应成比例,∴两三角形相似.又∵原来的三角形是直角三角形,而相似三角形的对应角相等,∴得到的三角形仍是直角三角形.故选:A.8.解:①放大镜下的图片与原来的图片,形状相同,但大小不一定相同,故正确;②幻灯片的底片与投影在屏幕上的图象,形状相同,但大小不一定相同,故正确;③天空中两朵白云的照片,属于不唯一确定图片,故错误;④卫星上拍摄的长城照片与相机拍摄的长城照片,属于不唯一确定图片,故错误.故选:C.9.解:①符合两组对应边的比相等且相应的夹角相等的两个三角形相似,故选项正确;②符合三组对应边的比相等的三个三角形相似,故选项正确;③符合有两组角对应相等的两个三角形相似,故选项正确;④利用勾股定理可求BC=8,B1C1=12,因此三条对应边的比都是,故选项正确.故选:D.10.解:∵∠BAC=90°,D是BC中点,∴DA=DC,∴∠DAC=∠C,又∵AE⊥AD,∴∠EAB+∠BAD=90°,∠CAD+∠BAD=90°,∴∠EAB=∠DAC,∴∠EAB=∠C,而∠E是公共角,∴△BAE∽△ACE故选:C.11.解:∵△ABC∽△A′B′C′,AB=5,A′B′=6,∴=,∵△ABC面积为10,∴解得:S△A′B′C′=14.4.故选:B.12.解:根据题意,可得△PQR∽△P′Q′R′,∵面积的比等于相似比的平方;∴,∴P′Q=×=1;∴移动的距离PP′=﹣1.故选:D.13.解:由题意可得,=,即树高==8m,故选:C.14.解:A、两个相似三角形面积比为2:3,则周长比是:;B、相似图形不一定构成位似图形,但位似图形是相似图形;C、如果点D、E分别在△ABC的边AB、AC上,△ABC与△ADE相似,则可能DE∥BC或AD:AC=AE:AB,即将图形反转相似;D、如图:∵CD⊥AB,∠ACB=90°∴∠ADC=∠BDC=90°∴∠A+∠ACD=90°,∠A+∠B=90°∴∠ACD=∠B∴△ACD∽△CBD∴AD:CD=CD:BD∴CD2=AD•BD故选:D.15.解:小鱼最大鱼翅的顶端坐标为(5,3),大鱼对应点坐标为(﹣10,﹣6);小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).故选:C.16.解:∵△ABC与△A′B′C′是位似图形,PB′=BB′,∴A′B′:AB=PB′:PB=1:2,∴△A′B′C′与△ABC的周长之比为:1:2.故选:A.17.解:根据射影定理每一条直角边是这条直角边在斜边上的射影和斜边的比例中项可得:A、C都符合题意.根据直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项可得B选项正确;综上可得:A、B、C选项都正确.故选:D.二.填空题(共6小题)18.解:由==,得y=,z=.==1.故答案为:1.19.解:(1)等腰直角三角形:它的两条直角边相等,即直角边的比是1:1;若设它的直角边是1,则根据勾股定理得斜边是,即斜边与直角边的比是:1;(2)30°的直角三角形:根据30°所对的直角边是斜边的一半,若设短直角边是1,则斜边是2,根据勾股定理得另一条直角边是.则它的两条直角边的比是:3,斜边和直角边的比是2:1或2:3.∴你手中的一副三角板,它们的两直角边的比分别是1:1和:3,斜边与直角边的比是:1和2:1或2:3.20.解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积,所以b2=ac,即()2=c,c=2.故答案为:2.21.解:三角形三边之比等于与他相似的三角形的三边之比,即3:5:7,与它相似的三角形最长边为21cm,设这个三角形三边为3x,5x,7x,已知7x=21,则x=3,那么其他两边分别是9,15,那么与它相似的三角形周长为21+9+15=45.22.解:如图所示:23.解:∵AC、BC为方程x2﹣6x+2=0的两根,∴x1=,x2=,令AC=,BC=,∴AB==4,又AB×CD=AC×BC,∴CD===,∴AD•BD=CD2==.故答案为:.三.解答题(共7小题)24.解:C、D是黄金分割点,∵AC+CD+BD=AB,CD=(﹣2)AB,AC=BD,∴AC=AB,AD=AC+CD=AB+(﹣2)AB=AB,∴D是AB的黄金分割点,同理C也是AB的黄金分割点.25.证明:(1)∵EM⊥AB,∴∠BMD=90°,∴∠B+∠E=90°.∵∠BAC=90°,∴∠B+∠A=90°,∴∠E=∠A.∵M是BC的中点,∴AM=MB=AB,∴∠MCA=∠A.∴∠MCD=∠E.∵∠CMD=∠EMC,∴△CMD∽△EMC,∴=,∴CM2=MD•ME;26.解:设AM=xm,则MC=(12﹣x)m,再设路灯的高为hm,∵AB⊥aC,EF⊥AC,DC⊥AC,∴△FEN∽△BAN,△FEM∽△DCM,∴=,=,即=,=,则=,解得:x=6.5,故=,解得:h=6.6.答:路灯高6.6米.27.解:(1)从图上读出各点的坐标分别是(0,0)(﹣1,2)(﹣3,3)(﹣2,1)各个点的纵坐标不变,横坐标都乘以﹣1得(0,0)(1,2)(3,3)(2,1)从坐标轴中描出各点得图如下从图中可以得出所的图形与原图形关于y轴对称.(2)将横坐标不变,纵坐标乘以﹣1得到新的坐标:(0,0)(﹣1,﹣2)(﹣3,﹣3)(﹣2,﹣1)从图中描出各点如下图得出所的图形与原图形关于x轴对称.(3)各个点的横坐标不变,纵坐标都+3得到新的坐标:(0,3)(﹣1,5)(﹣3,6)(﹣2,4)从坐标系中描出各点得图如下得出与原图的关系是向上平移3个单位.(4)各个点的横坐标﹣2,纵坐标不变得出新坐标:(﹣2,0)(﹣3,2)(﹣5,3)(﹣4,1)从坐标系中描出各点,顺次连接得图如下:得出与原图的关系是向左平移2个单位.(5)各个点的横坐标都乘以2,纵坐标都乘以2,得出新坐标:(0,0)(﹣2,4)(﹣6,6)(﹣4,2)从坐标系中描出各点的坐标并顺次连得图如下:得出与原图的关系是放大为原来的2倍.28.解:(1)(2)如图B′的坐标为(﹣6,2),C′的坐标为(﹣4,﹣2),又M的坐标为(x,y),所以M′的坐标为(﹣2x,﹣2y).29.解:(1)如图所示:画出对称轴MN;(2)对应边的比为1:2;(3)图形A2B2C2D2的面积=×B2D2×A2C2=×4×8=16.30.解:(1)∵BK=KC,∴=,∵AB∥CD,∴△CKD∽△BKA,∴==;(2)猜想:AB=BC+CD.证明:连接BD,取BD的中点F,连接EF交BC于G,由中位线定理,得EF∥AB∥CD,∴G为BC的中点,∠GEB=∠EBA,又∵∠EBA=∠GBE,∴∠GEB=∠GBE,∴EG=BG=BC,而GF=CD,EF=AB,∵EF=EG+GF,即:AB=BC+CD;∴AB=BC+CD;(3)猜想:AB=BC+CD.证明:连接BD,作EF∥AB交BC于G,交BD于F,∵AE=AD,∴=,∵EF∥AB,∴==,即EF=AB,∵EF∥AB,AB∥CD,∴EF∥CD,同理,BG=BC,GF=CD,∵EF=EG+GF,即:AB=BC+CD;∴AB=BC+CD.《图形的相似》单元测试卷(2)学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 若,则的值为()A. B. C. D.2. 东海大桥全长千米,如果东海大桥在某张地图上的长为厘米,那么该地图上距离与实际距离的比为()A. B.C. D.3. 下列四组线段中,不构成比例线段的一组是()A.,,,B.,,,C.,,,D.,,,4. 已知点是线段的黄金分割点,且,则下列等式中成立的是()A. B.C. D.5. 如图:是斜靠在墙上的楼梯,梯脚点距离墙,梯上点距墙,,则梯子长为()A. B. C. D.6. 如图,,,,,.若在边上有点,使与相似,则这样的点有()A.个B.个C.个D.个7. 如图,是线段的黄金分割点,四边形、四边形都是正方形,且面积分别为、,四边形、四边形都是矩形,且面积分别为、,下列说法正确的是()A. B.C. D.8. 若两个相似三角形的面积比为,那么这两个三角形的周长的比为()A. B.C. D.9. 已知:如图,,则在下列比例中一定成立的是()A. B.C. D.10. 如图,在钝角中,,,动点从点出发到点止.动点从点出发到点止.点运动的速度为,点运动的速度为.如果两点同时运动,那么当以点、、为顶点的三角形与相似时.运动的时间是()A.或B.C. D.或二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 在和中,,,分别是,的角平分线,且,与________(填“是”或“否”)相似.12. 如果两个相似三角形的相似比为,则这两个三角形的对应的高的比为________,对应角分线的比为________.13. 已知,和是它们的对应角平分线,且,,则与对应高的比为________.14. 有一棵松树在某一时刻的影子如图所示,同学小军站在处发现他的影子顶端恰好与树的影子顶端在处重合,此时小军测得自己影长,他与树底端距离,若小军身高,则树高约为________.15. 如图,已知与相交于点,且,,则________.16. 在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点对应点的坐标是________.17. 如图,直线,直线、与、、分别交于点、、、、、,若,,,则________.18. 如图,四边形是正方形,是的中点,在上,如果,那么和________相似三角形.(填“是”或“不是”)19. “今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池,东边城墙长里,南边城墙长里,东门点、南门点分别是,的中点,,,里,经过点,则________里.20. 如图是一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角,窗户的高在教室地面上的影长米,窗户的下檐到教室地面的距离米(点、、在同一直线上),则窗户的高为________米.三、解答题(本题共计6 小题,共计60分,)21.(8分) 在坐标系中的位置如图所示画出的位似形,使得和以点为位似中心、位似比为;和位于点的异侧;写出各顶点的坐标.22. (10分)如图,在中,,,若,,求.23. (10分)如图,小明同学用自制的直角三角形纸板测量树的高度,他调整自己的位置,设法使斜边保持水平,并且边与点在同一直线上,已知纸板的两条直角边,,测得边离地面的高度,,求树高.24.(10分) 如图,在矩形中,是边上任意一点(不与点,重合),作交的延长线于点.求证:;连接,为的中点,,,设,①求点到的距离(用含的代数式表示);②连接,设,求与之间的函数关系式,并直接写出的长度的最小值.25.(10分) 已知:如图,在中,是边上的中点,且,,与相交于点,与相交于点.求证:;若的面积为,,求的长.26.(12分) 如图,在中,,,,点从点出发沿方向向点运动,速度为,同时点从点出发沿方向向点运动,速度为,当一个运动点到达终点时,另一个运动点也随之停止运动.求、的长;设点的运动时间为(秒),的面积为,当存在时,求与的函数关系式;当点在上运动,使时,以点、、为顶点的三角形与是否相似,请说明理由.答案1. A2. B3. D4. A5. C6. C7. B8. C9. B10. A11. 否12.13.14.15.16.17.18. 是19.20.21. 解:画出如图所示的图形,则为所求的三角形;由图形可得:,,.22. 解:∵,,∴,,∴;∴,∵,,∴,∴,即,∴:,即.∵,∴,又∵,∴,∴,∴,∴.23. 解:在和中,,∴,∴,即,解得,∵,∴,即树高.24. 证明:∵在矩形中,,∴,∵,∴,∵,∴,又∵,∴;解:①如图,取的中点,连接,∵为的中点,∴,,∵在矩形中,,∴,即是点到的距离,∵,,∴,∴,即点到的距离为;②∵,∴,∴,∴,,,∴,∵,∴在中,,∴∵,当时,有最小值,此时,的最小值是.25. 证明:∵是边上的中点,∴∴.∵,∴.∴.解:过作于.∵,,∴.∵,∴.∴.∴.∵,∴∴.∴.26. 解:设,,在中,,即:,解得:,∴,;分两种情况:①当点在边上运动时,过点作于.∵,∴,,∵,∴,∴,,②当点在边上运动时,过点作于,∵,∴,,∵,∴,即:,解得:,∴;当点在上运动,使时,以点、、为顶点的三角形与不相似.理由如下:∵,∴,∵,∴,∴,即:,解得:,,∴,∴,∴当点在上运动,使时,以点、、为顶点的三角形与不相似.《图形的相似》单元测试卷(3)一、单选题(共10题;共30分)1.下列四组图形中,一定相似的是()A. 正方形与矩形B. 正方形与菱形C. 菱形与菱形D. 正五边形与正五边形2.若△ABC∽△DEF,且面积比为1 :9,则△ABC与△DEF的周长比为()A. 1 : 3B. 1 :9C. 3 :1 D. 1 :813.如图,△ABC中,AD⊥BC于D ,下列条件:①∠B+∠DAC=90°;②∠B=∠DAC;③= ;④AB2=BD•BC .其中一定能够判定△ABC是直角三角形的有()A. 1B. 2C. 3D. 44.将一个矩形纸片ABCD沿AD和BC的中点的连线对折,要使矩形AEFB与原矩形相似,则原矩形的长和宽的比应为()A. B. C.D.5.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为()A. B. 8 C. 10D. 166.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A. AB2=AC•BCB. BC2=AC•BCC. AC=BC D. BC= AB7.已知,直角坐标系中,点E(-4,2),F(-1,-1),以O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点E′的坐标为()A. (2,-1)或(-2,1)B. (8,-4)或(-8,4)C. (2,-1)D. (8,-4)8.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC=9,点P是AB上一动点.若△PAD与△PBC是相似三角形,则满足条件的点P的个数有()A. 1个B. 2个C. 3个D. 4个9.给形状相同且对应边的比是1:2的两块标牌的表面涂漆,如果小标牌用漆半听,那么大标牌的用漆量是()A. 1听B. 2听C. 3听D. 4听10.在平面直角坐标系xoy中,已知A(4,2),B(2,-2),以原点O为位似中心,按位似比1:2把△OAB缩小,则点A的对应点A′的坐标为()A. (3,1)B. (-2,-1)C. (3,1)或(-3,-1)D. (2,1)或(-2,-1)二、填空题(共10题;共30分)11.△ABC和△A′B′C′中,∠A=60°,∠B=40°,∠A’=60°,当∠C′=________ 时,△ABC∽△A′B′C′.12.晚上,身高1.6米的小华站在D处(如图),测得他的影长DE=1.5米,BD=4.5米,那么灯到地面的距离AB=________ 米.13.若,则=________.14.如图,在△ABC中,AB=AC,BE、AD分别是边AC、BC上的高,CD=2,AC=6,那么CE=________.15.已知△ABC中的三边a=2,b=4,c=3,h a,h b,h c分别为a,b,c上的高,则h a:h b:h c=________.16.如图,在平面直角坐标系中,△ABC的各顶点坐标为A(-1,1),B(2,3),C(0,3).现以坐标原点为位似中心,作△A′B′C′,使△A′B′C′与△ABC的位似比为 .则点A的对应点A′的坐标为________.17.在△ABC中,∠C=90°,c=25cm,a:b=3:4,则S△ABC=________.18.如图,甲、乙两名同学分别站在C、D的位置时,乙的影子与甲的影子的末端恰好在同一点,已知甲、乙两同学相距1m,甲身高1.8m,乙身高1.5m,则甲的影子是________m.19.如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是________.20.如图,在平行四边形ABCD中,点E在边DC上,△DEF的面积与△BAF的面积之比为9:16,则DE:EC=________.三、解答题(共8题;共60分)21.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个△A2B2C2,使△A2B2C2∽△ABC,且相似比为2:1.22.如图所示,在矩形ABCD中,AC、BD相交于点O,OE⊥BC于E,连接DE交OC于点F,作FG⊥BC于G.(1)说明点G是线段BC的一个三等分点;(2)请你依照上面的画法,在原图上画出BC的一个四等分点(保留作图痕迹,不必证明).23.如图所示,D,E是△ABC的边AB,AC上的两点,AE:AC=2:3,且AD=10,AB=15,DE=8,求BC的长.24.已知:如图,Rt△ABC中,CD是斜边AB上的高.求证:AC2=AD·AB25.如图,有一块三角形的土地,它的一条边BC=100米,BC边上的高AH=80米.某单位要沿着边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上.若大楼的宽是40米(即DE=40米),求这个矩形的面积.26.如图,在▱ABCD中,EF∥AB,FG∥ED,DE:DA=2:5,EF=4,求线段CG的长.27.已知:如图,有一块面积等于1200cm2的三角形纸片ABC,已知底边与底边BC上的高的和为100cm(底边BC大于底边上的高),要把它加工成一个正方形纸片,使正方形的一边EF在边BC上,顶点D、G分别在边AB、AC上,求加工成的正方形铁片DEFG的边长.28.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B 运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?答案解析部分一、单选题1.【答案】D【考点】相似多边形的性质【解析】【解答】A、正方形与矩形,对应角相等,对应边不一定成比例,故A不符合题意;B、正方形与菱形,对应边成比例,对应角不一定相等,不符合相似的定义,故B不符合题意;C、菱形与菱形,对应边成比例,但是对应角不一定相等,故C不符合题意;D、正五边形与正五边形,对应角相等,对应边一定成比例,符合相似的定义,故D符合题意.故答案为:D.【分析】正五边形与正五边形,对应角相等,对应边一定成比例所以一定相似.2.【答案】A【考点】相似三角形的性质【解析】【分析】易知三角形面积比等于周长比的平方。