2017年山东单招数学模拟试题及答案
最新山东春季高考数学模拟试卷及答案(四)
题目简单2017年山东春季高考数学模拟试卷及答案(四)第Ⅰ卷(选择题、填空题共45分)一、选择题:(下列各小题都给出了四个选项,其中只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在第II 卷上指定的位置. 本大题共10小题,每小题3分,计30分)1. 图中物体的形状类似于(). (A )棱柱(B )圆柱(C )圆锥(D )球(第1题)2.化简20的结果是().(A)25 (B)52 (C) 210. (D)543. 如图所示,BC =6,E 、F 分别是线段AB 和线段AC 的中点,那么线段EF 的长是().(A )6 (B )5 (C )4.5 (D )3 4.有6张背面相同的扑克牌,正面上的数字分别是4,5,6,7,8,9.若将这六张牌背面朝上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是9的概率为().(A)23(B)12(C)13(D)165.在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是().(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格6. 三峡大坝坝顶从2005年7月到9月共92天将对游客开放,每天限接待1000人,在整个开放期间最多能接待游客的总人数用科学记数法表示为()人.(A )92×103(B )9.2×104(C )9.2×103(D )9.2×1057.如图,希望中学制作了学生选择棋类、武术、摄影、刺绣四门校本课程情况的扇形统计图. 从图中可以看出选择刺绣的学生为().(A)11% (B)12% (C) 13% (D)14%8.某城市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖, 有人提出了4种地砖的形状供设计选用:①正三角形,②正四边形,③正五边形,④正六边形.其中不能进行密铺的地砖的形状是().(A) ① (B) ② (C) ③ (D) ④9.实数m 、n 在数轴上的位置如图所示,则下列不等关系正确的是().(A )n <m(B )n 2<m2(C )n 0<m 0(D )| n |<| m |(第9题)10.如图所示的函数图象的关系式可能是().(A )y = x (B )y =x1(C )y = x 2(D) y =1x二、填空题:(请将答案填写在第II 卷上指定的位置.本大题共5小题,每小题3分,计15分)-1mn-2(第12题)21ODCBA11.如果收入15元记作+15元,那么支出20元记作元.12.如图,直线AB 、CD 相交于点O ,若∠1=28°,则∠2= .13.已知,在Rt △ABC 中∠C =90°,∠BAC =30°,AB =10,那么BC=.14.甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:15.如图,时钟的钟面上标有1,2,3,……,12共12个数,一条直线把钟面分成了两部分.请你再用一条直线分割钟面,使钟面被分成三个不同的部分且各部分所包含的几个数的和都相等,则其中的两个部分所包含的几个数分别是和. 。
山东单招数学试题及答案
山东单招数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 0.33333B. πC. √2D. √4答案:B、C2. 已知函数f(x) = 2x - 1,求f(2)的值。
A. 3B. 4C. 5D. 6答案:A3. 如果一个等差数列的首项是3,公差是2,那么第10项的值是多少?A. 23B. 27C. 29D. 31答案:A4. 一个圆的半径是5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 下列哪个是二次方程的解?A. x = 2B. x = -2C. x = 3D. x = 1/2答案:A、B二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别为3和4,斜边的长度是________。
答案:57. 一个数的平方根是4,这个数是________。
答案:168. 一个数的立方根是2,这个数是________。
答案:89. 一个圆的周长是2πr,其中r是圆的半径,如果周长为12π,那么半径r是________。
答案:610. 一个等比数列的首项是2,公比是3,那么第5项的值是________。
答案:162三、计算题(每题5分,共15分)11. 计算下列表达式的值:(2 + 3) × (5 - 2)答案:11 × 3 = 3312. 解一元一次方程:3x - 7 = 5x + 1答案:3x - 5x = 1 + 7-2x = 8x = -413. 已知一个直角三角形的两个角分别为30°和60°,斜边长度为2,求另外两边的长度。
答案:根据30°-60°-90°三角形的性质,较短边为斜边的一半,即1。
较长边为较短边的√3倍,即√3。
四、解答题(每题10分,共20分)14. 证明勾股定理。
答案:设直角三角形的直角边分别为a和b,斜边为c。
根据面积的两种表示方法,有:1/2 * a * b = 1/2 * c * h(其中h为斜边上的高)ah = ba^2 + b^2 = c^215. 解不等式组:\[\begin{cases}x + 2 > 4 \\3x - 1 < 8\end{cases}\]答案:由第一个不等式得 x > 2,由第二个不等式得 x < 3。
山东单招数学模拟试卷(含答案)(K12教育文档)
山东单招数学模拟试卷(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东单招数学模拟试卷(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东单招数学模拟试卷(含答案)(word版可编辑修改)的全部内容。
山东单招数学模拟试卷一、判断题(请把“√”或“×"填写在题目前的括号内.每小题3分,共36分。
) ( )1。
已知集合1,2,3,4A ,2,4,6,8B ,则2,4A B 。
( )2。
两个偶函数的和是偶函数,两个奇函数的积也是偶函数。
( )3.与等差数列类似,等比数列的各项可以是任意的一个实数。
( )4.两个向量的数量积是一个实数,向量的加、减、数乘的结果是向量。
( )5。
如果0cos >θ,0tan <θ,则θ一定是第二象限的角.( )6.相等的角终边一定相同,终边相同的角也一定相等。
( )7。
第一象限的角不见得都是锐角,第二象限的角也不见得都是钝角。
( )8。
平面内到点1(0,4)F 与2(0,4)F 距离之差等于12的点的轨迹是双曲线。
( )9。
直线的倾斜角越大,其斜率就越大。
椭圆的离心率越大则椭圆越扁。
( )10。
如果两条直线1l 与2l 相互垂直,则它们的斜率之积一定等于1。
( )11。
平面外的一条直线与平面内的无数条直线垂直也不能完全断定平面外的这条直线垂直平面.( )12. 在空间中任意一个三角形和四边形都可以确定一个平面。
二、单项选择题(请把正确答案的符号填写在括号内.每小题4分,共64分)1。
已知集合{}31≤<-=x x A ,57U x x ,则U C ( ) A 、{}7315<<-≤<-x x x 或; B 、{}7315<<-<<-x x x 或; C 、{}7315≤≤-≤<-x x x 或; D 、{}7315<≤-<<-x x x 或。
2017年山东单招数学仿真模拟试题(附答案)
结 束开始 S=0,i=0 S=S+2ii=i+1 否是输出S 2017年山东单招数学仿真模拟试题(附答案)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知全集U =R ,{|21}A x x =-≤≤,{|21}B x x =-<<,{|2C x x =<-或1}x >,2{|20}D x x x =+-≥,则下列结论正确的是( )A .A B =RB .B C =RC .C A =RD .A D =R2.已知i 是虚数单位,复数211i ()1iz -=+、322i z =-分别对应复平面上的点P 、Q ,则向量PQ 对应的复数是( )A .3i -+B .13i -C .13i +D .3i +3.已知命题“a ∀,b ∈R ,如果0ab >,则0a >”,则它的否命题是( )A .a ∀,b ∈R ,如果0ab <,则0a <B .a ∀,b ∈R ,如果0ab ≤,则0a ≤C .a ∃,b ∈R ,如果0ab <,则0a <D .a ∃,b ∈R ,如果0ab ≤,则0a ≤ 4.右图给出的是计算191242++++的值的一个程序框图,则其中空白的判断框内,应填入 下列四个选项中的( )A .i 19≥B .i 20≥C .i 19≤D .i 20≤5.已知等比数列{n a }的前n 项和为n S ,且有215n n S S =,则23n nSS 的值是( ) A .521B .519C .513D .236.已知3sin25θ=,4cos 25θ=-,则角θ的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.已知向量(2=a ,1)x +,(x =b ,1),若(2)//()-+a b a b ,则x 的值是( )A .1B .2-C .1或2-D .1-或28.科研室的老师为了研究某班学生数学成绩x 与英语成绩y 的相关性,对该班全体学生的某次期末检测的数学成绩和英语成绩进行统计分析,利用相关系数公式12211()()()()niii nni i i i x x y y r x x y y ===--=--∑∑∑计算得0.001r =-,并且计算得到线性回归方程为y bx a =+,其中121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-.由此得该班全体学生的数学成绩x 与英语成绩y 相关性的下列结论正确的是( )A .相关性较强且正相关B .相关性较弱且正相关C .相关性较强且负相关D .相关性较弱且负相关 9.直线20(0)x ay a a ++=≠与圆224x y +=的位置关系是( )A .相离B .相交C .相切D .相切或相交 10.甲、乙两人因工作需要每天都要上网查找资料,已知他们每天上网的时间都不超过2小时,则在某一天内,甲上网的时间不足乙上网时间的一半的概率是( )A .12B .13C .14D .2311.设a b ,为两条直线,αβ,为两个平面,则下列四个命题中,正确的命题是 ( )A .若a α⊥,b β⊥,a b ⊥,则αβ⊥B .若//a α,//b β,//αβ,则//a bC .若a α⊂,b β⊂,//a b ,则//αβD .若//a α, βα⊥,则a β⊥12.曲线2()ln f x x x =+经过点(1,(1)f )的切线方程是( )A .320x y ++=B .320x y +-=C .320x y -+=D .320x y --=第Ⅱ卷 (非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案直接填在题中的横线上.13.某仓库中有甲、乙、丙三种不同规格的电脑,它们的数量之比依次为2∶3∶5.现用分层抽样的方法从中抽出一个容量为n 的样本,若该样本中有甲种规格的电脑24台,则此样本的容量n 的值为 . 14.如图,是一个长方体ABCD —A 1B 1C 1D 1截 去“一个角”后的多面体的三视图,在这个多 面体中,AB =3,BC =4,CC 1=2.则这个多 面体的体积为 .15.已知x ,y 都是正实数,且111112x y +=++,则xy 的值的范围是 . 16.若双曲线221x y m n-=(0m >,0n >)上的点P (5,3-)到坐标原点O 的距离||2OP m =,则该双曲线的离心率的值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且(2)cos cos 0a c B b C ++=.左视图主视图俯视图 D 1 A 1 BC 1A 1BC C 1A 1A BC 1(Ⅰ)求角B 的值;(Ⅱ)若4a c +=,求ABC ∆面积S 的最大值.18.(本小题满分12分)已知各项均为正数的等差数列{n a }的首项11a =,前n 项和为n S ,且满足关系141n n n a a S +=-,(n ∈N *).(Ⅰ)求数列{n a }的通项n a ; (Ⅱ)设11(1)(1)n n n b a a +=++,求数列{n b }的前n 项和n T .19.(本小题满分12分)如图,在底面是直角梯形的四棱锥P ABCD -中,90DAB ∠=︒,//AB CD ,E 、F 分别是棱PA 、PC 的中点,PA ⊥平面ABCD ,4PA =,2AB =,3AD =,5CD =.(Ⅰ)求证://EF 平面ABCD ; (Ⅱ)求三棱锥C PDE -的体积.PCADBFE20.(本小题满分12分)班主任老师要从某小组的5名同学A 、B 、C 、D 、E 中选出3名同学参加学校组织的座谈活动,如果这5名同学被选取的机会相等,分别计算下列事件的概率: (Ⅰ)C 同学被选取;(Ⅱ)B 同学和D 同学都被选取;(Ⅲ)A 同学和E 同学中至少有一个被选取.21.(本小题满分12分)设椭圆M :)0(12222>>=+b a by a x 的离心率为22,点A (a ,0),B (0,b -),原点O 到直线AB 的距离为233. (Ⅰ)求椭圆M 的方程;(Ⅱ)设点C 为(a -,0),点P 在椭圆M 上(与A 、C 均不重合),点E 在直线PC 上,若直线PA 的方程为4y kx =-,且0CP BE ⋅=,试求直线BE 的方程.22.(本小题满分14分)已知函数322()f x ax bx a x =+-,(0)a ≠.(Ⅰ)若()f x 在1x =-时取得极值,求b 的取值范围; (Ⅱ)若0b =,试求函数()f x 的单调区间;(Ⅲ)若0a >,函数()f x 在1x =时有极值1-,且方程()f x m =有三个不相等的实数根,求m 的取值范围.参考答案一、选择题(每小题5分,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CDBBADCDBCAD二、填空题(每小题4分,共16分) 13、120; 14、20; 15、[9,)+∞;16、2. 三、解答题17、解:(Ⅰ)由正弦定理得(2sin sin )cos sin cos 0A C B B C ++=,即2sin cos sin cos cos sin 0A B C B C B ++= ……2分得2sin cos sin()0A B B C ++=,因为A B C π++=,所以sin()sin B C A +=,得2sin cos sin 0A B A += ……3分,因为sin 0A ≠,所以1cos 2B =-,又B 为三角形的内角,所以23πB = ……2分 (Ⅱ)1sin 2S ac B =,由23πB =及4a c +=得12(4)sin 23S a a π=- ……2分 23(4)4a a =-23[4(2)]4a =--, 又04a <<,所以当2a =时,S 取最大值3 ……3分18、解:(Ⅰ)设公差为d ,由141n n n a a S +=-,得12141n n n a a S +++=-, 1211()4()4n n n n n n a a a S S a ++++-=-=,因为数列{n a }的各项均为正数, 所以得24n n a a +-= ……3分 又22n n a a d +-=,所以2d = ……2分 由11a =,2d =得1(1)221n a n n =+-⨯=- ……1分 (Ⅱ)由(Ⅰ)得1111(1)(1)(211)(211)4(1)n n n b a a n n n n +===++-++++……2分于是121111[]41223(1)n n T b b b n n =+++=+++⨯⨯⨯+111111[1]422314(1)nn n n =-+-++-=++……4分 19、(Ⅰ)如图,连结AC ,因为E 、F 分别是棱PA 、PC 的中点, 所以//EF AC ……2分因为AC ⊂平面ABCD ,E ,F 不在平面ABCD 内,所以//EF 平面ABCD ……3分(Ⅱ)解:因为PA ⊥平面ABCD , 所以PA CD ⊥,因为ABCD 是直角梯形, 且90DAB ∠=︒,所以CD AD ⊥,又PA AD A =,所以CD ⊥平面PAD ,即CD是三棱锥C PDE -的高 ……4分PCADBFE因为E 是棱PA 的中点,所以111222PDE PDA S S PA AD ==⨯⨯⨯3=, 于是三棱锥C PDE -的体积1135533C PDE PDE V S CD -=⋅=⨯⨯= ……3分 20、解:从5名同学A 、B 、C 、D 、E 中选出3名同学的基本事件空间为: {(,,),(,,),(,,),(,,),(,,),(,,),(,,),A B C A B D A B E A C D A C E A D E B C D Ω=(,,),(,,),(,,)}B C E B D E C D E ,共含有10个基本事件 ……3分(Ⅰ)设事件M 为“C 同学被选取”,则事件M 包含6个基本事件, 事件M 发生的概率为63()105P M == ……3分 (Ⅱ)设事件N 为“B 同学和D 同学都被选取”,则事件N 包含3个基本事件, 事件N 发生的概率为3()10P N =……3分 (Ⅲ)设事件Q 为“A 同学和E 同学中至少有一个被选取”,则事件Q 包含9个基本事件,事件Q 发生的概率为9()10P Q =……3分 21、解:(Ⅰ)由22222222112c a b b e a a a -===-=得2a b = ……2分 由点A (a ,0),B (0,b -)知直线AB 的方程为1x ya b+=-, 于是可得直线AB 的方程为220x y b --= ……2分 因此22|002|223331(2)b b +-==+,得2b =,22b =,24a =,所以椭圆M 的方程为22142x y += ……2分 (Ⅱ)由(Ⅰ)知A 、B 的坐标依次为(2,0)、(0,2)-,因为直线PA 经过点(2,0)A ,所以024k =-,得2k =, 即得直线PA 的方程为24y x =- ……2分 因为0CP BE ⋅=,所以1CP BE k k ⋅=-,即1BE CPk k =-……1分设P 的坐标为00(,)x y ,则2000200021222442CP y y y k x x x ⋅==-=-=-+-得14CPk -=,即直线BE 的斜率为4 ……2分 又点B 的坐标为(0,2)-,因此直线BE 的方程为42y x =- ……1分 22、解:(Ⅰ)22()32f x ax bx a '=+-,因为()f x 在1x =-时取得极值,所以1x =-是方程22320ax bx a +-=的根,即2320a b a --= ……2分 得2213139()22228b a a a =-+=--+,又因为0a ≠, 所以b 的取值范围是9(,0)(0,]8-∞ ……2分 (Ⅱ)当0b =时,32()f x ax a x =-,222()33()3a f x ax a a x '=-=- , 因为0a ≠,当0a <时,()0f x '<,()f x 在(,)-∞+∞内单调递减……2分 当0a >时,33()3()()33a a f x a x x '=+-,令()0f x '>解得 33a x <-或33ax >,令()0f x '<,解得3333a a x -<<,于是当0a >时,()f x 在33(,),(,)33a a-∞-+∞内单调递增, 在33(,)33a a-内单调递减 ……2分 (Ⅲ)因为函数()f x 在1x =时有极值1-,所以有221320a b a a b a ⎧+-=-⎪⎨+-=⎪⎩, 消去b 得220a a +-=,解之得1a =或2a =-,又0a >,所以取1a =, 此时1b =- ……2分因此32()f x x x x =--,2()321(31)(1)f x x x x x '=--=+-, 可得()f x 当13x =-时取极大值15()327f -=,()f x 当1x =时取极小值(1)1f =- ……2分如图,方程()f x m =有三个不相等的实数根,等价于直线y m =与曲线()f x 有三个不同的交点,由图象得5(1,)27m ∈- ……2分yxo 1-527。
2017年单招数学试题(二)
单招数学试题模拟题
一、选择题(4×10=40分)
1、已知集合A={a 、b 、x},B={x ,y ,z},则A B ⋃=( )
A 、φ
B 、{x}
C 、{a,b,x,y,z}
D 、{a ,b ,y ,z }
2、已知f (x )=x 2-1,则f (-1)=( )
A 、-2
B 、-1
C 、0
D 、1
3、不等式(x-2)(x+1)≤0的解集是( )
A 、(-1,2)
B 、(-∞,-1)⋃ (2,+∞)
C 、[-1,2]
D 、(-∞ ,-1]⋃[2,+∞)
4、“a=0”是“ab=0”的( )
A 充分但不必要条件
B 、必要但不充分条件
C 、充要条件
D 、既不充分也不必要条件
二、填空题(10×3=30分)
1、函数f (x )=x -2 +lg (x-1)的定义域是 ;
2、1+2+3 +100= ;
3、cos30 cos15 -sin30 sin15 的值是 ;
三、解答题(15×2=30分)
1、冰箱里放了形状相同的3罐可乐,2罐橙汁和4罐冰茶,小明从中任意取出1罐饮用,设事件C={取出可乐或橙汁},试用概率的加法公式计算P (C ).
2、某公司推出一款新产品,其成本为500元/件,经实销得知:当销售价为650元/件时一周可卖出350件;当销售价为800元/件时一周可卖出200件。
如果销售量y 可以近似的看销售价x 的一次函数y=kx-b ,问销售价定为多少时,此产品一周能获得的利润最大,并求出最大利润。
2017山东单招考试试题
2017山东单招考试试题山东单招考试是山东省面向高中毕业生的一种招生方式,旨在选拔具备一定职业素养和技能的学生,为其提供就业和升学的机会。
下面将为大家介绍一些关于2017山东单招考试试题的内容。
第一部分:语文试题1. 下面哪个词不属于情感类词语?A) 开心B) 悲伤C) 讨厌D) 愤怒2. 下面哪个成语的意思是指一个人太过于自负?A) 自以为是B) 四通八达C) 指鹿为马D) 叶公好龙3. 下面哪个诗人是唐朝的?A) 苏轼B) 杜甫C) 李清照D) 辛弃疾第二部分:数学试题1. 两点之间的直线距离为10cm,其中一点为(3,4),那么另一个点可能是:A) (6,8)B) (9,6)C) (5,12)D) (1,2)2. 若f(x) = 3x^2 - 2x + 1,则f(-1)的值是:A) -2B) -1C) 0D) 13. a:b = 2:3,b:c = 3:4,则a:b:c的比值为:A) 2:3:4B) 4:6:8C) 6:9:12D) 8:12:16第三部分:英语试题阅读下面的对话,选择正确的答案填入括号内。
Mary: How about going hiking this weekend?John: (1) __________. I'm tired of staying indoors all the time.Mary: Great! Let's invite Lisa as well. She loves outdoor activities.John: (2) __________. I think she will be interested.Mary: Perfect! I will give her a call later.1. A) I agree. B) I don't mind. C) I can't decide. D) I prefer not to.2. A) That's a good idea B) I don't think so. C) Maybe next time. D) It's up to you.第四部分:理综试题1. 下图是某种花的传粉过程示意图,其中a代表花蜜、b代表传粉昆虫,请回答:传粉过程中,传粉昆虫获得的主要营养物质是什么?A) 水分B) 碳水化合物C) 蛋白质D) 矿物质2. 在下列物质中,哪种属于聚合物?A) H2OB) NaClC) C6H12O6D) CH43. 在夜空中,下列哪个星座位于北极星的极圈之内?A) 天狼星座B) 猎户座C) 北斗七星D) 大熊座这些试题涵盖了语文、数学、英语和理综(生物、化学、地理)等科目。
2017年山东春季高考数学模拟试卷及答案(五)
山东春季高考模拟试题---- 根据历年春季高考考试大纲出题 2017年山东春季高考数学模拟试卷及答案(五)一、选择题(让你算的少,要你想的多,只选一个可要认准啊!每小题3分,共24分)1.下列说法正确的是 ( ) A .-1的倒数是1 B. -1的相反数是-1 C. 1的算术平方根是1 D. 1的立方根是±12.下列运算错误的是 ( )A .3252a 3a 5a +=B .236a a ()= C .235a a a = D .24215a 5a a÷= 3.地球赤道长约为4410⨯千米,我国最长的河流——长江全长约为36.310⨯千米,赤道长约 等于长江长的 ( ) A .7倍 B .6倍 C .5倍 D .4倍 4.如图1,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠, B 点恰好落在AB 的中点E 处,则∠A 等于 ( ) A .25° B .30° C .45° D .60° 5.不等式组x 5332x 1⎧⎨⎩+≥-≥-的解集表示在数轴上正确的 ( )6.如图2,已知EF 是梯形ABCD 的中位线,若AB =8,BC =6, CD =2,∠B 的平分线交EF 于G ,则FG 的长是( )C ABD E(图1)CD FGEA B(图2)山东春季高考模拟试题---- 根据历年春季高考考试大纲出题 O A BA 'B '(图∵∠AOB =∠A OB ''∴ AB= A B ''. A.OABCD(图∵ AD= BC ∴AB =CD.B.OAB(图∵ AB的度数为40°, ∴∠AOB =80°.C.DOA BE M N(图∵MN 垂直平分AD , ∴ AM= ME . D.A .1B .1.5C .2D .2.5 7.观察图3-图6及相应推理,其中正确的是( )8.一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分 由乙继续完成,设这件工作的全部工作量为1,工作量与工作时 间之间的函数关系如图7所示,那么甲、乙两人单独完成这件工 作,下列说法正确的是 ( ) A .甲的效率高 B .乙的效率高 C .两人的效率相等 D .两人的效率不能确定二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共36分)9.在实数-2,13,0,-1.2,2中,无理数是。
2017单招模拟数学试题
2017单招模拟试题一、选择题1.已知集合{}{}A=|1,|12x x B x x ≥=-≤≤,则A B ⋂= ( ).A {}|1x x ≥ .B {}|1x x > .C {}|12x x ≤≤ .D {}|12x x <≤2.下列函数与函数y x =表示同一函数的是 ( ).A 2()y x = .B 2y x = .C 33y x = .D 2x y x =3.已知函数(3)32f x x =+,则()f x 等于 ( ).A 23x + .B 2x + .C 23x+ .D 32x +4.线性回归方程bx a y +=ˆ所表示的直线必经过点( )A .(0,0)B .(0,x )C .(y ,0)D .(y x ,)5.已知(,)x y 在映射f 下的象是(,)x y x y +-,则(1,2)在f 下的象是 ( ).A (3,1)- .B (3,1)-- .C (1,3)- .D (2,1)6. “2x >”是“24x >”的( ).A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件7.下列几何体各自的三视图,其中有且仅有两个三视图完全相同的是( )A .①②B .②④C .①③D .①④8.已知正方体的棱长为1,则该正方体外接球的体积为( )A 3πB 3πC .32πD 3π9.在ABC ∆中2,3,135a b C ===︒,则ABC ∆的面积等于( )A. 322B. 323 D. 23210.曲线221259x y +=与曲线22125-9-x y k k+=(k<9)的( ). A.长轴长相等 B.短轴长相等 C.离心率相等 D.焦距相等二、填空题11.对数式()()3log 7a a --中,实数a 的取值范围是 .12.圆1C :422=+y x 和2C :0248622=-+-+y x y x 的位置关系是 。
2017年山东单招数学模拟试题及答案
2017年山东单招数学模拟试题及答案一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.已知集合2|{2-+=x x x A ≤0,}Z x ∈,则集合A 中所有元素之和为 ▲ . 2.如果实数p 和非零向量a 与b 满足0)1(=++b p a p ,则向量a 和b ▲ . (填“共线”或“不共线”).3.△ABC 中,若B A sin 2sin =,2=AC ,则=BC ▲ .4.设123)(+-=a ax x f ,a 为常数.若存在)1,0(0∈x ,使得0)(0=x f ,则实数a 的取值范围是 ▲ .5.若复数ai z +-=11,i b z 32-=,R b a ∈,,且21z z +与21z z ⋅均为实数,则=21z z ▲ . 6.右边的流程图最后输出的n 的值是 ▲ .7.若实数m 、∈n {1-,1,2,3},且n m ≠,则曲线122=+ny m x 表示焦点在y 轴上的双曲线的概率是 ▲ . 8.已知下列结论:① 1x 、2x 都是正数⇔⎩⎨⎧>>+002121x x x x ,CDBAE② 1x 、2x 、3x 都是正数⇔⎪⎩⎪⎨⎧>>++>++000321133221321x x x x x x x x x x x x ,则由①②猜想:1x 、2x 、3x 、4x 都是正数⇔9.某同学五次考试的数学成绩分别是120, 129, 121,125,130,则这五次考试成绩的方差是 ▲ .10.如图,在矩形ABCD 中,3=AB ,1=BC ,以A 为圆心,1为半径作四分之一个圆弧DE ,在圆弧DE上任取一点P ,则直线AP 与线段BC 有公共点的概率 是 ▲ .第10题图11.用一些棱长为1cm 的小正方体码放成一个几何体,图1为其俯视图,图2为其主视图,则这个几何体的体积最大是 ▲ cm 3.4321>+++x x x x 0434232413121>+++++x x x x x x x x x x x x12340.x x x x >▲图1(俯视图) 图2(主视图)第11题图12.下表是某厂1~4月份用水量(单位:百吨)的一组数据,月份x 1 2 3 4 用水量y4.5432.5由其散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程 是 ▲ .13.已知xOy 平面内一区域A ,命题甲:点(,){(,)|||||1}a b x y x y ∈+≤;命题乙:点A b a ∈),(.如果甲是乙的充分条件,那么区域A 的面积的最小值是 ▲ . 14.设P 是椭圆1162522=+y x 上任意一点,A 和F 分别是椭圆的左顶点和右焦点, 则AF PA PF PA ⋅+⋅41的最小值为 ▲ . 二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)15.(本小题满分14分)直三棱柱111C B A ABC -中,11===BB BC AC ,31=AB .(1)求证:平面⊥C AB 1平面CB B 1;(2)求三棱锥C AB A 11-的体积.16.(本小题满分14分)ABCC 1A 1B 1xyBCAM OND某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.(1)求该企业使用该设备x 年的年平均污水处理费用y (万元);(2)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?17.(本小题满分14分)如图,已知圆心坐标为(3,1)的圆M 与x 轴及直线x y 3=分别相切于A 、B 两点,另一圆N 与圆M 外切、且与x 轴及直线x y 3=分别相切于C 、D 两点.(1)求圆M 和圆N 的方程;(2)过点B 作直线MN 的平行线l ,求直线l 被圆N 截得的弦的长度. 18.(本小题满分14分)已知函数x x x f cos sin )(-=,R x ∈. (1)求函数)(x f 在]2,0[π内的单调递增区间;(2)若函数)(x f 在0x x =处取到最大值,求)3()2()(000x f x f x f ++的值; (3)若x e x g =)((R x ∈),求证:方程)()(x g x f =在[)+∞,0内没有实数解. (参考数据:ln 20.69≈,14.3≈π) 19.(本小题满分16分)已知函数x x x x f 3231)(23+-=(R x ∈)的图象为曲线C . (1)求曲线C 上任意一点处的切线的斜率的取值范围;(2)若曲线C 上存在两点处的切线互相垂直,求其中一条切线与曲线C 的切点的横坐标的取值范围;(3)试问:是否存在一条直线与曲线C 同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.20.(本小题满分18分)已知数列}{n a 的通项公式是12-=n n a ,数列}{n b 是等差数列,令集合},,,,{21 n a a a A =,},,,,{21 n b b b B =,*N n ∈.将集合B A 中的元素按从小到大的顺序排列构成的数列记为}{n c .(1)若n c n =,*N n ∈,求数列}{n b 的通项公式;(2)若φ=B A ,数列}{n c 的前5项成等比数列,且11=c ,89=c ,求满足451>+n n c c 的正整数n 的个数.三、附加题部分(本大题共6小题,其中第21和第22题为必做题,第23~26题为选做题,请考生在第23~26题中任选2个小题作答,如果多做,则按所选做的前两题记分.解答应写出文字说明,证明过程或演算步骤.) 21.(本小题为必做题...,满分12分) 已知直线k x y +=2被抛物线y x 42=截得的弦长AB 为20,O 为坐标原点. (1)求实数k 的值;(2)问点C 位于抛物线弧AOB 上何处时,△ABC 面积最大?,满分12分)22.(本小题为必做题...甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.5,0.6,0.75.(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)设经过两次考试后,能被该高校预录取的人数为ξ,求随机变量ξ的期望)E.(ξ,满分8分)23.(本小题为选做题...如图,在△ABC中,D是AC的中点,E是BD的中点,AE的延长线交BC于F.F EDABC(1)求FCBF的值; (2)若△BEF 的面积为1S ,四边形CDEF 的面积为2S ,求21:S S 的值.24.(本小题为选做题...,满分8分) 已知直线l 的参数方程:12x ty t=⎧⎨=+⎩(t 为参数)和圆C 的极坐标方程:)4sin(22πθρ+=.(1)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)判断直线l 和圆C 的位置关系.25.(本小题为选做题...,满分8分) 试求曲线x y sin =在矩阵MN 变换下的函数解析式,其中M =⎥⎦⎤⎢⎣⎡2001,N =⎥⎥⎦⎤⎢⎢⎣⎡10021.26.(本小题为选做题...,满分8分) 用数学归纳法证明不等式:211111(1)12n N n n n n n*++++>∈>++且.参考答案一、填空题:(本大题共14小题,每小题5分,共70分.)1.2- 2.共线 3.44.1(,1)(,)2-∞-⋃+∞ 5.i 2321--6.5 7.418.0432431421321>+++x x x x x x x x x x x x 9.16.4 10.3111.7 12.25.57.0ˆ+-=x y13.2 14.9- 二、解答题:(本大题共6小题,共90分.) 15.(本小题满分14分)解:(1)直三棱柱ABC —A 1B 1C 1中,BB 1⊥底面ABC ,则BB 1⊥AB ,BB 1⊥BC ,------------------------------------------------------------3分又由于AC=BC=BB 1=1,AB 1=3,则AB=2,则由AC 2+BC 2=AB 2可知,AC ⊥BC ,--------------------------------------------6分又由上BB 1⊥底面ABC 可知BB 1⊥AC ,则AC ⊥平面B 1CB ,所以有平面AB 1C ⊥平面B 1CB ;--------------------------------------------------9分(2)三棱锥A 1—AB 1C 的体积61121311111=⨯⨯==--AC A B C AB A V V .----------14分(注:还有其它转换方法)16.(本小题满分14分)解:(1)xx x y )2642(5.0100++++++=即5.1100++=xx y (0>x );------------------------------------------------7分(不注明定义域不扣分,或将定义域写成*N x ∈也行)(2)由均值不等式得:5.215.110025.1100=+⋅≥++=xx x x y (万元)-----------------------11分当且仅当xx 100=,即10=x 时取到等号.----------------------------------------13分答:该企业10年后需要重新更换新设备.------------------------------------------14分17.(本小题满分14分)解:(1)由于⊙M 与∠BOA 的两边均相切,故M 到OA 及OB 的距离均为⊙M 的半径,则M 在∠BOA 的平分线上,同理,N 也在∠BOA 的平分线上,即O ,M ,N 三点共线,且OMN 为∠BOA的平分线,∵M 的坐标为)1,3(,∴M 到x 轴的距离为1,即⊙M 的半径为1, 则⊙M 的方程为1)1()3(22=-+-y x ,------------------------------------4分设⊙N 的半径为r ,其与x 轴的的切点为C ,连接MA 、MC , 由Rt △OAM ∽Rt △OCN 可知,OM :ON=MA :NC , 即313=⇒=+r rr r , 则OC=33,则⊙N 的方程为9)3()33(22=-+-y x ;----------------8分 (2)由对称性可知,所求的弦长等于过A 点直线MN 的平行线被⊙N 截得的弦的长度,此弦的方程是)3(33-=x y ,即:033=--y x , 圆心N 到该直线的距离d=23,--------------------- -------------------------11分则弦长=33222=-d r .----------------------------------------------------14分另解:求得B (23,23),再得过B 与MN 平行的直线方程033=+-y x ,圆心N 到该直线的距离d '=23,则弦长=33222=-d r . (也可以直接求A 点或B 点到直线MN 的距离,进而求得弦长)18.(本小题满分14分)解:(1))4sin(2cos sin )(π-=-=x x x x f ,令]22,22[4πππππ+-∈-k k x (Z k ∈)则]432,42[ππππ+-∈k k x ,------------------------------------------------2分 由于]2,0[π∈x ,则)(x f 在]2,0[π内的单调递增区间为]43,0[π和]2,47[ππ; ---------------4分(注:将单调递增区间写成]43,0[π ]2,47[ππ的形式扣1分) (2)依题意,4320ππ+=k x (Z k ∈),------------------------------------------6分由周期性,)3()2()(000x f x f x f ++12)49cos 49(sin )23cos 23(sin )43cos 43(sin-=-+-+-=ππππππ;-----------------8分(3)函数x e x g =)((R x ∈)为单调增函数,且当]4,0[π∈x 时,0)(≤x f ,0)(>=x e x g ,此时有)()(x g x f <;-------------10分当⎪⎭⎫⎢⎣⎡+∞∈,4πx 时,由于785.04ln 4≈=ππe ,而345.02ln 212ln ≈=,则有2ln ln 4>πe,即4()24g e ππ=>, 又()g x 为增函数,∴当⎪⎭⎫⎢⎣⎡+∞∈,4πx 时,()2g x > ------12分而函数)(x f 的最大值为2,即()2f x ≤,则当⎪⎭⎫⎢⎣⎡+∞∈,4πx 时,恒有)()(x g x f <, 综上,在[)+∞,0恒有)()(x g x f <,即方程)()(x g x f =在[)+∞,0内没有实数 解.--------------------------------------------------------------------------------------------14分19.(本小题满分16分)解:(1)34)(2+-='x x x f ,则11)2()(2-≥--='x x f ,即曲线C 上任意一点处的切线的斜率的取值范围是[)+∞-,1;------------4分(2)由(1)可知,⎪⎩⎪⎨⎧-≥--≥111kk ---------------------------------------------------------6分解得01<≤-k 或1≥k ,由03412<+-≤-x x 或1342≥+-x x 得:(][)+∞+-∞-∈,22)3,1(22, x ;-------------------------------9分 (3)设存在过点A ),(11y x 的切线曲线C 同时切于两点,另一切点为B ),(22y x ,21x x ≠,则切线方程是:))(34()3231(112112131x x x x x x x y -+-=+--,化简得:)232()34(2131121x x x x x y +-++-=,--------------------------11分 而过B ),(22y x 的切线方程是)232()34(2232222x x x x x y +-++-=, 由于两切线是同一直线,则有:3434222121+-=+-x x x x ,得421=+x x ,----------------------13分 又由22322131232232x x x x +-=+-,即0))((2))((32212122212121=+-+++--x x x x x x x x x x 04)(31222121=+++-x x x x ,即012)(22211=-++x x x x 即0124)4(222=-+⨯-x x ,044222=+-x x得22=x ,但当22=x 时,由421=+x x 得21=x ,这与21x x ≠矛盾。
【2017】年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷含答案
2017年全国普通高等学校运动训练、民族传统体育专业单招统一招生考试 数学试题一、选择题:(本大题共10小题,每小题6分,共60分)1、设集合}5,4,3,2,1{=M ,}6,3,1{=N ,则=N M ( ) A. }3,1{ B. }6,3{ C. }6,1{ D. }6,5,4,3,2,1{2、函数131)(+=x x f 的定义域为 ( ) A. }31|{−≥x x B. }3|{−≥x x C. }31|{−>x x D. }3|{−>x x 3、设甲:四边形ABCD 为矩形;乙:四边形ABCD 为平行四边形,则 ( )A. 甲是乙的充分条件但不是乙的必要条件B. 甲是乙的必要条件但不是乙的充分条件C. 甲是乙的充分必要条件D. 甲既不是乙的充分条件也不是乙的必要条件 4、从7名男运动员和3名女运动员中选出2人组队参加乒乓球混合双打比赛,则不同的选法共有( )A. 12种B. 18种C. 20种D. 21种5、ABC ∆的内角A ,B ,C 的对边分别为c b a ,,,若222c bc b a ++=,则A= ( ) A. 150 B. 120 C. 60 D.306、已知抛物线y x C 4:2=的焦点为F ,过F 作C 的对称轴的垂线,与C 交于A 、B ,则=||AB( )A. 8B. 4C.2D. 1 7、设252cos2sin=+αα,则=αsin ( ) A.23B. 21C. 31D. 418、点P 在直二面角βα−−AB 的交线AB 上,C ,D 分别在βα,内,且4π=∠=∠DPA CPA ,则=∠CPDA. 6πB. 4πC. 3πD. 2π9、已知点)2,3(),4,5(−−B A ,则以AB 为直径的圆的方程为 ( )A. 25)1()1(22=+++y x B. 25)1()1(22=−++y x C. 100)1()1(22=+++y x D. 100)1()1(22=−++y x10、过点)2,1(P 且斜率小于0的直线与x 轴,y 轴围成的封闭图形面积的最小值为 ( ) A. 2 B. 22 C. 4 D. 24二、填空题:(本大题共6小题,每小题6分,共36分)11、已知平面向量)2,1(),1,1(−=−=→→b a ,则=+→→b a 2 。
2017年高职高考数学模拟试[卷]和参考答案解析三
2017年高职高考数学模拟试题三数 学本试卷共4页,24小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题(本大题共15小题,每题只有一个正确答案,请将其序号填在答题卡上,每小题5分,满分75分)1、已知全集U =R ,M={x|x 21+≤,x ∈R},N ={1,2,3,4},则C U M ∩N= ( ) A. {4} B. {3,4} C. {2,3,4} D. {1,2,3,4}2、“G =ab ±”是“a,G,b 成等比数列”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件3、函数y=)32(log 3-x 的定义域为区间 ( )A. ),23(+∞B. ),23[+∞ C. ),2(+∞ D. ),2[+∞4、函数y=sin3xcos3x 是 ( ) A. 周期为3π的奇函数 B. 周期为3π的偶函数 C. 周期为32π的奇函数 D. 周期为32π的偶函数 5、已知平面向量与的夹角为90°,且=(k,1),=(2,6),则k 的值为 ( )A. -31B. 31C. -3D. 36、在等差数列{a n }中,若S 9=45,则a 5= ( ) A. 4 B. 5 C. 8 D. 107、已知抛物线y=mx 2的准线方程为y=-1,则m = ( ) A. -4 B. 4 C.41 D. -418、在△ABC 中,内角A 、B 所对的边分别是a 、b ,且bcosA=acosB ,则△ABC 是( ) A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形9、函数y=sin3x 的图像平移向量后,新位置图像的解析式为y=sin(3x-4π)-2,则平移向量= ( )A. (6π,-2) B. (12π,2) C. (12π,-2) D. (6π,2)10、设项数为8的等比数列的中间两项与2x 2+7x+4=0的两根相等,则该数列的各项的积为 ( )A. 8B. 16C. 32D. 64 11、过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第二象限,则该直线的方程是( )A. y=x 3B. y=-x 3C. y=x 33D. y=-x 3312、函数y=3sinx+cosx ,x ∈[-6π,6π]的值域是 ( ) A. [-3,3] B. [-2,2] C. [0,3] D. [0,2] 13、已知tan α=5,则sin α·cos α= ( ) A. -526 B. 526 C. -265 D. 265 14、椭圆4x 2+y 2=k 上任意两点间的最大距离为8,则k 的值为 ( ) A. 4 B. 8 C. 16 D. 32 15、若α、β都是锐角,且sin α=734,cos(α+β)=1411-,则β= ( ) A.3π B. 8πC. 4πD. 6π第二部分(非选择题,共75分)二、填空题(本大题共5小题,每小题5分,满分25分)16、第四象限点A(2,y)到直线3x+4y-5=0的距离为3,则y 的值为 . 17、顶点在圆x 2+y 2=16上,焦点为F(±5,0)的双曲线方程为 . 18、向量与的夹角为60°,||=2,||=3,则|+|= . 19、经过点M(1,0),且与直线x-2y+3=0垂直的直线方程为y= . 20、若log 3x+log 3y=4,则x+y 的最小值为 .三、解答题(21、22小题各10分,23、24小题各15分,满分50分) 21、解不等式 8x 2+2ax-3a 2≤0 (a ≠0)22、求以椭圆114416922=+y x 的右焦点为圆心,且与双曲线116922=-y x 的渐近线相切的圆的方程.23、如图,甲船以每小时230海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距210海里,问乙船每小时航行多少海里?沿什么方向航行?24、设数列{a n }是等差数列,)(21N k ka a ab kk ∈+++=(1)求证:数列{b n }也是等差数列. (2)若23132113211=++++++=b b b a a a a ,求数列{a n },{b n }的通项公式.高三高职类高考班第二次模拟考试数学 参考答案一、选择题BBDAC BCACB DCDCA 二、选择题(5×5´=25´)16、 -4 17、 191622=-y x 18、 19 19、 -2x+2 20、 18三、解答题(21、22小题各10分,23、24小题各15分,共50分) 21、解:原不等式可化为 (4x+3a)(2x-a)≤0∴x 1=a 43-,x 2=a 21(1)当a>0时,则a 21>a 43-故原不等式的解集为[a 43-,a 21](2)当a<0时,则a 21<a 43-故原不等式的解集为[a 21,a 43-]22、解:椭圆114416922=+y x 的右焦点为(5,0) 令016922=-y x ,则双曲线的渐近线方程为:x y 34±= 即4x+3y=0及4x-3y=0由题意知,所求圆的圆心坐标为(5,0) 半径为 r=2234|0354|+⨯+⨯=4故所求圆的方程为(x-5)2+y 2=1623、解:如图,在△A 2B 2A 1中,已知∠B 2A 2A 1=60°,A 1A 2=302×31=102,B 2A 2=102,则△A 2B 2A 1是等边三角形,故A 1B 2=102,∠B 2A 1A 2=60°∴在△B 2A 1B 1中,∠B 2A 1B 1=45°,A 1B 1=20 设B 1B 2=x 由余弦定理知,x 2=202+(102)2-2×20×102×cos45°=200 ∴ x=102易知△B 1A 1B 2为等腰直角三角形,即∠A 1B 1B 2=45° 故乙船每小时行驶31210=302海里,沿“北偏东30°”的方向航行.24、设数列{a n }的首项为a 1,公差为d ,则(1)a 1+a 2+…+a k =ka 1+d k k 2)1(-∴b k =kdk k ka 2)1(1-+= a 1+2)1(d k - 即b n =a 1+2)1(dn -当n =1时,b 1=a 1;当n>1时,b n -b n-1= [a 1+2)1(d n -]-[a 1+2)2(d n -]=2d∴数列{b n }是首项为a 1,公差为2d的等差数列.(2)由题意知:2322)113(13132)113(131311132113211=⨯-+-+=++++++=d a da b b b a a a a ,易得:d=21故a n =1+n 21,b n =n 4145+。
2017年山东省菏泽市普通高校招生模拟考试(理科)数学试卷(含答案)
2017年普通高校招生模拟考试(理科)数学试卷一、选择题(本大题共有8题,满分48分)1.若复数z 满足232i,z z +=-其中i 为虚数单位,则z =( )(A ) 1+2i(B )1-2i(C )12i -+ (D )12i --2.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→l im .下列条件中,使得()*∈<N n S S n 2恒成立的是( )(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a (B )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a 3.下列极坐标方程中,对应的曲线为右图的是( ) (A )θρcos 56+= (B )θρin s 56+= (C )θρcos 56-= (D )θρin s 56-=4.已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件5.函数f (x )=x +cos x )x –sin x )的最小正周期是( )(A )2π(B )π (C )23π(D )2π 6.已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4 (B )–4 (C )94(D )–947.函数f (x )=x +cos x )x –sin x )的最小正周期是( )(A )2π(B )π (C )23π(D )2π 8.已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4 (B )–4 (C )94(D )–949.已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( )(A )−2(B )−1(C )0(D )210.若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( ) (A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3二、填空题(28分)9、已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________ 10、设.0,0>>b a 若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩无解,则b a +的取值范围是____________11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为.12.在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线21x y -=上一个动点,则BA BP ⋅的取值范围是.13.设[)π2,0,,∈∈c R b a ,若对任意实数x 都有()c bx a x +=⎪⎭⎫⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为.14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点j i A A ,,点P 满足0=++j i OA OA OP ,则点P落在第一象限的概率是. 三、解答题(74分)15.将边长为1的正方形11AAOO (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAOO 的同侧。
2017年高职高考数学模拟试[卷]和参考答案解析三
2017年高职高考数学模拟试题三数 学本试卷共4页,24小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题(本大题共15小题,每题只有一个正确答案,请将其序号填在答题卡上,每小题5分,满分75分)1、已知全集U =R ,M={x|x 21+≤,x ∈R},N ={1,2,3,4},则C U M ∩N= ( ) A. {4} B. {3,4} C. {2,3,4} D. {1,2,3,4}2、“G =ab ±”是“a,G,b 成等比数列”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件3、函数y=)32(log 3-x 的定义域为区间 ( )A. ),23(+∞B. ),23[+∞ C. ),2(+∞ D. ),2[+∞4、函数y=sin3xcos3x 是 ( ) A. 周期为3π的奇函数 B. 周期为3π的偶函数 C. 周期为32π的奇函数 D. 周期为32π的偶函数 5、已知平面向量与的夹角为90°,且=(k,1),=(2,6),则k 的值为 ( )A. -31B. 31C. -3D. 36、在等差数列{a n }中,若S 9=45,则a 5= ( ) A. 4 B. 5 C. 8 D. 107、已知抛物线y=mx 2的准线方程为y=-1,则m = ( ) A. -4 B. 4 C.41 D. -418、在△ABC 中,内角A 、B 所对的边分别是a 、b ,且bcosA=acosB ,则△ABC 是( ) A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形9、函数y=sin3x 的图像平移向量后,新位置图像的解析式为y=sin(3x-4π)-2,则平移向量= ( )A. (6π,-2) B. (12π,2) C. (12π,-2) D. (6π,2)10、设项数为8的等比数列的中间两项与2x 2+7x+4=0的两根相等,则该数列的各项的积为 ( )A. 8B. 16C. 32D. 64 11、过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第二象限,则该直线的方程是( )A. y=x 3B. y=-x 3C. y=x 33D. y=-x 3312、函数y=3sinx+cosx ,x ∈[-6π,6π]的值域是 ( ) A. [-3,3] B. [-2,2] C. [0,3] D. [0,2] 13、已知tan α=5,则sin α·cos α= ( ) A. -526 B. 526 C. -265 D. 265 14、椭圆4x 2+y 2=k 上任意两点间的最大距离为8,则k 的值为 ( ) A. 4 B. 8 C. 16 D. 32 15、若α、β都是锐角,且sin α=734,cos(α+β)=1411-,则β= ( ) A.3π B. 8πC. 4πD. 6π第二部分(非选择题,共75分)二、填空题(本大题共5小题,每小题5分,满分25分)16、第四象限点A(2,y)到直线3x+4y-5=0的距离为3,则y 的值为 . 17、顶点在圆x 2+y 2=16上,焦点为F(±5,0)的双曲线方程为 . 18、向量与的夹角为60°,||=2,||=3,则|+|= . 19、经过点M(1,0),且与直线x-2y+3=0垂直的直线方程为y= . 20、若log 3x+log 3y=4,则x+y 的最小值为 .三、解答题(21、22小题各10分,23、24小题各15分,满分50分) 21、解不等式 8x 2+2ax-3a 2≤0 (a ≠0)22、求以椭圆114416922=+y x 的右焦点为圆心,且与双曲线116922=-y x 的渐近线相切的圆的方程.23、如图,甲船以每小时230海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距210海里,问乙船每小时航行多少海里?沿什么方向航行?24、设数列{a n }是等差数列,)(21N k ka a ab kk ∈+++=(1)求证:数列{b n }也是等差数列. (2)若23132113211=++++++=b b b a a a a ,求数列{a n },{b n }的通项公式.高三高职类高考班第二次模拟考试数学 参考答案一、选择题BBDAC BCACB DCDCA 二、选择题(5×5´=25´)16、 -4 17、 191622=-y x 18、 19 19、 -2x+2 20、 18三、解答题(21、22小题各10分,23、24小题各15分,共50分) 21、解:原不等式可化为 (4x+3a)(2x-a)≤0∴x 1=a 43-,x 2=a 21(1)当a>0时,则a 21>a 43-故原不等式的解集为[a 43-,a 21](2)当a<0时,则a 21<a 43-故原不等式的解集为[a 21,a 43-]22、解:椭圆114416922=+y x 的右焦点为(5,0) 令016922=-y x ,则双曲线的渐近线方程为:x y 34±= 即4x+3y=0及4x-3y=0由题意知,所求圆的圆心坐标为(5,0) 半径为 r=2234|0354|+⨯+⨯=4故所求圆的方程为(x-5)2+y 2=1623、解:如图,在△A 2B 2A 1中,已知∠B 2A 2A 1=60°,A 1A 2=302×31=102,B 2A 2=102,则△A 2B 2A 1是等边三角形,故A 1B 2=102,∠B 2A 1A 2=60°∴在△B 2A 1B 1中,∠B 2A 1B 1=45°,A 1B 1=20 设B 1B 2=x 由余弦定理知,x 2=202+(102)2-2×20×102×cos45°=200 ∴ x=102易知△B 1A 1B 2为等腰直角三角形,即∠A 1B 1B 2=45° 故乙船每小时行驶31210=302海里,沿“北偏东30°”的方向航行.24、设数列{a n }的首项为a 1,公差为d ,则(1)a 1+a 2+…+a k =ka 1+d k k 2)1(-∴b k =kdk k ka 2)1(1-+= a 1+2)1(d k - 即b n =a 1+2)1(dn -当n =1时,b 1=a 1;当n>1时,b n -b n-1= [a 1+2)1(d n -]-[a 1+2)2(d n -]=2d∴数列{b n }是首项为a 1,公差为2d的等差数列.(2)由题意知:2322)113(13132)113(131311132113211=⨯-+-+=++++++=d a da b b b a a a a ,易得:d=21故a n =1+n 21,b n =n 4145+。
2017单招试题及答案
2017单招试题及答案2017年单招考试是一场对考生综合能力的全面考察,以下将介绍其中的几道试题以及详细的答案解析。
一、数学题题目:已知函数y = 1 + y^2 + y^3,求函数曲线在点(1,3)处的切线方程。
解析:求切线方程首先要求得该点的导数,即函数的一阶导数。
对函数y = 1 + y^2 + y^3求导,可得:y′ = 2y + 3y^2。
将点(1,3)代入导数方程,可得导数值为:y′(1) = 2·1 + 3·1^2 = 5。
切线方程的斜率为y′(1),切线过点(1,3),设切线方程为y = yy + y。
带入该点的坐标可得:3 = y + y。
由于已知斜率为5,代入斜率和截距方程可得:5 = y,故切线方程为y = 5y - 2。
二、英语题题目:Choose the correct word to complete the sentence: The weather was __________ during our vacation.A. beautifullyB. beautifulC. beautyD. beautify答案解析:根据句意可知,我们在假期期间遇到了好天气,因此需要选择一个形容词来修饰"The weather"。
选项A为副词,选项C为名词,选项D为动词,与题意不符。
只有选项B"beautiful"是形容词,正确答案为B。
三、政治题题目:在我国宪法中,属于基本权利的有:A. 结社自由B. 宗教信仰自由C. 家庭保护D. 随意工作答案解析:根据我国宪法规定,基本权利包括人民的民主权利、宗教信仰自由、言论自由、结社自由等。
选项A、B、C均为基本权利,而选项D"随意工作"与基本权利不符,故答案为ABC。
四、物理题题目:某物体质量为5kg,抛出的初速度为10m/s,抛出角度为30°,求其抛出后的最大高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年山东单招数学模拟试题及答案一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.已知集合2|{2-+=x x x A ≤0,}Z x ∈,则集合A 中所有元素之和为 ▲ . 2.如果实数p 和非零向量a 与b 满足0)1(=++b p a p ,则向量a 和b ▲ . (填“共线”或“不共线”).3.△ABC 中,若B A sin 2sin =,2=AC ,则=BC ▲ .4.设123)(+-=a ax x f ,a 为常数.若存在)1,0(0∈x ,使得0)(0=x f ,则实数a 的取值范围是 ▲ .5.若复数ai z +-=11,i b z 32-=,R b a ∈,,且21z z +与21z z ⋅均为实数,则=21z z ▲ . 6. 右边的流程图最后输出的n 的值是 ▲ .7.若实数m 、∈n {1-,1,2,3},且n m ≠,则曲线122=+ny m x 表示焦点在y 轴上的双曲线的概率是 ▲ . 8. 已知下列结论:① 1x 、2x 都是正数⇔⎩⎨⎧>>+002121x x x x ,② 1x 、2x 、3x 都是正数⇔⎪⎩⎪⎨⎧>>++>++000321133221321x x x x x x x x x x x x ,则由①②猜想:B1x 、2x 、3x 、4x 都是正数⇔9.某同学五次考试的数学成绩分别是120, 129, 121,125,130,则这五次考试成绩的方差是 ▲ .10.如图,在矩形ABCD 中,3=AB ,1=BC ,以 A 为圆心,1为半径作四分之一个圆弧DE ,在圆弧DE上任取一点P ,则直线AP 与线段BC 有公共点的概率 是 ▲ .第10题图11.用一些棱长为1cm 的小正方体码放成一个几何体,图1为其俯视图,图2为其主视图,则这个几何体的体积最大是 ▲ cm 3.图1(俯视图) 图2(主视图)第11题图12.下表是某厂1~4月份用水量(单位:百吨)的一组数据,月份x1234用水量y4.5 4 3 2.5由其散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程 是 ▲ .13.已知xOy 平面内一区域A ,命题甲:点(,){(,)|||||1}a b x y x y ∈+≤;命题乙:点A b a ∈),(.如果甲是乙的充分条件,那么区域A 的面积的最小值是 ▲ . 14.设P 是椭圆1162522=+y x 上任意一点,A 和F 分别是椭圆的左顶点和右焦点, 则AF PA PF PA ⋅+⋅41的最小值为 ▲ . 二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)15.(本小题满分14分)直三棱柱111C B A ABC -中,11===BB BC AC ,31=AB .(1)求证:平面⊥C AB 1平面CB B 1; (2)求三棱锥C AB A 11-的体积.16.(本小题满分14分)某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.(1)求该企业使用该设备x 年的年平均污水处理费用y (万元);(2)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?17.(本小题满分14分)如图,已知圆心坐标为的圆M 与x 轴及直线x y 3=分别相切于A 、B 两点,另一圆N 与圆M 外切、且与x 轴及直线x y 3=分别相切于C 、D 两点.(1)求圆M 和圆N 的方程;(2)过点B 作直线MN 的平行线l ,求直线l 被圆N 截得的弦的长度. 18.(本小题满分14分)已知函数x x x f cos sin )(-=,R x ∈. (1)求函数)(x f 在]2,0[π内的单调递增区间;(2)若函数)(x f 在0x x =处取到最大值,求)3()2()(000x f x f x f ++的值; (3)若x e x g =)((R x ∈),求证:方程)()(x g x f =在[)+∞,0内没有实数解. (参考数据:ln 20.69≈,14.3≈π) 19.(本小题满分16分)已知函数x x x x f 3231)(23+-=(R x ∈)的图象为曲线C . (1)求曲线C 上任意一点处的切线的斜率的取值范围;(2)若曲线C 上存在两点处的切线互相垂直,求其中一条切线与曲线C 的切点的横坐标的取值范围;(3)试问:是否存在一条直线与曲线C 同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.20.(本小题满分18分)已知数列}{n a 的通项公式是12-=n n a ,数列}{n b 是等差数列,令集合},,,,{21 n a a a A =,},,,,{21 n b b b B =,*N n ∈.将集合B A 中的元素按从小到大的顺序排列构成的数列记为}{n c .(1)若n c n =,*N n ∈,求数列}{n b 的通项公式;(2)若φ=B A ,数列}{n c 的前5项成等比数列,且11=c ,89=c ,求满足451>+n n c c 的正整数n 的个数.三、附加题部分(本大题共6小题,其中第21和第22题为必做题,第23~26题为选做题,请考生在第23~26题中任选2个小题作答,如果多做,则按所选做的前两题记分.解答应写出文字说明,证明过程或演算步骤.) 21.(本小题为必做题...,满分12分) 已知直线k x y +=2被抛物线y x 42=截得的弦长AB 为20,O 为坐标原点. (1)求实数k 的值;(2)问点C 位于抛物线弧AOB 上何处时,△ABC 面积最大?22.(本小题为必做题...,满分12分) 甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.5,0.6,0.75. (1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)设经过两次考试后,能被该高校预录取的人数为ξ,求随机变量ξ的期望)(ξE .FABC23.(本小题为选做题...,满分8分) 如图,在△ABC 中,D 是AC 的中点,E 是BD 的中点,AE 的延长线交BC 于F .(1)求FCBF的值; (2)若△BEF 的面积为1S ,四边形CDEF 的面积为2S ,求21:S S 的值.24.(本小题为选做题...,满分8分) 已知直线l 的参数方程:12x ty t=⎧⎨=+⎩(t 为参数)和圆C 的极坐标方程:)4sin(22πθρ+=.(1)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)判断直线l 和圆C 的位置关系.25.(本小题为选做题...,满分8分) 试求曲线x y sin =在矩阵MN 变换下的函数解析式,其中M =⎥⎦⎤⎢⎣⎡2001,N =⎥⎥⎦⎤⎢⎢⎣⎡10021.26.(本小题为选做题...,满分8分) 用数学归纳法证明不等式:211111(1)12n N n n n n n*++++>∈>++且.参考答案一、填空题:(本大题共14小题,每小题5分,共70分.)1.2- 2.共线 3.4 4.1(,1)(,)2-∞-⋃+∞ 5.i 2321-- 6.5 7.418.0432431421321>+++x x x x x x x x x x x x 9.16.4 10.3111.7 12.25.57.0ˆ+-=x y13.2 14.9- 二、解答题:(本大题共6小题,共90分.) 15. (本小题满分14分)解:(1)直三棱柱ABC —A 1B 1C 1中,BB 1⊥底面ABC ,则BB 1⊥AB ,BB 1⊥BC ,------------------------------------------------------------3分又由于AC=BC=BB 1=1,AB 1=3,则AB=2,则由AC 2+BC 2=AB 2可知,AC ⊥BC ,--------------------------------------------6分又由上BB 1⊥底面ABC 可知BB 1⊥AC ,则AC ⊥平面B 1CB ,所以有平面AB 1C ⊥平面B 1CB ;--------------------------------------------------9分(2)三棱锥A 1—AB 1C 的体积61121311111=⨯⨯==--AC A B C AB A V V .----------14分(注:还有其它转换方法)16.(本小题满分14分)解:(1)xx x y )2642(5.0100++++++=即5.1100++=xx y (0>x );------------------------------------------------7分(不注明定义域不扣分,或将定义域写成*N x ∈也行)(2)由均值不等式得:5.215.110025.1100=+⋅≥++=xx x x y (万元)-----------------------11分当且仅当xx 100=,即10=x 时取到等号.----------------------------------------13分答:该企业10年后需要重新更换新设备.------------------------------------------14分17.(本小题满分14分)解:(1)由于⊙M 与∠BOA 的两边均相切,故M 到OA 及OB 的距离均为⊙M 的半径,则M 在∠BOA 的平分线上,同理,N 也在∠BOA 的平分线上,即O ,M ,N 三点共线,且OMN 为∠BOA的平分线,∵M 的坐标为)1,3(,∴M 到x 轴的距离为1,即⊙M 的半径为1, 则⊙M 的方程为1)1()3(22=-+-y x ,------------------------------------4分设⊙N 的半径为r ,其与x 轴的的切点为C ,连接MA 、MC , 由Rt △OAM ∽Rt △OCN 可知,OM :ON=MA :NC , 即313=⇒=+r rr r , 则OC=33,则⊙N 的方程为9)3()33(22=-+-y x ;----------------8分 (2)由对称性可知,所求的弦长等于过A 点直线MN 的平行线被⊙N 截得的弦的长度,此弦的方程是)3(33-=x y ,即:033=--y x , 圆心N 到该直线的距离d=23,--------------------- -------------------------11分则弦长=33222=-d r .----------------------------------------------------14分另解:求得B (23,23),再得过B 与MN 平行的直线方程033=+-y x ,圆心N 到该直线的距离d '=23,则弦长=33222=-d r . (也可以直接求A 点或B 点到直线MN 的距离,进而求得弦长)18.(本小题满分14分)解:(1))4sin(2cos sin )(π-=-=x x x x f ,令]22,22[4πππππ+-∈-k k x (Z k ∈)则]432,42[ππππ+-∈k k x ,------------------------------------------------2分 由于]2,0[π∈x ,则)(x f 在]2,0[π内的单调递增区间为]43,0[π和]2,47[ππ; ---------------4分(注:将单调递增区间写成]43,0[π ]2,47[ππ的形式扣1分) (2)依题意,4320ππ+=k x (Z k ∈),------------------------------------------6分由周期性,)3()2()(000x f x f x f ++12)49cos 49(sin )23cos 23(sin )43cos 43(sin-=-+-+-=ππππππ;-----------------8分(3)函数x e x g =)((R x ∈)为单调增函数,且当]4,0[π∈x 时,0)(≤x f ,0)(>=x e x g ,此时有)()(x g x f <;-------------10分当⎪⎭⎫⎢⎣⎡+∞∈,4πx 时,由于785.04ln 4≈=ππe ,而345.02ln 212ln ≈=,则有2ln ln 4>πe ,即4()4g e ππ=>,又()g x 为增函数,∴当⎪⎭⎫⎢⎣⎡+∞∈,4πx 时,()g x >分而函数)(x f 的最大值为2,即()f x ≤则当⎪⎭⎫⎢⎣⎡+∞∈,4πx 时,恒有)()(x g x f <, 综上,在[)+∞,0恒有)()(x g x f <,即方程)()(x g x f =在[)+∞,0内没有实数 解.--------------------------------------------------------------------------------------------14分19. (本小题满分16分)解:(1)34)(2+-='x x x f ,则11)2()(2-≥--='x x f ,即曲线C 上任意一点处的切线的斜率的取值范围是[)+∞-,1;------------4分(2)由(1)可知,⎪⎩⎪⎨⎧-≥--≥111kk ---------------------------------------------------------6分解得01<≤-k 或1≥k ,由03412<+-≤-x x 或1342≥+-x x 得:(][)+∞+-∞-∈,22)3,1(22, x ;-------------------------------9分 (3)设存在过点A ),(11y x 的切线曲线C 同时切于两点,另一切点为B ),(22y x ,21x x ≠,则切线方程是:))(34()3231(112112131x x x x x x x y -+-=+--, 化简得:)232()34(2131121x x x x x y +-++-=,--------------------------11分 而过B ),(22y x 的切线方程是)232()34(2232222x x x x x y +-++-=, 由于两切线是同一直线,则有:3434222121+-=+-x x x x ,得421=+x x ,----------------------13分 又由22322131232232x x x x +-=+-, 即0))((2))((32212122212121=+-+++--x x x x x x x x x x 04)(31222121=+++-x x x x ,即012)(22211=-++x x x x即0124)4(222=-+⨯-x x ,044222=+-x x得22=x ,但当22=x 时,由421=+x x 得21=x ,这与21x x ≠矛盾。